summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/geqo-intro2.html
blob: 6f3bc428fc9f10657597ffe83fc354c68f7a87f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>62.2. Genetic Algorithms</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="geqo-intro.html" title="62.1. Query Handling as a Complex Optimization Problem" /><link rel="next" href="geqo-pg-intro.html" title="62.3. Genetic Query Optimization (GEQO) in PostgreSQL" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">62.2. Genetic Algorithms</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="geqo-intro.html" title="62.1. Query Handling as a Complex Optimization Problem">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="geqo.html" title="Chapter 62. Genetic Query Optimizer">Up</a></td><th width="60%" align="center">Chapter 62. Genetic Query Optimizer</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="geqo-pg-intro.html" title="62.3. Genetic Query Optimization (GEQO) in PostgreSQL">Next</a></td></tr></table><hr /></div><div class="sect1" id="GEQO-INTRO2"><div class="titlepage"><div><div><h2 class="title" style="clear: both">62.2. Genetic Algorithms <a href="#GEQO-INTRO2" class="id_link">#</a></h2></div></div></div><p>
    The genetic algorithm (<acronym class="acronym">GA</acronym>) is a heuristic optimization method which
    operates through randomized search. The set of possible solutions for the
    optimization problem is considered as a
    <em class="firstterm">population</em> of <em class="firstterm">individuals</em>.
    The degree of adaptation of an individual to its environment is specified
    by its <em class="firstterm">fitness</em>.
   </p><p>
    The coordinates of an individual in the search space are represented
    by <em class="firstterm">chromosomes</em>, in essence a set of character
    strings. A <em class="firstterm">gene</em> is a
    subsection of a chromosome which encodes the value of a single parameter
    being optimized. Typical encodings for a gene could be <em class="firstterm">binary</em> or
    <em class="firstterm">integer</em>.
   </p><p>
    Through simulation of the evolutionary operations <em class="firstterm">recombination</em>,
    <em class="firstterm">mutation</em>, and
    <em class="firstterm">selection</em> new generations of search points are found
    that show a higher average fitness than their ancestors. <a class="xref" href="geqo-intro2.html#GEQO-FIGURE" title="Figure 62.1. Structure of a Genetic Algorithm">Figure 62.1</a>
    illustrates these steps.
   </p><div class="figure" id="GEQO-FIGURE"><p class="title"><strong>Figure 62.1. Structure of a Genetic Algorithm</strong></p><div class="figure-contents"><div class="mediaobject"><object type="image/svg+xml" data="genetic-algorithm.svg" width="100%"></object></div></div></div><br class="figure-break" /><p>
    According to the <span class="systemitem">comp.ai.genetic</span> <acronym class="acronym">FAQ</acronym> it cannot be stressed too
    strongly that a <acronym class="acronym">GA</acronym> is not a pure random search for a solution to a
    problem. A <acronym class="acronym">GA</acronym> uses stochastic processes, but the result is distinctly
    non-random (better than random).
   </p></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="geqo-intro.html" title="62.1. Query Handling as a Complex Optimization Problem">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="geqo.html" title="Chapter 62. Genetic Query Optimizer">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="geqo-pg-intro.html" title="62.3. Genetic Query Optimization (GEQO) in PostgreSQL">Next</a></td></tr><tr><td width="40%" align="left" valign="top">62.1. Query Handling as a Complex Optimization Problem </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 62.3. Genetic Query Optimization (<acronym class="acronym">GEQO</acronym>) in PostgreSQL</td></tr></table></div></body></html>