summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/indexes-bitmap-scans.html
blob: 2354b2ebb08e2fe65869eeb944e68350a6d7d6d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>11.5. Combining Multiple Indexes</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="indexes-ordering.html" title="11.4. Indexes and ORDER BY" /><link rel="next" href="indexes-unique.html" title="11.6. Unique Indexes" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">11.5. Combining Multiple Indexes</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="indexes-ordering.html" title="11.4. Indexes and ORDER BY">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="indexes.html" title="Chapter 11. Indexes">Up</a></td><th width="60%" align="center">Chapter 11. Indexes</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.2 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="indexes-unique.html" title="11.6. Unique Indexes">Next</a></td></tr></table><hr /></div><div class="sect1" id="INDEXES-BITMAP-SCANS"><div class="titlepage"><div><div><h2 class="title" style="clear: both">11.5. Combining Multiple Indexes <a href="#INDEXES-BITMAP-SCANS" class="id_link">#</a></h2></div></div></div><a id="id-1.5.10.8.2" class="indexterm"></a><a id="id-1.5.10.8.3" class="indexterm"></a><p>
   A single index scan can only use query clauses that use the index's
   columns with operators of its operator class and are joined with
   <code class="literal">AND</code>.  For example, given an index on <code class="literal">(a, b)</code>
   a query condition like <code class="literal">WHERE a = 5 AND b = 6</code> could
   use the index, but a query like <code class="literal">WHERE a = 5 OR b = 6</code> could not
   directly use the index.
  </p><p>
   Fortunately,
   <span class="productname">PostgreSQL</span> has the ability to combine multiple indexes
   (including multiple uses of the same index) to handle cases that cannot
   be implemented by single index scans.  The system can form <code class="literal">AND</code>
   and <code class="literal">OR</code> conditions across several index scans.  For example,
   a query like <code class="literal">WHERE x = 42 OR x = 47 OR x = 53 OR x = 99</code>
   could be broken down into four separate scans of an index on <code class="literal">x</code>,
   each scan using one of the query clauses.  The results of these scans are
   then ORed together to produce the result.  Another example is that if we
   have separate indexes on <code class="literal">x</code> and <code class="literal">y</code>, one possible
   implementation of a query like <code class="literal">WHERE x = 5 AND y = 6</code> is to
   use each index with the appropriate query clause and then AND together
   the index results to identify the result rows.
  </p><p>
   To combine multiple indexes, the system scans each needed index and
   prepares a <em class="firstterm">bitmap</em> in memory giving the locations of
   table rows that are reported as matching that index's conditions.
   The bitmaps are then ANDed and ORed together as needed by the query.
   Finally, the actual table rows are visited and returned.  The table rows
   are visited in physical order, because that is how the bitmap is laid
   out; this means that any ordering of the original indexes is lost, and
   so a separate sort step will be needed if the query has an <code class="literal">ORDER
   BY</code> clause.  For this reason, and because each additional index scan
   adds extra time, the planner will sometimes choose to use a simple index
   scan even though additional indexes are available that could have been
   used as well.
  </p><p>
   In all but the simplest applications, there are various combinations of
   indexes that might be useful, and the database developer must make
   trade-offs to decide which indexes to provide.  Sometimes multicolumn
   indexes are best, but sometimes it's better to create separate indexes
   and rely on the index-combination feature.  For example, if your
   workload includes a mix of queries that sometimes involve only column
   <code class="literal">x</code>, sometimes only column <code class="literal">y</code>, and sometimes both
   columns, you might choose to create two separate indexes on
   <code class="literal">x</code> and <code class="literal">y</code>, relying on index combination to
   process the queries that use both columns.  You could also create a
   multicolumn index on <code class="literal">(x, y)</code>.  This index would typically be
   more efficient than index combination for queries involving both
   columns, but as discussed in <a class="xref" href="indexes-multicolumn.html" title="11.3. Multicolumn Indexes">Section 11.3</a>, it
   would be almost useless for queries involving only <code class="literal">y</code>, so it
   should not be the only index.  A combination of the multicolumn index
   and a separate index on <code class="literal">y</code> would serve reasonably well.  For
   queries involving only <code class="literal">x</code>, the multicolumn index could be
   used, though it would be larger and hence slower than an index on
   <code class="literal">x</code> alone.  The last alternative is to create all three
   indexes, but this is probably only reasonable if the table is searched
   much more often than it is updated and all three types of query are
   common.  If one of the types of query is much less common than the
   others, you'd probably settle for creating just the two indexes that
   best match the common types.
  </p></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="indexes-ordering.html" title="11.4. Indexes and ORDER BY">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="indexes.html" title="Chapter 11. Indexes">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="indexes-unique.html" title="11.6. Unique Indexes">Next</a></td></tr><tr><td width="40%" align="left" valign="top">11.4. Indexes and <code class="literal">ORDER BY</code> </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.2 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 11.6. Unique Indexes</td></tr></table></div></body></html>