1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
|
/*-------------------------------------------------------------------------
*
* nodeGatherMerge.c
* Scan a plan in multiple workers, and do order-preserving merge.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/nodeGatherMerge.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/relscan.h"
#include "access/xact.h"
#include "executor/execdebug.h"
#include "executor/execParallel.h"
#include "executor/nodeGatherMerge.h"
#include "executor/nodeSubplan.h"
#include "executor/tqueue.h"
#include "lib/binaryheap.h"
#include "miscadmin.h"
#include "optimizer/optimizer.h"
#include "utils/memutils.h"
#include "utils/rel.h"
/*
* When we read tuples from workers, it's a good idea to read several at once
* for efficiency when possible: this minimizes context-switching overhead.
* But reading too many at a time wastes memory without improving performance.
* We'll read up to MAX_TUPLE_STORE tuples (in addition to the first one).
*/
#define MAX_TUPLE_STORE 10
/*
* Pending-tuple array for each worker. This holds additional tuples that
* we were able to fetch from the worker, but can't process yet. In addition,
* this struct holds the "done" flag indicating the worker is known to have
* no more tuples. (We do not use this struct for the leader; we don't keep
* any pending tuples for the leader, and the need_to_scan_locally flag serves
* as its "done" indicator.)
*/
typedef struct GMReaderTupleBuffer
{
MinimalTuple *tuple; /* array of length MAX_TUPLE_STORE */
int nTuples; /* number of tuples currently stored */
int readCounter; /* index of next tuple to extract */
bool done; /* true if reader is known exhausted */
} GMReaderTupleBuffer;
static TupleTableSlot *ExecGatherMerge(PlanState *pstate);
static int32 heap_compare_slots(Datum a, Datum b, void *arg);
static TupleTableSlot *gather_merge_getnext(GatherMergeState *gm_state);
static MinimalTuple gm_readnext_tuple(GatherMergeState *gm_state, int nreader,
bool nowait, bool *done);
static void ExecShutdownGatherMergeWorkers(GatherMergeState *node);
static void gather_merge_setup(GatherMergeState *gm_state);
static void gather_merge_init(GatherMergeState *gm_state);
static void gather_merge_clear_tuples(GatherMergeState *gm_state);
static bool gather_merge_readnext(GatherMergeState *gm_state, int reader,
bool nowait);
static void load_tuple_array(GatherMergeState *gm_state, int reader);
/* ----------------------------------------------------------------
* ExecInitGather
* ----------------------------------------------------------------
*/
GatherMergeState *
ExecInitGatherMerge(GatherMerge *node, EState *estate, int eflags)
{
GatherMergeState *gm_state;
Plan *outerNode;
TupleDesc tupDesc;
/* Gather merge node doesn't have innerPlan node. */
Assert(innerPlan(node) == NULL);
/*
* create state structure
*/
gm_state = makeNode(GatherMergeState);
gm_state->ps.plan = (Plan *) node;
gm_state->ps.state = estate;
gm_state->ps.ExecProcNode = ExecGatherMerge;
gm_state->initialized = false;
gm_state->gm_initialized = false;
gm_state->tuples_needed = -1;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &gm_state->ps);
/*
* GatherMerge doesn't support checking a qual (it's always more efficient
* to do it in the child node).
*/
Assert(!node->plan.qual);
/*
* now initialize outer plan
*/
outerNode = outerPlan(node);
outerPlanState(gm_state) = ExecInitNode(outerNode, estate, eflags);
/*
* Leader may access ExecProcNode result directly (if
* need_to_scan_locally), or from workers via tuple queue. So we can't
* trivially rely on the slot type being fixed for expressions evaluated
* within this node.
*/
gm_state->ps.outeropsset = true;
gm_state->ps.outeropsfixed = false;
/*
* Store the tuple descriptor into gather merge state, so we can use it
* while initializing the gather merge slots.
*/
tupDesc = ExecGetResultType(outerPlanState(gm_state));
gm_state->tupDesc = tupDesc;
/*
* Initialize result type and projection.
*/
ExecInitResultTypeTL(&gm_state->ps);
ExecConditionalAssignProjectionInfo(&gm_state->ps, tupDesc, OUTER_VAR);
/*
* Without projections result slot type is not trivially known, see
* comment above.
*/
if (gm_state->ps.ps_ProjInfo == NULL)
{
gm_state->ps.resultopsset = true;
gm_state->ps.resultopsfixed = false;
}
/*
* initialize sort-key information
*/
if (node->numCols)
{
int i;
gm_state->gm_nkeys = node->numCols;
gm_state->gm_sortkeys =
palloc0(sizeof(SortSupportData) * node->numCols);
for (i = 0; i < node->numCols; i++)
{
SortSupport sortKey = gm_state->gm_sortkeys + i;
sortKey->ssup_cxt = CurrentMemoryContext;
sortKey->ssup_collation = node->collations[i];
sortKey->ssup_nulls_first = node->nullsFirst[i];
sortKey->ssup_attno = node->sortColIdx[i];
/*
* We don't perform abbreviated key conversion here, for the same
* reasons that it isn't used in MergeAppend
*/
sortKey->abbreviate = false;
PrepareSortSupportFromOrderingOp(node->sortOperators[i], sortKey);
}
}
/* Now allocate the workspace for gather merge */
gather_merge_setup(gm_state);
return gm_state;
}
/* ----------------------------------------------------------------
* ExecGatherMerge(node)
*
* Scans the relation via multiple workers and returns
* the next qualifying tuple.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecGatherMerge(PlanState *pstate)
{
GatherMergeState *node = castNode(GatherMergeState, pstate);
TupleTableSlot *slot;
ExprContext *econtext;
CHECK_FOR_INTERRUPTS();
/*
* As with Gather, we don't launch workers until this node is actually
* executed.
*/
if (!node->initialized)
{
EState *estate = node->ps.state;
GatherMerge *gm = castNode(GatherMerge, node->ps.plan);
/*
* Sometimes we might have to run without parallelism; but if parallel
* mode is active then we can try to fire up some workers.
*/
if (gm->num_workers > 0 && estate->es_use_parallel_mode)
{
ParallelContext *pcxt;
/* Initialize, or re-initialize, shared state needed by workers. */
if (!node->pei)
node->pei = ExecInitParallelPlan(outerPlanState(node),
estate,
gm->initParam,
gm->num_workers,
node->tuples_needed);
else
ExecParallelReinitialize(outerPlanState(node),
node->pei,
gm->initParam);
/* Try to launch workers. */
pcxt = node->pei->pcxt;
LaunchParallelWorkers(pcxt);
/* We save # workers launched for the benefit of EXPLAIN */
node->nworkers_launched = pcxt->nworkers_launched;
/* Set up tuple queue readers to read the results. */
if (pcxt->nworkers_launched > 0)
{
ExecParallelCreateReaders(node->pei);
/* Make a working array showing the active readers */
node->nreaders = pcxt->nworkers_launched;
node->reader = (TupleQueueReader **)
palloc(node->nreaders * sizeof(TupleQueueReader *));
memcpy(node->reader, node->pei->reader,
node->nreaders * sizeof(TupleQueueReader *));
}
else
{
/* No workers? Then never mind. */
node->nreaders = 0;
node->reader = NULL;
}
}
/* allow leader to participate if enabled or no choice */
if (parallel_leader_participation || node->nreaders == 0)
node->need_to_scan_locally = true;
node->initialized = true;
}
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
econtext = node->ps.ps_ExprContext;
ResetExprContext(econtext);
/*
* Get next tuple, either from one of our workers, or by running the plan
* ourselves.
*/
slot = gather_merge_getnext(node);
if (TupIsNull(slot))
return NULL;
/* If no projection is required, we're done. */
if (node->ps.ps_ProjInfo == NULL)
return slot;
/*
* Form the result tuple using ExecProject(), and return it.
*/
econtext->ecxt_outertuple = slot;
return ExecProject(node->ps.ps_ProjInfo);
}
/* ----------------------------------------------------------------
* ExecEndGatherMerge
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndGatherMerge(GatherMergeState *node)
{
ExecEndNode(outerPlanState(node)); /* let children clean up first */
ExecShutdownGatherMerge(node);
ExecFreeExprContext(&node->ps);
if (node->ps.ps_ResultTupleSlot)
ExecClearTuple(node->ps.ps_ResultTupleSlot);
}
/* ----------------------------------------------------------------
* ExecShutdownGatherMerge
*
* Destroy the setup for parallel workers including parallel context.
* ----------------------------------------------------------------
*/
void
ExecShutdownGatherMerge(GatherMergeState *node)
{
ExecShutdownGatherMergeWorkers(node);
/* Now destroy the parallel context. */
if (node->pei != NULL)
{
ExecParallelCleanup(node->pei);
node->pei = NULL;
}
}
/* ----------------------------------------------------------------
* ExecShutdownGatherMergeWorkers
*
* Stop all the parallel workers.
* ----------------------------------------------------------------
*/
static void
ExecShutdownGatherMergeWorkers(GatherMergeState *node)
{
if (node->pei != NULL)
ExecParallelFinish(node->pei);
/* Flush local copy of reader array */
if (node->reader)
pfree(node->reader);
node->reader = NULL;
}
/* ----------------------------------------------------------------
* ExecReScanGatherMerge
*
* Prepare to re-scan the result of a GatherMerge.
* ----------------------------------------------------------------
*/
void
ExecReScanGatherMerge(GatherMergeState *node)
{
GatherMerge *gm = (GatherMerge *) node->ps.plan;
PlanState *outerPlan = outerPlanState(node);
/* Make sure any existing workers are gracefully shut down */
ExecShutdownGatherMergeWorkers(node);
/* Free any unused tuples, so we don't leak memory across rescans */
gather_merge_clear_tuples(node);
/* Mark node so that shared state will be rebuilt at next call */
node->initialized = false;
node->gm_initialized = false;
/*
* Set child node's chgParam to tell it that the next scan might deliver a
* different set of rows within the leader process. (The overall rowset
* shouldn't change, but the leader process's subset might; hence nodes
* between here and the parallel table scan node mustn't optimize on the
* assumption of an unchanging rowset.)
*/
if (gm->rescan_param >= 0)
outerPlan->chgParam = bms_add_member(outerPlan->chgParam,
gm->rescan_param);
/*
* If chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode. Note: because this does nothing if we have a
* rescan_param, it's currently guaranteed that parallel-aware child nodes
* will not see a ReScan call until after they get a ReInitializeDSM call.
* That ordering might not be something to rely on, though. A good rule
* of thumb is that ReInitializeDSM should reset only shared state, ReScan
* should reset only local state, and anything that depends on both of
* those steps being finished must wait until the first ExecProcNode call.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
}
/*
* Set up the data structures that we'll need for Gather Merge.
*
* We allocate these once on the basis of gm->num_workers, which is an
* upper bound for the number of workers we'll actually have. During
* a rescan, we reset the structures to empty. This approach simplifies
* not leaking memory across rescans.
*
* In the gm_slots[] array, index 0 is for the leader, and indexes 1 to n
* are for workers. The values placed into gm_heap correspond to indexes
* in gm_slots[]. The gm_tuple_buffers[] array, however, is indexed from
* 0 to n-1; it has no entry for the leader.
*/
static void
gather_merge_setup(GatherMergeState *gm_state)
{
GatherMerge *gm = castNode(GatherMerge, gm_state->ps.plan);
int nreaders = gm->num_workers;
int i;
/*
* Allocate gm_slots for the number of workers + one more slot for leader.
* Slot 0 is always for the leader. Leader always calls ExecProcNode() to
* read the tuple, and then stores it directly into its gm_slots entry.
* For other slots, code below will call ExecInitExtraTupleSlot() to
* create a slot for the worker's results. Note that during any single
* scan, we might have fewer than num_workers available workers, in which
* case the extra array entries go unused.
*/
gm_state->gm_slots = (TupleTableSlot **)
palloc0((nreaders + 1) * sizeof(TupleTableSlot *));
/* Allocate the tuple slot and tuple array for each worker */
gm_state->gm_tuple_buffers = (GMReaderTupleBuffer *)
palloc0(nreaders * sizeof(GMReaderTupleBuffer));
for (i = 0; i < nreaders; i++)
{
/* Allocate the tuple array with length MAX_TUPLE_STORE */
gm_state->gm_tuple_buffers[i].tuple =
(MinimalTuple *) palloc0(sizeof(MinimalTuple) * MAX_TUPLE_STORE);
/* Initialize tuple slot for worker */
gm_state->gm_slots[i + 1] =
ExecInitExtraTupleSlot(gm_state->ps.state, gm_state->tupDesc,
&TTSOpsMinimalTuple);
}
/* Allocate the resources for the merge */
gm_state->gm_heap = binaryheap_allocate(nreaders + 1,
heap_compare_slots,
gm_state);
}
/*
* Initialize the Gather Merge.
*
* Reset data structures to ensure they're empty. Then pull at least one
* tuple from leader + each worker (or set its "done" indicator), and set up
* the heap.
*/
static void
gather_merge_init(GatherMergeState *gm_state)
{
int nreaders = gm_state->nreaders;
bool nowait = true;
int i;
/* Assert that gather_merge_setup made enough space */
Assert(nreaders <= castNode(GatherMerge, gm_state->ps.plan)->num_workers);
/* Reset leader's tuple slot to empty */
gm_state->gm_slots[0] = NULL;
/* Reset the tuple slot and tuple array for each worker */
for (i = 0; i < nreaders; i++)
{
/* Reset tuple array to empty */
gm_state->gm_tuple_buffers[i].nTuples = 0;
gm_state->gm_tuple_buffers[i].readCounter = 0;
/* Reset done flag to not-done */
gm_state->gm_tuple_buffers[i].done = false;
/* Ensure output slot is empty */
ExecClearTuple(gm_state->gm_slots[i + 1]);
}
/* Reset binary heap to empty */
binaryheap_reset(gm_state->gm_heap);
/*
* First, try to read a tuple from each worker (including leader) in
* nowait mode. After this, if not all workers were able to produce a
* tuple (or a "done" indication), then re-read from remaining workers,
* this time using wait mode. Add all live readers (those producing at
* least one tuple) to the heap.
*/
reread:
for (i = 0; i <= nreaders; i++)
{
CHECK_FOR_INTERRUPTS();
/* skip this source if already known done */
if ((i == 0) ? gm_state->need_to_scan_locally :
!gm_state->gm_tuple_buffers[i - 1].done)
{
if (TupIsNull(gm_state->gm_slots[i]))
{
/* Don't have a tuple yet, try to get one */
if (gather_merge_readnext(gm_state, i, nowait))
binaryheap_add_unordered(gm_state->gm_heap,
Int32GetDatum(i));
}
else
{
/*
* We already got at least one tuple from this worker, but
* might as well see if it has any more ready by now.
*/
load_tuple_array(gm_state, i);
}
}
}
/* need not recheck leader, since nowait doesn't matter for it */
for (i = 1; i <= nreaders; i++)
{
if (!gm_state->gm_tuple_buffers[i - 1].done &&
TupIsNull(gm_state->gm_slots[i]))
{
nowait = false;
goto reread;
}
}
/* Now heapify the heap. */
binaryheap_build(gm_state->gm_heap);
gm_state->gm_initialized = true;
}
/*
* Clear out the tuple table slot, and any unused pending tuples,
* for each gather merge input.
*/
static void
gather_merge_clear_tuples(GatherMergeState *gm_state)
{
int i;
for (i = 0; i < gm_state->nreaders; i++)
{
GMReaderTupleBuffer *tuple_buffer = &gm_state->gm_tuple_buffers[i];
while (tuple_buffer->readCounter < tuple_buffer->nTuples)
pfree(tuple_buffer->tuple[tuple_buffer->readCounter++]);
ExecClearTuple(gm_state->gm_slots[i + 1]);
}
}
/*
* Read the next tuple for gather merge.
*
* Fetch the sorted tuple out of the heap.
*/
static TupleTableSlot *
gather_merge_getnext(GatherMergeState *gm_state)
{
int i;
if (!gm_state->gm_initialized)
{
/*
* First time through: pull the first tuple from each participant, and
* set up the heap.
*/
gather_merge_init(gm_state);
}
else
{
/*
* Otherwise, pull the next tuple from whichever participant we
* returned from last time, and reinsert that participant's index into
* the heap, because it might now compare differently against the
* other elements of the heap.
*/
i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
if (gather_merge_readnext(gm_state, i, false))
binaryheap_replace_first(gm_state->gm_heap, Int32GetDatum(i));
else
{
/* reader exhausted, remove it from heap */
(void) binaryheap_remove_first(gm_state->gm_heap);
}
}
if (binaryheap_empty(gm_state->gm_heap))
{
/* All the queues are exhausted, and so is the heap */
gather_merge_clear_tuples(gm_state);
return NULL;
}
else
{
/* Return next tuple from whichever participant has the leading one */
i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
return gm_state->gm_slots[i];
}
}
/*
* Read tuple(s) for given reader in nowait mode, and load into its tuple
* array, until we have MAX_TUPLE_STORE of them or would have to block.
*/
static void
load_tuple_array(GatherMergeState *gm_state, int reader)
{
GMReaderTupleBuffer *tuple_buffer;
int i;
/* Don't do anything if this is the leader. */
if (reader == 0)
return;
tuple_buffer = &gm_state->gm_tuple_buffers[reader - 1];
/* If there's nothing in the array, reset the counters to zero. */
if (tuple_buffer->nTuples == tuple_buffer->readCounter)
tuple_buffer->nTuples = tuple_buffer->readCounter = 0;
/* Try to fill additional slots in the array. */
for (i = tuple_buffer->nTuples; i < MAX_TUPLE_STORE; i++)
{
MinimalTuple tuple;
tuple = gm_readnext_tuple(gm_state,
reader,
true,
&tuple_buffer->done);
if (!tuple)
break;
tuple_buffer->tuple[i] = tuple;
tuple_buffer->nTuples++;
}
}
/*
* Store the next tuple for a given reader into the appropriate slot.
*
* Returns true if successful, false if not (either reader is exhausted,
* or we didn't want to wait for a tuple). Sets done flag if reader
* is found to be exhausted.
*/
static bool
gather_merge_readnext(GatherMergeState *gm_state, int reader, bool nowait)
{
GMReaderTupleBuffer *tuple_buffer;
MinimalTuple tup;
/*
* If we're being asked to generate a tuple from the leader, then we just
* call ExecProcNode as normal to produce one.
*/
if (reader == 0)
{
if (gm_state->need_to_scan_locally)
{
PlanState *outerPlan = outerPlanState(gm_state);
TupleTableSlot *outerTupleSlot;
EState *estate = gm_state->ps.state;
/* Install our DSA area while executing the plan. */
estate->es_query_dsa = gm_state->pei ? gm_state->pei->area : NULL;
outerTupleSlot = ExecProcNode(outerPlan);
estate->es_query_dsa = NULL;
if (!TupIsNull(outerTupleSlot))
{
gm_state->gm_slots[0] = outerTupleSlot;
return true;
}
/* need_to_scan_locally serves as "done" flag for leader */
gm_state->need_to_scan_locally = false;
}
return false;
}
/* Otherwise, check the state of the relevant tuple buffer. */
tuple_buffer = &gm_state->gm_tuple_buffers[reader - 1];
if (tuple_buffer->nTuples > tuple_buffer->readCounter)
{
/* Return any tuple previously read that is still buffered. */
tup = tuple_buffer->tuple[tuple_buffer->readCounter++];
}
else if (tuple_buffer->done)
{
/* Reader is known to be exhausted. */
return false;
}
else
{
/* Read and buffer next tuple. */
tup = gm_readnext_tuple(gm_state,
reader,
nowait,
&tuple_buffer->done);
if (!tup)
return false;
/*
* Attempt to read more tuples in nowait mode and store them in the
* pending-tuple array for the reader.
*/
load_tuple_array(gm_state, reader);
}
Assert(tup);
/* Build the TupleTableSlot for the given tuple */
ExecStoreMinimalTuple(tup, /* tuple to store */
gm_state->gm_slots[reader], /* slot in which to
* store the tuple */
true); /* pfree tuple when done with it */
return true;
}
/*
* Attempt to read a tuple from given worker.
*/
static MinimalTuple
gm_readnext_tuple(GatherMergeState *gm_state, int nreader, bool nowait,
bool *done)
{
TupleQueueReader *reader;
MinimalTuple tup;
/* Check for async events, particularly messages from workers. */
CHECK_FOR_INTERRUPTS();
/*
* Attempt to read a tuple.
*
* Note that TupleQueueReaderNext will just return NULL for a worker which
* fails to initialize. We'll treat that worker as having produced no
* tuples; WaitForParallelWorkersToFinish will error out when we get
* there.
*/
reader = gm_state->reader[nreader - 1];
tup = TupleQueueReaderNext(reader, nowait, done);
/*
* Since we'll be buffering these across multiple calls, we need to make a
* copy.
*/
return tup ? heap_copy_minimal_tuple(tup) : NULL;
}
/*
* We have one slot for each item in the heap array. We use SlotNumber
* to store slot indexes. This doesn't actually provide any formal
* type-safety, but it makes the code more self-documenting.
*/
typedef int32 SlotNumber;
/*
* Compare the tuples in the two given slots.
*/
static int32
heap_compare_slots(Datum a, Datum b, void *arg)
{
GatherMergeState *node = (GatherMergeState *) arg;
SlotNumber slot1 = DatumGetInt32(a);
SlotNumber slot2 = DatumGetInt32(b);
TupleTableSlot *s1 = node->gm_slots[slot1];
TupleTableSlot *s2 = node->gm_slots[slot2];
int nkey;
Assert(!TupIsNull(s1));
Assert(!TupIsNull(s2));
for (nkey = 0; nkey < node->gm_nkeys; nkey++)
{
SortSupport sortKey = node->gm_sortkeys + nkey;
AttrNumber attno = sortKey->ssup_attno;
Datum datum1,
datum2;
bool isNull1,
isNull2;
int compare;
datum1 = slot_getattr(s1, attno, &isNull1);
datum2 = slot_getattr(s2, attno, &isNull2);
compare = ApplySortComparator(datum1, isNull1,
datum2, isNull2,
sortKey);
if (compare != 0)
{
INVERT_COMPARE_RESULT(compare);
return compare;
}
}
return 0;
}
|