summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/array_selfuncs.c
blob: 9207a5ed193f64a464b5706754c5b1bab51e292b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
/*-------------------------------------------------------------------------
 *
 * array_selfuncs.c
 *	  Functions for selectivity estimation of array operators
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/utils/adt/array_selfuncs.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/htup_details.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_statistic.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"
#include "utils/typcache.h"


/* Default selectivity constant for "@>" and "<@" operators */
#define DEFAULT_CONTAIN_SEL 0.005

/* Default selectivity constant for "&&" operator */
#define DEFAULT_OVERLAP_SEL 0.01

/* Default selectivity for given operator */
#define DEFAULT_SEL(operator) \
	((operator) == OID_ARRAY_OVERLAP_OP ? \
		DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)

static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
									 Oid elemtype, Oid operator);
static Selectivity mcelem_array_selec(ArrayType *array,
									  TypeCacheEntry *typentry,
									  Datum *mcelem, int nmcelem,
									  float4 *numbers, int nnumbers,
									  float4 *hist, int nhist,
									  Oid operator);
static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
													  float4 *numbers, int nnumbers,
													  Datum *array_data, int nitems,
													  Oid operator, TypeCacheEntry *typentry);
static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
												float4 *numbers, int nnumbers,
												Datum *array_data, int nitems,
												float4 *hist, int nhist,
												Oid operator, TypeCacheEntry *typentry);
static float *calc_hist(const float4 *hist, int nhist, int n);
static float *calc_distr(const float *p, int n, int m, float rest);
static int	floor_log2(uint32 n);
static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
							 int *index, TypeCacheEntry *typentry);
static int	element_compare(const void *key1, const void *key2, void *arg);
static int	float_compare_desc(const void *key1, const void *key2);


/*
 * scalararraysel_containment
 *		Estimate selectivity of ScalarArrayOpExpr via array containment.
 *
 * If we have const =/<> ANY/ALL (array_var) then we can estimate the
 * selectivity as though this were an array containment operator,
 * array_var op ARRAY[const].
 *
 * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
 * is the array element type's default equality or inequality operator, and
 * has aggressively simplified both inputs to constants.
 *
 * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
 */
Selectivity
scalararraysel_containment(PlannerInfo *root,
						   Node *leftop, Node *rightop,
						   Oid elemtype, bool isEquality, bool useOr,
						   int varRelid)
{
	Selectivity selec;
	VariableStatData vardata;
	Datum		constval;
	TypeCacheEntry *typentry;
	FmgrInfo   *cmpfunc;

	/*
	 * rightop must be a variable, else punt.
	 */
	examine_variable(root, rightop, varRelid, &vardata);
	if (!vardata.rel)
	{
		ReleaseVariableStats(vardata);
		return -1.0;
	}

	/*
	 * leftop must be a constant, else punt.
	 */
	if (!IsA(leftop, Const))
	{
		ReleaseVariableStats(vardata);
		return -1.0;
	}
	if (((Const *) leftop)->constisnull)
	{
		/* qual can't succeed if null on left */
		ReleaseVariableStats(vardata);
		return (Selectivity) 0.0;
	}
	constval = ((Const *) leftop)->constvalue;

	/* Get element type's default comparison function */
	typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
	if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
	{
		ReleaseVariableStats(vardata);
		return -1.0;
	}
	cmpfunc = &typentry->cmp_proc_finfo;

	/*
	 * If the operator is <>, swap ANY/ALL, then invert the result later.
	 */
	if (!isEquality)
		useOr = !useOr;

	/* Get array element stats for var, if available */
	if (HeapTupleIsValid(vardata.statsTuple) &&
		statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
	{
		Form_pg_statistic stats;
		AttStatsSlot sslot;
		AttStatsSlot hslot;

		stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);

		/* MCELEM will be an array of same type as element */
		if (get_attstatsslot(&sslot, vardata.statsTuple,
							 STATISTIC_KIND_MCELEM, InvalidOid,
							 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
		{
			/* For ALL case, also get histogram of distinct-element counts */
			if (useOr ||
				!get_attstatsslot(&hslot, vardata.statsTuple,
								  STATISTIC_KIND_DECHIST, InvalidOid,
								  ATTSTATSSLOT_NUMBERS))
				memset(&hslot, 0, sizeof(hslot));

			/*
			 * For = ANY, estimate as var @> ARRAY[const].
			 *
			 * For = ALL, estimate as var <@ ARRAY[const].
			 */
			if (useOr)
				selec = mcelem_array_contain_overlap_selec(sslot.values,
														   sslot.nvalues,
														   sslot.numbers,
														   sslot.nnumbers,
														   &constval, 1,
														   OID_ARRAY_CONTAINS_OP,
														   typentry);
			else
				selec = mcelem_array_contained_selec(sslot.values,
													 sslot.nvalues,
													 sslot.numbers,
													 sslot.nnumbers,
													 &constval, 1,
													 hslot.numbers,
													 hslot.nnumbers,
													 OID_ARRAY_CONTAINED_OP,
													 typentry);

			free_attstatsslot(&hslot);
			free_attstatsslot(&sslot);
		}
		else
		{
			/* No most-common-elements info, so do without */
			if (useOr)
				selec = mcelem_array_contain_overlap_selec(NULL, 0,
														   NULL, 0,
														   &constval, 1,
														   OID_ARRAY_CONTAINS_OP,
														   typentry);
			else
				selec = mcelem_array_contained_selec(NULL, 0,
													 NULL, 0,
													 &constval, 1,
													 NULL, 0,
													 OID_ARRAY_CONTAINED_OP,
													 typentry);
		}

		/*
		 * MCE stats count only non-null rows, so adjust for null rows.
		 */
		selec *= (1.0 - stats->stanullfrac);
	}
	else
	{
		/* No stats at all, so do without */
		if (useOr)
			selec = mcelem_array_contain_overlap_selec(NULL, 0,
													   NULL, 0,
													   &constval, 1,
													   OID_ARRAY_CONTAINS_OP,
													   typentry);
		else
			selec = mcelem_array_contained_selec(NULL, 0,
												 NULL, 0,
												 &constval, 1,
												 NULL, 0,
												 OID_ARRAY_CONTAINED_OP,
												 typentry);
		/* we assume no nulls here, so no stanullfrac correction */
	}

	ReleaseVariableStats(vardata);

	/*
	 * If the operator is <>, invert the results.
	 */
	if (!isEquality)
		selec = 1.0 - selec;

	CLAMP_PROBABILITY(selec);

	return selec;
}

/*
 * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
 */
Datum
arraycontsel(PG_FUNCTION_ARGS)
{
	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
	Oid			operator = PG_GETARG_OID(1);
	List	   *args = (List *) PG_GETARG_POINTER(2);
	int			varRelid = PG_GETARG_INT32(3);
	VariableStatData vardata;
	Node	   *other;
	bool		varonleft;
	Selectivity selec;
	Oid			element_typeid;

	/*
	 * If expression is not (variable op something) or (something op
	 * variable), then punt and return a default estimate.
	 */
	if (!get_restriction_variable(root, args, varRelid,
								  &vardata, &other, &varonleft))
		PG_RETURN_FLOAT8(DEFAULT_SEL(operator));

	/*
	 * Can't do anything useful if the something is not a constant, either.
	 */
	if (!IsA(other, Const))
	{
		ReleaseVariableStats(vardata);
		PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
	}

	/*
	 * The "&&", "@>" and "<@" operators are strict, so we can cope with a
	 * NULL constant right away.
	 */
	if (((Const *) other)->constisnull)
	{
		ReleaseVariableStats(vardata);
		PG_RETURN_FLOAT8(0.0);
	}

	/*
	 * If var is on the right, commute the operator, so that we can assume the
	 * var is on the left in what follows.
	 */
	if (!varonleft)
	{
		if (operator == OID_ARRAY_CONTAINS_OP)
			operator = OID_ARRAY_CONTAINED_OP;
		else if (operator == OID_ARRAY_CONTAINED_OP)
			operator = OID_ARRAY_CONTAINS_OP;
	}

	/*
	 * OK, there's a Var and a Const we're dealing with here.  We need the
	 * Const to be an array with same element type as column, else we can't do
	 * anything useful.  (Such cases will likely fail at runtime, but here
	 * we'd rather just return a default estimate.)
	 */
	element_typeid = get_base_element_type(((Const *) other)->consttype);
	if (element_typeid != InvalidOid &&
		element_typeid == get_base_element_type(vardata.vartype))
	{
		selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
								  element_typeid, operator);
	}
	else
	{
		selec = DEFAULT_SEL(operator);
	}

	ReleaseVariableStats(vardata);

	CLAMP_PROBABILITY(selec);

	PG_RETURN_FLOAT8((float8) selec);
}

/*
 * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
 */
Datum
arraycontjoinsel(PG_FUNCTION_ARGS)
{
	/* For the moment this is just a stub */
	Oid			operator = PG_GETARG_OID(1);

	PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
}

/*
 * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
 * or "arraycolumn <@ const" based on the statistics
 *
 * This function is mainly responsible for extracting the pg_statistic data
 * to be used; we then pass the problem on to mcelem_array_selec().
 */
static Selectivity
calc_arraycontsel(VariableStatData *vardata, Datum constval,
				  Oid elemtype, Oid operator)
{
	Selectivity selec;
	TypeCacheEntry *typentry;
	FmgrInfo   *cmpfunc;
	ArrayType  *array;

	/* Get element type's default comparison function */
	typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
	if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
		return DEFAULT_SEL(operator);
	cmpfunc = &typentry->cmp_proc_finfo;

	/*
	 * The caller made sure the const is an array with same element type, so
	 * get it now
	 */
	array = DatumGetArrayTypeP(constval);

	if (HeapTupleIsValid(vardata->statsTuple) &&
		statistic_proc_security_check(vardata, cmpfunc->fn_oid))
	{
		Form_pg_statistic stats;
		AttStatsSlot sslot;
		AttStatsSlot hslot;

		stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);

		/* MCELEM will be an array of same type as column */
		if (get_attstatsslot(&sslot, vardata->statsTuple,
							 STATISTIC_KIND_MCELEM, InvalidOid,
							 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
		{
			/*
			 * For "array <@ const" case we also need histogram of distinct
			 * element counts.
			 */
			if (operator != OID_ARRAY_CONTAINED_OP ||
				!get_attstatsslot(&hslot, vardata->statsTuple,
								  STATISTIC_KIND_DECHIST, InvalidOid,
								  ATTSTATSSLOT_NUMBERS))
				memset(&hslot, 0, sizeof(hslot));

			/* Use the most-common-elements slot for the array Var. */
			selec = mcelem_array_selec(array, typentry,
									   sslot.values, sslot.nvalues,
									   sslot.numbers, sslot.nnumbers,
									   hslot.numbers, hslot.nnumbers,
									   operator);

			free_attstatsslot(&hslot);
			free_attstatsslot(&sslot);
		}
		else
		{
			/* No most-common-elements info, so do without */
			selec = mcelem_array_selec(array, typentry,
									   NULL, 0, NULL, 0, NULL, 0,
									   operator);
		}

		/*
		 * MCE stats count only non-null rows, so adjust for null rows.
		 */
		selec *= (1.0 - stats->stanullfrac);
	}
	else
	{
		/* No stats at all, so do without */
		selec = mcelem_array_selec(array, typentry,
								   NULL, 0, NULL, 0, NULL, 0,
								   operator);
		/* we assume no nulls here, so no stanullfrac correction */
	}

	/* If constant was toasted, release the copy we made */
	if (PointerGetDatum(array) != constval)
		pfree(array);

	return selec;
}

/*
 * Array selectivity estimation based on most common elements statistics
 *
 * This function just deconstructs and sorts the array constant's contents,
 * and then passes the problem on to mcelem_array_contain_overlap_selec or
 * mcelem_array_contained_selec depending on the operator.
 */
static Selectivity
mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry,
				   Datum *mcelem, int nmcelem,
				   float4 *numbers, int nnumbers,
				   float4 *hist, int nhist,
				   Oid operator)
{
	Selectivity selec;
	int			num_elems;
	Datum	   *elem_values;
	bool	   *elem_nulls;
	bool		null_present;
	int			nonnull_nitems;
	int			i;

	/*
	 * Prepare constant array data for sorting.  Sorting lets us find unique
	 * elements and efficiently merge with the MCELEM array.
	 */
	deconstruct_array(array,
					  typentry->type_id,
					  typentry->typlen,
					  typentry->typbyval,
					  typentry->typalign,
					  &elem_values, &elem_nulls, &num_elems);

	/* Collapse out any null elements */
	nonnull_nitems = 0;
	null_present = false;
	for (i = 0; i < num_elems; i++)
	{
		if (elem_nulls[i])
			null_present = true;
		else
			elem_values[nonnull_nitems++] = elem_values[i];
	}

	/*
	 * Query "column @> '{anything, null}'" matches nothing.  For the other
	 * two operators, presence of a null in the constant can be ignored.
	 */
	if (null_present && operator == OID_ARRAY_CONTAINS_OP)
	{
		pfree(elem_values);
		pfree(elem_nulls);
		return (Selectivity) 0.0;
	}

	/* Sort extracted elements using their default comparison function. */
	qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
			  element_compare, typentry);

	/* Separate cases according to operator */
	if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
		selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
												   numbers, nnumbers,
												   elem_values, nonnull_nitems,
												   operator, typentry);
	else if (operator == OID_ARRAY_CONTAINED_OP)
		selec = mcelem_array_contained_selec(mcelem, nmcelem,
											 numbers, nnumbers,
											 elem_values, nonnull_nitems,
											 hist, nhist,
											 operator, typentry);
	else
	{
		elog(ERROR, "arraycontsel called for unrecognized operator %u",
			 operator);
		selec = 0.0;			/* keep compiler quiet */
	}

	pfree(elem_values);
	pfree(elem_nulls);
	return selec;
}

/*
 * Estimate selectivity of "column @> const" and "column && const" based on
 * most common element statistics.  This estimation assumes element
 * occurrences are independent.
 *
 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
 * not available.  array_data (of length nitems) is the constant's elements.
 *
 * Both the mcelem and array_data arrays are assumed presorted according
 * to the element type's cmpfunc.  Null elements are not present.
 *
 * TODO: this estimate probably could be improved by using the distinct
 * elements count histogram.  For example, excepting the special case of
 * "column @> '{}'", we can multiply the calculated selectivity by the
 * fraction of nonempty arrays in the column.
 */
static Selectivity
mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
								   float4 *numbers, int nnumbers,
								   Datum *array_data, int nitems,
								   Oid operator, TypeCacheEntry *typentry)
{
	Selectivity selec,
				elem_selec;
	int			mcelem_index,
				i;
	bool		use_bsearch;
	float4		minfreq;

	/*
	 * There should be three more Numbers than Values, because the last three
	 * cells should hold minimal and maximal frequency among the non-null
	 * elements, and then the frequency of null elements.  Ignore the Numbers
	 * if not right.
	 */
	if (nnumbers != nmcelem + 3)
	{
		numbers = NULL;
		nnumbers = 0;
	}

	if (numbers)
	{
		/* Grab the lowest observed frequency */
		minfreq = numbers[nmcelem];
	}
	else
	{
		/* Without statistics make some default assumptions */
		minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
	}

	/* Decide whether it is faster to use binary search or not. */
	if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
		use_bsearch = true;
	else
		use_bsearch = false;

	if (operator == OID_ARRAY_CONTAINS_OP)
	{
		/*
		 * Initial selectivity for "column @> const" query is 1.0, and it will
		 * be decreased with each element of constant array.
		 */
		selec = 1.0;
	}
	else
	{
		/*
		 * Initial selectivity for "column && const" query is 0.0, and it will
		 * be increased with each element of constant array.
		 */
		selec = 0.0;
	}

	/* Scan mcelem and array in parallel. */
	mcelem_index = 0;
	for (i = 0; i < nitems; i++)
	{
		bool		match = false;

		/* Ignore any duplicates in the array data. */
		if (i > 0 &&
			element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
			continue;

		/* Find the smallest MCELEM >= this array item. */
		if (use_bsearch)
		{
			match = find_next_mcelem(mcelem, nmcelem, array_data[i],
									 &mcelem_index, typentry);
		}
		else
		{
			while (mcelem_index < nmcelem)
			{
				int			cmp = element_compare(&mcelem[mcelem_index],
												  &array_data[i],
												  typentry);

				if (cmp < 0)
					mcelem_index++;
				else
				{
					if (cmp == 0)
						match = true;	/* mcelem is found */
					break;
				}
			}
		}

		if (match && numbers)
		{
			/* MCELEM matches the array item; use its frequency. */
			elem_selec = numbers[mcelem_index];
			mcelem_index++;
		}
		else
		{
			/*
			 * The element is not in MCELEM.  Punt, but assume that the
			 * selectivity cannot be more than minfreq / 2.
			 */
			elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
		}

		/*
		 * Update overall selectivity using the current element's selectivity
		 * and an assumption of element occurrence independence.
		 */
		if (operator == OID_ARRAY_CONTAINS_OP)
			selec *= elem_selec;
		else
			selec = selec + elem_selec - selec * elem_selec;

		/* Clamp intermediate results to stay sane despite roundoff error */
		CLAMP_PROBABILITY(selec);
	}

	return selec;
}

/*
 * Estimate selectivity of "column <@ const" based on most common element
 * statistics.
 *
 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
 * not available.  array_data (of length nitems) is the constant's elements.
 * hist (of length nhist) is from the array column's DECHIST statistics slot,
 * or is NULL/0 if those stats are not available.
 *
 * Both the mcelem and array_data arrays are assumed presorted according
 * to the element type's cmpfunc.  Null elements are not present.
 *
 * Independent element occurrence would imply a particular distribution of
 * distinct element counts among matching rows.  Real data usually falsifies
 * that assumption.  For example, in a set of 11-element integer arrays having
 * elements in the range [0..10], element occurrences are typically not
 * independent.  If they were, a sufficiently-large set would include all
 * distinct element counts 0 through 11.  We correct for this using the
 * histogram of distinct element counts.
 *
 * In the "column @> const" and "column && const" cases, we usually have a
 * "const" with low number of elements (otherwise we have selectivity close
 * to 0 or 1 respectively).  That's why the effect of dependence related
 * to distinct element count distribution is negligible there.  In the
 * "column <@ const" case, number of elements is usually high (otherwise we
 * have selectivity close to 0).  That's why we should do a correction with
 * the array distinct element count distribution here.
 *
 * Using the histogram of distinct element counts produces a different
 * distribution law than independent occurrences of elements.  This
 * distribution law can be described as follows:
 *
 * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
 *	  (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
 *
 * where:
 * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
 *		(1 - occurrence, 0 - no occurrence) in row
 * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
 *		(scalar values in [0..1]) according to collected statistics
 * m = o1 + o2 + ... + on = total number of distinct elements in row
 * hist[m] - histogram data for occurrence of m elements.
 * ind[m] - probability of m occurrences from n events assuming their
 *	  probabilities to be equal to frequencies of array elements.
 *
 * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
 * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
 */
static Selectivity
mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
							 float4 *numbers, int nnumbers,
							 Datum *array_data, int nitems,
							 float4 *hist, int nhist,
							 Oid operator, TypeCacheEntry *typentry)
{
	int			mcelem_index,
				i,
				unique_nitems = 0;
	float		selec,
				minfreq,
				nullelem_freq;
	float	   *dist,
			   *mcelem_dist,
			   *hist_part;
	float		avg_count,
				mult,
				rest;
	float	   *elem_selec;

	/*
	 * There should be three more Numbers than Values in the MCELEM slot,
	 * because the last three cells should hold minimal and maximal frequency
	 * among the non-null elements, and then the frequency of null elements.
	 * Punt if not right, because we can't do much without the element freqs.
	 */
	if (numbers == NULL || nnumbers != nmcelem + 3)
		return DEFAULT_CONTAIN_SEL;

	/* Can't do much without a count histogram, either */
	if (hist == NULL || nhist < 3)
		return DEFAULT_CONTAIN_SEL;

	/*
	 * Grab some of the summary statistics that compute_array_stats() stores:
	 * lowest frequency, frequency of null elements, and average distinct
	 * element count.
	 */
	minfreq = numbers[nmcelem];
	nullelem_freq = numbers[nmcelem + 2];
	avg_count = hist[nhist - 1];

	/*
	 * "rest" will be the sum of the frequencies of all elements not
	 * represented in MCELEM.  The average distinct element count is the sum
	 * of the frequencies of *all* elements.  Begin with that; we will proceed
	 * to subtract the MCELEM frequencies.
	 */
	rest = avg_count;

	/*
	 * mult is a multiplier representing estimate of probability that each
	 * mcelem that is not present in constant doesn't occur.
	 */
	mult = 1.0f;

	/*
	 * elem_selec is array of estimated frequencies for elements in the
	 * constant.
	 */
	elem_selec = (float *) palloc(sizeof(float) * nitems);

	/* Scan mcelem and array in parallel. */
	mcelem_index = 0;
	for (i = 0; i < nitems; i++)
	{
		bool		match = false;

		/* Ignore any duplicates in the array data. */
		if (i > 0 &&
			element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
			continue;

		/*
		 * Iterate over MCELEM until we find an entry greater than or equal to
		 * this element of the constant.  Update "rest" and "mult" for mcelem
		 * entries skipped over.
		 */
		while (mcelem_index < nmcelem)
		{
			int			cmp = element_compare(&mcelem[mcelem_index],
											  &array_data[i],
											  typentry);

			if (cmp < 0)
			{
				mult *= (1.0f - numbers[mcelem_index]);
				rest -= numbers[mcelem_index];
				mcelem_index++;
			}
			else
			{
				if (cmp == 0)
					match = true;	/* mcelem is found */
				break;
			}
		}

		if (match)
		{
			/* MCELEM matches the array item. */
			elem_selec[unique_nitems] = numbers[mcelem_index];
			/* "rest" is decremented for all mcelems, matched or not */
			rest -= numbers[mcelem_index];
			mcelem_index++;
		}
		else
		{
			/*
			 * The element is not in MCELEM.  Punt, but assume that the
			 * selectivity cannot be more than minfreq / 2.
			 */
			elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
											minfreq / 2);
		}

		unique_nitems++;
	}

	/*
	 * If we handled all constant elements without exhausting the MCELEM
	 * array, finish walking it to complete calculation of "rest" and "mult".
	 */
	while (mcelem_index < nmcelem)
	{
		mult *= (1.0f - numbers[mcelem_index]);
		rest -= numbers[mcelem_index];
		mcelem_index++;
	}

	/*
	 * The presence of many distinct rare elements materially decreases
	 * selectivity.  Use the Poisson distribution to estimate the probability
	 * of a column value having zero occurrences of such elements.  See above
	 * for the definition of "rest".
	 */
	mult *= exp(-rest);

	/*----------
	 * Using the distinct element count histogram requires
	 *		O(unique_nitems * (nmcelem + unique_nitems))
	 * operations.  Beyond a certain computational cost threshold, it's
	 * reasonable to sacrifice accuracy for decreased planning time.  We limit
	 * the number of operations to EFFORT * nmcelem; since nmcelem is limited
	 * by the column's statistics target, the work done is user-controllable.
	 *
	 * If the number of operations would be too large, we can reduce it
	 * without losing all accuracy by reducing unique_nitems and considering
	 * only the most-common elements of the constant array.  To make the
	 * results exactly match what we would have gotten with only those
	 * elements to start with, we'd have to remove any discarded elements'
	 * frequencies from "mult", but since this is only an approximation
	 * anyway, we don't bother with that.  Therefore it's sufficient to qsort
	 * elem_selec[] and take the largest elements.  (They will no longer match
	 * up with the elements of array_data[], but we don't care.)
	 *----------
	 */
#define EFFORT 100

	if ((nmcelem + unique_nitems) > 0 &&
		unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
	{
		/*
		 * Use the quadratic formula to solve for largest allowable N.  We
		 * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
		 */
		double		b = (double) nmcelem;
		int			n;

		n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);

		/* Sort, then take just the first n elements */
		qsort(elem_selec, unique_nitems, sizeof(float),
			  float_compare_desc);
		unique_nitems = n;
	}

	/*
	 * Calculate probabilities of each distinct element count for both mcelems
	 * and constant elements.  At this point, assume independent element
	 * occurrence.
	 */
	dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
	mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);

	/* ignore hist[nhist-1], which is the average not a histogram member */
	hist_part = calc_hist(hist, nhist - 1, unique_nitems);

	selec = 0.0f;
	for (i = 0; i <= unique_nitems; i++)
	{
		/*
		 * mult * dist[i] / mcelem_dist[i] gives us probability of qual
		 * matching from assumption of independent element occurrence with the
		 * condition that distinct element count = i.
		 */
		if (mcelem_dist[i] > 0)
			selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
	}

	pfree(dist);
	pfree(mcelem_dist);
	pfree(hist_part);
	pfree(elem_selec);

	/* Take into account occurrence of NULL element. */
	selec *= (1.0f - nullelem_freq);

	CLAMP_PROBABILITY(selec);

	return selec;
}

/*
 * Calculate the first n distinct element count probabilities from a
 * histogram of distinct element counts.
 *
 * Returns a palloc'd array of n+1 entries, with array[k] being the
 * probability of element count k, k in [0..n].
 *
 * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
 * (nhist - 1)) probability to each value in (a,b) and an additional half of
 * that to a and b themselves.
 */
static float *
calc_hist(const float4 *hist, int nhist, int n)
{
	float	   *hist_part;
	int			k,
				i = 0;
	float		prev_interval = 0,
				next_interval;
	float		frac;

	hist_part = (float *) palloc((n + 1) * sizeof(float));

	/*
	 * frac is a probability contribution for each interval between histogram
	 * values.  We have nhist - 1 intervals, so contribution of each one will
	 * be 1 / (nhist - 1).
	 */
	frac = 1.0f / ((float) (nhist - 1));

	for (k = 0; k <= n; k++)
	{
		int			count = 0;

		/*
		 * Count the histogram boundaries equal to k.  (Although the histogram
		 * should theoretically contain only exact integers, entries are
		 * floats so there could be roundoff error in large values.  Treat any
		 * fractional value as equal to the next larger k.)
		 */
		while (i < nhist && hist[i] <= k)
		{
			count++;
			i++;
		}

		if (count > 0)
		{
			/* k is an exact bound for at least one histogram box. */
			float		val;

			/* Find length between current histogram value and the next one */
			if (i < nhist)
				next_interval = hist[i] - hist[i - 1];
			else
				next_interval = 0;

			/*
			 * count - 1 histogram boxes contain k exclusively.  They
			 * contribute a total of (count - 1) * frac probability.  Also
			 * factor in the partial histogram boxes on either side.
			 */
			val = (float) (count - 1);
			if (next_interval > 0)
				val += 0.5f / next_interval;
			if (prev_interval > 0)
				val += 0.5f / prev_interval;
			hist_part[k] = frac * val;

			prev_interval = next_interval;
		}
		else
		{
			/* k does not appear as an exact histogram bound. */
			if (prev_interval > 0)
				hist_part[k] = frac / prev_interval;
			else
				hist_part[k] = 0.0f;
		}
	}

	return hist_part;
}

/*
 * Consider n independent events with probabilities p[].  This function
 * calculates probabilities of exact k of events occurrence for k in [0..m].
 * Returns a palloc'd array of size m+1.
 *
 * "rest" is the sum of the probabilities of all low-probability events not
 * included in p.
 *
 * Imagine matrix M of size (n + 1) x (m + 1).  Element M[i,j] denotes the
 * probability that exactly j of first i events occur.  Obviously M[0,0] = 1.
 * For any constant j, each increment of i increases the probability iff the
 * event occurs.  So, by the law of total probability:
 *	M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
 *		for i > 0, j > 0.
 *	M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
 */
static float *
calc_distr(const float *p, int n, int m, float rest)
{
	float	   *row,
			   *prev_row,
			   *tmp;
	int			i,
				j;

	/*
	 * Since we return only the last row of the matrix and need only the
	 * current and previous row for calculations, allocate two rows.
	 */
	row = (float *) palloc((m + 1) * sizeof(float));
	prev_row = (float *) palloc((m + 1) * sizeof(float));

	/* M[0,0] = 1 */
	row[0] = 1.0f;
	for (i = 1; i <= n; i++)
	{
		float		t = p[i - 1];

		/* Swap rows */
		tmp = row;
		row = prev_row;
		prev_row = tmp;

		/* Calculate next row */
		for (j = 0; j <= i && j <= m; j++)
		{
			float		val = 0.0f;

			if (j < i)
				val += prev_row[j] * (1.0f - t);
			if (j > 0)
				val += prev_row[j - 1] * t;
			row[j] = val;
		}
	}

	/*
	 * The presence of many distinct rare (not in "p") elements materially
	 * decreases selectivity.  Model their collective occurrence with the
	 * Poisson distribution.
	 */
	if (rest > DEFAULT_CONTAIN_SEL)
	{
		float		t;

		/* Swap rows */
		tmp = row;
		row = prev_row;
		prev_row = tmp;

		for (i = 0; i <= m; i++)
			row[i] = 0.0f;

		/* Value of Poisson distribution for 0 occurrences */
		t = exp(-rest);

		/*
		 * Calculate convolution of previously computed distribution and the
		 * Poisson distribution.
		 */
		for (i = 0; i <= m; i++)
		{
			for (j = 0; j <= m - i; j++)
				row[j + i] += prev_row[j] * t;

			/* Get Poisson distribution value for (i + 1) occurrences */
			t *= rest / (float) (i + 1);
		}
	}

	pfree(prev_row);
	return row;
}

/* Fast function for floor value of 2 based logarithm calculation. */
static int
floor_log2(uint32 n)
{
	int			logval = 0;

	if (n == 0)
		return -1;
	if (n >= (1 << 16))
	{
		n >>= 16;
		logval += 16;
	}
	if (n >= (1 << 8))
	{
		n >>= 8;
		logval += 8;
	}
	if (n >= (1 << 4))
	{
		n >>= 4;
		logval += 4;
	}
	if (n >= (1 << 2))
	{
		n >>= 2;
		logval += 2;
	}
	if (n >= (1 << 1))
	{
		logval += 1;
	}
	return logval;
}

/*
 * find_next_mcelem binary-searches a most common elements array, starting
 * from *index, for the first member >= value.  It saves the position of the
 * match into *index and returns true if it's an exact match.  (Note: we
 * assume the mcelem elements are distinct so there can't be more than one
 * exact match.)
 */
static bool
find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
				 TypeCacheEntry *typentry)
{
	int			l = *index,
				r = nmcelem - 1,
				i,
				res;

	while (l <= r)
	{
		i = (l + r) / 2;
		res = element_compare(&mcelem[i], &value, typentry);
		if (res == 0)
		{
			*index = i;
			return true;
		}
		else if (res < 0)
			l = i + 1;
		else
			r = i - 1;
	}
	*index = l;
	return false;
}

/*
 * Comparison function for elements.
 *
 * We use the element type's default btree opclass, and its default collation
 * if the type is collation-sensitive.
 *
 * XXX consider using SortSupport infrastructure
 */
static int
element_compare(const void *key1, const void *key2, void *arg)
{
	Datum		d1 = *((const Datum *) key1);
	Datum		d2 = *((const Datum *) key2);
	TypeCacheEntry *typentry = (TypeCacheEntry *) arg;
	FmgrInfo   *cmpfunc = &typentry->cmp_proc_finfo;
	Datum		c;

	c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2);
	return DatumGetInt32(c);
}

/*
 * Comparison function for sorting floats into descending order.
 */
static int
float_compare_desc(const void *key1, const void *key2)
{
	float		d1 = *((const float *) key1);
	float		d2 = *((const float *) key2);

	if (d1 > d2)
		return -1;
	else if (d1 < d2)
		return 1;
	else
		return 0;
}