summaryrefslogtreecommitdiffstats
path: root/src/test/regress/expected/join_hash.out
blob: 262fa71ed8d663520e273025463259b75735f335 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
--
-- exercises for the hash join code
--
begin;
set local min_parallel_table_scan_size = 0;
set local parallel_setup_cost = 0;
set local enable_hashjoin = on;
-- Extract bucket and batch counts from an explain analyze plan.  In
-- general we can't make assertions about how many batches (or
-- buckets) will be required because it can vary, but we can in some
-- special cases and we can check for growth.
create or replace function find_hash(node json)
returns json language plpgsql
as
$$
declare
  x json;
  child json;
begin
  if node->>'Node Type' = 'Hash' then
    return node;
  else
    for child in select json_array_elements(node->'Plans')
    loop
      x := find_hash(child);
      if x is not null then
        return x;
      end if;
    end loop;
    return null;
  end if;
end;
$$;
create or replace function hash_join_batches(query text)
returns table (original int, final int) language plpgsql
as
$$
declare
  whole_plan json;
  hash_node json;
begin
  for whole_plan in
    execute 'explain (analyze, format ''json'') ' || query
  loop
    hash_node := find_hash(json_extract_path(whole_plan, '0', 'Plan'));
    original := hash_node->>'Original Hash Batches';
    final := hash_node->>'Hash Batches';
    return next;
  end loop;
end;
$$;
-- Make a simple relation with well distributed keys and correctly
-- estimated size.
create table simple as
  select generate_series(1, 20000) AS id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
alter table simple set (parallel_workers = 2);
analyze simple;
-- Make a relation whose size we will under-estimate.  We want stats
-- to say 1000 rows, but actually there are 20,000 rows.
create table bigger_than_it_looks as
  select generate_series(1, 20000) as id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
alter table bigger_than_it_looks set (autovacuum_enabled = 'false');
alter table bigger_than_it_looks set (parallel_workers = 2);
analyze bigger_than_it_looks;
update pg_class set reltuples = 1000 where relname = 'bigger_than_it_looks';
-- Make a relation whose size we underestimate and that also has a
-- kind of skew that breaks our batching scheme.  We want stats to say
-- 2 rows, but actually there are 20,000 rows with the same key.
create table extremely_skewed (id int, t text);
alter table extremely_skewed set (autovacuum_enabled = 'false');
alter table extremely_skewed set (parallel_workers = 2);
analyze extremely_skewed;
insert into extremely_skewed
  select 42 as id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'
  from generate_series(1, 20000);
update pg_class
  set reltuples = 2, relpages = pg_relation_size('extremely_skewed') / 8192
  where relname = 'extremely_skewed';
-- Make a relation with a couple of enormous tuples.
create table wide as select generate_series(1, 2) as id, rpad('', 320000, 'x') as t;
alter table wide set (parallel_workers = 2);
-- The "optimal" case: the hash table fits in memory; we plan for 1
-- batch, we stick to that number, and peak memory usage stays within
-- our work_mem budget
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '4MB';
set local hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from simple r join simple s using (id);
               QUERY PLAN               
----------------------------------------
 Aggregate
   ->  Hash Join
         Hash Cond: (r.id = s.id)
         ->  Seq Scan on simple r
         ->  Hash
               ->  Seq Scan on simple s
(6 rows)

select count(*) from simple r join simple s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 f                    | f
(1 row)

rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '4MB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = off;
explain (costs off)
  select count(*) from simple r join simple s using (id);
                      QUERY PLAN                       
-------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Hash
                           ->  Seq Scan on simple s
(9 rows)

select count(*) from simple r join simple s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 f                    | f
(1 row)

rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '4MB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = on;
explain (costs off)
  select count(*) from simple r join simple s using (id);
                         QUERY PLAN                          
-------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Parallel Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on simple s
(9 rows)

select count(*) from simple r join simple s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 f                    | f
(1 row)

rollback to settings;
-- The "good" case: batches required, but we plan the right number; we
-- plan for some number of batches, and we stick to that number, and
-- peak memory usage says within our work_mem budget
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from simple r join simple s using (id);
               QUERY PLAN               
----------------------------------------
 Aggregate
   ->  Hash Join
         Hash Cond: (r.id = s.id)
         ->  Seq Scan on simple r
         ->  Hash
               ->  Seq Scan on simple s
(6 rows)

select count(*) from simple r join simple s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 t                    | f
(1 row)

rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = off;
explain (costs off)
  select count(*) from simple r join simple s using (id);
                      QUERY PLAN                       
-------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Hash
                           ->  Seq Scan on simple s
(9 rows)

select count(*) from simple r join simple s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 t                    | f
(1 row)

rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '192kB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = on;
explain (costs off)
  select count(*) from simple r join simple s using (id);
                         QUERY PLAN                          
-------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Parallel Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on simple s
(9 rows)

select count(*) from simple r join simple s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 t                    | f
(1 row)

-- parallel full multi-batch hash join
select count(*) from simple r full outer join simple s using (id);
 count 
-------
 20000
(1 row)

rollback to settings;
-- The "bad" case: during execution we need to increase number of
-- batches; in this case we plan for 1 batch, and increase at least a
-- couple of times, and peak memory usage stays within our work_mem
-- budget
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id);
                      QUERY PLAN                      
------------------------------------------------------
 Aggregate
   ->  Hash Join
         Hash Cond: (r.id = s.id)
         ->  Seq Scan on simple r
         ->  Hash
               ->  Seq Scan on bigger_than_it_looks s
(6 rows)

select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 f                    | t
(1 row)

rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = off;
explain (costs off)
  select count(*) from simple r join bigger_than_it_looks s using (id);
                            QUERY PLAN                            
------------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Hash
                           ->  Seq Scan on bigger_than_it_looks s
(9 rows)

select count(*) from simple r join bigger_than_it_looks s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join bigger_than_it_looks s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 f                    | t
(1 row)

rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 1;
set local work_mem = '192kB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = on;
explain (costs off)
  select count(*) from simple r join bigger_than_it_looks s using (id);
                                QUERY PLAN                                 
---------------------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 1
         ->  Partial Aggregate
               ->  Parallel Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on bigger_than_it_looks s
(9 rows)

select count(*) from simple r join bigger_than_it_looks s using (id);
 count 
-------
 20000
(1 row)

select original > 1 as initially_multibatch, final > original as increased_batches
  from hash_join_batches(
$$
  select count(*) from simple r join bigger_than_it_looks s using (id);
$$);
 initially_multibatch | increased_batches 
----------------------+-------------------
 f                    | t
(1 row)

rollback to settings;
-- The "ugly" case: increasing the number of batches during execution
-- doesn't help, so stop trying to fit in work_mem and hope for the
-- best; in this case we plan for 1 batch, increases just once and
-- then stop increasing because that didn't help at all, so we blow
-- right through the work_mem budget and hope for the best...
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from simple r join extremely_skewed s using (id);
                    QUERY PLAN                    
--------------------------------------------------
 Aggregate
   ->  Hash Join
         Hash Cond: (r.id = s.id)
         ->  Seq Scan on simple r
         ->  Hash
               ->  Seq Scan on extremely_skewed s
(6 rows)

select count(*) from simple r join extremely_skewed s using (id);
 count 
-------
 20000
(1 row)

select * from hash_join_batches(
$$
  select count(*) from simple r join extremely_skewed s using (id);
$$);
 original | final 
----------+-------
        1 |     2
(1 row)

rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = off;
explain (costs off)
  select count(*) from simple r join extremely_skewed s using (id);
                       QUERY PLAN                       
--------------------------------------------------------
 Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Hash Join
               Hash Cond: (r.id = s.id)
               ->  Parallel Seq Scan on simple r
               ->  Hash
                     ->  Seq Scan on extremely_skewed s
(8 rows)

select count(*) from simple r join extremely_skewed s using (id);
 count 
-------
 20000
(1 row)

select * from hash_join_batches(
$$
  select count(*) from simple r join extremely_skewed s using (id);
$$);
 original | final 
----------+-------
        1 |     2
(1 row)

rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 1;
set local work_mem = '128kB';
set local hash_mem_multiplier = 1.0;
set local enable_parallel_hash = on;
explain (costs off)
  select count(*) from simple r join extremely_skewed s using (id);
                              QUERY PLAN                               
-----------------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 1
         ->  Partial Aggregate
               ->  Parallel Hash Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on extremely_skewed s
(9 rows)

select count(*) from simple r join extremely_skewed s using (id);
 count 
-------
 20000
(1 row)

select * from hash_join_batches(
$$
  select count(*) from simple r join extremely_skewed s using (id);
$$);
 original | final 
----------+-------
        1 |     4
(1 row)

rollback to settings;
-- A couple of other hash join tests unrelated to work_mem management.
-- Check that EXPLAIN ANALYZE has data even if the leader doesn't participate
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '4MB';
set local hash_mem_multiplier = 1.0;
set local parallel_leader_participation = off;
select * from hash_join_batches(
$$
  select count(*) from simple r join simple s using (id);
$$);
 original | final 
----------+-------
        1 |     1
(1 row)

rollback to settings;
-- Exercise rescans.  We'll turn off parallel_leader_participation so
-- that we can check that instrumentation comes back correctly.
create table join_foo as select generate_series(1, 3) as id, 'xxxxx'::text as t;
alter table join_foo set (parallel_workers = 0);
create table join_bar as select generate_series(1, 10000) as id, 'xxxxx'::text as t;
alter table join_bar set (parallel_workers = 2);
-- multi-batch with rescan, parallel-oblivious
savepoint settings;
set enable_parallel_hash = off;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '64kB';
set hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
                                     QUERY PLAN                                     
------------------------------------------------------------------------------------
 Aggregate
   ->  Nested Loop Left Join
         Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1)))
         ->  Seq Scan on join_foo
         ->  Gather
               Workers Planned: 2
               ->  Hash Join
                     Hash Cond: (b1.id = b2.id)
                     ->  Parallel Seq Scan on join_bar b1
                     ->  Hash
                           ->  Seq Scan on join_bar b2
(11 rows)

select count(*) from join_foo
  left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
  on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
 count 
-------
     3
(1 row)

select final > 1 as multibatch
  from hash_join_batches(
$$
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
 multibatch 
------------
 t
(1 row)

rollback to settings;
-- single-batch with rescan, parallel-oblivious
savepoint settings;
set enable_parallel_hash = off;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '4MB';
set hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
                                     QUERY PLAN                                     
------------------------------------------------------------------------------------
 Aggregate
   ->  Nested Loop Left Join
         Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1)))
         ->  Seq Scan on join_foo
         ->  Gather
               Workers Planned: 2
               ->  Hash Join
                     Hash Cond: (b1.id = b2.id)
                     ->  Parallel Seq Scan on join_bar b1
                     ->  Hash
                           ->  Seq Scan on join_bar b2
(11 rows)

select count(*) from join_foo
  left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
  on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
 count 
-------
     3
(1 row)

select final > 1 as multibatch
  from hash_join_batches(
$$
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
 multibatch 
------------
 f
(1 row)

rollback to settings;
-- multi-batch with rescan, parallel-aware
savepoint settings;
set enable_parallel_hash = on;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '64kB';
set hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
                                     QUERY PLAN                                     
------------------------------------------------------------------------------------
 Aggregate
   ->  Nested Loop Left Join
         Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1)))
         ->  Seq Scan on join_foo
         ->  Gather
               Workers Planned: 2
               ->  Parallel Hash Join
                     Hash Cond: (b1.id = b2.id)
                     ->  Parallel Seq Scan on join_bar b1
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on join_bar b2
(11 rows)

select count(*) from join_foo
  left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
  on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
 count 
-------
     3
(1 row)

select final > 1 as multibatch
  from hash_join_batches(
$$
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
 multibatch 
------------
 t
(1 row)

rollback to settings;
-- single-batch with rescan, parallel-aware
savepoint settings;
set enable_parallel_hash = on;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '4MB';
set hash_mem_multiplier = 1.0;
explain (costs off)
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
                                     QUERY PLAN                                     
------------------------------------------------------------------------------------
 Aggregate
   ->  Nested Loop Left Join
         Join Filter: ((join_foo.id < (b1.id + 1)) AND (join_foo.id > (b1.id - 1)))
         ->  Seq Scan on join_foo
         ->  Gather
               Workers Planned: 2
               ->  Parallel Hash Join
                     Hash Cond: (b1.id = b2.id)
                     ->  Parallel Seq Scan on join_bar b1
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on join_bar b2
(11 rows)

select count(*) from join_foo
  left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
  on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
 count 
-------
     3
(1 row)

select final > 1 as multibatch
  from hash_join_batches(
$$
  select count(*) from join_foo
    left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
    on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
 multibatch 
------------
 f
(1 row)

rollback to settings;
-- A full outer join where every record is matched.
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
explain (costs off)
     select  count(*) from simple r full outer join simple s using (id);
               QUERY PLAN               
----------------------------------------
 Aggregate
   ->  Hash Full Join
         Hash Cond: (r.id = s.id)
         ->  Seq Scan on simple r
         ->  Hash
               ->  Seq Scan on simple s
(6 rows)

select  count(*) from simple r full outer join simple s using (id);
 count 
-------
 20000
(1 row)

rollback to settings;
-- parallelism not possible with parallel-oblivious full hash join
savepoint settings;
set enable_parallel_hash = off;
set local max_parallel_workers_per_gather = 2;
explain (costs off)
     select  count(*) from simple r full outer join simple s using (id);
               QUERY PLAN               
----------------------------------------
 Aggregate
   ->  Hash Full Join
         Hash Cond: (r.id = s.id)
         ->  Seq Scan on simple r
         ->  Hash
               ->  Seq Scan on simple s
(6 rows)

select  count(*) from simple r full outer join simple s using (id);
 count 
-------
 20000
(1 row)

rollback to settings;
-- parallelism is possible with parallel-aware full hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
explain (costs off)
     select  count(*) from simple r full outer join simple s using (id);
                         QUERY PLAN                          
-------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Parallel Hash Full Join
                     Hash Cond: (r.id = s.id)
                     ->  Parallel Seq Scan on simple r
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on simple s
(9 rows)

select  count(*) from simple r full outer join simple s using (id);
 count 
-------
 20000
(1 row)

rollback to settings;
-- A full outer join where every record is not matched.
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
explain (costs off)
     select  count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
               QUERY PLAN               
----------------------------------------
 Aggregate
   ->  Hash Full Join
         Hash Cond: ((0 - s.id) = r.id)
         ->  Seq Scan on simple s
         ->  Hash
               ->  Seq Scan on simple r
(6 rows)

select  count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
 count 
-------
 40000
(1 row)

rollback to settings;
-- parallelism not possible with parallel-oblivious full hash join
savepoint settings;
set enable_parallel_hash = off;
set local max_parallel_workers_per_gather = 2;
explain (costs off)
     select  count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
               QUERY PLAN               
----------------------------------------
 Aggregate
   ->  Hash Full Join
         Hash Cond: ((0 - s.id) = r.id)
         ->  Seq Scan on simple s
         ->  Hash
               ->  Seq Scan on simple r
(6 rows)

select  count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
 count 
-------
 40000
(1 row)

rollback to settings;
-- parallelism is possible with parallel-aware full hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
explain (costs off)
     select  count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
                         QUERY PLAN                          
-------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Parallel Hash Full Join
                     Hash Cond: ((0 - s.id) = r.id)
                     ->  Parallel Seq Scan on simple s
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on simple r
(9 rows)

select  count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
 count 
-------
 40000
(1 row)

rollback to settings;
-- exercise special code paths for huge tuples (note use of non-strict
-- expression and left join required to get the detoasted tuple into
-- the hash table)
-- parallel with parallel-aware hash join (hits ExecParallelHashLoadTuple and
-- sts_puttuple oversized tuple cases because it's multi-batch)
savepoint settings;
set max_parallel_workers_per_gather = 2;
set enable_parallel_hash = on;
set work_mem = '128kB';
set hash_mem_multiplier = 1.0;
explain (costs off)
  select length(max(s.t))
  from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id);
                           QUERY PLAN                           
----------------------------------------------------------------
 Finalize Aggregate
   ->  Gather
         Workers Planned: 2
         ->  Partial Aggregate
               ->  Parallel Hash Left Join
                     Hash Cond: (wide.id = wide_1.id)
                     ->  Parallel Seq Scan on wide
                     ->  Parallel Hash
                           ->  Parallel Seq Scan on wide wide_1
(9 rows)

select length(max(s.t))
from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id);
 length 
--------
 320000
(1 row)

select final > 1 as multibatch
  from hash_join_batches(
$$
  select length(max(s.t))
  from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id);
$$);
 multibatch 
------------
 t
(1 row)

rollback to settings;
-- Hash join reuses the HOT status bit to indicate match status. This can only
-- be guaranteed to produce correct results if all the hash join tuple match
-- bits are reset before reuse. This is done upon loading them into the
-- hashtable.
SAVEPOINT settings;
SET enable_parallel_hash = on;
SET min_parallel_table_scan_size = 0;
SET parallel_setup_cost = 0;
SET parallel_tuple_cost = 0;
CREATE TABLE hjtest_matchbits_t1(id int);
CREATE TABLE hjtest_matchbits_t2(id int);
INSERT INTO hjtest_matchbits_t1 VALUES (1);
INSERT INTO hjtest_matchbits_t2 VALUES (2);
-- Update should create a HOT tuple. If this status bit isn't cleared, we won't
-- correctly emit the NULL-extended unmatching tuple in full hash join.
UPDATE hjtest_matchbits_t2 set id = 2;
SELECT * FROM hjtest_matchbits_t1 t1 FULL JOIN hjtest_matchbits_t2 t2 ON t1.id = t2.id
  ORDER BY t1.id;
 id | id 
----+----
  1 |   
    |  2
(2 rows)

-- Test serial full hash join.
-- Resetting parallel_setup_cost should force a serial plan.
-- Just to be safe, however, set enable_parallel_hash to off, as parallel full
-- hash joins are only supported with shared hashtables.
RESET parallel_setup_cost;
SET enable_parallel_hash = off;
SELECT * FROM hjtest_matchbits_t1 t1 FULL JOIN hjtest_matchbits_t2 t2 ON t1.id = t2.id;
 id | id 
----+----
  1 |   
    |  2
(2 rows)

ROLLBACK TO settings;
rollback;
-- Verify that hash key expressions reference the correct
-- nodes. Hashjoin's hashkeys need to reference its outer plan, Hash's
-- need to reference Hash's outer plan (which is below HashJoin's
-- inner plan). It's not trivial to verify that the references are
-- correct (we don't display the hashkeys themselves), but if the
-- hashkeys contain subplan references, those will be displayed. Force
-- subplans to appear just about everywhere.
--
-- Bug report:
-- https://www.postgresql.org/message-id/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR%2BteQ_8tEXU8mxg%40mail.gmail.com
--
BEGIN;
SET LOCAL enable_sort = OFF; -- avoid mergejoins
SET LOCAL from_collapse_limit = 1; -- allows easy changing of join order
CREATE TABLE hjtest_1 (a text, b int, id int, c bool);
CREATE TABLE hjtest_2 (a bool, id int, b text, c int);
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 2, 1, false); -- matches
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 1, 2, false); -- fails id join condition
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 20, 1, false); -- fails < 50
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 1, 1, false); -- fails (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 2); -- matches
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 3, 'another', 7); -- fails id join condition
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 90);  -- fails < 55
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 3); -- fails (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'text', 1); --  fails hjtest_1.a <> hjtest_2.b;
EXPLAIN (COSTS OFF, VERBOSE)
SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_1, hjtest_2
WHERE
    hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
    AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
    AND (SELECT hjtest_1.b * 5) < 50
    AND (SELECT hjtest_2.c * 5) < 55
    AND hjtest_1.a <> hjtest_2.b;
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Hash Join
   Output: hjtest_1.a, hjtest_2.a, (hjtest_1.tableoid)::regclass, (hjtest_2.tableoid)::regclass
   Hash Cond: ((hjtest_1.id = (SubPlan 1)) AND ((SubPlan 2) = (SubPlan 3)))
   Join Filter: (hjtest_1.a <> hjtest_2.b)
   ->  Seq Scan on public.hjtest_1
         Output: hjtest_1.a, hjtest_1.tableoid, hjtest_1.id, hjtest_1.b
         Filter: ((SubPlan 4) < 50)
         SubPlan 4
           ->  Result
                 Output: (hjtest_1.b * 5)
   ->  Hash
         Output: hjtest_2.a, hjtest_2.tableoid, hjtest_2.id, hjtest_2.c, hjtest_2.b
         ->  Seq Scan on public.hjtest_2
               Output: hjtest_2.a, hjtest_2.tableoid, hjtest_2.id, hjtest_2.c, hjtest_2.b
               Filter: ((SubPlan 5) < 55)
               SubPlan 5
                 ->  Result
                       Output: (hjtest_2.c * 5)
         SubPlan 1
           ->  Result
                 Output: 1
                 One-Time Filter: (hjtest_2.id = 1)
         SubPlan 3
           ->  Result
                 Output: (hjtest_2.c * 5)
   SubPlan 2
     ->  Result
           Output: (hjtest_1.b * 5)
(28 rows)

SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_1, hjtest_2
WHERE
    hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
    AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
    AND (SELECT hjtest_1.b * 5) < 50
    AND (SELECT hjtest_2.c * 5) < 55
    AND hjtest_1.a <> hjtest_2.b;
  a1  | a2 |    t1    |    t2    
------+----+----------+----------
 text | t  | hjtest_1 | hjtest_2
(1 row)

EXPLAIN (COSTS OFF, VERBOSE)
SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_2, hjtest_1
WHERE
    hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
    AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
    AND (SELECT hjtest_1.b * 5) < 50
    AND (SELECT hjtest_2.c * 5) < 55
    AND hjtest_1.a <> hjtest_2.b;
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Hash Join
   Output: hjtest_1.a, hjtest_2.a, (hjtest_1.tableoid)::regclass, (hjtest_2.tableoid)::regclass
   Hash Cond: (((SubPlan 1) = hjtest_1.id) AND ((SubPlan 3) = (SubPlan 2)))
   Join Filter: (hjtest_1.a <> hjtest_2.b)
   ->  Seq Scan on public.hjtest_2
         Output: hjtest_2.a, hjtest_2.tableoid, hjtest_2.id, hjtest_2.c, hjtest_2.b
         Filter: ((SubPlan 5) < 55)
         SubPlan 5
           ->  Result
                 Output: (hjtest_2.c * 5)
   ->  Hash
         Output: hjtest_1.a, hjtest_1.tableoid, hjtest_1.id, hjtest_1.b
         ->  Seq Scan on public.hjtest_1
               Output: hjtest_1.a, hjtest_1.tableoid, hjtest_1.id, hjtest_1.b
               Filter: ((SubPlan 4) < 50)
               SubPlan 4
                 ->  Result
                       Output: (hjtest_1.b * 5)
         SubPlan 2
           ->  Result
                 Output: (hjtest_1.b * 5)
   SubPlan 1
     ->  Result
           Output: 1
           One-Time Filter: (hjtest_2.id = 1)
   SubPlan 3
     ->  Result
           Output: (hjtest_2.c * 5)
(28 rows)

SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_2, hjtest_1
WHERE
    hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
    AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
    AND (SELECT hjtest_1.b * 5) < 50
    AND (SELECT hjtest_2.c * 5) < 55
    AND hjtest_1.a <> hjtest_2.b;
  a1  | a2 |    t1    |    t2    
------+----+----------+----------
 text | t  | hjtest_1 | hjtest_2
(1 row)

ROLLBACK;
-- Verify that we behave sanely when the inner hash keys contain parameters
-- (that is, outer or lateral references).  This situation has to defeat
-- re-use of the inner hash table across rescans.
begin;
set local enable_hashjoin = on;
explain (costs off)
select i8.q2, ss.* from
int8_tbl i8,
lateral (select t1.fivethous, i4.f1 from tenk1 t1 join int4_tbl i4
         on t1.fivethous = i4.f1+i8.q2 order by 1,2) ss;
                        QUERY PLAN                         
-----------------------------------------------------------
 Nested Loop
   ->  Seq Scan on int8_tbl i8
   ->  Sort
         Sort Key: t1.fivethous, i4.f1
         ->  Hash Join
               Hash Cond: (t1.fivethous = (i4.f1 + i8.q2))
               ->  Seq Scan on tenk1 t1
               ->  Hash
                     ->  Seq Scan on int4_tbl i4
(9 rows)

select i8.q2, ss.* from
int8_tbl i8,
lateral (select t1.fivethous, i4.f1 from tenk1 t1 join int4_tbl i4
         on t1.fivethous = i4.f1+i8.q2 order by 1,2) ss;
 q2  | fivethous | f1 
-----+-----------+----
 456 |       456 |  0
 456 |       456 |  0
 123 |       123 |  0
 123 |       123 |  0
(4 rows)

rollback;