summaryrefslogtreecommitdiffstats
path: root/src/test/regress/sql/memoize.sql
blob: 09a0ba1b3a6cac3e18189494776189d164efa243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
-- Perform tests on the Memoize node.

-- The cache hits/misses/evictions from the Memoize node can vary between
-- machines.  Let's just replace the number with an 'N'.  In order to allow us
-- to perform validation when the measure was zero, we replace a zero value
-- with "Zero".  All other numbers are replaced with 'N'.
create function explain_memoize(query text, hide_hitmiss bool) returns setof text
language plpgsql as
$$
declare
    ln text;
begin
    for ln in
        execute format('explain (analyze, costs off, summary off, timing off) %s',
            query)
    loop
        if hide_hitmiss = true then
                ln := regexp_replace(ln, 'Hits: 0', 'Hits: Zero');
                ln := regexp_replace(ln, 'Hits: \d+', 'Hits: N');
                ln := regexp_replace(ln, 'Misses: 0', 'Misses: Zero');
                ln := regexp_replace(ln, 'Misses: \d+', 'Misses: N');
        end if;
        ln := regexp_replace(ln, 'Evictions: 0', 'Evictions: Zero');
        ln := regexp_replace(ln, 'Evictions: \d+', 'Evictions: N');
        ln := regexp_replace(ln, 'Memory Usage: \d+', 'Memory Usage: N');
	ln := regexp_replace(ln, 'Heap Fetches: \d+', 'Heap Fetches: N');
	ln := regexp_replace(ln, 'loops=\d+', 'loops=N');
        return next ln;
    end loop;
end;
$$;

-- Ensure we get a memoize node on the inner side of the nested loop
SET enable_hashjoin TO off;
SET enable_bitmapscan TO off;

SELECT explain_memoize('
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.twenty
WHERE t2.unique1 < 1000;', false);

-- And check we get the expected results.
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.twenty
WHERE t2.unique1 < 1000;

-- Try with LATERAL joins
SELECT explain_memoize('
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2
         WHERE t1.twenty = t2.unique1 OFFSET 0) t2
WHERE t1.unique1 < 1000;', false);

-- And check we get the expected results.
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2
         WHERE t1.twenty = t2.unique1 OFFSET 0) t2
WHERE t1.unique1 < 1000;

SET enable_mergejoin TO off;

-- Test for varlena datatype with expr evaluation
CREATE TABLE expr_key (x numeric, t text);
INSERT INTO expr_key (x, t)
SELECT d1::numeric, d1::text FROM (
    SELECT round((d / pi())::numeric, 7) AS d1 FROM generate_series(1, 20) AS d
) t;

-- duplicate rows so we get some cache hits
INSERT INTO expr_key SELECT * FROM expr_key;

CREATE INDEX expr_key_idx_x_t ON expr_key (x, t);
VACUUM ANALYZE expr_key;

-- Ensure we get we get a cache miss and hit for each of the 20 distinct values
SELECT explain_memoize('
SELECT * FROM expr_key t1 INNER JOIN expr_key t2
ON t1.x = t2.t::numeric AND t1.t::numeric = t2.x;', false);

DROP TABLE expr_key;

-- Reduce work_mem and hash_mem_multiplier so that we see some cache evictions
SET work_mem TO '64kB';
SET hash_mem_multiplier TO 1.0;
-- Ensure we get some evictions.  We're unable to validate the hits and misses
-- here as the number of entries that fit in the cache at once will vary
-- between different machines.
SELECT explain_memoize('
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.thousand
WHERE t2.unique1 < 1200;', true);

CREATE TABLE flt (f float);
CREATE INDEX flt_f_idx ON flt (f);
INSERT INTO flt VALUES('-0.0'::float),('+0.0'::float);
ANALYZE flt;

SET enable_seqscan TO off;

-- Ensure memoize operates in logical mode
SELECT explain_memoize('
SELECT * FROM flt f1 INNER JOIN flt f2 ON f1.f = f2.f;', false);

-- Ensure memoize operates in binary mode
SELECT explain_memoize('
SELECT * FROM flt f1 INNER JOIN flt f2 ON f1.f >= f2.f;', false);

DROP TABLE flt;

-- Exercise Memoize in binary mode with a large fixed width type and a
-- varlena type.
CREATE TABLE strtest (n name, t text);
CREATE INDEX strtest_n_idx ON strtest (n);
CREATE INDEX strtest_t_idx ON strtest (t);
INSERT INTO strtest VALUES('one','one'),('two','two'),('three',repeat(fipshash('three'),100));
-- duplicate rows so we get some cache hits
INSERT INTO strtest SELECT * FROM strtest;
ANALYZE strtest;

-- Ensure we get 3 hits and 3 misses
SELECT explain_memoize('
SELECT * FROM strtest s1 INNER JOIN strtest s2 ON s1.n >= s2.n;', false);

-- Ensure we get 3 hits and 3 misses
SELECT explain_memoize('
SELECT * FROM strtest s1 INNER JOIN strtest s2 ON s1.t >= s2.t;', false);

DROP TABLE strtest;

-- Ensure memoize works with partitionwise join
SET enable_partitionwise_join TO on;

CREATE TABLE prt (a int) PARTITION BY RANGE(a);
CREATE TABLE prt_p1 PARTITION OF prt FOR VALUES FROM (0) TO (10);
CREATE TABLE prt_p2 PARTITION OF prt FOR VALUES FROM (10) TO (20);
INSERT INTO prt VALUES (0), (0), (0), (0);
INSERT INTO prt VALUES (10), (10), (10), (10);
CREATE INDEX iprt_p1_a ON prt_p1 (a);
CREATE INDEX iprt_p2_a ON prt_p2 (a);
ANALYZE prt;

SELECT explain_memoize('
SELECT * FROM prt t1 INNER JOIN prt t2 ON t1.a = t2.a;', false);

-- Ensure memoize works with parameterized union-all Append path
SET enable_partitionwise_join TO off;

SELECT explain_memoize('
SELECT * FROM prt_p1 t1 INNER JOIN
(SELECT * FROM prt_p1 UNION ALL SELECT * FROM prt_p2) t2
ON t1.a = t2.a;', false);

DROP TABLE prt;

RESET enable_partitionwise_join;

-- Exercise Memoize code that flushes the cache when a parameter changes which
-- is not part of the cache key.

-- Ensure we get a Memoize plan
EXPLAIN (COSTS OFF)
SELECT unique1 FROM tenk1 t0
WHERE unique1 < 3
  AND EXISTS (
	SELECT 1 FROM tenk1 t1
	INNER JOIN tenk1 t2 ON t1.unique1 = t2.hundred
	WHERE t0.ten = t1.twenty AND t0.two <> t2.four OFFSET 0);

-- Ensure the above query returns the correct result
SELECT unique1 FROM tenk1 t0
WHERE unique1 < 3
  AND EXISTS (
	SELECT 1 FROM tenk1 t1
	INNER JOIN tenk1 t2 ON t1.unique1 = t2.hundred
	WHERE t0.ten = t1.twenty AND t0.two <> t2.four OFFSET 0);

RESET enable_seqscan;
RESET enable_mergejoin;
RESET work_mem;
RESET hash_mem_multiplier;
RESET enable_bitmapscan;
RESET enable_hashjoin;

-- Test parallel plans with Memoize
SET min_parallel_table_scan_size TO 0;
SET parallel_setup_cost TO 0;
SET parallel_tuple_cost TO 0;
SET max_parallel_workers_per_gather TO 2;

-- Ensure we get a parallel plan.
EXPLAIN (COSTS OFF)
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;

-- And ensure the parallel plan gives us the correct results.
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;

RESET max_parallel_workers_per_gather;
RESET parallel_tuple_cost;
RESET parallel_setup_cost;
RESET min_parallel_table_scan_size;