summaryrefslogtreecommitdiffstats
path: root/src/parameters/learn.cpp
blob: aaef5a21d71287ad8a60d966df163af74b5e6f8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/*
 * Copyright 2010, Intel Corporation
 *
 * This file is part of PowerTOP
 *
 * This program file is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program in a file named COPYING; if not, write to the
 * Free Software Foundation, Inc,
 * 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301 USA
 * or just google for it.
 *
 * Authors:
 *	Arjan van de Ven <arjan@linux.intel.com>
 */
#include "parameters.h"
#include "../measurement/measurement.h"

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

extern int debug_learning;

double calculate_params(struct parameter_bundle *params)
{
	unsigned int i;

	params->score = 0;


	for (i = 0; i < past_results.size(); i++)
		compute_bundle(params, past_results[i]);

	return params->score;
}


/*
 * gradual linear convergence of non-independent variables works better if once in a while
 * you make a wrong move....
 */
static int random_disturb(int retry_left)
{
	if (retry_left < 10)
		return 0;

	if ( (rand() % 500) == 7)
		return 1;
	return 0;
}

static int try_zero(double value)
{
	if (value > 0.01)
	if ( (rand() % 100) == 1)
		return 1;

	if ( (rand() % 5) == 1)
		return 1;
	return 0;
}

static unsigned int previous_measurements;

static void weed_empties(struct parameter_bundle *best_so_far)
{
	double best_score;
	unsigned int i;

	best_score = best_so_far->score;


	for (i = 0; i < best_so_far->parameters.size(); i++) {
		double orgvalue;

		orgvalue = best_so_far->parameters[i];


		best_so_far->parameters[i] = 0.0;

		calculate_params(best_so_far);
		if (best_so_far->score > best_score) {
				best_so_far->parameters[i] = orgvalue;
		} else {
			best_score = best_so_far->score;
		}

	}
	calculate_params(best_so_far);

}

/* leaks like a sieve */
void learn_parameters(int iterations, int do_base_power)
{
	struct parameter_bundle *best_so_far;
	double best_score = 10000000000000000.0;
	int retry = iterations;
	int prevparam = -1;
	int locked = 0;
	static unsigned int bpi = 0;
	unsigned int i;
	time_t start;

	/* don't start fitting anything until we have at least 1 more measurement than we have parameters */
	if (past_results.size() <= all_parameters.parameters.size())
		return;



//	if (past_results.size() == previous_measurements)
//		return;

	precompute_valid();


	previous_measurements = past_results.size();

	double delta = 0.50;

	best_so_far = &all_parameters;

	if (!bpi)
		bpi = get_param_index("base power");

	calculate_params(best_so_far);
	best_score = best_so_far->score;

	delta = 0.001 / pow(0.8, iterations / 2.0);
	if (iterations < 25)
		delta = 0.001 / pow(0.5, iterations / 2.0);

	if (delta > 0.2)
		delta = 0.2;

	if (1.0 * best_score / past_results.size() < 4 && delta > 0.05)
		delta = 0.05;

	if (debug_learning)
		printf("Delta starts at %5.3f\n", delta);

	if (best_so_far->parameters[bpi] > min_power * 0.9)
		best_so_far->parameters[bpi] = min_power * 0.9;

	/* We want to give up a little of base power, to give other parameters room to change;
	   base power is the end post for everything after all
         */
	if (do_base_power && !debug_learning)
		best_so_far->parameters[bpi] = best_so_far->parameters[bpi] * 0.9998;

	start = time(NULL);

	while (retry--) {
		int changed  = 0;
		int bestparam;
		double newvalue = 0;
		double orgscore;
		double weight;

		bestparam = -1;

		if (time(NULL) - start > 1 && !debug_learning)
			retry = 0;

		calculate_params(best_so_far);
		orgscore = best_score = best_so_far->score;


	        for (i = 1; i < best_so_far->parameters.size(); i++) {
			double value, orgvalue;

			weight = delta * best_so_far->weights[i];

			orgvalue = value = best_so_far->parameters[i];
			if (value <= 0.001) {
				value = 0.1;
			} else
				value = value * (1 + weight);

			if (i == bpi && value > min_power)
				value = min_power;

			if (i == bpi && orgvalue > min_power)
				orgvalue = min_power;

			if (value > 5000)
				value = 5000;

//			printf("Trying %s %4.2f -> %4.2f\n", param.c_str(), best_so_far->parameters[param], value);
			best_so_far->parameters[i] = value;

			calculate_params(best_so_far);
			if (best_so_far->score < best_score || random_disturb(retry)) {
				best_score = best_so_far->score;
				newvalue = value;
				bestparam = i;
				changed++;
			}

			value = orgvalue * 1 / (1 + weight);

			if (value < 0.0001)
				value = 0.0;

			if (try_zero(value))
				value = 0.0;


			if (value > 5000)
				value = 5000;


//			printf("Trying %s %4.2f -> %4.2f\n", param.c_str(), orgvalue, value);

			if (orgvalue != value) {
				best_so_far->parameters[i] = value;

				calculate_params(best_so_far);

				if (best_so_far->score + 0.00001 < best_score || (random_disturb(retry) && value > 0.0)) {
					best_score = best_so_far->score;
					newvalue = value;
					bestparam = i;
					changed++;
				}
			}
			best_so_far->parameters[i] = orgvalue;

		}
		if (!changed) {
			double mult;

			if (!locked) {
				mult = 0.8;
				if (iterations < 25)
					mult = 0.5;
				delta = delta * mult;
			}
			locked = 0;
			prevparam = -1;
		} else {
			if (debug_learning) {
				printf("Retry is %i \n", retry);
					printf("delta is %5.4f\n", delta);
				printf("Best parameter is %i \n", bestparam);
				printf("Changing score from %4.3f to %4.3f\n", orgscore, best_score);
				printf("Changing value from %4.3f to %4.3f\n", best_so_far->parameters[bestparam], newvalue);
			}
			best_so_far->parameters[bestparam] = newvalue;
			if (prevparam == bestparam)
				delta = delta * 1.1;
			prevparam = bestparam;
			locked = 1;
		}

		if (delta < 0.001 && !locked)
			break;

		if (retry % 50 == 49)
			weed_empties(best_so_far);
	}


	/* now we weed out all parameters that don't have value */
	if (iterations > 50)
		weed_empties(best_so_far);

	if (debug_learning)
		printf("Final score %4.2f (%i points)\n", best_so_far->score / past_results.size(), (int)past_results.size());
//	dump_parameter_bundle(best_so_far);
//	dump_past_results();
}