summaryrefslogtreecommitdiffstats
path: root/deps/jemalloc/include
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-14 13:40:54 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-14 13:40:54 +0000
commit317c0644ccf108aa23ef3fd8358bd66c2840bfc0 (patch)
treec417b3d25c86b775989cb5ac042f37611b626c8a /deps/jemalloc/include
parentInitial commit. (diff)
downloadredis-317c0644ccf108aa23ef3fd8358bd66c2840bfc0.tar.xz
redis-317c0644ccf108aa23ef3fd8358bd66c2840bfc0.zip
Adding upstream version 5:7.2.4.upstream/5%7.2.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'deps/jemalloc/include')
-rw-r--r--deps/jemalloc/include/jemalloc/internal/activity_callback.h23
-rw-r--r--deps/jemalloc/include/jemalloc/internal/arena_externs.h121
-rw-r--r--deps/jemalloc/include/jemalloc/internal/arena_inlines_a.h24
-rw-r--r--deps/jemalloc/include/jemalloc/internal/arena_inlines_b.h550
-rw-r--r--deps/jemalloc/include/jemalloc/internal/arena_stats.h114
-rw-r--r--deps/jemalloc/include/jemalloc/internal/arena_structs.h101
-rw-r--r--deps/jemalloc/include/jemalloc/internal/arena_types.h58
-rw-r--r--deps/jemalloc/include/jemalloc/internal/assert.h56
-rw-r--r--deps/jemalloc/include/jemalloc/internal/atomic.h107
-rw-r--r--deps/jemalloc/include/jemalloc/internal/atomic_c11.h97
-rw-r--r--deps/jemalloc/include/jemalloc/internal/atomic_gcc_atomic.h129
-rw-r--r--deps/jemalloc/include/jemalloc/internal/atomic_gcc_sync.h195
-rw-r--r--deps/jemalloc/include/jemalloc/internal/atomic_msvc.h158
-rw-r--r--deps/jemalloc/include/jemalloc/internal/background_thread_externs.h33
-rw-r--r--deps/jemalloc/include/jemalloc/internal/background_thread_inlines.h48
-rw-r--r--deps/jemalloc/include/jemalloc/internal/background_thread_structs.h66
-rw-r--r--deps/jemalloc/include/jemalloc/internal/base.h110
-rw-r--r--deps/jemalloc/include/jemalloc/internal/bin.h82
-rw-r--r--deps/jemalloc/include/jemalloc/internal/bin_info.h50
-rw-r--r--deps/jemalloc/include/jemalloc/internal/bin_stats.h57
-rw-r--r--deps/jemalloc/include/jemalloc/internal/bin_types.h17
-rw-r--r--deps/jemalloc/include/jemalloc/internal/bit_util.h422
-rw-r--r--deps/jemalloc/include/jemalloc/internal/bitmap.h368
-rw-r--r--deps/jemalloc/include/jemalloc/internal/buf_writer.h32
-rw-r--r--deps/jemalloc/include/jemalloc/internal/cache_bin.h670
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ckh.h101
-rw-r--r--deps/jemalloc/include/jemalloc/internal/counter.h34
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ctl.h159
-rw-r--r--deps/jemalloc/include/jemalloc/internal/decay.h186
-rw-r--r--deps/jemalloc/include/jemalloc/internal/div.h41
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ecache.h55
-rw-r--r--deps/jemalloc/include/jemalloc/internal/edata.h698
-rw-r--r--deps/jemalloc/include/jemalloc/internal/edata_cache.h49
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ehooks.h412
-rw-r--r--deps/jemalloc/include/jemalloc/internal/emap.h357
-rw-r--r--deps/jemalloc/include/jemalloc/internal/emitter.h510
-rw-r--r--deps/jemalloc/include/jemalloc/internal/eset.h77
-rw-r--r--deps/jemalloc/include/jemalloc/internal/exp_grow.h50
-rw-r--r--deps/jemalloc/include/jemalloc/internal/extent.h137
-rw-r--r--deps/jemalloc/include/jemalloc/internal/extent_dss.h26
-rw-r--r--deps/jemalloc/include/jemalloc/internal/extent_mmap.h10
-rw-r--r--deps/jemalloc/include/jemalloc/internal/fb.h373
-rw-r--r--deps/jemalloc/include/jemalloc/internal/fxp.h126
-rw-r--r--deps/jemalloc/include/jemalloc/internal/hash.h320
-rw-r--r--deps/jemalloc/include/jemalloc/internal/hook.h163
-rw-r--r--deps/jemalloc/include/jemalloc/internal/hpa.h182
-rw-r--r--deps/jemalloc/include/jemalloc/internal/hpa_hooks.h17
-rw-r--r--deps/jemalloc/include/jemalloc/internal/hpa_opts.h74
-rw-r--r--deps/jemalloc/include/jemalloc/internal/hpdata.h413
-rw-r--r--deps/jemalloc/include/jemalloc/internal/inspect.h40
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_decls.h108
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_defs.h.in427
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_externs.h75
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_includes.h84
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_a.h122
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_b.h103
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h391
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_macros.h111
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_internal_types.h130
-rw-r--r--deps/jemalloc/include/jemalloc/internal/jemalloc_preamble.h.in263
-rw-r--r--deps/jemalloc/include/jemalloc/internal/large_externs.h24
-rw-r--r--deps/jemalloc/include/jemalloc/internal/lockedint.h204
-rw-r--r--deps/jemalloc/include/jemalloc/internal/log.h115
-rw-r--r--deps/jemalloc/include/jemalloc/internal/malloc_io.h105
-rw-r--r--deps/jemalloc/include/jemalloc/internal/mpsc_queue.h134
-rw-r--r--deps/jemalloc/include/jemalloc/internal/mutex.h319
-rw-r--r--deps/jemalloc/include/jemalloc/internal/mutex_prof.h117
-rw-r--r--deps/jemalloc/include/jemalloc/internal/nstime.h73
-rw-r--r--deps/jemalloc/include/jemalloc/internal/pa.h243
-rw-r--r--deps/jemalloc/include/jemalloc/internal/pac.h179
-rw-r--r--deps/jemalloc/include/jemalloc/internal/pages.h119
-rw-r--r--deps/jemalloc/include/jemalloc/internal/pai.h95
-rw-r--r--deps/jemalloc/include/jemalloc/internal/peak.h37
-rw-r--r--deps/jemalloc/include/jemalloc/internal/peak_event.h24
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ph.h520
-rwxr-xr-xdeps/jemalloc/include/jemalloc/internal/private_namespace.sh5
-rwxr-xr-xdeps/jemalloc/include/jemalloc/internal/private_symbols.sh51
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prng.h168
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_data.h37
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_externs.h95
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_hook.h21
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_inlines.h261
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_log.h22
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_recent.h23
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_stats.h17
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_structs.h221
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_sys.h30
-rw-r--r--deps/jemalloc/include/jemalloc/internal/prof_types.h75
-rw-r--r--deps/jemalloc/include/jemalloc/internal/psset.h131
-rwxr-xr-xdeps/jemalloc/include/jemalloc/internal/public_namespace.sh6
-rwxr-xr-xdeps/jemalloc/include/jemalloc/internal/public_unnamespace.sh6
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ql.h197
-rw-r--r--deps/jemalloc/include/jemalloc/internal/qr.h140
-rw-r--r--deps/jemalloc/include/jemalloc/internal/quantum.h87
-rw-r--r--deps/jemalloc/include/jemalloc/internal/rb.h1856
-rw-r--r--deps/jemalloc/include/jemalloc/internal/rtree.h554
-rw-r--r--deps/jemalloc/include/jemalloc/internal/rtree_tsd.h62
-rw-r--r--deps/jemalloc/include/jemalloc/internal/safety_check.h31
-rw-r--r--deps/jemalloc/include/jemalloc/internal/san.h191
-rw-r--r--deps/jemalloc/include/jemalloc/internal/san_bump.h52
-rw-r--r--deps/jemalloc/include/jemalloc/internal/sc.h357
-rw-r--r--deps/jemalloc/include/jemalloc/internal/sec.h120
-rw-r--r--deps/jemalloc/include/jemalloc/internal/sec_opts.h59
-rw-r--r--deps/jemalloc/include/jemalloc/internal/seq.h55
-rw-r--r--deps/jemalloc/include/jemalloc/internal/slab_data.h12
-rw-r--r--deps/jemalloc/include/jemalloc/internal/smoothstep.h232
-rwxr-xr-xdeps/jemalloc/include/jemalloc/internal/smoothstep.sh101
-rw-r--r--deps/jemalloc/include/jemalloc/internal/spin.h40
-rw-r--r--deps/jemalloc/include/jemalloc/internal/stats.h54
-rw-r--r--deps/jemalloc/include/jemalloc/internal/sz.h371
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tcache_externs.h75
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tcache_inlines.h193
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tcache_structs.h68
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tcache_types.h35
-rw-r--r--deps/jemalloc/include/jemalloc/internal/test_hooks.h24
-rw-r--r--deps/jemalloc/include/jemalloc/internal/thread_event.h301
-rw-r--r--deps/jemalloc/include/jemalloc/internal/ticker.h175
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tsd.h518
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tsd_generic.h182
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tsd_malloc_thread_cleanup.h61
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tsd_tls.h60
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tsd_types.h10
-rw-r--r--deps/jemalloc/include/jemalloc/internal/tsd_win.h139
-rw-r--r--deps/jemalloc/include/jemalloc/internal/typed_list.h55
-rw-r--r--deps/jemalloc/include/jemalloc/internal/util.h123
-rw-r--r--deps/jemalloc/include/jemalloc/internal/witness.h378
-rwxr-xr-xdeps/jemalloc/include/jemalloc/jemalloc.sh27
-rw-r--r--deps/jemalloc/include/jemalloc/jemalloc_defs.h.in54
-rw-r--r--deps/jemalloc/include/jemalloc/jemalloc_macros.h.in153
-rwxr-xr-xdeps/jemalloc/include/jemalloc/jemalloc_mangle.sh45
-rw-r--r--deps/jemalloc/include/jemalloc/jemalloc_protos.h.in71
-rwxr-xr-xdeps/jemalloc/include/jemalloc/jemalloc_rename.sh22
-rw-r--r--deps/jemalloc/include/jemalloc/jemalloc_typedefs.h.in77
-rw-r--r--deps/jemalloc/include/msvc_compat/C99/stdbool.h20
-rw-r--r--deps/jemalloc/include/msvc_compat/C99/stdint.h247
-rw-r--r--deps/jemalloc/include/msvc_compat/strings.h58
-rw-r--r--deps/jemalloc/include/msvc_compat/windows_extra.h6
137 files changed, 21337 insertions, 0 deletions
diff --git a/deps/jemalloc/include/jemalloc/internal/activity_callback.h b/deps/jemalloc/include/jemalloc/internal/activity_callback.h
new file mode 100644
index 0000000..6c2e84e
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/activity_callback.h
@@ -0,0 +1,23 @@
+#ifndef JEMALLOC_INTERNAL_ACTIVITY_CALLBACK_H
+#define JEMALLOC_INTERNAL_ACTIVITY_CALLBACK_H
+
+/*
+ * The callback to be executed "periodically", in response to some amount of
+ * allocator activity.
+ *
+ * This callback need not be computing any sort of peak (although that's the
+ * intended first use case), but we drive it from the peak counter, so it's
+ * keeps things tidy to keep it here.
+ *
+ * The calls to this thunk get driven by the peak_event module.
+ */
+#define ACTIVITY_CALLBACK_THUNK_INITIALIZER {NULL, NULL}
+typedef void (*activity_callback_t)(void *uctx, uint64_t allocated,
+ uint64_t deallocated);
+typedef struct activity_callback_thunk_s activity_callback_thunk_t;
+struct activity_callback_thunk_s {
+ activity_callback_t callback;
+ void *uctx;
+};
+
+#endif /* JEMALLOC_INTERNAL_ACTIVITY_CALLBACK_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/arena_externs.h b/deps/jemalloc/include/jemalloc/internal/arena_externs.h
new file mode 100644
index 0000000..e6fceaa
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/arena_externs.h
@@ -0,0 +1,121 @@
+#ifndef JEMALLOC_INTERNAL_ARENA_EXTERNS_H
+#define JEMALLOC_INTERNAL_ARENA_EXTERNS_H
+
+#include "jemalloc/internal/bin.h"
+#include "jemalloc/internal/div.h"
+#include "jemalloc/internal/extent_dss.h"
+#include "jemalloc/internal/hook.h"
+#include "jemalloc/internal/pages.h"
+#include "jemalloc/internal/stats.h"
+
+/*
+ * When the amount of pages to be purged exceeds this amount, deferred purge
+ * should happen.
+ */
+#define ARENA_DEFERRED_PURGE_NPAGES_THRESHOLD UINT64_C(1024)
+
+extern ssize_t opt_dirty_decay_ms;
+extern ssize_t opt_muzzy_decay_ms;
+
+extern percpu_arena_mode_t opt_percpu_arena;
+extern const char *percpu_arena_mode_names[];
+
+extern div_info_t arena_binind_div_info[SC_NBINS];
+
+extern malloc_mutex_t arenas_lock;
+extern emap_t arena_emap_global;
+
+extern size_t opt_oversize_threshold;
+extern size_t oversize_threshold;
+
+/*
+ * arena_bin_offsets[binind] is the offset of the first bin shard for size class
+ * binind.
+ */
+extern uint32_t arena_bin_offsets[SC_NBINS];
+
+void arena_basic_stats_merge(tsdn_t *tsdn, arena_t *arena,
+ unsigned *nthreads, const char **dss, ssize_t *dirty_decay_ms,
+ ssize_t *muzzy_decay_ms, size_t *nactive, size_t *ndirty, size_t *nmuzzy);
+void arena_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads,
+ const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms,
+ size_t *nactive, size_t *ndirty, size_t *nmuzzy, arena_stats_t *astats,
+ bin_stats_data_t *bstats, arena_stats_large_t *lstats,
+ pac_estats_t *estats, hpa_shard_stats_t *hpastats, sec_stats_t *secstats);
+void arena_handle_deferred_work(tsdn_t *tsdn, arena_t *arena);
+edata_t *arena_extent_alloc_large(tsdn_t *tsdn, arena_t *arena,
+ size_t usize, size_t alignment, bool zero);
+void arena_extent_dalloc_large_prep(tsdn_t *tsdn, arena_t *arena,
+ edata_t *edata);
+void arena_extent_ralloc_large_shrink(tsdn_t *tsdn, arena_t *arena,
+ edata_t *edata, size_t oldsize);
+void arena_extent_ralloc_large_expand(tsdn_t *tsdn, arena_t *arena,
+ edata_t *edata, size_t oldsize);
+bool arena_decay_ms_set(tsdn_t *tsdn, arena_t *arena, extent_state_t state,
+ ssize_t decay_ms);
+ssize_t arena_decay_ms_get(arena_t *arena, extent_state_t state);
+void arena_decay(tsdn_t *tsdn, arena_t *arena, bool is_background_thread,
+ bool all);
+uint64_t arena_time_until_deferred(tsdn_t *tsdn, arena_t *arena);
+void arena_do_deferred_work(tsdn_t *tsdn, arena_t *arena);
+void arena_reset(tsd_t *tsd, arena_t *arena);
+void arena_destroy(tsd_t *tsd, arena_t *arena);
+void arena_cache_bin_fill_small(tsdn_t *tsdn, arena_t *arena,
+ cache_bin_t *cache_bin, cache_bin_info_t *cache_bin_info, szind_t binind,
+ const unsigned nfill);
+
+void *arena_malloc_hard(tsdn_t *tsdn, arena_t *arena, size_t size,
+ szind_t ind, bool zero);
+void *arena_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize,
+ size_t alignment, bool zero, tcache_t *tcache);
+void arena_prof_promote(tsdn_t *tsdn, void *ptr, size_t usize);
+void arena_dalloc_promoted(tsdn_t *tsdn, void *ptr, tcache_t *tcache,
+ bool slow_path);
+void arena_slab_dalloc(tsdn_t *tsdn, arena_t *arena, edata_t *slab);
+
+void arena_dalloc_bin_locked_handle_newly_empty(tsdn_t *tsdn, arena_t *arena,
+ edata_t *slab, bin_t *bin);
+void arena_dalloc_bin_locked_handle_newly_nonempty(tsdn_t *tsdn, arena_t *arena,
+ edata_t *slab, bin_t *bin);
+void arena_dalloc_small(tsdn_t *tsdn, void *ptr);
+bool arena_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
+ size_t extra, bool zero, size_t *newsize);
+void *arena_ralloc(tsdn_t *tsdn, arena_t *arena, void *ptr, size_t oldsize,
+ size_t size, size_t alignment, bool zero, tcache_t *tcache,
+ hook_ralloc_args_t *hook_args);
+dss_prec_t arena_dss_prec_get(arena_t *arena);
+ehooks_t *arena_get_ehooks(arena_t *arena);
+extent_hooks_t *arena_set_extent_hooks(tsd_t *tsd, arena_t *arena,
+ extent_hooks_t *extent_hooks);
+bool arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec);
+ssize_t arena_dirty_decay_ms_default_get(void);
+bool arena_dirty_decay_ms_default_set(ssize_t decay_ms);
+ssize_t arena_muzzy_decay_ms_default_get(void);
+bool arena_muzzy_decay_ms_default_set(ssize_t decay_ms);
+bool arena_retain_grow_limit_get_set(tsd_t *tsd, arena_t *arena,
+ size_t *old_limit, size_t *new_limit);
+unsigned arena_nthreads_get(arena_t *arena, bool internal);
+void arena_nthreads_inc(arena_t *arena, bool internal);
+void arena_nthreads_dec(arena_t *arena, bool internal);
+arena_t *arena_new(tsdn_t *tsdn, unsigned ind, const arena_config_t *config);
+bool arena_init_huge(void);
+bool arena_is_huge(unsigned arena_ind);
+arena_t *arena_choose_huge(tsd_t *tsd);
+bin_t *arena_bin_choose(tsdn_t *tsdn, arena_t *arena, szind_t binind,
+ unsigned *binshard);
+size_t arena_fill_small_fresh(tsdn_t *tsdn, arena_t *arena, szind_t binind,
+ void **ptrs, size_t nfill, bool zero);
+bool arena_boot(sc_data_t *sc_data, base_t *base, bool hpa);
+void arena_prefork0(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork1(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork2(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork3(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork4(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork5(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork6(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork7(tsdn_t *tsdn, arena_t *arena);
+void arena_prefork8(tsdn_t *tsdn, arena_t *arena);
+void arena_postfork_parent(tsdn_t *tsdn, arena_t *arena);
+void arena_postfork_child(tsdn_t *tsdn, arena_t *arena);
+
+#endif /* JEMALLOC_INTERNAL_ARENA_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/arena_inlines_a.h b/deps/jemalloc/include/jemalloc/internal/arena_inlines_a.h
new file mode 100644
index 0000000..8568358
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/arena_inlines_a.h
@@ -0,0 +1,24 @@
+#ifndef JEMALLOC_INTERNAL_ARENA_INLINES_A_H
+#define JEMALLOC_INTERNAL_ARENA_INLINES_A_H
+
+static inline unsigned
+arena_ind_get(const arena_t *arena) {
+ return arena->ind;
+}
+
+static inline void
+arena_internal_add(arena_t *arena, size_t size) {
+ atomic_fetch_add_zu(&arena->stats.internal, size, ATOMIC_RELAXED);
+}
+
+static inline void
+arena_internal_sub(arena_t *arena, size_t size) {
+ atomic_fetch_sub_zu(&arena->stats.internal, size, ATOMIC_RELAXED);
+}
+
+static inline size_t
+arena_internal_get(arena_t *arena) {
+ return atomic_load_zu(&arena->stats.internal, ATOMIC_RELAXED);
+}
+
+#endif /* JEMALLOC_INTERNAL_ARENA_INLINES_A_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/arena_inlines_b.h b/deps/jemalloc/include/jemalloc/internal/arena_inlines_b.h
new file mode 100644
index 0000000..fa81537
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/arena_inlines_b.h
@@ -0,0 +1,550 @@
+#ifndef JEMALLOC_INTERNAL_ARENA_INLINES_B_H
+#define JEMALLOC_INTERNAL_ARENA_INLINES_B_H
+
+#include "jemalloc/internal/div.h"
+#include "jemalloc/internal/emap.h"
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/rtree.h"
+#include "jemalloc/internal/safety_check.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/sz.h"
+#include "jemalloc/internal/ticker.h"
+
+static inline arena_t *
+arena_get_from_edata(edata_t *edata) {
+ return (arena_t *)atomic_load_p(&arenas[edata_arena_ind_get(edata)],
+ ATOMIC_RELAXED);
+}
+
+JEMALLOC_ALWAYS_INLINE arena_t *
+arena_choose_maybe_huge(tsd_t *tsd, arena_t *arena, size_t size) {
+ if (arena != NULL) {
+ return arena;
+ }
+
+ /*
+ * For huge allocations, use the dedicated huge arena if both are true:
+ * 1) is using auto arena selection (i.e. arena == NULL), and 2) the
+ * thread is not assigned to a manual arena.
+ */
+ if (unlikely(size >= oversize_threshold)) {
+ arena_t *tsd_arena = tsd_arena_get(tsd);
+ if (tsd_arena == NULL || arena_is_auto(tsd_arena)) {
+ return arena_choose_huge(tsd);
+ }
+ }
+
+ return arena_choose(tsd, NULL);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_prof_info_get(tsd_t *tsd, const void *ptr, emap_alloc_ctx_t *alloc_ctx,
+ prof_info_t *prof_info, bool reset_recent) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+ assert(prof_info != NULL);
+
+ edata_t *edata = NULL;
+ bool is_slab;
+
+ /* Static check. */
+ if (alloc_ctx == NULL) {
+ edata = emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global,
+ ptr);
+ is_slab = edata_slab_get(edata);
+ } else if (unlikely(!(is_slab = alloc_ctx->slab))) {
+ edata = emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global,
+ ptr);
+ }
+
+ if (unlikely(!is_slab)) {
+ /* edata must have been initialized at this point. */
+ assert(edata != NULL);
+ large_prof_info_get(tsd, edata, prof_info, reset_recent);
+ } else {
+ prof_info->alloc_tctx = (prof_tctx_t *)(uintptr_t)1U;
+ /*
+ * No need to set other fields in prof_info; they will never be
+ * accessed if (uintptr_t)alloc_tctx == (uintptr_t)1U.
+ */
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_prof_tctx_reset(tsd_t *tsd, const void *ptr,
+ emap_alloc_ctx_t *alloc_ctx) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+
+ /* Static check. */
+ if (alloc_ctx == NULL) {
+ edata_t *edata = emap_edata_lookup(tsd_tsdn(tsd),
+ &arena_emap_global, ptr);
+ if (unlikely(!edata_slab_get(edata))) {
+ large_prof_tctx_reset(edata);
+ }
+ } else {
+ if (unlikely(!alloc_ctx->slab)) {
+ edata_t *edata = emap_edata_lookup(tsd_tsdn(tsd),
+ &arena_emap_global, ptr);
+ large_prof_tctx_reset(edata);
+ }
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_prof_tctx_reset_sampled(tsd_t *tsd, const void *ptr) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+
+ edata_t *edata = emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global,
+ ptr);
+ assert(!edata_slab_get(edata));
+
+ large_prof_tctx_reset(edata);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_prof_info_set(tsd_t *tsd, edata_t *edata, prof_tctx_t *tctx,
+ size_t size) {
+ cassert(config_prof);
+
+ assert(!edata_slab_get(edata));
+ large_prof_info_set(edata, tctx, size);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_decay_ticks(tsdn_t *tsdn, arena_t *arena, unsigned nticks) {
+ if (unlikely(tsdn_null(tsdn))) {
+ return;
+ }
+ tsd_t *tsd = tsdn_tsd(tsdn);
+ /*
+ * We use the ticker_geom_t to avoid having per-arena state in the tsd.
+ * Instead of having a countdown-until-decay timer running for every
+ * arena in every thread, we flip a coin once per tick, whose
+ * probability of coming up heads is 1/nticks; this is effectively the
+ * operation of the ticker_geom_t. Each arena has the same chance of a
+ * coinflip coming up heads (1/ARENA_DECAY_NTICKS_PER_UPDATE), so we can
+ * use a single ticker for all of them.
+ */
+ ticker_geom_t *decay_ticker = tsd_arena_decay_tickerp_get(tsd);
+ uint64_t *prng_state = tsd_prng_statep_get(tsd);
+ if (unlikely(ticker_geom_ticks(decay_ticker, prng_state, nticks))) {
+ arena_decay(tsdn, arena, false, false);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_decay_tick(tsdn_t *tsdn, arena_t *arena) {
+ arena_decay_ticks(tsdn, arena, 1);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+arena_malloc(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind, bool zero,
+ tcache_t *tcache, bool slow_path) {
+ assert(!tsdn_null(tsdn) || tcache == NULL);
+
+ if (likely(tcache != NULL)) {
+ if (likely(size <= SC_SMALL_MAXCLASS)) {
+ return tcache_alloc_small(tsdn_tsd(tsdn), arena,
+ tcache, size, ind, zero, slow_path);
+ }
+ if (likely(size <= tcache_maxclass)) {
+ return tcache_alloc_large(tsdn_tsd(tsdn), arena,
+ tcache, size, ind, zero, slow_path);
+ }
+ /* (size > tcache_maxclass) case falls through. */
+ assert(size > tcache_maxclass);
+ }
+
+ return arena_malloc_hard(tsdn, arena, size, ind, zero);
+}
+
+JEMALLOC_ALWAYS_INLINE arena_t *
+arena_aalloc(tsdn_t *tsdn, const void *ptr) {
+ edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr);
+ unsigned arena_ind = edata_arena_ind_get(edata);
+ return (arena_t *)atomic_load_p(&arenas[arena_ind], ATOMIC_RELAXED);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+arena_salloc(tsdn_t *tsdn, const void *ptr) {
+ assert(ptr != NULL);
+ emap_alloc_ctx_t alloc_ctx;
+ emap_alloc_ctx_lookup(tsdn, &arena_emap_global, ptr, &alloc_ctx);
+ assert(alloc_ctx.szind != SC_NSIZES);
+
+ return sz_index2size(alloc_ctx.szind);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+arena_vsalloc(tsdn_t *tsdn, const void *ptr) {
+ /*
+ * Return 0 if ptr is not within an extent managed by jemalloc. This
+ * function has two extra costs relative to isalloc():
+ * - The rtree calls cannot claim to be dependent lookups, which induces
+ * rtree lookup load dependencies.
+ * - The lookup may fail, so there is an extra branch to check for
+ * failure.
+ */
+
+ emap_full_alloc_ctx_t full_alloc_ctx;
+ bool missing = emap_full_alloc_ctx_try_lookup(tsdn, &arena_emap_global,
+ ptr, &full_alloc_ctx);
+ if (missing) {
+ return 0;
+ }
+
+ if (full_alloc_ctx.edata == NULL) {
+ return 0;
+ }
+ assert(edata_state_get(full_alloc_ctx.edata) == extent_state_active);
+ /* Only slab members should be looked up via interior pointers. */
+ assert(edata_addr_get(full_alloc_ctx.edata) == ptr
+ || edata_slab_get(full_alloc_ctx.edata));
+
+ assert(full_alloc_ctx.szind != SC_NSIZES);
+
+ return sz_index2size(full_alloc_ctx.szind);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+large_dalloc_safety_checks(edata_t *edata, void *ptr, szind_t szind) {
+ if (!config_opt_safety_checks) {
+ return false;
+ }
+
+ /*
+ * Eagerly detect double free and sized dealloc bugs for large sizes.
+ * The cost is low enough (as edata will be accessed anyway) to be
+ * enabled all the time.
+ */
+ if (unlikely(edata == NULL ||
+ edata_state_get(edata) != extent_state_active)) {
+ safety_check_fail("Invalid deallocation detected: "
+ "pages being freed (%p) not currently active, "
+ "possibly caused by double free bugs.",
+ (uintptr_t)edata_addr_get(edata));
+ return true;
+ }
+ size_t input_size = sz_index2size(szind);
+ if (unlikely(input_size != edata_usize_get(edata))) {
+ safety_check_fail_sized_dealloc(/* current_dealloc */ true, ptr,
+ /* true_size */ edata_usize_get(edata), input_size);
+ return true;
+ }
+
+ return false;
+}
+
+static inline void
+arena_dalloc_large_no_tcache(tsdn_t *tsdn, void *ptr, szind_t szind) {
+ if (config_prof && unlikely(szind < SC_NBINS)) {
+ arena_dalloc_promoted(tsdn, ptr, NULL, true);
+ } else {
+ edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global,
+ ptr);
+ if (large_dalloc_safety_checks(edata, ptr, szind)) {
+ /* See the comment in isfree. */
+ return;
+ }
+ large_dalloc(tsdn, edata);
+ }
+}
+
+static inline void
+arena_dalloc_no_tcache(tsdn_t *tsdn, void *ptr) {
+ assert(ptr != NULL);
+
+ emap_alloc_ctx_t alloc_ctx;
+ emap_alloc_ctx_lookup(tsdn, &arena_emap_global, ptr, &alloc_ctx);
+
+ if (config_debug) {
+ edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global,
+ ptr);
+ assert(alloc_ctx.szind == edata_szind_get(edata));
+ assert(alloc_ctx.szind < SC_NSIZES);
+ assert(alloc_ctx.slab == edata_slab_get(edata));
+ }
+
+ if (likely(alloc_ctx.slab)) {
+ /* Small allocation. */
+ arena_dalloc_small(tsdn, ptr);
+ } else {
+ arena_dalloc_large_no_tcache(tsdn, ptr, alloc_ctx.szind);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_dalloc_large(tsdn_t *tsdn, void *ptr, tcache_t *tcache, szind_t szind,
+ bool slow_path) {
+ if (szind < nhbins) {
+ if (config_prof && unlikely(szind < SC_NBINS)) {
+ arena_dalloc_promoted(tsdn, ptr, tcache, slow_path);
+ } else {
+ tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr, szind,
+ slow_path);
+ }
+ } else {
+ edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global,
+ ptr);
+ if (large_dalloc_safety_checks(edata, ptr, szind)) {
+ /* See the comment in isfree. */
+ return;
+ }
+ large_dalloc(tsdn, edata);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_dalloc(tsdn_t *tsdn, void *ptr, tcache_t *tcache,
+ emap_alloc_ctx_t *caller_alloc_ctx, bool slow_path) {
+ assert(!tsdn_null(tsdn) || tcache == NULL);
+ assert(ptr != NULL);
+
+ if (unlikely(tcache == NULL)) {
+ arena_dalloc_no_tcache(tsdn, ptr);
+ return;
+ }
+
+ emap_alloc_ctx_t alloc_ctx;
+ if (caller_alloc_ctx != NULL) {
+ alloc_ctx = *caller_alloc_ctx;
+ } else {
+ util_assume(!tsdn_null(tsdn));
+ emap_alloc_ctx_lookup(tsdn, &arena_emap_global, ptr,
+ &alloc_ctx);
+ }
+
+ if (config_debug) {
+ edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global,
+ ptr);
+ assert(alloc_ctx.szind == edata_szind_get(edata));
+ assert(alloc_ctx.szind < SC_NSIZES);
+ assert(alloc_ctx.slab == edata_slab_get(edata));
+ }
+
+ if (likely(alloc_ctx.slab)) {
+ /* Small allocation. */
+ tcache_dalloc_small(tsdn_tsd(tsdn), tcache, ptr,
+ alloc_ctx.szind, slow_path);
+ } else {
+ arena_dalloc_large(tsdn, ptr, tcache, alloc_ctx.szind,
+ slow_path);
+ }
+}
+
+static inline void
+arena_sdalloc_no_tcache(tsdn_t *tsdn, void *ptr, size_t size) {
+ assert(ptr != NULL);
+ assert(size <= SC_LARGE_MAXCLASS);
+
+ emap_alloc_ctx_t alloc_ctx;
+ if (!config_prof || !opt_prof) {
+ /*
+ * There is no risk of being confused by a promoted sampled
+ * object, so base szind and slab on the given size.
+ */
+ alloc_ctx.szind = sz_size2index(size);
+ alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
+ }
+
+ if ((config_prof && opt_prof) || config_debug) {
+ emap_alloc_ctx_lookup(tsdn, &arena_emap_global, ptr,
+ &alloc_ctx);
+
+ assert(alloc_ctx.szind == sz_size2index(size));
+ assert((config_prof && opt_prof)
+ || alloc_ctx.slab == (alloc_ctx.szind < SC_NBINS));
+
+ if (config_debug) {
+ edata_t *edata = emap_edata_lookup(tsdn,
+ &arena_emap_global, ptr);
+ assert(alloc_ctx.szind == edata_szind_get(edata));
+ assert(alloc_ctx.slab == edata_slab_get(edata));
+ }
+ }
+
+ if (likely(alloc_ctx.slab)) {
+ /* Small allocation. */
+ arena_dalloc_small(tsdn, ptr);
+ } else {
+ arena_dalloc_large_no_tcache(tsdn, ptr, alloc_ctx.szind);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_sdalloc(tsdn_t *tsdn, void *ptr, size_t size, tcache_t *tcache,
+ emap_alloc_ctx_t *caller_alloc_ctx, bool slow_path) {
+ assert(!tsdn_null(tsdn) || tcache == NULL);
+ assert(ptr != NULL);
+ assert(size <= SC_LARGE_MAXCLASS);
+
+ if (unlikely(tcache == NULL)) {
+ arena_sdalloc_no_tcache(tsdn, ptr, size);
+ return;
+ }
+
+ emap_alloc_ctx_t alloc_ctx;
+ if (config_prof && opt_prof) {
+ if (caller_alloc_ctx == NULL) {
+ /* Uncommon case and should be a static check. */
+ emap_alloc_ctx_lookup(tsdn, &arena_emap_global, ptr,
+ &alloc_ctx);
+ assert(alloc_ctx.szind == sz_size2index(size));
+ } else {
+ alloc_ctx = *caller_alloc_ctx;
+ }
+ } else {
+ /*
+ * There is no risk of being confused by a promoted sampled
+ * object, so base szind and slab on the given size.
+ */
+ alloc_ctx.szind = sz_size2index(size);
+ alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
+ }
+
+ if (config_debug) {
+ edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global,
+ ptr);
+ assert(alloc_ctx.szind == edata_szind_get(edata));
+ assert(alloc_ctx.slab == edata_slab_get(edata));
+ }
+
+ if (likely(alloc_ctx.slab)) {
+ /* Small allocation. */
+ tcache_dalloc_small(tsdn_tsd(tsdn), tcache, ptr,
+ alloc_ctx.szind, slow_path);
+ } else {
+ arena_dalloc_large(tsdn, ptr, tcache, alloc_ctx.szind,
+ slow_path);
+ }
+}
+
+static inline void
+arena_cache_oblivious_randomize(tsdn_t *tsdn, arena_t *arena, edata_t *edata,
+ size_t alignment) {
+ assert(edata_base_get(edata) == edata_addr_get(edata));
+
+ if (alignment < PAGE) {
+ unsigned lg_range = LG_PAGE -
+ lg_floor(CACHELINE_CEILING(alignment));
+ size_t r;
+ if (!tsdn_null(tsdn)) {
+ tsd_t *tsd = tsdn_tsd(tsdn);
+ r = (size_t)prng_lg_range_u64(
+ tsd_prng_statep_get(tsd), lg_range);
+ } else {
+ uint64_t stack_value = (uint64_t)(uintptr_t)&r;
+ r = (size_t)prng_lg_range_u64(&stack_value, lg_range);
+ }
+ uintptr_t random_offset = ((uintptr_t)r) << (LG_PAGE -
+ lg_range);
+ edata->e_addr = (void *)((uintptr_t)edata->e_addr +
+ random_offset);
+ assert(ALIGNMENT_ADDR2BASE(edata->e_addr, alignment) ==
+ edata->e_addr);
+ }
+}
+
+/*
+ * The dalloc bin info contains just the information that the common paths need
+ * during tcache flushes. By force-inlining these paths, and using local copies
+ * of data (so that the compiler knows it's constant), we avoid a whole bunch of
+ * redundant loads and stores by leaving this information in registers.
+ */
+typedef struct arena_dalloc_bin_locked_info_s arena_dalloc_bin_locked_info_t;
+struct arena_dalloc_bin_locked_info_s {
+ div_info_t div_info;
+ uint32_t nregs;
+ uint64_t ndalloc;
+};
+
+JEMALLOC_ALWAYS_INLINE size_t
+arena_slab_regind(arena_dalloc_bin_locked_info_t *info, szind_t binind,
+ edata_t *slab, const void *ptr) {
+ size_t diff, regind;
+
+ /* Freeing a pointer outside the slab can cause assertion failure. */
+ assert((uintptr_t)ptr >= (uintptr_t)edata_addr_get(slab));
+ assert((uintptr_t)ptr < (uintptr_t)edata_past_get(slab));
+ /* Freeing an interior pointer can cause assertion failure. */
+ assert(((uintptr_t)ptr - (uintptr_t)edata_addr_get(slab)) %
+ (uintptr_t)bin_infos[binind].reg_size == 0);
+
+ diff = (size_t)((uintptr_t)ptr - (uintptr_t)edata_addr_get(slab));
+
+ /* Avoid doing division with a variable divisor. */
+ regind = div_compute(&info->div_info, diff);
+
+ assert(regind < bin_infos[binind].nregs);
+
+ return regind;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_dalloc_bin_locked_begin(arena_dalloc_bin_locked_info_t *info,
+ szind_t binind) {
+ info->div_info = arena_binind_div_info[binind];
+ info->nregs = bin_infos[binind].nregs;
+ info->ndalloc = 0;
+}
+
+/*
+ * Does the deallocation work associated with freeing a single pointer (a
+ * "step") in between a arena_dalloc_bin_locked begin and end call.
+ *
+ * Returns true if arena_slab_dalloc must be called on slab. Doesn't do
+ * stats updates, which happen during finish (this lets running counts get left
+ * in a register).
+ */
+JEMALLOC_ALWAYS_INLINE bool
+arena_dalloc_bin_locked_step(tsdn_t *tsdn, arena_t *arena, bin_t *bin,
+ arena_dalloc_bin_locked_info_t *info, szind_t binind, edata_t *slab,
+ void *ptr) {
+ const bin_info_t *bin_info = &bin_infos[binind];
+ size_t regind = arena_slab_regind(info, binind, slab, ptr);
+ slab_data_t *slab_data = edata_slab_data_get(slab);
+
+ assert(edata_nfree_get(slab) < bin_info->nregs);
+ /* Freeing an unallocated pointer can cause assertion failure. */
+ assert(bitmap_get(slab_data->bitmap, &bin_info->bitmap_info, regind));
+
+ bitmap_unset(slab_data->bitmap, &bin_info->bitmap_info, regind);
+ edata_nfree_inc(slab);
+
+ if (config_stats) {
+ info->ndalloc++;
+ }
+
+ unsigned nfree = edata_nfree_get(slab);
+ if (nfree == bin_info->nregs) {
+ arena_dalloc_bin_locked_handle_newly_empty(tsdn, arena, slab,
+ bin);
+ return true;
+ } else if (nfree == 1 && slab != bin->slabcur) {
+ arena_dalloc_bin_locked_handle_newly_nonempty(tsdn, arena, slab,
+ bin);
+ }
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+arena_dalloc_bin_locked_finish(tsdn_t *tsdn, arena_t *arena, bin_t *bin,
+ arena_dalloc_bin_locked_info_t *info) {
+ if (config_stats) {
+ bin->stats.ndalloc += info->ndalloc;
+ assert(bin->stats.curregs >= (size_t)info->ndalloc);
+ bin->stats.curregs -= (size_t)info->ndalloc;
+ }
+}
+
+static inline bin_t *
+arena_get_bin(arena_t *arena, szind_t binind, unsigned binshard) {
+ bin_t *shard0 = (bin_t *)((uintptr_t)arena + arena_bin_offsets[binind]);
+ return shard0 + binshard;
+}
+
+#endif /* JEMALLOC_INTERNAL_ARENA_INLINES_B_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/arena_stats.h b/deps/jemalloc/include/jemalloc/internal/arena_stats.h
new file mode 100644
index 0000000..15f1d34
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/arena_stats.h
@@ -0,0 +1,114 @@
+#ifndef JEMALLOC_INTERNAL_ARENA_STATS_H
+#define JEMALLOC_INTERNAL_ARENA_STATS_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/lockedint.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/mutex_prof.h"
+#include "jemalloc/internal/pa.h"
+#include "jemalloc/internal/sc.h"
+
+JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS
+
+typedef struct arena_stats_large_s arena_stats_large_t;
+struct arena_stats_large_s {
+ /*
+ * Total number of allocation/deallocation requests served directly by
+ * the arena.
+ */
+ locked_u64_t nmalloc;
+ locked_u64_t ndalloc;
+
+ /*
+ * Number of allocation requests that correspond to this size class.
+ * This includes requests served by tcache, though tcache only
+ * periodically merges into this counter.
+ */
+ locked_u64_t nrequests; /* Partially derived. */
+ /*
+ * Number of tcache fills / flushes for large (similarly, periodically
+ * merged). Note that there is no large tcache batch-fill currently
+ * (i.e. only fill 1 at a time); however flush may be batched.
+ */
+ locked_u64_t nfills; /* Partially derived. */
+ locked_u64_t nflushes; /* Partially derived. */
+
+ /* Current number of allocations of this size class. */
+ size_t curlextents; /* Derived. */
+};
+
+/*
+ * Arena stats. Note that fields marked "derived" are not directly maintained
+ * within the arena code; rather their values are derived during stats merge
+ * requests.
+ */
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ LOCKEDINT_MTX_DECLARE(mtx)
+
+ /*
+ * resident includes the base stats -- that's why it lives here and not
+ * in pa_shard_stats_t.
+ */
+ size_t base; /* Derived. */
+ size_t resident; /* Derived. */
+ size_t metadata_thp; /* Derived. */
+ size_t mapped; /* Derived. */
+
+ atomic_zu_t internal;
+
+ size_t allocated_large; /* Derived. */
+ uint64_t nmalloc_large; /* Derived. */
+ uint64_t ndalloc_large; /* Derived. */
+ uint64_t nfills_large; /* Derived. */
+ uint64_t nflushes_large; /* Derived. */
+ uint64_t nrequests_large; /* Derived. */
+
+ /*
+ * The stats logically owned by the pa_shard in the same arena. This
+ * lives here only because it's convenient for the purposes of the ctl
+ * module -- it only knows about the single arena_stats.
+ */
+ pa_shard_stats_t pa_shard_stats;
+
+ /* Number of bytes cached in tcache associated with this arena. */
+ size_t tcache_bytes; /* Derived. */
+ size_t tcache_stashed_bytes; /* Derived. */
+
+ mutex_prof_data_t mutex_prof_data[mutex_prof_num_arena_mutexes];
+
+ /* One element for each large size class. */
+ arena_stats_large_t lstats[SC_NSIZES - SC_NBINS];
+
+ /* Arena uptime. */
+ nstime_t uptime;
+};
+
+static inline bool
+arena_stats_init(tsdn_t *tsdn, arena_stats_t *arena_stats) {
+ if (config_debug) {
+ for (size_t i = 0; i < sizeof(arena_stats_t); i++) {
+ assert(((char *)arena_stats)[i] == 0);
+ }
+ }
+ if (LOCKEDINT_MTX_INIT(arena_stats->mtx, "arena_stats",
+ WITNESS_RANK_ARENA_STATS, malloc_mutex_rank_exclusive)) {
+ return true;
+ }
+ /* Memory is zeroed, so there is no need to clear stats. */
+ return false;
+}
+
+static inline void
+arena_stats_large_flush_nrequests_add(tsdn_t *tsdn, arena_stats_t *arena_stats,
+ szind_t szind, uint64_t nrequests) {
+ LOCKEDINT_MTX_LOCK(tsdn, arena_stats->mtx);
+ arena_stats_large_t *lstats = &arena_stats->lstats[szind - SC_NBINS];
+ locked_inc_u64(tsdn, LOCKEDINT_MTX(arena_stats->mtx),
+ &lstats->nrequests, nrequests);
+ locked_inc_u64(tsdn, LOCKEDINT_MTX(arena_stats->mtx),
+ &lstats->nflushes, 1);
+ LOCKEDINT_MTX_UNLOCK(tsdn, arena_stats->mtx);
+}
+
+#endif /* JEMALLOC_INTERNAL_ARENA_STATS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/arena_structs.h b/deps/jemalloc/include/jemalloc/internal/arena_structs.h
new file mode 100644
index 0000000..e2a5a40
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/arena_structs.h
@@ -0,0 +1,101 @@
+#ifndef JEMALLOC_INTERNAL_ARENA_STRUCTS_H
+#define JEMALLOC_INTERNAL_ARENA_STRUCTS_H
+
+#include "jemalloc/internal/arena_stats.h"
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/bin.h"
+#include "jemalloc/internal/bitmap.h"
+#include "jemalloc/internal/counter.h"
+#include "jemalloc/internal/ecache.h"
+#include "jemalloc/internal/edata_cache.h"
+#include "jemalloc/internal/extent_dss.h"
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/nstime.h"
+#include "jemalloc/internal/pa.h"
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/ticker.h"
+
+struct arena_s {
+ /*
+ * Number of threads currently assigned to this arena. Each thread has
+ * two distinct assignments, one for application-serving allocation, and
+ * the other for internal metadata allocation. Internal metadata must
+ * not be allocated from arenas explicitly created via the arenas.create
+ * mallctl, because the arena.<i>.reset mallctl indiscriminately
+ * discards all allocations for the affected arena.
+ *
+ * 0: Application allocation.
+ * 1: Internal metadata allocation.
+ *
+ * Synchronization: atomic.
+ */
+ atomic_u_t nthreads[2];
+
+ /* Next bin shard for binding new threads. Synchronization: atomic. */
+ atomic_u_t binshard_next;
+
+ /*
+ * When percpu_arena is enabled, to amortize the cost of reading /
+ * updating the current CPU id, track the most recent thread accessing
+ * this arena, and only read CPU if there is a mismatch.
+ */
+ tsdn_t *last_thd;
+
+ /* Synchronization: internal. */
+ arena_stats_t stats;
+
+ /*
+ * Lists of tcaches and cache_bin_array_descriptors for extant threads
+ * associated with this arena. Stats from these are merged
+ * incrementally, and at exit if opt_stats_print is enabled.
+ *
+ * Synchronization: tcache_ql_mtx.
+ */
+ ql_head(tcache_slow_t) tcache_ql;
+ ql_head(cache_bin_array_descriptor_t) cache_bin_array_descriptor_ql;
+ malloc_mutex_t tcache_ql_mtx;
+
+ /*
+ * Represents a dss_prec_t, but atomically.
+ *
+ * Synchronization: atomic.
+ */
+ atomic_u_t dss_prec;
+
+ /*
+ * Extant large allocations.
+ *
+ * Synchronization: large_mtx.
+ */
+ edata_list_active_t large;
+ /* Synchronizes all large allocation/update/deallocation. */
+ malloc_mutex_t large_mtx;
+
+ /* The page-level allocator shard this arena uses. */
+ pa_shard_t pa_shard;
+
+ /*
+ * A cached copy of base->ind. This can get accessed on hot paths;
+ * looking it up in base requires an extra pointer hop / cache miss.
+ */
+ unsigned ind;
+
+ /*
+ * Base allocator, from which arena metadata are allocated.
+ *
+ * Synchronization: internal.
+ */
+ base_t *base;
+ /* Used to determine uptime. Read-only after initialization. */
+ nstime_t create_time;
+
+ /*
+ * The arena is allocated alongside its bins; really this is a
+ * dynamically sized array determined by the binshard settings.
+ */
+ bin_t bins[0];
+};
+
+#endif /* JEMALLOC_INTERNAL_ARENA_STRUCTS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/arena_types.h b/deps/jemalloc/include/jemalloc/internal/arena_types.h
new file mode 100644
index 0000000..d0e1291
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/arena_types.h
@@ -0,0 +1,58 @@
+#ifndef JEMALLOC_INTERNAL_ARENA_TYPES_H
+#define JEMALLOC_INTERNAL_ARENA_TYPES_H
+
+#include "jemalloc/internal/sc.h"
+
+/* Default decay times in milliseconds. */
+#define DIRTY_DECAY_MS_DEFAULT ZD(10 * 1000)
+#define MUZZY_DECAY_MS_DEFAULT (0)
+/* Number of event ticks between time checks. */
+#define ARENA_DECAY_NTICKS_PER_UPDATE 1000
+
+typedef struct arena_decay_s arena_decay_t;
+typedef struct arena_s arena_t;
+
+typedef enum {
+ percpu_arena_mode_names_base = 0, /* Used for options processing. */
+
+ /*
+ * *_uninit are used only during bootstrapping, and must correspond
+ * to initialized variant plus percpu_arena_mode_enabled_base.
+ */
+ percpu_arena_uninit = 0,
+ per_phycpu_arena_uninit = 1,
+
+ /* All non-disabled modes must come after percpu_arena_disabled. */
+ percpu_arena_disabled = 2,
+
+ percpu_arena_mode_names_limit = 3, /* Used for options processing. */
+ percpu_arena_mode_enabled_base = 3,
+
+ percpu_arena = 3,
+ per_phycpu_arena = 4 /* Hyper threads share arena. */
+} percpu_arena_mode_t;
+
+#define PERCPU_ARENA_ENABLED(m) ((m) >= percpu_arena_mode_enabled_base)
+#define PERCPU_ARENA_DEFAULT percpu_arena_disabled
+
+/*
+ * When allocation_size >= oversize_threshold, use the dedicated huge arena
+ * (unless have explicitly spicified arena index). 0 disables the feature.
+ */
+#define OVERSIZE_THRESHOLD_DEFAULT (8 << 20)
+
+struct arena_config_s {
+ /* extent hooks to be used for the arena */
+ extent_hooks_t *extent_hooks;
+
+ /*
+ * Use extent hooks for metadata (base) allocations when true.
+ */
+ bool metadata_use_hooks;
+};
+
+typedef struct arena_config_s arena_config_t;
+
+extern const arena_config_t arena_config_default;
+
+#endif /* JEMALLOC_INTERNAL_ARENA_TYPES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/assert.h b/deps/jemalloc/include/jemalloc/internal/assert.h
new file mode 100644
index 0000000..be4d45b
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/assert.h
@@ -0,0 +1,56 @@
+#include "jemalloc/internal/malloc_io.h"
+#include "jemalloc/internal/util.h"
+
+/*
+ * Define a custom assert() in order to reduce the chances of deadlock during
+ * assertion failure.
+ */
+#ifndef assert
+#define assert(e) do { \
+ if (unlikely(config_debug && !(e))) { \
+ malloc_printf( \
+ "<jemalloc>: %s:%d: Failed assertion: \"%s\"\n", \
+ __FILE__, __LINE__, #e); \
+ abort(); \
+ } \
+} while (0)
+#endif
+
+#ifndef not_reached
+#define not_reached() do { \
+ if (config_debug) { \
+ malloc_printf( \
+ "<jemalloc>: %s:%d: Unreachable code reached\n", \
+ __FILE__, __LINE__); \
+ abort(); \
+ } \
+ unreachable(); \
+} while (0)
+#endif
+
+#ifndef not_implemented
+#define not_implemented() do { \
+ if (config_debug) { \
+ malloc_printf("<jemalloc>: %s:%d: Not implemented\n", \
+ __FILE__, __LINE__); \
+ abort(); \
+ } \
+} while (0)
+#endif
+
+#ifndef assert_not_implemented
+#define assert_not_implemented(e) do { \
+ if (unlikely(config_debug && !(e))) { \
+ not_implemented(); \
+ } \
+} while (0)
+#endif
+
+/* Use to assert a particular configuration, e.g., cassert(config_debug). */
+#ifndef cassert
+#define cassert(c) do { \
+ if (unlikely(!(c))) { \
+ not_reached(); \
+ } \
+} while (0)
+#endif
diff --git a/deps/jemalloc/include/jemalloc/internal/atomic.h b/deps/jemalloc/include/jemalloc/internal/atomic.h
new file mode 100644
index 0000000..c0f7312
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/atomic.h
@@ -0,0 +1,107 @@
+#ifndef JEMALLOC_INTERNAL_ATOMIC_H
+#define JEMALLOC_INTERNAL_ATOMIC_H
+
+#define ATOMIC_INLINE JEMALLOC_ALWAYS_INLINE
+
+#define JEMALLOC_U8_ATOMICS
+#if defined(JEMALLOC_GCC_ATOMIC_ATOMICS)
+# include "jemalloc/internal/atomic_gcc_atomic.h"
+# if !defined(JEMALLOC_GCC_U8_ATOMIC_ATOMICS)
+# undef JEMALLOC_U8_ATOMICS
+# endif
+#elif defined(JEMALLOC_GCC_SYNC_ATOMICS)
+# include "jemalloc/internal/atomic_gcc_sync.h"
+# if !defined(JEMALLOC_GCC_U8_SYNC_ATOMICS)
+# undef JEMALLOC_U8_ATOMICS
+# endif
+#elif defined(_MSC_VER)
+# include "jemalloc/internal/atomic_msvc.h"
+#elif defined(JEMALLOC_C11_ATOMICS)
+# include "jemalloc/internal/atomic_c11.h"
+#else
+# error "Don't have atomics implemented on this platform."
+#endif
+
+/*
+ * This header gives more or less a backport of C11 atomics. The user can write
+ * JEMALLOC_GENERATE_ATOMICS(type, short_type, lg_sizeof_type); to generate
+ * counterparts of the C11 atomic functions for type, as so:
+ * JEMALLOC_GENERATE_ATOMICS(int *, pi, 3);
+ * and then write things like:
+ * int *some_ptr;
+ * atomic_pi_t atomic_ptr_to_int;
+ * atomic_store_pi(&atomic_ptr_to_int, some_ptr, ATOMIC_RELAXED);
+ * int *prev_value = atomic_exchange_pi(&ptr_to_int, NULL, ATOMIC_ACQ_REL);
+ * assert(some_ptr == prev_value);
+ * and expect things to work in the obvious way.
+ *
+ * Also included (with naming differences to avoid conflicts with the standard
+ * library):
+ * atomic_fence(atomic_memory_order_t) (mimics C11's atomic_thread_fence).
+ * ATOMIC_INIT (mimics C11's ATOMIC_VAR_INIT).
+ */
+
+/*
+ * Pure convenience, so that we don't have to type "atomic_memory_order_"
+ * quite so often.
+ */
+#define ATOMIC_RELAXED atomic_memory_order_relaxed
+#define ATOMIC_ACQUIRE atomic_memory_order_acquire
+#define ATOMIC_RELEASE atomic_memory_order_release
+#define ATOMIC_ACQ_REL atomic_memory_order_acq_rel
+#define ATOMIC_SEQ_CST atomic_memory_order_seq_cst
+
+/*
+ * Another convenience -- simple atomic helper functions.
+ */
+#define JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(type, short_type, \
+ lg_size) \
+ JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, lg_size) \
+ ATOMIC_INLINE void \
+ atomic_load_add_store_##short_type(atomic_##short_type##_t *a, \
+ type inc) { \
+ type oldval = atomic_load_##short_type(a, ATOMIC_RELAXED); \
+ type newval = oldval + inc; \
+ atomic_store_##short_type(a, newval, ATOMIC_RELAXED); \
+ } \
+ ATOMIC_INLINE void \
+ atomic_load_sub_store_##short_type(atomic_##short_type##_t *a, \
+ type inc) { \
+ type oldval = atomic_load_##short_type(a, ATOMIC_RELAXED); \
+ type newval = oldval - inc; \
+ atomic_store_##short_type(a, newval, ATOMIC_RELAXED); \
+ }
+
+/*
+ * Not all platforms have 64-bit atomics. If we do, this #define exposes that
+ * fact.
+ */
+#if (LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
+# define JEMALLOC_ATOMIC_U64
+#endif
+
+JEMALLOC_GENERATE_ATOMICS(void *, p, LG_SIZEOF_PTR)
+
+/*
+ * There's no actual guarantee that sizeof(bool) == 1, but it's true on the only
+ * platform that actually needs to know the size, MSVC.
+ */
+JEMALLOC_GENERATE_ATOMICS(bool, b, 0)
+
+JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(unsigned, u, LG_SIZEOF_INT)
+
+JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(size_t, zu, LG_SIZEOF_PTR)
+
+JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(ssize_t, zd, LG_SIZEOF_PTR)
+
+JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(uint8_t, u8, 0)
+
+JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(uint32_t, u32, 2)
+
+#ifdef JEMALLOC_ATOMIC_U64
+JEMALLOC_GENERATE_EXPANDED_INT_ATOMICS(uint64_t, u64, 3)
+#endif
+
+#undef ATOMIC_INLINE
+
+#endif /* JEMALLOC_INTERNAL_ATOMIC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/atomic_c11.h b/deps/jemalloc/include/jemalloc/internal/atomic_c11.h
new file mode 100644
index 0000000..a5f9313
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/atomic_c11.h
@@ -0,0 +1,97 @@
+#ifndef JEMALLOC_INTERNAL_ATOMIC_C11_H
+#define JEMALLOC_INTERNAL_ATOMIC_C11_H
+
+#include <stdatomic.h>
+
+#define ATOMIC_INIT(...) ATOMIC_VAR_INIT(__VA_ARGS__)
+
+#define atomic_memory_order_t memory_order
+#define atomic_memory_order_relaxed memory_order_relaxed
+#define atomic_memory_order_acquire memory_order_acquire
+#define atomic_memory_order_release memory_order_release
+#define atomic_memory_order_acq_rel memory_order_acq_rel
+#define atomic_memory_order_seq_cst memory_order_seq_cst
+
+#define atomic_fence atomic_thread_fence
+
+#define JEMALLOC_GENERATE_ATOMICS(type, short_type, \
+ /* unused */ lg_size) \
+typedef _Atomic(type) atomic_##short_type##_t; \
+ \
+ATOMIC_INLINE type \
+atomic_load_##short_type(const atomic_##short_type##_t *a, \
+ atomic_memory_order_t mo) { \
+ /* \
+ * A strict interpretation of the C standard prevents \
+ * atomic_load from taking a const argument, but it's \
+ * convenient for our purposes. This cast is a workaround. \
+ */ \
+ atomic_##short_type##_t* a_nonconst = \
+ (atomic_##short_type##_t*)a; \
+ return atomic_load_explicit(a_nonconst, mo); \
+} \
+ \
+ATOMIC_INLINE void \
+atomic_store_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ atomic_store_explicit(a, val, mo); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return atomic_exchange_explicit(a, val, mo); \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
+ type *expected, type desired, atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ return atomic_compare_exchange_weak_explicit(a, expected, \
+ desired, success_mo, failure_mo); \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
+ type *expected, type desired, atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ return atomic_compare_exchange_strong_explicit(a, expected, \
+ desired, success_mo, failure_mo); \
+}
+
+/*
+ * Integral types have some special operations available that non-integral ones
+ * lack.
+ */
+#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, \
+ /* unused */ lg_size) \
+JEMALLOC_GENERATE_ATOMICS(type, short_type, /* unused */ lg_size) \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_add_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return atomic_fetch_add_explicit(a, val, mo); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return atomic_fetch_sub_explicit(a, val, mo); \
+} \
+ATOMIC_INLINE type \
+atomic_fetch_and_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return atomic_fetch_and_explicit(a, val, mo); \
+} \
+ATOMIC_INLINE type \
+atomic_fetch_or_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return atomic_fetch_or_explicit(a, val, mo); \
+} \
+ATOMIC_INLINE type \
+atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return atomic_fetch_xor_explicit(a, val, mo); \
+}
+
+#endif /* JEMALLOC_INTERNAL_ATOMIC_C11_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/atomic_gcc_atomic.h b/deps/jemalloc/include/jemalloc/internal/atomic_gcc_atomic.h
new file mode 100644
index 0000000..471515e
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/atomic_gcc_atomic.h
@@ -0,0 +1,129 @@
+#ifndef JEMALLOC_INTERNAL_ATOMIC_GCC_ATOMIC_H
+#define JEMALLOC_INTERNAL_ATOMIC_GCC_ATOMIC_H
+
+#include "jemalloc/internal/assert.h"
+
+#define ATOMIC_INIT(...) {__VA_ARGS__}
+
+typedef enum {
+ atomic_memory_order_relaxed,
+ atomic_memory_order_acquire,
+ atomic_memory_order_release,
+ atomic_memory_order_acq_rel,
+ atomic_memory_order_seq_cst
+} atomic_memory_order_t;
+
+ATOMIC_INLINE int
+atomic_enum_to_builtin(atomic_memory_order_t mo) {
+ switch (mo) {
+ case atomic_memory_order_relaxed:
+ return __ATOMIC_RELAXED;
+ case atomic_memory_order_acquire:
+ return __ATOMIC_ACQUIRE;
+ case atomic_memory_order_release:
+ return __ATOMIC_RELEASE;
+ case atomic_memory_order_acq_rel:
+ return __ATOMIC_ACQ_REL;
+ case atomic_memory_order_seq_cst:
+ return __ATOMIC_SEQ_CST;
+ }
+ /* Can't happen; the switch is exhaustive. */
+ not_reached();
+}
+
+ATOMIC_INLINE void
+atomic_fence(atomic_memory_order_t mo) {
+ __atomic_thread_fence(atomic_enum_to_builtin(mo));
+}
+
+#define JEMALLOC_GENERATE_ATOMICS(type, short_type, \
+ /* unused */ lg_size) \
+typedef struct { \
+ type repr; \
+} atomic_##short_type##_t; \
+ \
+ATOMIC_INLINE type \
+atomic_load_##short_type(const atomic_##short_type##_t *a, \
+ atomic_memory_order_t mo) { \
+ type result; \
+ __atomic_load(&a->repr, &result, atomic_enum_to_builtin(mo)); \
+ return result; \
+} \
+ \
+ATOMIC_INLINE void \
+atomic_store_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ __atomic_store(&a->repr, &val, atomic_enum_to_builtin(mo)); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ type result; \
+ __atomic_exchange(&a->repr, &val, &result, \
+ atomic_enum_to_builtin(mo)); \
+ return result; \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
+ UNUSED type *expected, type desired, \
+ atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ return __atomic_compare_exchange(&a->repr, expected, &desired, \
+ true, atomic_enum_to_builtin(success_mo), \
+ atomic_enum_to_builtin(failure_mo)); \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
+ UNUSED type *expected, type desired, \
+ atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ return __atomic_compare_exchange(&a->repr, expected, &desired, \
+ false, \
+ atomic_enum_to_builtin(success_mo), \
+ atomic_enum_to_builtin(failure_mo)); \
+}
+
+
+#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, \
+ /* unused */ lg_size) \
+JEMALLOC_GENERATE_ATOMICS(type, short_type, /* unused */ lg_size) \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_add_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __atomic_fetch_add(&a->repr, val, \
+ atomic_enum_to_builtin(mo)); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __atomic_fetch_sub(&a->repr, val, \
+ atomic_enum_to_builtin(mo)); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_and_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __atomic_fetch_and(&a->repr, val, \
+ atomic_enum_to_builtin(mo)); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_or_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __atomic_fetch_or(&a->repr, val, \
+ atomic_enum_to_builtin(mo)); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __atomic_fetch_xor(&a->repr, val, \
+ atomic_enum_to_builtin(mo)); \
+}
+
+#endif /* JEMALLOC_INTERNAL_ATOMIC_GCC_ATOMIC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/atomic_gcc_sync.h b/deps/jemalloc/include/jemalloc/internal/atomic_gcc_sync.h
new file mode 100644
index 0000000..e02b7cb
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/atomic_gcc_sync.h
@@ -0,0 +1,195 @@
+#ifndef JEMALLOC_INTERNAL_ATOMIC_GCC_SYNC_H
+#define JEMALLOC_INTERNAL_ATOMIC_GCC_SYNC_H
+
+#define ATOMIC_INIT(...) {__VA_ARGS__}
+
+typedef enum {
+ atomic_memory_order_relaxed,
+ atomic_memory_order_acquire,
+ atomic_memory_order_release,
+ atomic_memory_order_acq_rel,
+ atomic_memory_order_seq_cst
+} atomic_memory_order_t;
+
+ATOMIC_INLINE void
+atomic_fence(atomic_memory_order_t mo) {
+ /* Easy cases first: no barrier, and full barrier. */
+ if (mo == atomic_memory_order_relaxed) {
+ asm volatile("" ::: "memory");
+ return;
+ }
+ if (mo == atomic_memory_order_seq_cst) {
+ asm volatile("" ::: "memory");
+ __sync_synchronize();
+ asm volatile("" ::: "memory");
+ return;
+ }
+ asm volatile("" ::: "memory");
+# if defined(__i386__) || defined(__x86_64__)
+ /* This is implicit on x86. */
+# elif defined(__ppc64__)
+ asm volatile("lwsync");
+# elif defined(__ppc__)
+ asm volatile("sync");
+# elif defined(__sparc__) && defined(__arch64__)
+ if (mo == atomic_memory_order_acquire) {
+ asm volatile("membar #LoadLoad | #LoadStore");
+ } else if (mo == atomic_memory_order_release) {
+ asm volatile("membar #LoadStore | #StoreStore");
+ } else {
+ asm volatile("membar #LoadLoad | #LoadStore | #StoreStore");
+ }
+# else
+ __sync_synchronize();
+# endif
+ asm volatile("" ::: "memory");
+}
+
+/*
+ * A correct implementation of seq_cst loads and stores on weakly ordered
+ * architectures could do either of the following:
+ * 1. store() is weak-fence -> store -> strong fence, load() is load ->
+ * strong-fence.
+ * 2. store() is strong-fence -> store, load() is strong-fence -> load ->
+ * weak-fence.
+ * The tricky thing is, load() and store() above can be the load or store
+ * portions of a gcc __sync builtin, so we have to follow GCC's lead, which
+ * means going with strategy 2.
+ * On strongly ordered architectures, the natural strategy is to stick a strong
+ * fence after seq_cst stores, and have naked loads. So we want the strong
+ * fences in different places on different architectures.
+ * atomic_pre_sc_load_fence and atomic_post_sc_store_fence allow us to
+ * accomplish this.
+ */
+
+ATOMIC_INLINE void
+atomic_pre_sc_load_fence() {
+# if defined(__i386__) || defined(__x86_64__) || \
+ (defined(__sparc__) && defined(__arch64__))
+ atomic_fence(atomic_memory_order_relaxed);
+# else
+ atomic_fence(atomic_memory_order_seq_cst);
+# endif
+}
+
+ATOMIC_INLINE void
+atomic_post_sc_store_fence() {
+# if defined(__i386__) || defined(__x86_64__) || \
+ (defined(__sparc__) && defined(__arch64__))
+ atomic_fence(atomic_memory_order_seq_cst);
+# else
+ atomic_fence(atomic_memory_order_relaxed);
+# endif
+
+}
+
+#define JEMALLOC_GENERATE_ATOMICS(type, short_type, \
+ /* unused */ lg_size) \
+typedef struct { \
+ type volatile repr; \
+} atomic_##short_type##_t; \
+ \
+ATOMIC_INLINE type \
+atomic_load_##short_type(const atomic_##short_type##_t *a, \
+ atomic_memory_order_t mo) { \
+ if (mo == atomic_memory_order_seq_cst) { \
+ atomic_pre_sc_load_fence(); \
+ } \
+ type result = a->repr; \
+ if (mo != atomic_memory_order_relaxed) { \
+ atomic_fence(atomic_memory_order_acquire); \
+ } \
+ return result; \
+} \
+ \
+ATOMIC_INLINE void \
+atomic_store_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ if (mo != atomic_memory_order_relaxed) { \
+ atomic_fence(atomic_memory_order_release); \
+ } \
+ a->repr = val; \
+ if (mo == atomic_memory_order_seq_cst) { \
+ atomic_post_sc_store_fence(); \
+ } \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ /* \
+ * Because of FreeBSD, we care about gcc 4.2, which doesn't have\
+ * an atomic exchange builtin. We fake it with a CAS loop. \
+ */ \
+ while (true) { \
+ type old = a->repr; \
+ if (__sync_bool_compare_and_swap(&a->repr, old, val)) { \
+ return old; \
+ } \
+ } \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
+ type *expected, type desired, \
+ atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ type prev = __sync_val_compare_and_swap(&a->repr, *expected, \
+ desired); \
+ if (prev == *expected) { \
+ return true; \
+ } else { \
+ *expected = prev; \
+ return false; \
+ } \
+} \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
+ type *expected, type desired, \
+ atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ type prev = __sync_val_compare_and_swap(&a->repr, *expected, \
+ desired); \
+ if (prev == *expected) { \
+ return true; \
+ } else { \
+ *expected = prev; \
+ return false; \
+ } \
+}
+
+#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, \
+ /* unused */ lg_size) \
+JEMALLOC_GENERATE_ATOMICS(type, short_type, /* unused */ lg_size) \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_add_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __sync_fetch_and_add(&a->repr, val); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __sync_fetch_and_sub(&a->repr, val); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_and_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __sync_fetch_and_and(&a->repr, val); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_or_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __sync_fetch_and_or(&a->repr, val); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return __sync_fetch_and_xor(&a->repr, val); \
+}
+
+#endif /* JEMALLOC_INTERNAL_ATOMIC_GCC_SYNC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/atomic_msvc.h b/deps/jemalloc/include/jemalloc/internal/atomic_msvc.h
new file mode 100644
index 0000000..67057ce
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/atomic_msvc.h
@@ -0,0 +1,158 @@
+#ifndef JEMALLOC_INTERNAL_ATOMIC_MSVC_H
+#define JEMALLOC_INTERNAL_ATOMIC_MSVC_H
+
+#define ATOMIC_INIT(...) {__VA_ARGS__}
+
+typedef enum {
+ atomic_memory_order_relaxed,
+ atomic_memory_order_acquire,
+ atomic_memory_order_release,
+ atomic_memory_order_acq_rel,
+ atomic_memory_order_seq_cst
+} atomic_memory_order_t;
+
+typedef char atomic_repr_0_t;
+typedef short atomic_repr_1_t;
+typedef long atomic_repr_2_t;
+typedef __int64 atomic_repr_3_t;
+
+ATOMIC_INLINE void
+atomic_fence(atomic_memory_order_t mo) {
+ _ReadWriteBarrier();
+# if defined(_M_ARM) || defined(_M_ARM64)
+ /* ARM needs a barrier for everything but relaxed. */
+ if (mo != atomic_memory_order_relaxed) {
+ MemoryBarrier();
+ }
+# elif defined(_M_IX86) || defined (_M_X64)
+ /* x86 needs a barrier only for seq_cst. */
+ if (mo == atomic_memory_order_seq_cst) {
+ MemoryBarrier();
+ }
+# else
+# error "Don't know how to create atomics for this platform for MSVC."
+# endif
+ _ReadWriteBarrier();
+}
+
+#define ATOMIC_INTERLOCKED_REPR(lg_size) atomic_repr_ ## lg_size ## _t
+
+#define ATOMIC_CONCAT(a, b) ATOMIC_RAW_CONCAT(a, b)
+#define ATOMIC_RAW_CONCAT(a, b) a ## b
+
+#define ATOMIC_INTERLOCKED_NAME(base_name, lg_size) ATOMIC_CONCAT( \
+ base_name, ATOMIC_INTERLOCKED_SUFFIX(lg_size))
+
+#define ATOMIC_INTERLOCKED_SUFFIX(lg_size) \
+ ATOMIC_CONCAT(ATOMIC_INTERLOCKED_SUFFIX_, lg_size)
+
+#define ATOMIC_INTERLOCKED_SUFFIX_0 8
+#define ATOMIC_INTERLOCKED_SUFFIX_1 16
+#define ATOMIC_INTERLOCKED_SUFFIX_2
+#define ATOMIC_INTERLOCKED_SUFFIX_3 64
+
+#define JEMALLOC_GENERATE_ATOMICS(type, short_type, lg_size) \
+typedef struct { \
+ ATOMIC_INTERLOCKED_REPR(lg_size) repr; \
+} atomic_##short_type##_t; \
+ \
+ATOMIC_INLINE type \
+atomic_load_##short_type(const atomic_##short_type##_t *a, \
+ atomic_memory_order_t mo) { \
+ ATOMIC_INTERLOCKED_REPR(lg_size) ret = a->repr; \
+ if (mo != atomic_memory_order_relaxed) { \
+ atomic_fence(atomic_memory_order_acquire); \
+ } \
+ return (type) ret; \
+} \
+ \
+ATOMIC_INLINE void \
+atomic_store_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ if (mo != atomic_memory_order_relaxed) { \
+ atomic_fence(atomic_memory_order_release); \
+ } \
+ a->repr = (ATOMIC_INTERLOCKED_REPR(lg_size)) val; \
+ if (mo == atomic_memory_order_seq_cst) { \
+ atomic_fence(atomic_memory_order_seq_cst); \
+ } \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
+ atomic_memory_order_t mo) { \
+ return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedExchange, \
+ lg_size)(&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
+ type *expected, type desired, atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ ATOMIC_INTERLOCKED_REPR(lg_size) e = \
+ (ATOMIC_INTERLOCKED_REPR(lg_size))*expected; \
+ ATOMIC_INTERLOCKED_REPR(lg_size) d = \
+ (ATOMIC_INTERLOCKED_REPR(lg_size))desired; \
+ ATOMIC_INTERLOCKED_REPR(lg_size) old = \
+ ATOMIC_INTERLOCKED_NAME(_InterlockedCompareExchange, \
+ lg_size)(&a->repr, d, e); \
+ if (old == e) { \
+ return true; \
+ } else { \
+ *expected = (type)old; \
+ return false; \
+ } \
+} \
+ \
+ATOMIC_INLINE bool \
+atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
+ type *expected, type desired, atomic_memory_order_t success_mo, \
+ atomic_memory_order_t failure_mo) { \
+ /* We implement the weak version with strong semantics. */ \
+ return atomic_compare_exchange_weak_##short_type(a, expected, \
+ desired, success_mo, failure_mo); \
+}
+
+
+#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, lg_size) \
+JEMALLOC_GENERATE_ATOMICS(type, short_type, lg_size) \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_add_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedExchangeAdd, \
+ lg_size)(&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
+} \
+ \
+ATOMIC_INLINE type \
+atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ /* \
+ * MSVC warns on negation of unsigned operands, but for us it \
+ * gives exactly the right semantics (MAX_TYPE + 1 - operand). \
+ */ \
+ __pragma(warning(push)) \
+ __pragma(warning(disable: 4146)) \
+ return atomic_fetch_add_##short_type(a, -val, mo); \
+ __pragma(warning(pop)) \
+} \
+ATOMIC_INLINE type \
+atomic_fetch_and_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedAnd, lg_size)( \
+ &a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
+} \
+ATOMIC_INLINE type \
+atomic_fetch_or_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedOr, lg_size)( \
+ &a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
+} \
+ATOMIC_INLINE type \
+atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, \
+ type val, atomic_memory_order_t mo) { \
+ return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedXor, lg_size)( \
+ &a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
+}
+
+#endif /* JEMALLOC_INTERNAL_ATOMIC_MSVC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/background_thread_externs.h b/deps/jemalloc/include/jemalloc/internal/background_thread_externs.h
new file mode 100644
index 0000000..6ae3c8d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/background_thread_externs.h
@@ -0,0 +1,33 @@
+#ifndef JEMALLOC_INTERNAL_BACKGROUND_THREAD_EXTERNS_H
+#define JEMALLOC_INTERNAL_BACKGROUND_THREAD_EXTERNS_H
+
+extern bool opt_background_thread;
+extern size_t opt_max_background_threads;
+extern malloc_mutex_t background_thread_lock;
+extern atomic_b_t background_thread_enabled_state;
+extern size_t n_background_threads;
+extern size_t max_background_threads;
+extern background_thread_info_t *background_thread_info;
+
+bool background_thread_create(tsd_t *tsd, unsigned arena_ind);
+bool background_threads_enable(tsd_t *tsd);
+bool background_threads_disable(tsd_t *tsd);
+bool background_thread_is_started(background_thread_info_t* info);
+void background_thread_wakeup_early(background_thread_info_t *info,
+ nstime_t *remaining_sleep);
+void background_thread_prefork0(tsdn_t *tsdn);
+void background_thread_prefork1(tsdn_t *tsdn);
+void background_thread_postfork_parent(tsdn_t *tsdn);
+void background_thread_postfork_child(tsdn_t *tsdn);
+bool background_thread_stats_read(tsdn_t *tsdn,
+ background_thread_stats_t *stats);
+void background_thread_ctl_init(tsdn_t *tsdn);
+
+#ifdef JEMALLOC_PTHREAD_CREATE_WRAPPER
+extern int pthread_create_wrapper(pthread_t *__restrict, const pthread_attr_t *,
+ void *(*)(void *), void *__restrict);
+#endif
+bool background_thread_boot0(void);
+bool background_thread_boot1(tsdn_t *tsdn, base_t *base);
+
+#endif /* JEMALLOC_INTERNAL_BACKGROUND_THREAD_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/background_thread_inlines.h b/deps/jemalloc/include/jemalloc/internal/background_thread_inlines.h
new file mode 100644
index 0000000..92c5feb
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/background_thread_inlines.h
@@ -0,0 +1,48 @@
+#ifndef JEMALLOC_INTERNAL_BACKGROUND_THREAD_INLINES_H
+#define JEMALLOC_INTERNAL_BACKGROUND_THREAD_INLINES_H
+
+JEMALLOC_ALWAYS_INLINE bool
+background_thread_enabled(void) {
+ return atomic_load_b(&background_thread_enabled_state, ATOMIC_RELAXED);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+background_thread_enabled_set(tsdn_t *tsdn, bool state) {
+ malloc_mutex_assert_owner(tsdn, &background_thread_lock);
+ atomic_store_b(&background_thread_enabled_state, state, ATOMIC_RELAXED);
+}
+
+JEMALLOC_ALWAYS_INLINE background_thread_info_t *
+arena_background_thread_info_get(arena_t *arena) {
+ unsigned arena_ind = arena_ind_get(arena);
+ return &background_thread_info[arena_ind % max_background_threads];
+}
+
+JEMALLOC_ALWAYS_INLINE background_thread_info_t *
+background_thread_info_get(size_t ind) {
+ return &background_thread_info[ind % max_background_threads];
+}
+
+JEMALLOC_ALWAYS_INLINE uint64_t
+background_thread_wakeup_time_get(background_thread_info_t *info) {
+ uint64_t next_wakeup = nstime_ns(&info->next_wakeup);
+ assert(atomic_load_b(&info->indefinite_sleep, ATOMIC_ACQUIRE) ==
+ (next_wakeup == BACKGROUND_THREAD_INDEFINITE_SLEEP));
+ return next_wakeup;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+background_thread_wakeup_time_set(tsdn_t *tsdn, background_thread_info_t *info,
+ uint64_t wakeup_time) {
+ malloc_mutex_assert_owner(tsdn, &info->mtx);
+ atomic_store_b(&info->indefinite_sleep,
+ wakeup_time == BACKGROUND_THREAD_INDEFINITE_SLEEP, ATOMIC_RELEASE);
+ nstime_init(&info->next_wakeup, wakeup_time);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+background_thread_indefinite_sleep(background_thread_info_t *info) {
+ return atomic_load_b(&info->indefinite_sleep, ATOMIC_ACQUIRE);
+}
+
+#endif /* JEMALLOC_INTERNAL_BACKGROUND_THREAD_INLINES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/background_thread_structs.h b/deps/jemalloc/include/jemalloc/internal/background_thread_structs.h
new file mode 100644
index 0000000..83a9198
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/background_thread_structs.h
@@ -0,0 +1,66 @@
+#ifndef JEMALLOC_INTERNAL_BACKGROUND_THREAD_STRUCTS_H
+#define JEMALLOC_INTERNAL_BACKGROUND_THREAD_STRUCTS_H
+
+/* This file really combines "structs" and "types", but only transitionally. */
+
+#if defined(JEMALLOC_BACKGROUND_THREAD) || defined(JEMALLOC_LAZY_LOCK)
+# define JEMALLOC_PTHREAD_CREATE_WRAPPER
+#endif
+
+#define BACKGROUND_THREAD_INDEFINITE_SLEEP UINT64_MAX
+#define MAX_BACKGROUND_THREAD_LIMIT MALLOCX_ARENA_LIMIT
+#define DEFAULT_NUM_BACKGROUND_THREAD 4
+
+/*
+ * These exist only as a transitional state. Eventually, deferral should be
+ * part of the PAI, and each implementation can indicate wait times with more
+ * specificity.
+ */
+#define BACKGROUND_THREAD_HPA_INTERVAL_MAX_UNINITIALIZED (-2)
+#define BACKGROUND_THREAD_HPA_INTERVAL_MAX_DEFAULT_WHEN_ENABLED 5000
+
+#define BACKGROUND_THREAD_DEFERRED_MIN UINT64_C(0)
+#define BACKGROUND_THREAD_DEFERRED_MAX UINT64_MAX
+
+typedef enum {
+ background_thread_stopped,
+ background_thread_started,
+ /* Thread waits on the global lock when paused (for arena_reset). */
+ background_thread_paused,
+} background_thread_state_t;
+
+struct background_thread_info_s {
+#ifdef JEMALLOC_BACKGROUND_THREAD
+ /* Background thread is pthread specific. */
+ pthread_t thread;
+ pthread_cond_t cond;
+#endif
+ malloc_mutex_t mtx;
+ background_thread_state_t state;
+ /* When true, it means no wakeup scheduled. */
+ atomic_b_t indefinite_sleep;
+ /* Next scheduled wakeup time (absolute time in ns). */
+ nstime_t next_wakeup;
+ /*
+ * Since the last background thread run, newly added number of pages
+ * that need to be purged by the next wakeup. This is adjusted on
+ * epoch advance, and is used to determine whether we should signal the
+ * background thread to wake up earlier.
+ */
+ size_t npages_to_purge_new;
+ /* Stats: total number of runs since started. */
+ uint64_t tot_n_runs;
+ /* Stats: total sleep time since started. */
+ nstime_t tot_sleep_time;
+};
+typedef struct background_thread_info_s background_thread_info_t;
+
+struct background_thread_stats_s {
+ size_t num_threads;
+ uint64_t num_runs;
+ nstime_t run_interval;
+ mutex_prof_data_t max_counter_per_bg_thd;
+};
+typedef struct background_thread_stats_s background_thread_stats_t;
+
+#endif /* JEMALLOC_INTERNAL_BACKGROUND_THREAD_STRUCTS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/base.h b/deps/jemalloc/include/jemalloc/internal/base.h
new file mode 100644
index 0000000..9b2c9fb
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/base.h
@@ -0,0 +1,110 @@
+#ifndef JEMALLOC_INTERNAL_BASE_H
+#define JEMALLOC_INTERNAL_BASE_H
+
+#include "jemalloc/internal/edata.h"
+#include "jemalloc/internal/ehooks.h"
+#include "jemalloc/internal/mutex.h"
+
+enum metadata_thp_mode_e {
+ metadata_thp_disabled = 0,
+ /*
+ * Lazily enable hugepage for metadata. To avoid high RSS caused by THP
+ * + low usage arena (i.e. THP becomes a significant percentage), the
+ * "auto" option only starts using THP after a base allocator used up
+ * the first THP region. Starting from the second hugepage (in a single
+ * arena), "auto" behaves the same as "always", i.e. madvise hugepage
+ * right away.
+ */
+ metadata_thp_auto = 1,
+ metadata_thp_always = 2,
+ metadata_thp_mode_limit = 3
+};
+typedef enum metadata_thp_mode_e metadata_thp_mode_t;
+
+#define METADATA_THP_DEFAULT metadata_thp_disabled
+extern metadata_thp_mode_t opt_metadata_thp;
+extern const char *metadata_thp_mode_names[];
+
+
+/* Embedded at the beginning of every block of base-managed virtual memory. */
+typedef struct base_block_s base_block_t;
+struct base_block_s {
+ /* Total size of block's virtual memory mapping. */
+ size_t size;
+
+ /* Next block in list of base's blocks. */
+ base_block_t *next;
+
+ /* Tracks unused trailing space. */
+ edata_t edata;
+};
+
+typedef struct base_s base_t;
+struct base_s {
+ /*
+ * User-configurable extent hook functions.
+ */
+ ehooks_t ehooks;
+
+ /*
+ * User-configurable extent hook functions for metadata allocations.
+ */
+ ehooks_t ehooks_base;
+
+ /* Protects base_alloc() and base_stats_get() operations. */
+ malloc_mutex_t mtx;
+
+ /* Using THP when true (metadata_thp auto mode). */
+ bool auto_thp_switched;
+ /*
+ * Most recent size class in the series of increasingly large base
+ * extents. Logarithmic spacing between subsequent allocations ensures
+ * that the total number of distinct mappings remains small.
+ */
+ pszind_t pind_last;
+
+ /* Serial number generation state. */
+ size_t extent_sn_next;
+
+ /* Chain of all blocks associated with base. */
+ base_block_t *blocks;
+
+ /* Heap of extents that track unused trailing space within blocks. */
+ edata_heap_t avail[SC_NSIZES];
+
+ /* Stats, only maintained if config_stats. */
+ size_t allocated;
+ size_t resident;
+ size_t mapped;
+ /* Number of THP regions touched. */
+ size_t n_thp;
+};
+
+static inline unsigned
+base_ind_get(const base_t *base) {
+ return ehooks_ind_get(&base->ehooks);
+}
+
+static inline bool
+metadata_thp_enabled(void) {
+ return (opt_metadata_thp != metadata_thp_disabled);
+}
+
+base_t *b0get(void);
+base_t *base_new(tsdn_t *tsdn, unsigned ind,
+ const extent_hooks_t *extent_hooks, bool metadata_use_hooks);
+void base_delete(tsdn_t *tsdn, base_t *base);
+ehooks_t *base_ehooks_get(base_t *base);
+ehooks_t *base_ehooks_get_for_metadata(base_t *base);
+extent_hooks_t *base_extent_hooks_set(base_t *base,
+ extent_hooks_t *extent_hooks);
+void *base_alloc(tsdn_t *tsdn, base_t *base, size_t size, size_t alignment);
+edata_t *base_alloc_edata(tsdn_t *tsdn, base_t *base);
+void base_stats_get(tsdn_t *tsdn, base_t *base, size_t *allocated,
+ size_t *resident, size_t *mapped, size_t *n_thp);
+void base_prefork(tsdn_t *tsdn, base_t *base);
+void base_postfork_parent(tsdn_t *tsdn, base_t *base);
+void base_postfork_child(tsdn_t *tsdn, base_t *base);
+bool base_boot(tsdn_t *tsdn);
+
+#endif /* JEMALLOC_INTERNAL_BASE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/bin.h b/deps/jemalloc/include/jemalloc/internal/bin.h
new file mode 100644
index 0000000..63f9739
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/bin.h
@@ -0,0 +1,82 @@
+#ifndef JEMALLOC_INTERNAL_BIN_H
+#define JEMALLOC_INTERNAL_BIN_H
+
+#include "jemalloc/internal/bin_stats.h"
+#include "jemalloc/internal/bin_types.h"
+#include "jemalloc/internal/edata.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/sc.h"
+
+/*
+ * A bin contains a set of extents that are currently being used for slab
+ * allocations.
+ */
+typedef struct bin_s bin_t;
+struct bin_s {
+ /* All operations on bin_t fields require lock ownership. */
+ malloc_mutex_t lock;
+
+ /*
+ * Bin statistics. These get touched every time the lock is acquired,
+ * so put them close by in the hopes of getting some cache locality.
+ */
+ bin_stats_t stats;
+
+ /*
+ * Current slab being used to service allocations of this bin's size
+ * class. slabcur is independent of slabs_{nonfull,full}; whenever
+ * slabcur is reassigned, the previous slab must be deallocated or
+ * inserted into slabs_{nonfull,full}.
+ */
+ edata_t *slabcur;
+
+ /*
+ * Heap of non-full slabs. This heap is used to assure that new
+ * allocations come from the non-full slab that is oldest/lowest in
+ * memory.
+ */
+ edata_heap_t slabs_nonfull;
+
+ /* List used to track full slabs. */
+ edata_list_active_t slabs_full;
+};
+
+/* A set of sharded bins of the same size class. */
+typedef struct bins_s bins_t;
+struct bins_s {
+ /* Sharded bins. Dynamically sized. */
+ bin_t *bin_shards;
+};
+
+void bin_shard_sizes_boot(unsigned bin_shards[SC_NBINS]);
+bool bin_update_shard_size(unsigned bin_shards[SC_NBINS], size_t start_size,
+ size_t end_size, size_t nshards);
+
+/* Initializes a bin to empty. Returns true on error. */
+bool bin_init(bin_t *bin);
+
+/* Forking. */
+void bin_prefork(tsdn_t *tsdn, bin_t *bin);
+void bin_postfork_parent(tsdn_t *tsdn, bin_t *bin);
+void bin_postfork_child(tsdn_t *tsdn, bin_t *bin);
+
+/* Stats. */
+static inline void
+bin_stats_merge(tsdn_t *tsdn, bin_stats_data_t *dst_bin_stats, bin_t *bin) {
+ malloc_mutex_lock(tsdn, &bin->lock);
+ malloc_mutex_prof_accum(tsdn, &dst_bin_stats->mutex_data, &bin->lock);
+ bin_stats_t *stats = &dst_bin_stats->stats_data;
+ stats->nmalloc += bin->stats.nmalloc;
+ stats->ndalloc += bin->stats.ndalloc;
+ stats->nrequests += bin->stats.nrequests;
+ stats->curregs += bin->stats.curregs;
+ stats->nfills += bin->stats.nfills;
+ stats->nflushes += bin->stats.nflushes;
+ stats->nslabs += bin->stats.nslabs;
+ stats->reslabs += bin->stats.reslabs;
+ stats->curslabs += bin->stats.curslabs;
+ stats->nonfull_slabs += bin->stats.nonfull_slabs;
+ malloc_mutex_unlock(tsdn, &bin->lock);
+}
+
+#endif /* JEMALLOC_INTERNAL_BIN_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/bin_info.h b/deps/jemalloc/include/jemalloc/internal/bin_info.h
new file mode 100644
index 0000000..7fe65c8
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/bin_info.h
@@ -0,0 +1,50 @@
+#ifndef JEMALLOC_INTERNAL_BIN_INFO_H
+#define JEMALLOC_INTERNAL_BIN_INFO_H
+
+#include "jemalloc/internal/bitmap.h"
+
+/*
+ * Read-only information associated with each element of arena_t's bins array
+ * is stored separately, partly to reduce memory usage (only one copy, rather
+ * than one per arena), but mainly to avoid false cacheline sharing.
+ *
+ * Each slab has the following layout:
+ *
+ * /--------------------\
+ * | region 0 |
+ * |--------------------|
+ * | region 1 |
+ * |--------------------|
+ * | ... |
+ * | ... |
+ * | ... |
+ * |--------------------|
+ * | region nregs-1 |
+ * \--------------------/
+ */
+typedef struct bin_info_s bin_info_t;
+struct bin_info_s {
+ /* Size of regions in a slab for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a slab for this bin's size class. */
+ size_t slab_size;
+
+ /* Total number of regions in a slab for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of sharded bins in each arena for this size class. */
+ uint32_t n_shards;
+
+ /*
+ * Metadata used to manipulate bitmaps for slabs associated with this
+ * bin.
+ */
+ bitmap_info_t bitmap_info;
+};
+
+extern bin_info_t bin_infos[SC_NBINS];
+
+void bin_info_boot(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS]);
+
+#endif /* JEMALLOC_INTERNAL_BIN_INFO_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/bin_stats.h b/deps/jemalloc/include/jemalloc/internal/bin_stats.h
new file mode 100644
index 0000000..0b99297
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/bin_stats.h
@@ -0,0 +1,57 @@
+#ifndef JEMALLOC_INTERNAL_BIN_STATS_H
+#define JEMALLOC_INTERNAL_BIN_STATS_H
+
+#include "jemalloc/internal/mutex_prof.h"
+
+typedef struct bin_stats_s bin_stats_t;
+struct bin_stats_s {
+ /*
+ * Total number of allocation/deallocation requests served directly by
+ * the bin. Note that tcache may allocate an object, then recycle it
+ * many times, resulting many increments to nrequests, but only one
+ * each to nmalloc and ndalloc.
+ */
+ uint64_t nmalloc;
+ uint64_t ndalloc;
+
+ /*
+ * Number of allocation requests that correspond to the size of this
+ * bin. This includes requests served by tcache, though tcache only
+ * periodically merges into this counter.
+ */
+ uint64_t nrequests;
+
+ /*
+ * Current number of regions of this size class, including regions
+ * currently cached by tcache.
+ */
+ size_t curregs;
+
+ /* Number of tcache fills from this bin. */
+ uint64_t nfills;
+
+ /* Number of tcache flushes to this bin. */
+ uint64_t nflushes;
+
+ /* Total number of slabs created for this bin's size class. */
+ uint64_t nslabs;
+
+ /*
+ * Total number of slabs reused by extracting them from the slabs heap
+ * for this bin's size class.
+ */
+ uint64_t reslabs;
+
+ /* Current number of slabs in this bin. */
+ size_t curslabs;
+
+ /* Current size of nonfull slabs heap in this bin. */
+ size_t nonfull_slabs;
+};
+
+typedef struct bin_stats_data_s bin_stats_data_t;
+struct bin_stats_data_s {
+ bin_stats_t stats_data;
+ mutex_prof_data_t mutex_data;
+};
+#endif /* JEMALLOC_INTERNAL_BIN_STATS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/bin_types.h b/deps/jemalloc/include/jemalloc/internal/bin_types.h
new file mode 100644
index 0000000..945e832
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/bin_types.h
@@ -0,0 +1,17 @@
+#ifndef JEMALLOC_INTERNAL_BIN_TYPES_H
+#define JEMALLOC_INTERNAL_BIN_TYPES_H
+
+#include "jemalloc/internal/sc.h"
+
+#define BIN_SHARDS_MAX (1 << EDATA_BITS_BINSHARD_WIDTH)
+#define N_BIN_SHARDS_DEFAULT 1
+
+/* Used in TSD static initializer only. Real init in arena_bind(). */
+#define TSD_BINSHARDS_ZERO_INITIALIZER {{UINT8_MAX}}
+
+typedef struct tsd_binshards_s tsd_binshards_t;
+struct tsd_binshards_s {
+ uint8_t binshard[SC_NBINS];
+};
+
+#endif /* JEMALLOC_INTERNAL_BIN_TYPES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/bit_util.h b/deps/jemalloc/include/jemalloc/internal/bit_util.h
new file mode 100644
index 0000000..bac5914
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/bit_util.h
@@ -0,0 +1,422 @@
+#ifndef JEMALLOC_INTERNAL_BIT_UTIL_H
+#define JEMALLOC_INTERNAL_BIT_UTIL_H
+
+#include "jemalloc/internal/assert.h"
+
+/* Sanity check. */
+#if !defined(JEMALLOC_INTERNAL_FFSLL) || !defined(JEMALLOC_INTERNAL_FFSL) \
+ || !defined(JEMALLOC_INTERNAL_FFS)
+# error JEMALLOC_INTERNAL_FFS{,L,LL} should have been defined by configure
+#endif
+
+/*
+ * Unlike the builtins and posix ffs functions, our ffs requires a non-zero
+ * input, and returns the position of the lowest bit set (as opposed to the
+ * posix versions, which return 1 larger than that position and use a return
+ * value of zero as a sentinel. This tends to simplify logic in callers, and
+ * allows for consistency with the builtins we build fls on top of.
+ */
+static inline unsigned
+ffs_llu(unsigned long long x) {
+ util_assume(x != 0);
+ return JEMALLOC_INTERNAL_FFSLL(x) - 1;
+}
+
+static inline unsigned
+ffs_lu(unsigned long x) {
+ util_assume(x != 0);
+ return JEMALLOC_INTERNAL_FFSL(x) - 1;
+}
+
+static inline unsigned
+ffs_u(unsigned x) {
+ util_assume(x != 0);
+ return JEMALLOC_INTERNAL_FFS(x) - 1;
+}
+
+#define DO_FLS_SLOW(x, suffix) do { \
+ util_assume(x != 0); \
+ x |= (x >> 1); \
+ x |= (x >> 2); \
+ x |= (x >> 4); \
+ x |= (x >> 8); \
+ x |= (x >> 16); \
+ if (sizeof(x) > 4) { \
+ /* \
+ * If sizeof(x) is 4, then the expression "x >> 32" \
+ * will generate compiler warnings even if the code \
+ * never executes. This circumvents the warning, and \
+ * gets compiled out in optimized builds. \
+ */ \
+ int constant_32 = sizeof(x) * 4; \
+ x |= (x >> constant_32); \
+ } \
+ x++; \
+ if (x == 0) { \
+ return 8 * sizeof(x) - 1; \
+ } \
+ return ffs_##suffix(x) - 1; \
+} while(0)
+
+static inline unsigned
+fls_llu_slow(unsigned long long x) {
+ DO_FLS_SLOW(x, llu);
+}
+
+static inline unsigned
+fls_lu_slow(unsigned long x) {
+ DO_FLS_SLOW(x, lu);
+}
+
+static inline unsigned
+fls_u_slow(unsigned x) {
+ DO_FLS_SLOW(x, u);
+}
+
+#undef DO_FLS_SLOW
+
+#ifdef JEMALLOC_HAVE_BUILTIN_CLZ
+static inline unsigned
+fls_llu(unsigned long long x) {
+ util_assume(x != 0);
+ /*
+ * Note that the xor here is more naturally written as subtraction; the
+ * last bit set is the number of bits in the type minus the number of
+ * leading zero bits. But GCC implements that as:
+ * bsr edi, edi
+ * mov eax, 31
+ * xor edi, 31
+ * sub eax, edi
+ * If we write it as xor instead, then we get
+ * bsr eax, edi
+ * as desired.
+ */
+ return (8 * sizeof(x) - 1) ^ __builtin_clzll(x);
+}
+
+static inline unsigned
+fls_lu(unsigned long x) {
+ util_assume(x != 0);
+ return (8 * sizeof(x) - 1) ^ __builtin_clzl(x);
+}
+
+static inline unsigned
+fls_u(unsigned x) {
+ util_assume(x != 0);
+ return (8 * sizeof(x) - 1) ^ __builtin_clz(x);
+}
+#elif defined(_MSC_VER)
+
+#if LG_SIZEOF_PTR == 3
+#define DO_BSR64(bit, x) _BitScanReverse64(&bit, x)
+#else
+/*
+ * This never actually runs; we're just dodging a compiler error for the
+ * never-taken branch where sizeof(void *) == 8.
+ */
+#define DO_BSR64(bit, x) bit = 0; unreachable()
+#endif
+
+#define DO_FLS(x) do { \
+ if (x == 0) { \
+ return 8 * sizeof(x); \
+ } \
+ unsigned long bit; \
+ if (sizeof(x) == 4) { \
+ _BitScanReverse(&bit, (unsigned)x); \
+ return (unsigned)bit; \
+ } \
+ if (sizeof(x) == 8 && sizeof(void *) == 8) { \
+ DO_BSR64(bit, x); \
+ return (unsigned)bit; \
+ } \
+ if (sizeof(x) == 8 && sizeof(void *) == 4) { \
+ /* Dodge a compiler warning, as above. */ \
+ int constant_32 = sizeof(x) * 4; \
+ if (_BitScanReverse(&bit, \
+ (unsigned)(x >> constant_32))) { \
+ return 32 + (unsigned)bit; \
+ } else { \
+ _BitScanReverse(&bit, (unsigned)x); \
+ return (unsigned)bit; \
+ } \
+ } \
+ unreachable(); \
+} while (0)
+
+static inline unsigned
+fls_llu(unsigned long long x) {
+ DO_FLS(x);
+}
+
+static inline unsigned
+fls_lu(unsigned long x) {
+ DO_FLS(x);
+}
+
+static inline unsigned
+fls_u(unsigned x) {
+ DO_FLS(x);
+}
+
+#undef DO_FLS
+#undef DO_BSR64
+#else
+
+static inline unsigned
+fls_llu(unsigned long long x) {
+ return fls_llu_slow(x);
+}
+
+static inline unsigned
+fls_lu(unsigned long x) {
+ return fls_lu_slow(x);
+}
+
+static inline unsigned
+fls_u(unsigned x) {
+ return fls_u_slow(x);
+}
+#endif
+
+#if LG_SIZEOF_LONG_LONG > 3
+# error "Haven't implemented popcount for 16-byte ints."
+#endif
+
+#define DO_POPCOUNT(x, type) do { \
+ /* \
+ * Algorithm from an old AMD optimization reference manual. \
+ * We're putting a little bit more work than you might expect \
+ * into the no-instrinsic case, since we only support the \
+ * GCC intrinsics spelling of popcount (for now). Detecting \
+ * whether or not the popcount builtin is actually useable in \
+ * MSVC is nontrivial. \
+ */ \
+ \
+ type bmul = (type)0x0101010101010101ULL; \
+ \
+ /* \
+ * Replace each 2 bits with the sideways sum of the original \
+ * values. 0x5 = 0b0101. \
+ * \
+ * You might expect this to be: \
+ * x = (x & 0x55...) + ((x >> 1) & 0x55...). \
+ * That costs an extra mask relative to this, though. \
+ */ \
+ x = x - ((x >> 1) & (0x55U * bmul)); \
+ /* Replace each 4 bits with their sideays sum. 0x3 = 0b0011. */\
+ x = (x & (bmul * 0x33U)) + ((x >> 2) & (bmul * 0x33U)); \
+ /* \
+ * Replace each 8 bits with their sideways sum. Note that we \
+ * can't overflow within each 4-bit sum here, so we can skip \
+ * the initial mask. \
+ */ \
+ x = (x + (x >> 4)) & (bmul * 0x0FU); \
+ /* \
+ * None of the partial sums in this multiplication (viewed in \
+ * base-256) can overflow into the next digit. So the least \
+ * significant byte of the product will be the least \
+ * significant byte of the original value, the second least \
+ * significant byte will be the sum of the two least \
+ * significant bytes of the original value, and so on. \
+ * Importantly, the high byte will be the byte-wise sum of all \
+ * the bytes of the original value. \
+ */ \
+ x = x * bmul; \
+ x >>= ((sizeof(x) - 1) * 8); \
+ return (unsigned)x; \
+} while(0)
+
+static inline unsigned
+popcount_u_slow(unsigned bitmap) {
+ DO_POPCOUNT(bitmap, unsigned);
+}
+
+static inline unsigned
+popcount_lu_slow(unsigned long bitmap) {
+ DO_POPCOUNT(bitmap, unsigned long);
+}
+
+static inline unsigned
+popcount_llu_slow(unsigned long long bitmap) {
+ DO_POPCOUNT(bitmap, unsigned long long);
+}
+
+#undef DO_POPCOUNT
+
+static inline unsigned
+popcount_u(unsigned bitmap) {
+#ifdef JEMALLOC_INTERNAL_POPCOUNT
+ return JEMALLOC_INTERNAL_POPCOUNT(bitmap);
+#else
+ return popcount_u_slow(bitmap);
+#endif
+}
+
+static inline unsigned
+popcount_lu(unsigned long bitmap) {
+#ifdef JEMALLOC_INTERNAL_POPCOUNTL
+ return JEMALLOC_INTERNAL_POPCOUNTL(bitmap);
+#else
+ return popcount_lu_slow(bitmap);
+#endif
+}
+
+static inline unsigned
+popcount_llu(unsigned long long bitmap) {
+#ifdef JEMALLOC_INTERNAL_POPCOUNTLL
+ return JEMALLOC_INTERNAL_POPCOUNTLL(bitmap);
+#else
+ return popcount_llu_slow(bitmap);
+#endif
+}
+
+/*
+ * Clears first unset bit in bitmap, and returns
+ * place of bit. bitmap *must not* be 0.
+ */
+
+static inline size_t
+cfs_lu(unsigned long* bitmap) {
+ util_assume(*bitmap != 0);
+ size_t bit = ffs_lu(*bitmap);
+ *bitmap ^= ZU(1) << bit;
+ return bit;
+}
+
+static inline unsigned
+ffs_zu(size_t x) {
+#if LG_SIZEOF_PTR == LG_SIZEOF_INT
+ return ffs_u(x);
+#elif LG_SIZEOF_PTR == LG_SIZEOF_LONG
+ return ffs_lu(x);
+#elif LG_SIZEOF_PTR == LG_SIZEOF_LONG_LONG
+ return ffs_llu(x);
+#else
+#error No implementation for size_t ffs()
+#endif
+}
+
+static inline unsigned
+fls_zu(size_t x) {
+#if LG_SIZEOF_PTR == LG_SIZEOF_INT
+ return fls_u(x);
+#elif LG_SIZEOF_PTR == LG_SIZEOF_LONG
+ return fls_lu(x);
+#elif LG_SIZEOF_PTR == LG_SIZEOF_LONG_LONG
+ return fls_llu(x);
+#else
+#error No implementation for size_t fls()
+#endif
+}
+
+
+static inline unsigned
+ffs_u64(uint64_t x) {
+#if LG_SIZEOF_LONG == 3
+ return ffs_lu(x);
+#elif LG_SIZEOF_LONG_LONG == 3
+ return ffs_llu(x);
+#else
+#error No implementation for 64-bit ffs()
+#endif
+}
+
+static inline unsigned
+fls_u64(uint64_t x) {
+#if LG_SIZEOF_LONG == 3
+ return fls_lu(x);
+#elif LG_SIZEOF_LONG_LONG == 3
+ return fls_llu(x);
+#else
+#error No implementation for 64-bit fls()
+#endif
+}
+
+static inline unsigned
+ffs_u32(uint32_t x) {
+#if LG_SIZEOF_INT == 2
+ return ffs_u(x);
+#else
+#error No implementation for 32-bit ffs()
+#endif
+ return ffs_u(x);
+}
+
+static inline unsigned
+fls_u32(uint32_t x) {
+#if LG_SIZEOF_INT == 2
+ return fls_u(x);
+#else
+#error No implementation for 32-bit fls()
+#endif
+ return fls_u(x);
+}
+
+static inline uint64_t
+pow2_ceil_u64(uint64_t x) {
+ if (unlikely(x <= 1)) {
+ return x;
+ }
+ size_t msb_on_index = fls_u64(x - 1);
+ /*
+ * Range-check; it's on the callers to ensure that the result of this
+ * call won't overflow.
+ */
+ assert(msb_on_index < 63);
+ return 1ULL << (msb_on_index + 1);
+}
+
+static inline uint32_t
+pow2_ceil_u32(uint32_t x) {
+ if (unlikely(x <= 1)) {
+ return x;
+ }
+ size_t msb_on_index = fls_u32(x - 1);
+ /* As above. */
+ assert(msb_on_index < 31);
+ return 1U << (msb_on_index + 1);
+}
+
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil_zu(size_t x) {
+#if (LG_SIZEOF_PTR == 3)
+ return pow2_ceil_u64(x);
+#else
+ return pow2_ceil_u32(x);
+#endif
+}
+
+static inline unsigned
+lg_floor(size_t x) {
+ util_assume(x != 0);
+#if (LG_SIZEOF_PTR == 3)
+ return fls_u64(x);
+#else
+ return fls_u32(x);
+#endif
+}
+
+static inline unsigned
+lg_ceil(size_t x) {
+ return lg_floor(x) + ((x & (x - 1)) == 0 ? 0 : 1);
+}
+
+/* A compile-time version of lg_floor and lg_ceil. */
+#define LG_FLOOR_1(x) 0
+#define LG_FLOOR_2(x) (x < (1ULL << 1) ? LG_FLOOR_1(x) : 1 + LG_FLOOR_1(x >> 1))
+#define LG_FLOOR_4(x) (x < (1ULL << 2) ? LG_FLOOR_2(x) : 2 + LG_FLOOR_2(x >> 2))
+#define LG_FLOOR_8(x) (x < (1ULL << 4) ? LG_FLOOR_4(x) : 4 + LG_FLOOR_4(x >> 4))
+#define LG_FLOOR_16(x) (x < (1ULL << 8) ? LG_FLOOR_8(x) : 8 + LG_FLOOR_8(x >> 8))
+#define LG_FLOOR_32(x) (x < (1ULL << 16) ? LG_FLOOR_16(x) : 16 + LG_FLOOR_16(x >> 16))
+#define LG_FLOOR_64(x) (x < (1ULL << 32) ? LG_FLOOR_32(x) : 32 + LG_FLOOR_32(x >> 32))
+#if LG_SIZEOF_PTR == 2
+# define LG_FLOOR(x) LG_FLOOR_32((x))
+#else
+# define LG_FLOOR(x) LG_FLOOR_64((x))
+#endif
+
+#define LG_CEIL(x) (LG_FLOOR(x) + (((x) & ((x) - 1)) == 0 ? 0 : 1))
+
+#endif /* JEMALLOC_INTERNAL_BIT_UTIL_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/bitmap.h b/deps/jemalloc/include/jemalloc/internal/bitmap.h
new file mode 100644
index 0000000..dc19454
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/bitmap.h
@@ -0,0 +1,368 @@
+#ifndef JEMALLOC_INTERNAL_BITMAP_H
+#define JEMALLOC_INTERNAL_BITMAP_H
+
+#include "jemalloc/internal/bit_util.h"
+#include "jemalloc/internal/sc.h"
+
+typedef unsigned long bitmap_t;
+#define LG_SIZEOF_BITMAP LG_SIZEOF_LONG
+
+/* Maximum bitmap bit count is 2^LG_BITMAP_MAXBITS. */
+#if SC_LG_SLAB_MAXREGS > LG_CEIL(SC_NSIZES)
+/* Maximum bitmap bit count is determined by maximum regions per slab. */
+# define LG_BITMAP_MAXBITS SC_LG_SLAB_MAXREGS
+#else
+/* Maximum bitmap bit count is determined by number of extent size classes. */
+# define LG_BITMAP_MAXBITS LG_CEIL(SC_NSIZES)
+#endif
+#define BITMAP_MAXBITS (ZU(1) << LG_BITMAP_MAXBITS)
+
+/* Number of bits per group. */
+#define LG_BITMAP_GROUP_NBITS (LG_SIZEOF_BITMAP + 3)
+#define BITMAP_GROUP_NBITS (1U << LG_BITMAP_GROUP_NBITS)
+#define BITMAP_GROUP_NBITS_MASK (BITMAP_GROUP_NBITS-1)
+
+/*
+ * Do some analysis on how big the bitmap is before we use a tree. For a brute
+ * force linear search, if we would have to call ffs_lu() more than 2^3 times,
+ * use a tree instead.
+ */
+#if LG_BITMAP_MAXBITS - LG_BITMAP_GROUP_NBITS > 3
+# define BITMAP_USE_TREE
+#endif
+
+/* Number of groups required to store a given number of bits. */
+#define BITMAP_BITS2GROUPS(nbits) \
+ (((nbits) + BITMAP_GROUP_NBITS_MASK) >> LG_BITMAP_GROUP_NBITS)
+
+/*
+ * Number of groups required at a particular level for a given number of bits.
+ */
+#define BITMAP_GROUPS_L0(nbits) \
+ BITMAP_BITS2GROUPS(nbits)
+#define BITMAP_GROUPS_L1(nbits) \
+ BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(nbits))
+#define BITMAP_GROUPS_L2(nbits) \
+ BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS((nbits))))
+#define BITMAP_GROUPS_L3(nbits) \
+ BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS( \
+ BITMAP_BITS2GROUPS((nbits)))))
+#define BITMAP_GROUPS_L4(nbits) \
+ BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS( \
+ BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS((nbits))))))
+
+/*
+ * Assuming the number of levels, number of groups required for a given number
+ * of bits.
+ */
+#define BITMAP_GROUPS_1_LEVEL(nbits) \
+ BITMAP_GROUPS_L0(nbits)
+#define BITMAP_GROUPS_2_LEVEL(nbits) \
+ (BITMAP_GROUPS_1_LEVEL(nbits) + BITMAP_GROUPS_L1(nbits))
+#define BITMAP_GROUPS_3_LEVEL(nbits) \
+ (BITMAP_GROUPS_2_LEVEL(nbits) + BITMAP_GROUPS_L2(nbits))
+#define BITMAP_GROUPS_4_LEVEL(nbits) \
+ (BITMAP_GROUPS_3_LEVEL(nbits) + BITMAP_GROUPS_L3(nbits))
+#define BITMAP_GROUPS_5_LEVEL(nbits) \
+ (BITMAP_GROUPS_4_LEVEL(nbits) + BITMAP_GROUPS_L4(nbits))
+
+/*
+ * Maximum number of groups required to support LG_BITMAP_MAXBITS.
+ */
+#ifdef BITMAP_USE_TREE
+
+#if LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS
+# define BITMAP_GROUPS(nbits) BITMAP_GROUPS_1_LEVEL(nbits)
+# define BITMAP_GROUPS_MAX BITMAP_GROUPS_1_LEVEL(BITMAP_MAXBITS)
+#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 2
+# define BITMAP_GROUPS(nbits) BITMAP_GROUPS_2_LEVEL(nbits)
+# define BITMAP_GROUPS_MAX BITMAP_GROUPS_2_LEVEL(BITMAP_MAXBITS)
+#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 3
+# define BITMAP_GROUPS(nbits) BITMAP_GROUPS_3_LEVEL(nbits)
+# define BITMAP_GROUPS_MAX BITMAP_GROUPS_3_LEVEL(BITMAP_MAXBITS)
+#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 4
+# define BITMAP_GROUPS(nbits) BITMAP_GROUPS_4_LEVEL(nbits)
+# define BITMAP_GROUPS_MAX BITMAP_GROUPS_4_LEVEL(BITMAP_MAXBITS)
+#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 5
+# define BITMAP_GROUPS(nbits) BITMAP_GROUPS_5_LEVEL(nbits)
+# define BITMAP_GROUPS_MAX BITMAP_GROUPS_5_LEVEL(BITMAP_MAXBITS)
+#else
+# error "Unsupported bitmap size"
+#endif
+
+/*
+ * Maximum number of levels possible. This could be statically computed based
+ * on LG_BITMAP_MAXBITS:
+ *
+ * #define BITMAP_MAX_LEVELS \
+ * (LG_BITMAP_MAXBITS / LG_SIZEOF_BITMAP) \
+ * + !!(LG_BITMAP_MAXBITS % LG_SIZEOF_BITMAP)
+ *
+ * However, that would not allow the generic BITMAP_INFO_INITIALIZER() macro, so
+ * instead hardcode BITMAP_MAX_LEVELS to the largest number supported by the
+ * various cascading macros. The only additional cost this incurs is some
+ * unused trailing entries in bitmap_info_t structures; the bitmaps themselves
+ * are not impacted.
+ */
+#define BITMAP_MAX_LEVELS 5
+
+#define BITMAP_INFO_INITIALIZER(nbits) { \
+ /* nbits. */ \
+ nbits, \
+ /* nlevels. */ \
+ (BITMAP_GROUPS_L0(nbits) > BITMAP_GROUPS_L1(nbits)) + \
+ (BITMAP_GROUPS_L1(nbits) > BITMAP_GROUPS_L2(nbits)) + \
+ (BITMAP_GROUPS_L2(nbits) > BITMAP_GROUPS_L3(nbits)) + \
+ (BITMAP_GROUPS_L3(nbits) > BITMAP_GROUPS_L4(nbits)) + 1, \
+ /* levels. */ \
+ { \
+ {0}, \
+ {BITMAP_GROUPS_L0(nbits)}, \
+ {BITMAP_GROUPS_L1(nbits) + BITMAP_GROUPS_L0(nbits)}, \
+ {BITMAP_GROUPS_L2(nbits) + BITMAP_GROUPS_L1(nbits) + \
+ BITMAP_GROUPS_L0(nbits)}, \
+ {BITMAP_GROUPS_L3(nbits) + BITMAP_GROUPS_L2(nbits) + \
+ BITMAP_GROUPS_L1(nbits) + BITMAP_GROUPS_L0(nbits)}, \
+ {BITMAP_GROUPS_L4(nbits) + BITMAP_GROUPS_L3(nbits) + \
+ BITMAP_GROUPS_L2(nbits) + BITMAP_GROUPS_L1(nbits) \
+ + BITMAP_GROUPS_L0(nbits)} \
+ } \
+}
+
+#else /* BITMAP_USE_TREE */
+
+#define BITMAP_GROUPS(nbits) BITMAP_BITS2GROUPS(nbits)
+#define BITMAP_GROUPS_MAX BITMAP_BITS2GROUPS(BITMAP_MAXBITS)
+
+#define BITMAP_INFO_INITIALIZER(nbits) { \
+ /* nbits. */ \
+ nbits, \
+ /* ngroups. */ \
+ BITMAP_BITS2GROUPS(nbits) \
+}
+
+#endif /* BITMAP_USE_TREE */
+
+typedef struct bitmap_level_s {
+ /* Offset of this level's groups within the array of groups. */
+ size_t group_offset;
+} bitmap_level_t;
+
+typedef struct bitmap_info_s {
+ /* Logical number of bits in bitmap (stored at bottom level). */
+ size_t nbits;
+
+#ifdef BITMAP_USE_TREE
+ /* Number of levels necessary for nbits. */
+ unsigned nlevels;
+
+ /*
+ * Only the first (nlevels+1) elements are used, and levels are ordered
+ * bottom to top (e.g. the bottom level is stored in levels[0]).
+ */
+ bitmap_level_t levels[BITMAP_MAX_LEVELS+1];
+#else /* BITMAP_USE_TREE */
+ /* Number of groups necessary for nbits. */
+ size_t ngroups;
+#endif /* BITMAP_USE_TREE */
+} bitmap_info_t;
+
+void bitmap_info_init(bitmap_info_t *binfo, size_t nbits);
+void bitmap_init(bitmap_t *bitmap, const bitmap_info_t *binfo, bool fill);
+size_t bitmap_size(const bitmap_info_t *binfo);
+
+static inline bool
+bitmap_full(bitmap_t *bitmap, const bitmap_info_t *binfo) {
+#ifdef BITMAP_USE_TREE
+ size_t rgoff = binfo->levels[binfo->nlevels].group_offset - 1;
+ bitmap_t rg = bitmap[rgoff];
+ /* The bitmap is full iff the root group is 0. */
+ return (rg == 0);
+#else
+ size_t i;
+
+ for (i = 0; i < binfo->ngroups; i++) {
+ if (bitmap[i] != 0) {
+ return false;
+ }
+ }
+ return true;
+#endif
+}
+
+static inline bool
+bitmap_get(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit) {
+ size_t goff;
+ bitmap_t g;
+
+ assert(bit < binfo->nbits);
+ goff = bit >> LG_BITMAP_GROUP_NBITS;
+ g = bitmap[goff];
+ return !(g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)));
+}
+
+static inline void
+bitmap_set(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit) {
+ size_t goff;
+ bitmap_t *gp;
+ bitmap_t g;
+
+ assert(bit < binfo->nbits);
+ assert(!bitmap_get(bitmap, binfo, bit));
+ goff = bit >> LG_BITMAP_GROUP_NBITS;
+ gp = &bitmap[goff];
+ g = *gp;
+ assert(g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)));
+ g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
+ *gp = g;
+ assert(bitmap_get(bitmap, binfo, bit));
+#ifdef BITMAP_USE_TREE
+ /* Propagate group state transitions up the tree. */
+ if (g == 0) {
+ unsigned i;
+ for (i = 1; i < binfo->nlevels; i++) {
+ bit = goff;
+ goff = bit >> LG_BITMAP_GROUP_NBITS;
+ gp = &bitmap[binfo->levels[i].group_offset + goff];
+ g = *gp;
+ assert(g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)));
+ g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
+ *gp = g;
+ if (g != 0) {
+ break;
+ }
+ }
+ }
+#endif
+}
+
+/* ffu: find first unset >= bit. */
+static inline size_t
+bitmap_ffu(const bitmap_t *bitmap, const bitmap_info_t *binfo, size_t min_bit) {
+ assert(min_bit < binfo->nbits);
+
+#ifdef BITMAP_USE_TREE
+ size_t bit = 0;
+ for (unsigned level = binfo->nlevels; level--;) {
+ size_t lg_bits_per_group = (LG_BITMAP_GROUP_NBITS * (level +
+ 1));
+ bitmap_t group = bitmap[binfo->levels[level].group_offset + (bit
+ >> lg_bits_per_group)];
+ unsigned group_nmask = (unsigned)(((min_bit > bit) ? (min_bit -
+ bit) : 0) >> (lg_bits_per_group - LG_BITMAP_GROUP_NBITS));
+ assert(group_nmask <= BITMAP_GROUP_NBITS);
+ bitmap_t group_mask = ~((1LU << group_nmask) - 1);
+ bitmap_t group_masked = group & group_mask;
+ if (group_masked == 0LU) {
+ if (group == 0LU) {
+ return binfo->nbits;
+ }
+ /*
+ * min_bit was preceded by one or more unset bits in
+ * this group, but there are no other unset bits in this
+ * group. Try again starting at the first bit of the
+ * next sibling. This will recurse at most once per
+ * non-root level.
+ */
+ size_t sib_base = bit + (ZU(1) << lg_bits_per_group);
+ assert(sib_base > min_bit);
+ assert(sib_base > bit);
+ if (sib_base >= binfo->nbits) {
+ return binfo->nbits;
+ }
+ return bitmap_ffu(bitmap, binfo, sib_base);
+ }
+ bit += ((size_t)ffs_lu(group_masked)) <<
+ (lg_bits_per_group - LG_BITMAP_GROUP_NBITS);
+ }
+ assert(bit >= min_bit);
+ assert(bit < binfo->nbits);
+ return bit;
+#else
+ size_t i = min_bit >> LG_BITMAP_GROUP_NBITS;
+ bitmap_t g = bitmap[i] & ~((1LU << (min_bit & BITMAP_GROUP_NBITS_MASK))
+ - 1);
+ size_t bit;
+ do {
+ if (g != 0) {
+ bit = ffs_lu(g);
+ return (i << LG_BITMAP_GROUP_NBITS) + bit;
+ }
+ i++;
+ g = bitmap[i];
+ } while (i < binfo->ngroups);
+ return binfo->nbits;
+#endif
+}
+
+/* sfu: set first unset. */
+static inline size_t
+bitmap_sfu(bitmap_t *bitmap, const bitmap_info_t *binfo) {
+ size_t bit;
+ bitmap_t g;
+ unsigned i;
+
+ assert(!bitmap_full(bitmap, binfo));
+
+#ifdef BITMAP_USE_TREE
+ i = binfo->nlevels - 1;
+ g = bitmap[binfo->levels[i].group_offset];
+ bit = ffs_lu(g);
+ while (i > 0) {
+ i--;
+ g = bitmap[binfo->levels[i].group_offset + bit];
+ bit = (bit << LG_BITMAP_GROUP_NBITS) + ffs_lu(g);
+ }
+#else
+ i = 0;
+ g = bitmap[0];
+ while (g == 0) {
+ i++;
+ g = bitmap[i];
+ }
+ bit = (i << LG_BITMAP_GROUP_NBITS) + ffs_lu(g);
+#endif
+ bitmap_set(bitmap, binfo, bit);
+ return bit;
+}
+
+static inline void
+bitmap_unset(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit) {
+ size_t goff;
+ bitmap_t *gp;
+ bitmap_t g;
+ UNUSED bool propagate;
+
+ assert(bit < binfo->nbits);
+ assert(bitmap_get(bitmap, binfo, bit));
+ goff = bit >> LG_BITMAP_GROUP_NBITS;
+ gp = &bitmap[goff];
+ g = *gp;
+ propagate = (g == 0);
+ assert((g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK))) == 0);
+ g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
+ *gp = g;
+ assert(!bitmap_get(bitmap, binfo, bit));
+#ifdef BITMAP_USE_TREE
+ /* Propagate group state transitions up the tree. */
+ if (propagate) {
+ unsigned i;
+ for (i = 1; i < binfo->nlevels; i++) {
+ bit = goff;
+ goff = bit >> LG_BITMAP_GROUP_NBITS;
+ gp = &bitmap[binfo->levels[i].group_offset + goff];
+ g = *gp;
+ propagate = (g == 0);
+ assert((g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)))
+ == 0);
+ g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
+ *gp = g;
+ if (!propagate) {
+ break;
+ }
+ }
+ }
+#endif /* BITMAP_USE_TREE */
+}
+
+#endif /* JEMALLOC_INTERNAL_BITMAP_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/buf_writer.h b/deps/jemalloc/include/jemalloc/internal/buf_writer.h
new file mode 100644
index 0000000..37aa6de
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/buf_writer.h
@@ -0,0 +1,32 @@
+#ifndef JEMALLOC_INTERNAL_BUF_WRITER_H
+#define JEMALLOC_INTERNAL_BUF_WRITER_H
+
+/*
+ * Note: when using the buffered writer, cbopaque is passed to write_cb only
+ * when the buffer is flushed. It would make a difference if cbopaque points
+ * to something that's changing for each write_cb call, or something that
+ * affects write_cb in a way dependent on the content of the output string.
+ * However, the most typical usage case in practice is that cbopaque points to
+ * some "option like" content for the write_cb, so it doesn't matter.
+ */
+
+typedef struct {
+ write_cb_t *write_cb;
+ void *cbopaque;
+ char *buf;
+ size_t buf_size;
+ size_t buf_end;
+ bool internal_buf;
+} buf_writer_t;
+
+bool buf_writer_init(tsdn_t *tsdn, buf_writer_t *buf_writer,
+ write_cb_t *write_cb, void *cbopaque, char *buf, size_t buf_len);
+void buf_writer_flush(buf_writer_t *buf_writer);
+write_cb_t buf_writer_cb;
+void buf_writer_terminate(tsdn_t *tsdn, buf_writer_t *buf_writer);
+
+typedef ssize_t (read_cb_t)(void *read_cbopaque, void *buf, size_t limit);
+void buf_writer_pipe(buf_writer_t *buf_writer, read_cb_t *read_cb,
+ void *read_cbopaque);
+
+#endif /* JEMALLOC_INTERNAL_BUF_WRITER_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/cache_bin.h b/deps/jemalloc/include/jemalloc/internal/cache_bin.h
new file mode 100644
index 0000000..caf5be3
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/cache_bin.h
@@ -0,0 +1,670 @@
+#ifndef JEMALLOC_INTERNAL_CACHE_BIN_H
+#define JEMALLOC_INTERNAL_CACHE_BIN_H
+
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/sz.h"
+
+/*
+ * The cache_bins are the mechanism that the tcache and the arena use to
+ * communicate. The tcache fills from and flushes to the arena by passing a
+ * cache_bin_t to fill/flush. When the arena needs to pull stats from the
+ * tcaches associated with it, it does so by iterating over its
+ * cache_bin_array_descriptor_t objects and reading out per-bin stats it
+ * contains. This makes it so that the arena need not know about the existence
+ * of the tcache at all.
+ */
+
+/*
+ * The size in bytes of each cache bin stack. We also use this to indicate
+ * *counts* of individual objects.
+ */
+typedef uint16_t cache_bin_sz_t;
+
+/*
+ * Leave a noticeable mark pattern on the cache bin stack boundaries, in case a
+ * bug starts leaking those. Make it look like the junk pattern but be distinct
+ * from it.
+ */
+static const uintptr_t cache_bin_preceding_junk =
+ (uintptr_t)0x7a7a7a7a7a7a7a7aULL;
+/* Note: a7 vs. 7a above -- this tells you which pointer leaked. */
+static const uintptr_t cache_bin_trailing_junk =
+ (uintptr_t)0xa7a7a7a7a7a7a7a7ULL;
+
+/*
+ * That implies the following value, for the maximum number of items in any
+ * individual bin. The cache bins track their bounds looking just at the low
+ * bits of a pointer, compared against a cache_bin_sz_t. So that's
+ * 1 << (sizeof(cache_bin_sz_t) * 8)
+ * bytes spread across pointer sized objects to get the maximum.
+ */
+#define CACHE_BIN_NCACHED_MAX (((size_t)1 << sizeof(cache_bin_sz_t) * 8) \
+ / sizeof(void *) - 1)
+
+/*
+ * This lives inside the cache_bin (for locality reasons), and is initialized
+ * alongside it, but is otherwise not modified by any cache bin operations.
+ * It's logically public and maintained by its callers.
+ */
+typedef struct cache_bin_stats_s cache_bin_stats_t;
+struct cache_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+};
+
+/*
+ * Read-only information associated with each element of tcache_t's tbins array
+ * is stored separately, mainly to reduce memory usage.
+ */
+typedef struct cache_bin_info_s cache_bin_info_t;
+struct cache_bin_info_s {
+ cache_bin_sz_t ncached_max;
+};
+
+/*
+ * Responsible for caching allocations associated with a single size.
+ *
+ * Several pointers are used to track the stack. To save on metadata bytes,
+ * only the stack_head is a full sized pointer (which is dereferenced on the
+ * fastpath), while the others store only the low 16 bits -- this is correct
+ * because a single stack never takes more space than 2^16 bytes, and at the
+ * same time only equality checks are performed on the low bits.
+ *
+ * (low addr) (high addr)
+ * |------stashed------|------available------|------cached-----|
+ * ^ ^ ^ ^
+ * low_bound(derived) low_bits_full stack_head low_bits_empty
+ */
+typedef struct cache_bin_s cache_bin_t;
+struct cache_bin_s {
+ /*
+ * The stack grows down. Whenever the bin is nonempty, the head points
+ * to an array entry containing a valid allocation. When it is empty,
+ * the head points to one element past the owned array.
+ */
+ void **stack_head;
+ /*
+ * cur_ptr and stats are both modified frequently. Let's keep them
+ * close so that they have a higher chance of being on the same
+ * cacheline, thus less write-backs.
+ */
+ cache_bin_stats_t tstats;
+
+ /*
+ * The low bits of the address of the first item in the stack that
+ * hasn't been used since the last GC, to track the low water mark (min
+ * # of cached items).
+ *
+ * Since the stack grows down, this is a higher address than
+ * low_bits_full.
+ */
+ uint16_t low_bits_low_water;
+
+ /*
+ * The low bits of the value that stack_head will take on when the array
+ * is full (of cached & stashed items). But remember that stack_head
+ * always points to a valid item when the array is nonempty -- this is
+ * in the array.
+ *
+ * Recall that since the stack grows down, this is the lowest available
+ * address in the array for caching. Only adjusted when stashing items.
+ */
+ uint16_t low_bits_full;
+
+ /*
+ * The low bits of the value that stack_head will take on when the array
+ * is empty.
+ *
+ * The stack grows down -- this is one past the highest address in the
+ * array. Immutable after initialization.
+ */
+ uint16_t low_bits_empty;
+};
+
+/*
+ * The cache_bins live inside the tcache, but the arena (by design) isn't
+ * supposed to know much about tcache internals. To let the arena iterate over
+ * associated bins, we keep (with the tcache) a linked list of
+ * cache_bin_array_descriptor_ts that tell the arena how to find the bins.
+ */
+typedef struct cache_bin_array_descriptor_s cache_bin_array_descriptor_t;
+struct cache_bin_array_descriptor_s {
+ /*
+ * The arena keeps a list of the cache bins associated with it, for
+ * stats collection.
+ */
+ ql_elm(cache_bin_array_descriptor_t) link;
+ /* Pointers to the tcache bins. */
+ cache_bin_t *bins;
+};
+
+static inline void
+cache_bin_array_descriptor_init(cache_bin_array_descriptor_t *descriptor,
+ cache_bin_t *bins) {
+ ql_elm_new(descriptor, link);
+ descriptor->bins = bins;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+cache_bin_nonfast_aligned(const void *ptr) {
+ if (!config_uaf_detection) {
+ return false;
+ }
+ /*
+ * Currently we use alignment to decide which pointer to junk & stash on
+ * dealloc (for catching use-after-free). In some common cases a
+ * page-aligned check is needed already (sdalloc w/ config_prof), so we
+ * are getting it more or less for free -- no added instructions on
+ * free_fastpath.
+ *
+ * Another way of deciding which pointer to sample, is adding another
+ * thread_event to pick one every N bytes. That also adds no cost on
+ * the fastpath, however it will tend to pick large allocations which is
+ * not the desired behavior.
+ */
+ return ((uintptr_t)ptr & san_cache_bin_nonfast_mask) == 0;
+}
+
+/* Returns ncached_max: Upper limit on ncached. */
+static inline cache_bin_sz_t
+cache_bin_info_ncached_max(cache_bin_info_t *info) {
+ return info->ncached_max;
+}
+
+/*
+ * Internal.
+ *
+ * Asserts that the pointer associated with earlier is <= the one associated
+ * with later.
+ */
+static inline void
+cache_bin_assert_earlier(cache_bin_t *bin, uint16_t earlier, uint16_t later) {
+ if (earlier > later) {
+ assert(bin->low_bits_full > bin->low_bits_empty);
+ }
+}
+
+/*
+ * Internal.
+ *
+ * Does difference calculations that handle wraparound correctly. Earlier must
+ * be associated with the position earlier in memory.
+ */
+static inline uint16_t
+cache_bin_diff(cache_bin_t *bin, uint16_t earlier, uint16_t later, bool racy) {
+ /*
+ * When it's racy, bin->low_bits_full can be modified concurrently. It
+ * can cross the uint16_t max value and become less than
+ * bin->low_bits_empty at the time of the check.
+ */
+ if (!racy) {
+ cache_bin_assert_earlier(bin, earlier, later);
+ }
+ return later - earlier;
+}
+
+/*
+ * Number of items currently cached in the bin, without checking ncached_max.
+ * We require specifying whether or not the request is racy or not (i.e. whether
+ * or not concurrent modifications are possible).
+ */
+static inline cache_bin_sz_t
+cache_bin_ncached_get_internal(cache_bin_t *bin, bool racy) {
+ cache_bin_sz_t diff = cache_bin_diff(bin,
+ (uint16_t)(uintptr_t)bin->stack_head, bin->low_bits_empty, racy);
+ cache_bin_sz_t n = diff / sizeof(void *);
+ /*
+ * We have undefined behavior here; if this function is called from the
+ * arena stats updating code, then stack_head could change from the
+ * first line to the next one. Morally, these loads should be atomic,
+ * but compilers won't currently generate comparisons with in-memory
+ * operands against atomics, and these variables get accessed on the
+ * fast paths. This should still be "safe" in the sense of generating
+ * the correct assembly for the foreseeable future, though.
+ */
+ assert(n == 0 || *(bin->stack_head) != NULL || racy);
+ return n;
+}
+
+/*
+ * Number of items currently cached in the bin, with checking ncached_max. The
+ * caller must know that no concurrent modification of the cache_bin is
+ * possible.
+ */
+static inline cache_bin_sz_t
+cache_bin_ncached_get_local(cache_bin_t *bin, cache_bin_info_t *info) {
+ cache_bin_sz_t n = cache_bin_ncached_get_internal(bin,
+ /* racy */ false);
+ assert(n <= cache_bin_info_ncached_max(info));
+ return n;
+}
+
+/*
+ * Internal.
+ *
+ * A pointer to the position one past the end of the backing array.
+ *
+ * Do not call if racy, because both 'bin->stack_head' and 'bin->low_bits_full'
+ * are subject to concurrent modifications.
+ */
+static inline void **
+cache_bin_empty_position_get(cache_bin_t *bin) {
+ cache_bin_sz_t diff = cache_bin_diff(bin,
+ (uint16_t)(uintptr_t)bin->stack_head, bin->low_bits_empty,
+ /* racy */ false);
+ uintptr_t empty_bits = (uintptr_t)bin->stack_head + diff;
+ void **ret = (void **)empty_bits;
+
+ assert(ret >= bin->stack_head);
+
+ return ret;
+}
+
+/*
+ * Internal.
+ *
+ * Calculates low bits of the lower bound of the usable cache bin's range (see
+ * cache_bin_t visual representation above).
+ *
+ * No values are concurrently modified, so should be safe to read in a
+ * multithreaded environment. Currently concurrent access happens only during
+ * arena statistics collection.
+ */
+static inline uint16_t
+cache_bin_low_bits_low_bound_get(cache_bin_t *bin, cache_bin_info_t *info) {
+ return (uint16_t)bin->low_bits_empty -
+ info->ncached_max * sizeof(void *);
+}
+
+/*
+ * Internal.
+ *
+ * A pointer to the position with the lowest address of the backing array.
+ */
+static inline void **
+cache_bin_low_bound_get(cache_bin_t *bin, cache_bin_info_t *info) {
+ cache_bin_sz_t ncached_max = cache_bin_info_ncached_max(info);
+ void **ret = cache_bin_empty_position_get(bin) - ncached_max;
+ assert(ret <= bin->stack_head);
+
+ return ret;
+}
+
+/*
+ * As the name implies. This is important since it's not correct to try to
+ * batch fill a nonempty cache bin.
+ */
+static inline void
+cache_bin_assert_empty(cache_bin_t *bin, cache_bin_info_t *info) {
+ assert(cache_bin_ncached_get_local(bin, info) == 0);
+ assert(cache_bin_empty_position_get(bin) == bin->stack_head);
+}
+
+/*
+ * Get low water, but without any of the correctness checking we do for the
+ * caller-usable version, if we are temporarily breaking invariants (like
+ * ncached >= low_water during flush).
+ */
+static inline cache_bin_sz_t
+cache_bin_low_water_get_internal(cache_bin_t *bin) {
+ return cache_bin_diff(bin, bin->low_bits_low_water,
+ bin->low_bits_empty, /* racy */ false) / sizeof(void *);
+}
+
+/* Returns the numeric value of low water in [0, ncached]. */
+static inline cache_bin_sz_t
+cache_bin_low_water_get(cache_bin_t *bin, cache_bin_info_t *info) {
+ cache_bin_sz_t low_water = cache_bin_low_water_get_internal(bin);
+ assert(low_water <= cache_bin_info_ncached_max(info));
+ assert(low_water <= cache_bin_ncached_get_local(bin, info));
+
+ cache_bin_assert_earlier(bin, (uint16_t)(uintptr_t)bin->stack_head,
+ bin->low_bits_low_water);
+
+ return low_water;
+}
+
+/*
+ * Indicates that the current cache bin position should be the low water mark
+ * going forward.
+ */
+static inline void
+cache_bin_low_water_set(cache_bin_t *bin) {
+ bin->low_bits_low_water = (uint16_t)(uintptr_t)bin->stack_head;
+}
+
+static inline void
+cache_bin_low_water_adjust(cache_bin_t *bin) {
+ if (cache_bin_ncached_get_internal(bin, /* racy */ false)
+ < cache_bin_low_water_get_internal(bin)) {
+ cache_bin_low_water_set(bin);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+cache_bin_alloc_impl(cache_bin_t *bin, bool *success, bool adjust_low_water) {
+ /*
+ * success (instead of ret) should be checked upon the return of this
+ * function. We avoid checking (ret == NULL) because there is never a
+ * null stored on the avail stack (which is unknown to the compiler),
+ * and eagerly checking ret would cause pipeline stall (waiting for the
+ * cacheline).
+ */
+
+ /*
+ * This may read from the empty position; however the loaded value won't
+ * be used. It's safe because the stack has one more slot reserved.
+ */
+ void *ret = *bin->stack_head;
+ uint16_t low_bits = (uint16_t)(uintptr_t)bin->stack_head;
+ void **new_head = bin->stack_head + 1;
+
+ /*
+ * Note that the low water mark is at most empty; if we pass this check,
+ * we know we're non-empty.
+ */
+ if (likely(low_bits != bin->low_bits_low_water)) {
+ bin->stack_head = new_head;
+ *success = true;
+ return ret;
+ }
+ if (!adjust_low_water) {
+ *success = false;
+ return NULL;
+ }
+ /*
+ * In the fast-path case where we call alloc_easy and then alloc, the
+ * previous checking and computation is optimized away -- we didn't
+ * actually commit any of our operations.
+ */
+ if (likely(low_bits != bin->low_bits_empty)) {
+ bin->stack_head = new_head;
+ bin->low_bits_low_water = (uint16_t)(uintptr_t)new_head;
+ *success = true;
+ return ret;
+ }
+ *success = false;
+ return NULL;
+}
+
+/*
+ * Allocate an item out of the bin, failing if we're at the low-water mark.
+ */
+JEMALLOC_ALWAYS_INLINE void *
+cache_bin_alloc_easy(cache_bin_t *bin, bool *success) {
+ /* We don't look at info if we're not adjusting low-water. */
+ return cache_bin_alloc_impl(bin, success, false);
+}
+
+/*
+ * Allocate an item out of the bin, even if we're currently at the low-water
+ * mark (and failing only if the bin is empty).
+ */
+JEMALLOC_ALWAYS_INLINE void *
+cache_bin_alloc(cache_bin_t *bin, bool *success) {
+ return cache_bin_alloc_impl(bin, success, true);
+}
+
+JEMALLOC_ALWAYS_INLINE cache_bin_sz_t
+cache_bin_alloc_batch(cache_bin_t *bin, size_t num, void **out) {
+ cache_bin_sz_t n = cache_bin_ncached_get_internal(bin,
+ /* racy */ false);
+ if (n > num) {
+ n = (cache_bin_sz_t)num;
+ }
+ memcpy(out, bin->stack_head, n * sizeof(void *));
+ bin->stack_head += n;
+ cache_bin_low_water_adjust(bin);
+
+ return n;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+cache_bin_full(cache_bin_t *bin) {
+ return ((uint16_t)(uintptr_t)bin->stack_head == bin->low_bits_full);
+}
+
+/*
+ * Free an object into the given bin. Fails only if the bin is full.
+ */
+JEMALLOC_ALWAYS_INLINE bool
+cache_bin_dalloc_easy(cache_bin_t *bin, void *ptr) {
+ if (unlikely(cache_bin_full(bin))) {
+ return false;
+ }
+
+ bin->stack_head--;
+ *bin->stack_head = ptr;
+ cache_bin_assert_earlier(bin, bin->low_bits_full,
+ (uint16_t)(uintptr_t)bin->stack_head);
+
+ return true;
+}
+
+/* Returns false if failed to stash (i.e. bin is full). */
+JEMALLOC_ALWAYS_INLINE bool
+cache_bin_stash(cache_bin_t *bin, void *ptr) {
+ if (cache_bin_full(bin)) {
+ return false;
+ }
+
+ /* Stash at the full position, in the [full, head) range. */
+ uint16_t low_bits_head = (uint16_t)(uintptr_t)bin->stack_head;
+ /* Wraparound handled as well. */
+ uint16_t diff = cache_bin_diff(bin, bin->low_bits_full, low_bits_head,
+ /* racy */ false);
+ *(void **)((uintptr_t)bin->stack_head - diff) = ptr;
+
+ assert(!cache_bin_full(bin));
+ bin->low_bits_full += sizeof(void *);
+ cache_bin_assert_earlier(bin, bin->low_bits_full, low_bits_head);
+
+ return true;
+}
+
+/*
+ * Get the number of stashed pointers.
+ *
+ * When called from a thread not owning the TLS (i.e. racy = true), it's
+ * important to keep in mind that 'bin->stack_head' and 'bin->low_bits_full' can
+ * be modified concurrently and almost none assertions about their values can be
+ * made.
+ */
+JEMALLOC_ALWAYS_INLINE cache_bin_sz_t
+cache_bin_nstashed_get_internal(cache_bin_t *bin, cache_bin_info_t *info,
+ bool racy) {
+ cache_bin_sz_t ncached_max = cache_bin_info_ncached_max(info);
+ uint16_t low_bits_low_bound = cache_bin_low_bits_low_bound_get(bin,
+ info);
+
+ cache_bin_sz_t n = cache_bin_diff(bin, low_bits_low_bound,
+ bin->low_bits_full, racy) / sizeof(void *);
+ assert(n <= ncached_max);
+
+ if (!racy) {
+ /* Below are for assertions only. */
+ void **low_bound = cache_bin_low_bound_get(bin, info);
+
+ assert((uint16_t)(uintptr_t)low_bound == low_bits_low_bound);
+ void *stashed = *(low_bound + n - 1);
+ bool aligned = cache_bin_nonfast_aligned(stashed);
+#ifdef JEMALLOC_JET
+ /* Allow arbitrary pointers to be stashed in tests. */
+ aligned = true;
+#endif
+ assert(n == 0 || (stashed != NULL && aligned));
+ }
+
+ return n;
+}
+
+JEMALLOC_ALWAYS_INLINE cache_bin_sz_t
+cache_bin_nstashed_get_local(cache_bin_t *bin, cache_bin_info_t *info) {
+ cache_bin_sz_t n = cache_bin_nstashed_get_internal(bin, info,
+ /* racy */ false);
+ assert(n <= cache_bin_info_ncached_max(info));
+ return n;
+}
+
+/*
+ * Obtain a racy view of the number of items currently in the cache bin, in the
+ * presence of possible concurrent modifications.
+ */
+static inline void
+cache_bin_nitems_get_remote(cache_bin_t *bin, cache_bin_info_t *info,
+ cache_bin_sz_t *ncached, cache_bin_sz_t *nstashed) {
+ cache_bin_sz_t n = cache_bin_ncached_get_internal(bin, /* racy */ true);
+ assert(n <= cache_bin_info_ncached_max(info));
+ *ncached = n;
+
+ n = cache_bin_nstashed_get_internal(bin, info, /* racy */ true);
+ assert(n <= cache_bin_info_ncached_max(info));
+ *nstashed = n;
+ /* Note that cannot assert ncached + nstashed <= ncached_max (racy). */
+}
+
+/*
+ * Filling and flushing are done in batch, on arrays of void *s. For filling,
+ * the arrays go forward, and can be accessed with ordinary array arithmetic.
+ * For flushing, we work from the end backwards, and so need to use special
+ * accessors that invert the usual ordering.
+ *
+ * This is important for maintaining first-fit; the arena code fills with
+ * earliest objects first, and so those are the ones we should return first for
+ * cache_bin_alloc calls. When flushing, we should flush the objects that we
+ * wish to return later; those at the end of the array. This is better for the
+ * first-fit heuristic as well as for cache locality; the most recently freed
+ * objects are the ones most likely to still be in cache.
+ *
+ * This all sounds very hand-wavey and theoretical, but reverting the ordering
+ * on one or the other pathway leads to measurable slowdowns.
+ */
+
+typedef struct cache_bin_ptr_array_s cache_bin_ptr_array_t;
+struct cache_bin_ptr_array_s {
+ cache_bin_sz_t n;
+ void **ptr;
+};
+
+/*
+ * Declare a cache_bin_ptr_array_t sufficient for nval items.
+ *
+ * In the current implementation, this could be just part of a
+ * cache_bin_ptr_array_init_... call, since we reuse the cache bin stack memory.
+ * Indirecting behind a macro, though, means experimenting with linked-list
+ * representations is easy (since they'll require an alloca in the calling
+ * frame).
+ */
+#define CACHE_BIN_PTR_ARRAY_DECLARE(name, nval) \
+ cache_bin_ptr_array_t name; \
+ name.n = (nval)
+
+/*
+ * Start a fill. The bin must be empty, and This must be followed by a
+ * finish_fill call before doing any alloc/dalloc operations on the bin.
+ */
+static inline void
+cache_bin_init_ptr_array_for_fill(cache_bin_t *bin, cache_bin_info_t *info,
+ cache_bin_ptr_array_t *arr, cache_bin_sz_t nfill) {
+ cache_bin_assert_empty(bin, info);
+ arr->ptr = cache_bin_empty_position_get(bin) - nfill;
+}
+
+/*
+ * While nfill in cache_bin_init_ptr_array_for_fill is the number we *intend* to
+ * fill, nfilled here is the number we actually filled (which may be less, in
+ * case of OOM.
+ */
+static inline void
+cache_bin_finish_fill(cache_bin_t *bin, cache_bin_info_t *info,
+ cache_bin_ptr_array_t *arr, cache_bin_sz_t nfilled) {
+ cache_bin_assert_empty(bin, info);
+ void **empty_position = cache_bin_empty_position_get(bin);
+ if (nfilled < arr->n) {
+ memmove(empty_position - nfilled, empty_position - arr->n,
+ nfilled * sizeof(void *));
+ }
+ bin->stack_head = empty_position - nfilled;
+}
+
+/*
+ * Same deal, but with flush. Unlike fill (which can fail), the user must flush
+ * everything we give them.
+ */
+static inline void
+cache_bin_init_ptr_array_for_flush(cache_bin_t *bin, cache_bin_info_t *info,
+ cache_bin_ptr_array_t *arr, cache_bin_sz_t nflush) {
+ arr->ptr = cache_bin_empty_position_get(bin) - nflush;
+ assert(cache_bin_ncached_get_local(bin, info) == 0
+ || *arr->ptr != NULL);
+}
+
+static inline void
+cache_bin_finish_flush(cache_bin_t *bin, cache_bin_info_t *info,
+ cache_bin_ptr_array_t *arr, cache_bin_sz_t nflushed) {
+ unsigned rem = cache_bin_ncached_get_local(bin, info) - nflushed;
+ memmove(bin->stack_head + nflushed, bin->stack_head,
+ rem * sizeof(void *));
+ bin->stack_head = bin->stack_head + nflushed;
+ cache_bin_low_water_adjust(bin);
+}
+
+static inline void
+cache_bin_init_ptr_array_for_stashed(cache_bin_t *bin, szind_t binind,
+ cache_bin_info_t *info, cache_bin_ptr_array_t *arr,
+ cache_bin_sz_t nstashed) {
+ assert(nstashed > 0);
+ assert(cache_bin_nstashed_get_local(bin, info) == nstashed);
+
+ void **low_bound = cache_bin_low_bound_get(bin, info);
+ arr->ptr = low_bound;
+ assert(*arr->ptr != NULL);
+}
+
+static inline void
+cache_bin_finish_flush_stashed(cache_bin_t *bin, cache_bin_info_t *info) {
+ void **low_bound = cache_bin_low_bound_get(bin, info);
+
+ /* Reset the bin local full position. */
+ bin->low_bits_full = (uint16_t)(uintptr_t)low_bound;
+ assert(cache_bin_nstashed_get_local(bin, info) == 0);
+}
+
+/*
+ * Initialize a cache_bin_info to represent up to the given number of items in
+ * the cache_bins it is associated with.
+ */
+void cache_bin_info_init(cache_bin_info_t *bin_info,
+ cache_bin_sz_t ncached_max);
+/*
+ * Given an array of initialized cache_bin_info_ts, determine how big an
+ * allocation is required to initialize a full set of cache_bin_ts.
+ */
+void cache_bin_info_compute_alloc(cache_bin_info_t *infos, szind_t ninfos,
+ size_t *size, size_t *alignment);
+
+/*
+ * Actually initialize some cache bins. Callers should allocate the backing
+ * memory indicated by a call to cache_bin_compute_alloc. They should then
+ * preincrement, call init once for each bin and info, and then call
+ * cache_bin_postincrement. *alloc_cur will then point immediately past the end
+ * of the allocation.
+ */
+void cache_bin_preincrement(cache_bin_info_t *infos, szind_t ninfos,
+ void *alloc, size_t *cur_offset);
+void cache_bin_postincrement(cache_bin_info_t *infos, szind_t ninfos,
+ void *alloc, size_t *cur_offset);
+void cache_bin_init(cache_bin_t *bin, cache_bin_info_t *info, void *alloc,
+ size_t *cur_offset);
+
+/*
+ * If a cache bin was zero initialized (either because it lives in static or
+ * thread-local storage, or was memset to 0), this function indicates whether or
+ * not cache_bin_init was called on it.
+ */
+bool cache_bin_still_zero_initialized(cache_bin_t *bin);
+
+#endif /* JEMALLOC_INTERNAL_CACHE_BIN_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/ckh.h b/deps/jemalloc/include/jemalloc/internal/ckh.h
new file mode 100644
index 0000000..7b3850b
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ckh.h
@@ -0,0 +1,101 @@
+#ifndef JEMALLOC_INTERNAL_CKH_H
+#define JEMALLOC_INTERNAL_CKH_H
+
+#include "jemalloc/internal/tsd.h"
+
+/* Cuckoo hashing implementation. Skip to the end for the interface. */
+
+/******************************************************************************/
+/* INTERNAL DEFINITIONS -- IGNORE */
+/******************************************************************************/
+
+/* Maintain counters used to get an idea of performance. */
+/* #define CKH_COUNT */
+/* Print counter values in ckh_delete() (requires CKH_COUNT). */
+/* #define CKH_VERBOSE */
+
+/*
+ * There are 2^LG_CKH_BUCKET_CELLS cells in each hash table bucket. Try to fit
+ * one bucket per L1 cache line.
+ */
+#define LG_CKH_BUCKET_CELLS (LG_CACHELINE - LG_SIZEOF_PTR - 1)
+
+/* Typedefs to allow easy function pointer passing. */
+typedef void ckh_hash_t (const void *, size_t[2]);
+typedef bool ckh_keycomp_t (const void *, const void *);
+
+/* Hash table cell. */
+typedef struct {
+ const void *key;
+ const void *data;
+} ckhc_t;
+
+/* The hash table itself. */
+typedef struct {
+#ifdef CKH_COUNT
+ /* Counters used to get an idea of performance. */
+ uint64_t ngrows;
+ uint64_t nshrinks;
+ uint64_t nshrinkfails;
+ uint64_t ninserts;
+ uint64_t nrelocs;
+#endif
+
+ /* Used for pseudo-random number generation. */
+ uint64_t prng_state;
+
+ /* Total number of items. */
+ size_t count;
+
+ /*
+ * Minimum and current number of hash table buckets. There are
+ * 2^LG_CKH_BUCKET_CELLS cells per bucket.
+ */
+ unsigned lg_minbuckets;
+ unsigned lg_curbuckets;
+
+ /* Hash and comparison functions. */
+ ckh_hash_t *hash;
+ ckh_keycomp_t *keycomp;
+
+ /* Hash table with 2^lg_curbuckets buckets. */
+ ckhc_t *tab;
+} ckh_t;
+
+/******************************************************************************/
+/* BEGIN PUBLIC API */
+/******************************************************************************/
+
+/* Lifetime management. Minitems is the initial capacity. */
+bool ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
+ ckh_keycomp_t *keycomp);
+void ckh_delete(tsd_t *tsd, ckh_t *ckh);
+
+/* Get the number of elements in the set. */
+size_t ckh_count(ckh_t *ckh);
+
+/*
+ * To iterate over the elements in the table, initialize *tabind to 0 and call
+ * this function until it returns true. Each call that returns false will
+ * update *key and *data to the next element in the table, assuming the pointers
+ * are non-NULL.
+ */
+bool ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data);
+
+/*
+ * Basic hash table operations -- insert, removal, lookup. For ckh_remove and
+ * ckh_search, key or data can be NULL. The hash-table only stores pointers to
+ * the key and value, and doesn't do any lifetime management.
+ */
+bool ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data);
+bool ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
+ void **data);
+bool ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data);
+
+/* Some useful hash and comparison functions for strings and pointers. */
+void ckh_string_hash(const void *key, size_t r_hash[2]);
+bool ckh_string_keycomp(const void *k1, const void *k2);
+void ckh_pointer_hash(const void *key, size_t r_hash[2]);
+bool ckh_pointer_keycomp(const void *k1, const void *k2);
+
+#endif /* JEMALLOC_INTERNAL_CKH_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/counter.h b/deps/jemalloc/include/jemalloc/internal/counter.h
new file mode 100644
index 0000000..79abf06
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/counter.h
@@ -0,0 +1,34 @@
+#ifndef JEMALLOC_INTERNAL_COUNTER_H
+#define JEMALLOC_INTERNAL_COUNTER_H
+
+#include "jemalloc/internal/mutex.h"
+
+typedef struct counter_accum_s {
+ LOCKEDINT_MTX_DECLARE(mtx)
+ locked_u64_t accumbytes;
+ uint64_t interval;
+} counter_accum_t;
+
+JEMALLOC_ALWAYS_INLINE bool
+counter_accum(tsdn_t *tsdn, counter_accum_t *counter, uint64_t bytes) {
+ uint64_t interval = counter->interval;
+ assert(interval > 0);
+ LOCKEDINT_MTX_LOCK(tsdn, counter->mtx);
+ /*
+ * If the event moves fast enough (and/or if the event handling is slow
+ * enough), extreme overflow can cause counter trigger coalescing.
+ * This is an intentional mechanism that avoids rate-limiting
+ * allocation.
+ */
+ bool overflow = locked_inc_mod_u64(tsdn, LOCKEDINT_MTX(counter->mtx),
+ &counter->accumbytes, bytes, interval);
+ LOCKEDINT_MTX_UNLOCK(tsdn, counter->mtx);
+ return overflow;
+}
+
+bool counter_accum_init(counter_accum_t *counter, uint64_t interval);
+void counter_prefork(tsdn_t *tsdn, counter_accum_t *counter);
+void counter_postfork_parent(tsdn_t *tsdn, counter_accum_t *counter);
+void counter_postfork_child(tsdn_t *tsdn, counter_accum_t *counter);
+
+#endif /* JEMALLOC_INTERNAL_COUNTER_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/ctl.h b/deps/jemalloc/include/jemalloc/internal/ctl.h
new file mode 100644
index 0000000..63d27f8
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ctl.h
@@ -0,0 +1,159 @@
+#ifndef JEMALLOC_INTERNAL_CTL_H
+#define JEMALLOC_INTERNAL_CTL_H
+
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/malloc_io.h"
+#include "jemalloc/internal/mutex_prof.h"
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/stats.h"
+
+/* Maximum ctl tree depth. */
+#define CTL_MAX_DEPTH 7
+
+typedef struct ctl_node_s {
+ bool named;
+} ctl_node_t;
+
+typedef struct ctl_named_node_s {
+ ctl_node_t node;
+ const char *name;
+ /* If (nchildren == 0), this is a terminal node. */
+ size_t nchildren;
+ const ctl_node_t *children;
+ int (*ctl)(tsd_t *, const size_t *, size_t, void *, size_t *, void *,
+ size_t);
+} ctl_named_node_t;
+
+typedef struct ctl_indexed_node_s {
+ struct ctl_node_s node;
+ const ctl_named_node_t *(*index)(tsdn_t *, const size_t *, size_t,
+ size_t);
+} ctl_indexed_node_t;
+
+typedef struct ctl_arena_stats_s {
+ arena_stats_t astats;
+
+ /* Aggregate stats for small size classes, based on bin stats. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+ uint64_t nrequests_small;
+ uint64_t nfills_small;
+ uint64_t nflushes_small;
+
+ bin_stats_data_t bstats[SC_NBINS];
+ arena_stats_large_t lstats[SC_NSIZES - SC_NBINS];
+ pac_estats_t estats[SC_NPSIZES];
+ hpa_shard_stats_t hpastats;
+ sec_stats_t secstats;
+} ctl_arena_stats_t;
+
+typedef struct ctl_stats_s {
+ size_t allocated;
+ size_t active;
+ size_t metadata;
+ size_t metadata_thp;
+ size_t resident;
+ size_t mapped;
+ size_t retained;
+
+ background_thread_stats_t background_thread;
+ mutex_prof_data_t mutex_prof_data[mutex_prof_num_global_mutexes];
+} ctl_stats_t;
+
+typedef struct ctl_arena_s ctl_arena_t;
+struct ctl_arena_s {
+ unsigned arena_ind;
+ bool initialized;
+ ql_elm(ctl_arena_t) destroyed_link;
+
+ /* Basic stats, supported even if !config_stats. */
+ unsigned nthreads;
+ const char *dss;
+ ssize_t dirty_decay_ms;
+ ssize_t muzzy_decay_ms;
+ size_t pactive;
+ size_t pdirty;
+ size_t pmuzzy;
+
+ /* NULL if !config_stats. */
+ ctl_arena_stats_t *astats;
+};
+
+typedef struct ctl_arenas_s {
+ uint64_t epoch;
+ unsigned narenas;
+ ql_head(ctl_arena_t) destroyed;
+
+ /*
+ * Element 0 corresponds to merged stats for extant arenas (accessed via
+ * MALLCTL_ARENAS_ALL), element 1 corresponds to merged stats for
+ * destroyed arenas (accessed via MALLCTL_ARENAS_DESTROYED), and the
+ * remaining MALLOCX_ARENA_LIMIT elements correspond to arenas.
+ */
+ ctl_arena_t *arenas[2 + MALLOCX_ARENA_LIMIT];
+} ctl_arenas_t;
+
+int ctl_byname(tsd_t *tsd, const char *name, void *oldp, size_t *oldlenp,
+ void *newp, size_t newlen);
+int ctl_nametomib(tsd_t *tsd, const char *name, size_t *mibp, size_t *miblenp);
+int ctl_bymib(tsd_t *tsd, const size_t *mib, size_t miblen, void *oldp,
+ size_t *oldlenp, void *newp, size_t newlen);
+int ctl_mibnametomib(tsd_t *tsd, size_t *mib, size_t miblen, const char *name,
+ size_t *miblenp);
+int ctl_bymibname(tsd_t *tsd, size_t *mib, size_t miblen, const char *name,
+ size_t *miblenp, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
+bool ctl_boot(void);
+void ctl_prefork(tsdn_t *tsdn);
+void ctl_postfork_parent(tsdn_t *tsdn);
+void ctl_postfork_child(tsdn_t *tsdn);
+void ctl_mtx_assert_held(tsdn_t *tsdn);
+
+#define xmallctl(name, oldp, oldlenp, newp, newlen) do { \
+ if (je_mallctl(name, oldp, oldlenp, newp, newlen) \
+ != 0) { \
+ malloc_printf( \
+ "<jemalloc>: Failure in xmallctl(\"%s\", ...)\n", \
+ name); \
+ abort(); \
+ } \
+} while (0)
+
+#define xmallctlnametomib(name, mibp, miblenp) do { \
+ if (je_mallctlnametomib(name, mibp, miblenp) != 0) { \
+ malloc_printf("<jemalloc>: Failure in " \
+ "xmallctlnametomib(\"%s\", ...)\n", name); \
+ abort(); \
+ } \
+} while (0)
+
+#define xmallctlbymib(mib, miblen, oldp, oldlenp, newp, newlen) do { \
+ if (je_mallctlbymib(mib, miblen, oldp, oldlenp, newp, \
+ newlen) != 0) { \
+ malloc_write( \
+ "<jemalloc>: Failure in xmallctlbymib()\n"); \
+ abort(); \
+ } \
+} while (0)
+
+#define xmallctlmibnametomib(mib, miblen, name, miblenp) do { \
+ if (ctl_mibnametomib(tsd_fetch(), mib, miblen, name, miblenp) \
+ != 0) { \
+ malloc_write( \
+ "<jemalloc>: Failure in ctl_mibnametomib()\n"); \
+ abort(); \
+ } \
+} while (0)
+
+#define xmallctlbymibname(mib, miblen, name, miblenp, oldp, oldlenp, \
+ newp, newlen) do { \
+ if (ctl_bymibname(tsd_fetch(), mib, miblen, name, miblenp, \
+ oldp, oldlenp, newp, newlen) != 0) { \
+ malloc_write( \
+ "<jemalloc>: Failure in ctl_bymibname()\n"); \
+ abort(); \
+ } \
+} while (0)
+
+#endif /* JEMALLOC_INTERNAL_CTL_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/decay.h b/deps/jemalloc/include/jemalloc/internal/decay.h
new file mode 100644
index 0000000..cf6a9d2
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/decay.h
@@ -0,0 +1,186 @@
+#ifndef JEMALLOC_INTERNAL_DECAY_H
+#define JEMALLOC_INTERNAL_DECAY_H
+
+#include "jemalloc/internal/smoothstep.h"
+
+#define DECAY_UNBOUNDED_TIME_TO_PURGE ((uint64_t)-1)
+
+/*
+ * The decay_t computes the number of pages we should purge at any given time.
+ * Page allocators inform a decay object when pages enter a decay-able state
+ * (i.e. dirty or muzzy), and query it to determine how many pages should be
+ * purged at any given time.
+ *
+ * This is mostly a single-threaded data structure and doesn't care about
+ * synchronization at all; it's the caller's responsibility to manage their
+ * synchronization on their own. There are two exceptions:
+ * 1) It's OK to racily call decay_ms_read (i.e. just the simplest state query).
+ * 2) The mtx and purging fields live (and are initialized) here, but are
+ * logically owned by the page allocator. This is just a convenience (since
+ * those fields would be duplicated for both the dirty and muzzy states
+ * otherwise).
+ */
+typedef struct decay_s decay_t;
+struct decay_s {
+ /* Synchronizes all non-atomic fields. */
+ malloc_mutex_t mtx;
+ /*
+ * True if a thread is currently purging the extents associated with
+ * this decay structure.
+ */
+ bool purging;
+ /*
+ * Approximate time in milliseconds from the creation of a set of unused
+ * dirty pages until an equivalent set of unused dirty pages is purged
+ * and/or reused.
+ */
+ atomic_zd_t time_ms;
+ /* time / SMOOTHSTEP_NSTEPS. */
+ nstime_t interval;
+ /*
+ * Time at which the current decay interval logically started. We do
+ * not actually advance to a new epoch until sometime after it starts
+ * because of scheduling and computation delays, and it is even possible
+ * to completely skip epochs. In all cases, during epoch advancement we
+ * merge all relevant activity into the most recently recorded epoch.
+ */
+ nstime_t epoch;
+ /* Deadline randomness generator. */
+ uint64_t jitter_state;
+ /*
+ * Deadline for current epoch. This is the sum of interval and per
+ * epoch jitter which is a uniform random variable in [0..interval).
+ * Epochs always advance by precise multiples of interval, but we
+ * randomize the deadline to reduce the likelihood of arenas purging in
+ * lockstep.
+ */
+ nstime_t deadline;
+ /*
+ * The number of pages we cap ourselves at in the current epoch, per
+ * decay policies. Updated on an epoch change. After an epoch change,
+ * the caller should take steps to try to purge down to this amount.
+ */
+ size_t npages_limit;
+ /*
+ * Number of unpurged pages at beginning of current epoch. During epoch
+ * advancement we use the delta between arena->decay_*.nunpurged and
+ * ecache_npages_get(&arena->ecache_*) to determine how many dirty pages,
+ * if any, were generated.
+ */
+ size_t nunpurged;
+ /*
+ * Trailing log of how many unused dirty pages were generated during
+ * each of the past SMOOTHSTEP_NSTEPS decay epochs, where the last
+ * element is the most recent epoch. Corresponding epoch times are
+ * relative to epoch.
+ *
+ * Updated only on epoch advance, triggered by
+ * decay_maybe_advance_epoch, below.
+ */
+ size_t backlog[SMOOTHSTEP_NSTEPS];
+
+ /* Peak number of pages in associated extents. Used for debug only. */
+ uint64_t ceil_npages;
+};
+
+/*
+ * The current decay time setting. This is the only public access to a decay_t
+ * that's allowed without holding mtx.
+ */
+static inline ssize_t
+decay_ms_read(const decay_t *decay) {
+ return atomic_load_zd(&decay->time_ms, ATOMIC_RELAXED);
+}
+
+/*
+ * See the comment on the struct field -- the limit on pages we should allow in
+ * this decay state this epoch.
+ */
+static inline size_t
+decay_npages_limit_get(const decay_t *decay) {
+ return decay->npages_limit;
+}
+
+/* How many unused dirty pages were generated during the last epoch. */
+static inline size_t
+decay_epoch_npages_delta(const decay_t *decay) {
+ return decay->backlog[SMOOTHSTEP_NSTEPS - 1];
+}
+
+/*
+ * Current epoch duration, in nanoseconds. Given that new epochs are started
+ * somewhat haphazardly, this is not necessarily exactly the time between any
+ * two calls to decay_maybe_advance_epoch; see the comments on fields in the
+ * decay_t.
+ */
+static inline uint64_t
+decay_epoch_duration_ns(const decay_t *decay) {
+ return nstime_ns(&decay->interval);
+}
+
+static inline bool
+decay_immediately(const decay_t *decay) {
+ ssize_t decay_ms = decay_ms_read(decay);
+ return decay_ms == 0;
+}
+
+static inline bool
+decay_disabled(const decay_t *decay) {
+ ssize_t decay_ms = decay_ms_read(decay);
+ return decay_ms < 0;
+}
+
+/* Returns true if decay is enabled and done gradually. */
+static inline bool
+decay_gradually(const decay_t *decay) {
+ ssize_t decay_ms = decay_ms_read(decay);
+ return decay_ms > 0;
+}
+
+/*
+ * Returns true if the passed in decay time setting is valid.
+ * < -1 : invalid
+ * -1 : never decay
+ * 0 : decay immediately
+ * > 0 : some positive decay time, up to a maximum allowed value of
+ * NSTIME_SEC_MAX * 1000, which corresponds to decaying somewhere in the early
+ * 27th century. By that time, we expect to have implemented alternate purging
+ * strategies.
+ */
+bool decay_ms_valid(ssize_t decay_ms);
+
+/*
+ * As a precondition, the decay_t must be zeroed out (as if with memset).
+ *
+ * Returns true on error.
+ */
+bool decay_init(decay_t *decay, nstime_t *cur_time, ssize_t decay_ms);
+
+/*
+ * Given an already-initialized decay_t, reinitialize it with the given decay
+ * time. The decay_t must have previously been initialized (and should not then
+ * be zeroed).
+ */
+void decay_reinit(decay_t *decay, nstime_t *cur_time, ssize_t decay_ms);
+
+/*
+ * Compute how many of 'npages_new' pages we would need to purge in 'time'.
+ */
+uint64_t decay_npages_purge_in(decay_t *decay, nstime_t *time,
+ size_t npages_new);
+
+/* Returns true if the epoch advanced and there are pages to purge. */
+bool decay_maybe_advance_epoch(decay_t *decay, nstime_t *new_time,
+ size_t current_npages);
+
+/*
+ * Calculates wait time until a number of pages in the interval
+ * [0.5 * npages_threshold .. 1.5 * npages_threshold] should be purged.
+ *
+ * Returns number of nanoseconds or DECAY_UNBOUNDED_TIME_TO_PURGE in case of
+ * indefinite wait.
+ */
+uint64_t decay_ns_until_purge(decay_t *decay, size_t npages_current,
+ uint64_t npages_threshold);
+
+#endif /* JEMALLOC_INTERNAL_DECAY_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/div.h b/deps/jemalloc/include/jemalloc/internal/div.h
new file mode 100644
index 0000000..aebae93
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/div.h
@@ -0,0 +1,41 @@
+#ifndef JEMALLOC_INTERNAL_DIV_H
+#define JEMALLOC_INTERNAL_DIV_H
+
+#include "jemalloc/internal/assert.h"
+
+/*
+ * This module does the division that computes the index of a region in a slab,
+ * given its offset relative to the base.
+ * That is, given a divisor d, an n = i * d (all integers), we'll return i.
+ * We do some pre-computation to do this more quickly than a CPU division
+ * instruction.
+ * We bound n < 2^32, and don't support dividing by one.
+ */
+
+typedef struct div_info_s div_info_t;
+struct div_info_s {
+ uint32_t magic;
+#ifdef JEMALLOC_DEBUG
+ size_t d;
+#endif
+};
+
+void div_init(div_info_t *div_info, size_t divisor);
+
+static inline size_t
+div_compute(div_info_t *div_info, size_t n) {
+ assert(n <= (uint32_t)-1);
+ /*
+ * This generates, e.g. mov; imul; shr on x86-64. On a 32-bit machine,
+ * the compilers I tried were all smart enough to turn this into the
+ * appropriate "get the high 32 bits of the result of a multiply" (e.g.
+ * mul; mov edx eax; on x86, umull on arm, etc.).
+ */
+ size_t i = ((uint64_t)n * (uint64_t)div_info->magic) >> 32;
+#ifdef JEMALLOC_DEBUG
+ assert(i * div_info->d == n);
+#endif
+ return i;
+}
+
+#endif /* JEMALLOC_INTERNAL_DIV_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/ecache.h b/deps/jemalloc/include/jemalloc/internal/ecache.h
new file mode 100644
index 0000000..71cae3e
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ecache.h
@@ -0,0 +1,55 @@
+#ifndef JEMALLOC_INTERNAL_ECACHE_H
+#define JEMALLOC_INTERNAL_ECACHE_H
+
+#include "jemalloc/internal/eset.h"
+#include "jemalloc/internal/san.h"
+#include "jemalloc/internal/mutex.h"
+
+typedef struct ecache_s ecache_t;
+struct ecache_s {
+ malloc_mutex_t mtx;
+ eset_t eset;
+ eset_t guarded_eset;
+ /* All stored extents must be in the same state. */
+ extent_state_t state;
+ /* The index of the ehooks the ecache is associated with. */
+ unsigned ind;
+ /*
+ * If true, delay coalescing until eviction; otherwise coalesce during
+ * deallocation.
+ */
+ bool delay_coalesce;
+};
+
+static inline size_t
+ecache_npages_get(ecache_t *ecache) {
+ return eset_npages_get(&ecache->eset) +
+ eset_npages_get(&ecache->guarded_eset);
+}
+
+/* Get the number of extents in the given page size index. */
+static inline size_t
+ecache_nextents_get(ecache_t *ecache, pszind_t ind) {
+ return eset_nextents_get(&ecache->eset, ind) +
+ eset_nextents_get(&ecache->guarded_eset, ind);
+}
+
+/* Get the sum total bytes of the extents in the given page size index. */
+static inline size_t
+ecache_nbytes_get(ecache_t *ecache, pszind_t ind) {
+ return eset_nbytes_get(&ecache->eset, ind) +
+ eset_nbytes_get(&ecache->guarded_eset, ind);
+}
+
+static inline unsigned
+ecache_ind_get(ecache_t *ecache) {
+ return ecache->ind;
+}
+
+bool ecache_init(tsdn_t *tsdn, ecache_t *ecache, extent_state_t state,
+ unsigned ind, bool delay_coalesce);
+void ecache_prefork(tsdn_t *tsdn, ecache_t *ecache);
+void ecache_postfork_parent(tsdn_t *tsdn, ecache_t *ecache);
+void ecache_postfork_child(tsdn_t *tsdn, ecache_t *ecache);
+
+#endif /* JEMALLOC_INTERNAL_ECACHE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/edata.h b/deps/jemalloc/include/jemalloc/internal/edata.h
new file mode 100644
index 0000000..af039ea
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/edata.h
@@ -0,0 +1,698 @@
+#ifndef JEMALLOC_INTERNAL_EDATA_H
+#define JEMALLOC_INTERNAL_EDATA_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/bin_info.h"
+#include "jemalloc/internal/bit_util.h"
+#include "jemalloc/internal/hpdata.h"
+#include "jemalloc/internal/nstime.h"
+#include "jemalloc/internal/ph.h"
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/slab_data.h"
+#include "jemalloc/internal/sz.h"
+#include "jemalloc/internal/typed_list.h"
+
+/*
+ * sizeof(edata_t) is 128 bytes on 64-bit architectures. Ensure the alignment
+ * to free up the low bits in the rtree leaf.
+ */
+#define EDATA_ALIGNMENT 128
+
+enum extent_state_e {
+ extent_state_active = 0,
+ extent_state_dirty = 1,
+ extent_state_muzzy = 2,
+ extent_state_retained = 3,
+ extent_state_transition = 4, /* States below are intermediate. */
+ extent_state_merging = 5,
+ extent_state_max = 5 /* Sanity checking only. */
+};
+typedef enum extent_state_e extent_state_t;
+
+enum extent_head_state_e {
+ EXTENT_NOT_HEAD,
+ EXTENT_IS_HEAD /* See comments in ehooks_default_merge_impl(). */
+};
+typedef enum extent_head_state_e extent_head_state_t;
+
+/*
+ * Which implementation of the page allocator interface, (PAI, defined in
+ * pai.h) owns the given extent?
+ */
+enum extent_pai_e {
+ EXTENT_PAI_PAC = 0,
+ EXTENT_PAI_HPA = 1
+};
+typedef enum extent_pai_e extent_pai_t;
+
+struct e_prof_info_s {
+ /* Time when this was allocated. */
+ nstime_t e_prof_alloc_time;
+ /* Allocation request size. */
+ size_t e_prof_alloc_size;
+ /* Points to a prof_tctx_t. */
+ atomic_p_t e_prof_tctx;
+ /*
+ * Points to a prof_recent_t for the allocation; NULL
+ * means the recent allocation record no longer exists.
+ * Protected by prof_recent_alloc_mtx.
+ */
+ atomic_p_t e_prof_recent_alloc;
+};
+typedef struct e_prof_info_s e_prof_info_t;
+
+/*
+ * The information about a particular edata that lives in an emap. Space is
+ * more precious there (the information, plus the edata pointer, has to live in
+ * a 64-bit word if we want to enable a packed representation.
+ *
+ * There are two things that are special about the information here:
+ * - It's quicker to access. You have one fewer pointer hop, since finding the
+ * edata_t associated with an item always requires accessing the rtree leaf in
+ * which this data is stored.
+ * - It can be read unsynchronized, and without worrying about lifetime issues.
+ */
+typedef struct edata_map_info_s edata_map_info_t;
+struct edata_map_info_s {
+ bool slab;
+ szind_t szind;
+};
+
+typedef struct edata_cmp_summary_s edata_cmp_summary_t;
+struct edata_cmp_summary_s {
+ uint64_t sn;
+ uintptr_t addr;
+};
+
+/* Extent (span of pages). Use accessor functions for e_* fields. */
+typedef struct edata_s edata_t;
+ph_structs(edata_avail, edata_t);
+ph_structs(edata_heap, edata_t);
+struct edata_s {
+ /*
+ * Bitfield containing several fields:
+ *
+ * a: arena_ind
+ * b: slab
+ * c: committed
+ * p: pai
+ * z: zeroed
+ * g: guarded
+ * t: state
+ * i: szind
+ * f: nfree
+ * s: bin_shard
+ *
+ * 00000000 ... 0000ssss ssffffff ffffiiii iiiitttg zpcbaaaa aaaaaaaa
+ *
+ * arena_ind: Arena from which this extent came, or all 1 bits if
+ * unassociated.
+ *
+ * slab: The slab flag indicates whether the extent is used for a slab
+ * of small regions. This helps differentiate small size classes,
+ * and it indicates whether interior pointers can be looked up via
+ * iealloc().
+ *
+ * committed: The committed flag indicates whether physical memory is
+ * committed to the extent, whether explicitly or implicitly
+ * as on a system that overcommits and satisfies physical
+ * memory needs on demand via soft page faults.
+ *
+ * pai: The pai flag is an extent_pai_t.
+ *
+ * zeroed: The zeroed flag is used by extent recycling code to track
+ * whether memory is zero-filled.
+ *
+ * guarded: The guarded flag is use by the sanitizer to track whether
+ * the extent has page guards around it.
+ *
+ * state: The state flag is an extent_state_t.
+ *
+ * szind: The szind flag indicates usable size class index for
+ * allocations residing in this extent, regardless of whether the
+ * extent is a slab. Extent size and usable size often differ
+ * even for non-slabs, either due to sz_large_pad or promotion of
+ * sampled small regions.
+ *
+ * nfree: Number of free regions in slab.
+ *
+ * bin_shard: the shard of the bin from which this extent came.
+ */
+ uint64_t e_bits;
+#define MASK(CURRENT_FIELD_WIDTH, CURRENT_FIELD_SHIFT) ((((((uint64_t)0x1U) << (CURRENT_FIELD_WIDTH)) - 1)) << (CURRENT_FIELD_SHIFT))
+
+#define EDATA_BITS_ARENA_WIDTH MALLOCX_ARENA_BITS
+#define EDATA_BITS_ARENA_SHIFT 0
+#define EDATA_BITS_ARENA_MASK MASK(EDATA_BITS_ARENA_WIDTH, EDATA_BITS_ARENA_SHIFT)
+
+#define EDATA_BITS_SLAB_WIDTH 1
+#define EDATA_BITS_SLAB_SHIFT (EDATA_BITS_ARENA_WIDTH + EDATA_BITS_ARENA_SHIFT)
+#define EDATA_BITS_SLAB_MASK MASK(EDATA_BITS_SLAB_WIDTH, EDATA_BITS_SLAB_SHIFT)
+
+#define EDATA_BITS_COMMITTED_WIDTH 1
+#define EDATA_BITS_COMMITTED_SHIFT (EDATA_BITS_SLAB_WIDTH + EDATA_BITS_SLAB_SHIFT)
+#define EDATA_BITS_COMMITTED_MASK MASK(EDATA_BITS_COMMITTED_WIDTH, EDATA_BITS_COMMITTED_SHIFT)
+
+#define EDATA_BITS_PAI_WIDTH 1
+#define EDATA_BITS_PAI_SHIFT (EDATA_BITS_COMMITTED_WIDTH + EDATA_BITS_COMMITTED_SHIFT)
+#define EDATA_BITS_PAI_MASK MASK(EDATA_BITS_PAI_WIDTH, EDATA_BITS_PAI_SHIFT)
+
+#define EDATA_BITS_ZEROED_WIDTH 1
+#define EDATA_BITS_ZEROED_SHIFT (EDATA_BITS_PAI_WIDTH + EDATA_BITS_PAI_SHIFT)
+#define EDATA_BITS_ZEROED_MASK MASK(EDATA_BITS_ZEROED_WIDTH, EDATA_BITS_ZEROED_SHIFT)
+
+#define EDATA_BITS_GUARDED_WIDTH 1
+#define EDATA_BITS_GUARDED_SHIFT (EDATA_BITS_ZEROED_WIDTH + EDATA_BITS_ZEROED_SHIFT)
+#define EDATA_BITS_GUARDED_MASK MASK(EDATA_BITS_GUARDED_WIDTH, EDATA_BITS_GUARDED_SHIFT)
+
+#define EDATA_BITS_STATE_WIDTH 3
+#define EDATA_BITS_STATE_SHIFT (EDATA_BITS_GUARDED_WIDTH + EDATA_BITS_GUARDED_SHIFT)
+#define EDATA_BITS_STATE_MASK MASK(EDATA_BITS_STATE_WIDTH, EDATA_BITS_STATE_SHIFT)
+
+#define EDATA_BITS_SZIND_WIDTH LG_CEIL(SC_NSIZES)
+#define EDATA_BITS_SZIND_SHIFT (EDATA_BITS_STATE_WIDTH + EDATA_BITS_STATE_SHIFT)
+#define EDATA_BITS_SZIND_MASK MASK(EDATA_BITS_SZIND_WIDTH, EDATA_BITS_SZIND_SHIFT)
+
+#define EDATA_BITS_NFREE_WIDTH (SC_LG_SLAB_MAXREGS + 1)
+#define EDATA_BITS_NFREE_SHIFT (EDATA_BITS_SZIND_WIDTH + EDATA_BITS_SZIND_SHIFT)
+#define EDATA_BITS_NFREE_MASK MASK(EDATA_BITS_NFREE_WIDTH, EDATA_BITS_NFREE_SHIFT)
+
+#define EDATA_BITS_BINSHARD_WIDTH 6
+#define EDATA_BITS_BINSHARD_SHIFT (EDATA_BITS_NFREE_WIDTH + EDATA_BITS_NFREE_SHIFT)
+#define EDATA_BITS_BINSHARD_MASK MASK(EDATA_BITS_BINSHARD_WIDTH, EDATA_BITS_BINSHARD_SHIFT)
+
+#define EDATA_BITS_IS_HEAD_WIDTH 1
+#define EDATA_BITS_IS_HEAD_SHIFT (EDATA_BITS_BINSHARD_WIDTH + EDATA_BITS_BINSHARD_SHIFT)
+#define EDATA_BITS_IS_HEAD_MASK MASK(EDATA_BITS_IS_HEAD_WIDTH, EDATA_BITS_IS_HEAD_SHIFT)
+
+ /* Pointer to the extent that this structure is responsible for. */
+ void *e_addr;
+
+ union {
+ /*
+ * Extent size and serial number associated with the extent
+ * structure (different than the serial number for the extent at
+ * e_addr).
+ *
+ * ssssssss [...] ssssssss ssssnnnn nnnnnnnn
+ */
+ size_t e_size_esn;
+ #define EDATA_SIZE_MASK ((size_t)~(PAGE-1))
+ #define EDATA_ESN_MASK ((size_t)PAGE-1)
+ /* Base extent size, which may not be a multiple of PAGE. */
+ size_t e_bsize;
+ };
+
+ /*
+ * If this edata is a user allocation from an HPA, it comes out of some
+ * pageslab (we don't yet support huegpage allocations that don't fit
+ * into pageslabs). This tracks it.
+ */
+ hpdata_t *e_ps;
+
+ /*
+ * Serial number. These are not necessarily unique; splitting an extent
+ * results in two extents with the same serial number.
+ */
+ uint64_t e_sn;
+
+ union {
+ /*
+ * List linkage used when the edata_t is active; either in
+ * arena's large allocations or bin_t's slabs_full.
+ */
+ ql_elm(edata_t) ql_link_active;
+ /*
+ * Pairing heap linkage. Used whenever the extent is inactive
+ * (in the page allocators), or when it is active and in
+ * slabs_nonfull, or when the edata_t is unassociated with an
+ * extent and sitting in an edata_cache.
+ */
+ union {
+ edata_heap_link_t heap_link;
+ edata_avail_link_t avail_link;
+ };
+ };
+
+ union {
+ /*
+ * List linkage used when the extent is inactive:
+ * - Stashed dirty extents
+ * - Ecache LRU functionality.
+ */
+ ql_elm(edata_t) ql_link_inactive;
+ /* Small region slab metadata. */
+ slab_data_t e_slab_data;
+
+ /* Profiling data, used for large objects. */
+ e_prof_info_t e_prof_info;
+ };
+};
+
+TYPED_LIST(edata_list_active, edata_t, ql_link_active)
+TYPED_LIST(edata_list_inactive, edata_t, ql_link_inactive)
+
+static inline unsigned
+edata_arena_ind_get(const edata_t *edata) {
+ unsigned arena_ind = (unsigned)((edata->e_bits &
+ EDATA_BITS_ARENA_MASK) >> EDATA_BITS_ARENA_SHIFT);
+ assert(arena_ind < MALLOCX_ARENA_LIMIT);
+
+ return arena_ind;
+}
+
+static inline szind_t
+edata_szind_get_maybe_invalid(const edata_t *edata) {
+ szind_t szind = (szind_t)((edata->e_bits & EDATA_BITS_SZIND_MASK) >>
+ EDATA_BITS_SZIND_SHIFT);
+ assert(szind <= SC_NSIZES);
+ return szind;
+}
+
+static inline szind_t
+edata_szind_get(const edata_t *edata) {
+ szind_t szind = edata_szind_get_maybe_invalid(edata);
+ assert(szind < SC_NSIZES); /* Never call when "invalid". */
+ return szind;
+}
+
+static inline size_t
+edata_usize_get(const edata_t *edata) {
+ return sz_index2size(edata_szind_get(edata));
+}
+
+static inline unsigned
+edata_binshard_get(const edata_t *edata) {
+ unsigned binshard = (unsigned)((edata->e_bits &
+ EDATA_BITS_BINSHARD_MASK) >> EDATA_BITS_BINSHARD_SHIFT);
+ assert(binshard < bin_infos[edata_szind_get(edata)].n_shards);
+ return binshard;
+}
+
+static inline uint64_t
+edata_sn_get(const edata_t *edata) {
+ return edata->e_sn;
+}
+
+static inline extent_state_t
+edata_state_get(const edata_t *edata) {
+ return (extent_state_t)((edata->e_bits & EDATA_BITS_STATE_MASK) >>
+ EDATA_BITS_STATE_SHIFT);
+}
+
+static inline bool
+edata_guarded_get(const edata_t *edata) {
+ return (bool)((edata->e_bits & EDATA_BITS_GUARDED_MASK) >>
+ EDATA_BITS_GUARDED_SHIFT);
+}
+
+static inline bool
+edata_zeroed_get(const edata_t *edata) {
+ return (bool)((edata->e_bits & EDATA_BITS_ZEROED_MASK) >>
+ EDATA_BITS_ZEROED_SHIFT);
+}
+
+static inline bool
+edata_committed_get(const edata_t *edata) {
+ return (bool)((edata->e_bits & EDATA_BITS_COMMITTED_MASK) >>
+ EDATA_BITS_COMMITTED_SHIFT);
+}
+
+static inline extent_pai_t
+edata_pai_get(const edata_t *edata) {
+ return (extent_pai_t)((edata->e_bits & EDATA_BITS_PAI_MASK) >>
+ EDATA_BITS_PAI_SHIFT);
+}
+
+static inline bool
+edata_slab_get(const edata_t *edata) {
+ return (bool)((edata->e_bits & EDATA_BITS_SLAB_MASK) >>
+ EDATA_BITS_SLAB_SHIFT);
+}
+
+static inline unsigned
+edata_nfree_get(const edata_t *edata) {
+ assert(edata_slab_get(edata));
+ return (unsigned)((edata->e_bits & EDATA_BITS_NFREE_MASK) >>
+ EDATA_BITS_NFREE_SHIFT);
+}
+
+static inline void *
+edata_base_get(const edata_t *edata) {
+ assert(edata->e_addr == PAGE_ADDR2BASE(edata->e_addr) ||
+ !edata_slab_get(edata));
+ return PAGE_ADDR2BASE(edata->e_addr);
+}
+
+static inline void *
+edata_addr_get(const edata_t *edata) {
+ assert(edata->e_addr == PAGE_ADDR2BASE(edata->e_addr) ||
+ !edata_slab_get(edata));
+ return edata->e_addr;
+}
+
+static inline size_t
+edata_size_get(const edata_t *edata) {
+ return (edata->e_size_esn & EDATA_SIZE_MASK);
+}
+
+static inline size_t
+edata_esn_get(const edata_t *edata) {
+ return (edata->e_size_esn & EDATA_ESN_MASK);
+}
+
+static inline size_t
+edata_bsize_get(const edata_t *edata) {
+ return edata->e_bsize;
+}
+
+static inline hpdata_t *
+edata_ps_get(const edata_t *edata) {
+ assert(edata_pai_get(edata) == EXTENT_PAI_HPA);
+ return edata->e_ps;
+}
+
+static inline void *
+edata_before_get(const edata_t *edata) {
+ return (void *)((uintptr_t)edata_base_get(edata) - PAGE);
+}
+
+static inline void *
+edata_last_get(const edata_t *edata) {
+ return (void *)((uintptr_t)edata_base_get(edata) +
+ edata_size_get(edata) - PAGE);
+}
+
+static inline void *
+edata_past_get(const edata_t *edata) {
+ return (void *)((uintptr_t)edata_base_get(edata) +
+ edata_size_get(edata));
+}
+
+static inline slab_data_t *
+edata_slab_data_get(edata_t *edata) {
+ assert(edata_slab_get(edata));
+ return &edata->e_slab_data;
+}
+
+static inline const slab_data_t *
+edata_slab_data_get_const(const edata_t *edata) {
+ assert(edata_slab_get(edata));
+ return &edata->e_slab_data;
+}
+
+static inline prof_tctx_t *
+edata_prof_tctx_get(const edata_t *edata) {
+ return (prof_tctx_t *)atomic_load_p(&edata->e_prof_info.e_prof_tctx,
+ ATOMIC_ACQUIRE);
+}
+
+static inline const nstime_t *
+edata_prof_alloc_time_get(const edata_t *edata) {
+ return &edata->e_prof_info.e_prof_alloc_time;
+}
+
+static inline size_t
+edata_prof_alloc_size_get(const edata_t *edata) {
+ return edata->e_prof_info.e_prof_alloc_size;
+}
+
+static inline prof_recent_t *
+edata_prof_recent_alloc_get_dont_call_directly(const edata_t *edata) {
+ return (prof_recent_t *)atomic_load_p(
+ &edata->e_prof_info.e_prof_recent_alloc, ATOMIC_RELAXED);
+}
+
+static inline void
+edata_arena_ind_set(edata_t *edata, unsigned arena_ind) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_ARENA_MASK) |
+ ((uint64_t)arena_ind << EDATA_BITS_ARENA_SHIFT);
+}
+
+static inline void
+edata_binshard_set(edata_t *edata, unsigned binshard) {
+ /* The assertion assumes szind is set already. */
+ assert(binshard < bin_infos[edata_szind_get(edata)].n_shards);
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_BINSHARD_MASK) |
+ ((uint64_t)binshard << EDATA_BITS_BINSHARD_SHIFT);
+}
+
+static inline void
+edata_addr_set(edata_t *edata, void *addr) {
+ edata->e_addr = addr;
+}
+
+static inline void
+edata_size_set(edata_t *edata, size_t size) {
+ assert((size & ~EDATA_SIZE_MASK) == 0);
+ edata->e_size_esn = size | (edata->e_size_esn & ~EDATA_SIZE_MASK);
+}
+
+static inline void
+edata_esn_set(edata_t *edata, size_t esn) {
+ edata->e_size_esn = (edata->e_size_esn & ~EDATA_ESN_MASK) | (esn &
+ EDATA_ESN_MASK);
+}
+
+static inline void
+edata_bsize_set(edata_t *edata, size_t bsize) {
+ edata->e_bsize = bsize;
+}
+
+static inline void
+edata_ps_set(edata_t *edata, hpdata_t *ps) {
+ assert(edata_pai_get(edata) == EXTENT_PAI_HPA);
+ edata->e_ps = ps;
+}
+
+static inline void
+edata_szind_set(edata_t *edata, szind_t szind) {
+ assert(szind <= SC_NSIZES); /* SC_NSIZES means "invalid". */
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_SZIND_MASK) |
+ ((uint64_t)szind << EDATA_BITS_SZIND_SHIFT);
+}
+
+static inline void
+edata_nfree_set(edata_t *edata, unsigned nfree) {
+ assert(edata_slab_get(edata));
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_NFREE_MASK) |
+ ((uint64_t)nfree << EDATA_BITS_NFREE_SHIFT);
+}
+
+static inline void
+edata_nfree_binshard_set(edata_t *edata, unsigned nfree, unsigned binshard) {
+ /* The assertion assumes szind is set already. */
+ assert(binshard < bin_infos[edata_szind_get(edata)].n_shards);
+ edata->e_bits = (edata->e_bits &
+ (~EDATA_BITS_NFREE_MASK & ~EDATA_BITS_BINSHARD_MASK)) |
+ ((uint64_t)binshard << EDATA_BITS_BINSHARD_SHIFT) |
+ ((uint64_t)nfree << EDATA_BITS_NFREE_SHIFT);
+}
+
+static inline void
+edata_nfree_inc(edata_t *edata) {
+ assert(edata_slab_get(edata));
+ edata->e_bits += ((uint64_t)1U << EDATA_BITS_NFREE_SHIFT);
+}
+
+static inline void
+edata_nfree_dec(edata_t *edata) {
+ assert(edata_slab_get(edata));
+ edata->e_bits -= ((uint64_t)1U << EDATA_BITS_NFREE_SHIFT);
+}
+
+static inline void
+edata_nfree_sub(edata_t *edata, uint64_t n) {
+ assert(edata_slab_get(edata));
+ edata->e_bits -= (n << EDATA_BITS_NFREE_SHIFT);
+}
+
+static inline void
+edata_sn_set(edata_t *edata, uint64_t sn) {
+ edata->e_sn = sn;
+}
+
+static inline void
+edata_state_set(edata_t *edata, extent_state_t state) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_STATE_MASK) |
+ ((uint64_t)state << EDATA_BITS_STATE_SHIFT);
+}
+
+static inline void
+edata_guarded_set(edata_t *edata, bool guarded) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_GUARDED_MASK) |
+ ((uint64_t)guarded << EDATA_BITS_GUARDED_SHIFT);
+}
+
+static inline void
+edata_zeroed_set(edata_t *edata, bool zeroed) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_ZEROED_MASK) |
+ ((uint64_t)zeroed << EDATA_BITS_ZEROED_SHIFT);
+}
+
+static inline void
+edata_committed_set(edata_t *edata, bool committed) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_COMMITTED_MASK) |
+ ((uint64_t)committed << EDATA_BITS_COMMITTED_SHIFT);
+}
+
+static inline void
+edata_pai_set(edata_t *edata, extent_pai_t pai) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_PAI_MASK) |
+ ((uint64_t)pai << EDATA_BITS_PAI_SHIFT);
+}
+
+static inline void
+edata_slab_set(edata_t *edata, bool slab) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_SLAB_MASK) |
+ ((uint64_t)slab << EDATA_BITS_SLAB_SHIFT);
+}
+
+static inline void
+edata_prof_tctx_set(edata_t *edata, prof_tctx_t *tctx) {
+ atomic_store_p(&edata->e_prof_info.e_prof_tctx, tctx, ATOMIC_RELEASE);
+}
+
+static inline void
+edata_prof_alloc_time_set(edata_t *edata, nstime_t *t) {
+ nstime_copy(&edata->e_prof_info.e_prof_alloc_time, t);
+}
+
+static inline void
+edata_prof_alloc_size_set(edata_t *edata, size_t size) {
+ edata->e_prof_info.e_prof_alloc_size = size;
+}
+
+static inline void
+edata_prof_recent_alloc_set_dont_call_directly(edata_t *edata,
+ prof_recent_t *recent_alloc) {
+ atomic_store_p(&edata->e_prof_info.e_prof_recent_alloc, recent_alloc,
+ ATOMIC_RELAXED);
+}
+
+static inline bool
+edata_is_head_get(edata_t *edata) {
+ return (bool)((edata->e_bits & EDATA_BITS_IS_HEAD_MASK) >>
+ EDATA_BITS_IS_HEAD_SHIFT);
+}
+
+static inline void
+edata_is_head_set(edata_t *edata, bool is_head) {
+ edata->e_bits = (edata->e_bits & ~EDATA_BITS_IS_HEAD_MASK) |
+ ((uint64_t)is_head << EDATA_BITS_IS_HEAD_SHIFT);
+}
+
+static inline bool
+edata_state_in_transition(extent_state_t state) {
+ return state >= extent_state_transition;
+}
+
+/*
+ * Because this function is implemented as a sequence of bitfield modifications,
+ * even though each individual bit is properly initialized, we technically read
+ * uninitialized data within it. This is mostly fine, since most callers get
+ * their edatas from zeroing sources, but callers who make stack edata_ts need
+ * to manually zero them.
+ */
+static inline void
+edata_init(edata_t *edata, unsigned arena_ind, void *addr, size_t size,
+ bool slab, szind_t szind, uint64_t sn, extent_state_t state, bool zeroed,
+ bool committed, extent_pai_t pai, extent_head_state_t is_head) {
+ assert(addr == PAGE_ADDR2BASE(addr) || !slab);
+
+ edata_arena_ind_set(edata, arena_ind);
+ edata_addr_set(edata, addr);
+ edata_size_set(edata, size);
+ edata_slab_set(edata, slab);
+ edata_szind_set(edata, szind);
+ edata_sn_set(edata, sn);
+ edata_state_set(edata, state);
+ edata_guarded_set(edata, false);
+ edata_zeroed_set(edata, zeroed);
+ edata_committed_set(edata, committed);
+ edata_pai_set(edata, pai);
+ edata_is_head_set(edata, is_head == EXTENT_IS_HEAD);
+ if (config_prof) {
+ edata_prof_tctx_set(edata, NULL);
+ }
+}
+
+static inline void
+edata_binit(edata_t *edata, void *addr, size_t bsize, uint64_t sn) {
+ edata_arena_ind_set(edata, (1U << MALLOCX_ARENA_BITS) - 1);
+ edata_addr_set(edata, addr);
+ edata_bsize_set(edata, bsize);
+ edata_slab_set(edata, false);
+ edata_szind_set(edata, SC_NSIZES);
+ edata_sn_set(edata, sn);
+ edata_state_set(edata, extent_state_active);
+ edata_guarded_set(edata, false);
+ edata_zeroed_set(edata, true);
+ edata_committed_set(edata, true);
+ /*
+ * This isn't strictly true, but base allocated extents never get
+ * deallocated and can't be looked up in the emap, but no sense in
+ * wasting a state bit to encode this fact.
+ */
+ edata_pai_set(edata, EXTENT_PAI_PAC);
+}
+
+static inline int
+edata_esn_comp(const edata_t *a, const edata_t *b) {
+ size_t a_esn = edata_esn_get(a);
+ size_t b_esn = edata_esn_get(b);
+
+ return (a_esn > b_esn) - (a_esn < b_esn);
+}
+
+static inline int
+edata_ead_comp(const edata_t *a, const edata_t *b) {
+ uintptr_t a_eaddr = (uintptr_t)a;
+ uintptr_t b_eaddr = (uintptr_t)b;
+
+ return (a_eaddr > b_eaddr) - (a_eaddr < b_eaddr);
+}
+
+static inline edata_cmp_summary_t
+edata_cmp_summary_get(const edata_t *edata) {
+ return (edata_cmp_summary_t){edata_sn_get(edata),
+ (uintptr_t)edata_addr_get(edata)};
+}
+
+static inline int
+edata_cmp_summary_comp(edata_cmp_summary_t a, edata_cmp_summary_t b) {
+ int ret;
+ ret = (a.sn > b.sn) - (a.sn < b.sn);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = (a.addr > b.addr) - (a.addr < b.addr);
+ return ret;
+}
+
+static inline int
+edata_snad_comp(const edata_t *a, const edata_t *b) {
+ edata_cmp_summary_t a_cmp = edata_cmp_summary_get(a);
+ edata_cmp_summary_t b_cmp = edata_cmp_summary_get(b);
+
+ return edata_cmp_summary_comp(a_cmp, b_cmp);
+}
+
+static inline int
+edata_esnead_comp(const edata_t *a, const edata_t *b) {
+ int ret;
+
+ ret = edata_esn_comp(a, b);
+ if (ret != 0) {
+ return ret;
+ }
+
+ ret = edata_ead_comp(a, b);
+ return ret;
+}
+
+ph_proto(, edata_avail, edata_t)
+ph_proto(, edata_heap, edata_t)
+
+#endif /* JEMALLOC_INTERNAL_EDATA_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/edata_cache.h b/deps/jemalloc/include/jemalloc/internal/edata_cache.h
new file mode 100644
index 0000000..8b6c0ef
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/edata_cache.h
@@ -0,0 +1,49 @@
+#ifndef JEMALLOC_INTERNAL_EDATA_CACHE_H
+#define JEMALLOC_INTERNAL_EDATA_CACHE_H
+
+#include "jemalloc/internal/base.h"
+
+/* For tests only. */
+#define EDATA_CACHE_FAST_FILL 4
+
+/*
+ * A cache of edata_t structures allocated via base_alloc_edata (as opposed to
+ * the underlying extents they describe). The contents of returned edata_t
+ * objects are garbage and cannot be relied upon.
+ */
+
+typedef struct edata_cache_s edata_cache_t;
+struct edata_cache_s {
+ edata_avail_t avail;
+ atomic_zu_t count;
+ malloc_mutex_t mtx;
+ base_t *base;
+};
+
+bool edata_cache_init(edata_cache_t *edata_cache, base_t *base);
+edata_t *edata_cache_get(tsdn_t *tsdn, edata_cache_t *edata_cache);
+void edata_cache_put(tsdn_t *tsdn, edata_cache_t *edata_cache, edata_t *edata);
+
+void edata_cache_prefork(tsdn_t *tsdn, edata_cache_t *edata_cache);
+void edata_cache_postfork_parent(tsdn_t *tsdn, edata_cache_t *edata_cache);
+void edata_cache_postfork_child(tsdn_t *tsdn, edata_cache_t *edata_cache);
+
+/*
+ * An edata_cache_small is like an edata_cache, but it relies on external
+ * synchronization and avoids first-fit strategies.
+ */
+
+typedef struct edata_cache_fast_s edata_cache_fast_t;
+struct edata_cache_fast_s {
+ edata_list_inactive_t list;
+ edata_cache_t *fallback;
+ bool disabled;
+};
+
+void edata_cache_fast_init(edata_cache_fast_t *ecs, edata_cache_t *fallback);
+edata_t *edata_cache_fast_get(tsdn_t *tsdn, edata_cache_fast_t *ecs);
+void edata_cache_fast_put(tsdn_t *tsdn, edata_cache_fast_t *ecs,
+ edata_t *edata);
+void edata_cache_fast_disable(tsdn_t *tsdn, edata_cache_fast_t *ecs);
+
+#endif /* JEMALLOC_INTERNAL_EDATA_CACHE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/ehooks.h b/deps/jemalloc/include/jemalloc/internal/ehooks.h
new file mode 100644
index 0000000..8d9513e
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ehooks.h
@@ -0,0 +1,412 @@
+#ifndef JEMALLOC_INTERNAL_EHOOKS_H
+#define JEMALLOC_INTERNAL_EHOOKS_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/extent_mmap.h"
+
+/*
+ * This module is the internal interface to the extent hooks (both
+ * user-specified and external). Eventually, this will give us the flexibility
+ * to use multiple different versions of user-visible extent-hook APIs under a
+ * single user interface.
+ *
+ * Current API expansions (not available to anyone but the default hooks yet):
+ * - Head state tracking. Hooks can decide whether or not to merge two
+ * extents based on whether or not one of them is the head (i.e. was
+ * allocated on its own). The later extent loses its "head" status.
+ */
+
+extern const extent_hooks_t ehooks_default_extent_hooks;
+
+typedef struct ehooks_s ehooks_t;
+struct ehooks_s {
+ /*
+ * The user-visible id that goes with the ehooks (i.e. that of the base
+ * they're a part of, the associated arena's index within the arenas
+ * array).
+ */
+ unsigned ind;
+ /* Logically an extent_hooks_t *. */
+ atomic_p_t ptr;
+};
+
+extern const extent_hooks_t ehooks_default_extent_hooks;
+
+/*
+ * These are not really part of the public API. Each hook has a fast-path for
+ * the default-hooks case that can avoid various small inefficiencies:
+ * - Forgetting tsd and then calling tsd_get within the hook.
+ * - Getting more state than necessary out of the extent_t.
+ * - Doing arena_ind -> arena -> arena_ind lookups.
+ * By making the calls to these functions visible to the compiler, it can move
+ * those extra bits of computation down below the fast-paths where they get ignored.
+ */
+void *ehooks_default_alloc_impl(tsdn_t *tsdn, void *new_addr, size_t size,
+ size_t alignment, bool *zero, bool *commit, unsigned arena_ind);
+bool ehooks_default_dalloc_impl(void *addr, size_t size);
+void ehooks_default_destroy_impl(void *addr, size_t size);
+bool ehooks_default_commit_impl(void *addr, size_t offset, size_t length);
+bool ehooks_default_decommit_impl(void *addr, size_t offset, size_t length);
+#ifdef PAGES_CAN_PURGE_LAZY
+bool ehooks_default_purge_lazy_impl(void *addr, size_t offset, size_t length);
+#endif
+#ifdef PAGES_CAN_PURGE_FORCED
+bool ehooks_default_purge_forced_impl(void *addr, size_t offset, size_t length);
+#endif
+bool ehooks_default_split_impl();
+/*
+ * Merge is the only default extent hook we declare -- see the comment in
+ * ehooks_merge.
+ */
+bool ehooks_default_merge(extent_hooks_t *extent_hooks, void *addr_a,
+ size_t size_a, void *addr_b, size_t size_b, bool committed,
+ unsigned arena_ind);
+bool ehooks_default_merge_impl(tsdn_t *tsdn, void *addr_a, void *addr_b);
+void ehooks_default_zero_impl(void *addr, size_t size);
+void ehooks_default_guard_impl(void *guard1, void *guard2);
+void ehooks_default_unguard_impl(void *guard1, void *guard2);
+
+/*
+ * We don't officially support reentrancy from wtihin the extent hooks. But
+ * various people who sit within throwing distance of the jemalloc team want
+ * that functionality in certain limited cases. The default reentrancy guards
+ * assert that we're not reentrant from a0 (since it's the bootstrap arena,
+ * where reentrant allocations would be redirected), which we would incorrectly
+ * trigger in cases where a0 has extent hooks (those hooks themselves can't be
+ * reentrant, then, but there are reasonable uses for such functionality, like
+ * putting internal metadata on hugepages). Therefore, we use the raw
+ * reentrancy guards.
+ *
+ * Eventually, we need to think more carefully about whether and where we
+ * support allocating from within extent hooks (and what that means for things
+ * like profiling, stats collection, etc.), and document what the guarantee is.
+ */
+static inline void
+ehooks_pre_reentrancy(tsdn_t *tsdn) {
+ tsd_t *tsd = tsdn_null(tsdn) ? tsd_fetch() : tsdn_tsd(tsdn);
+ tsd_pre_reentrancy_raw(tsd);
+}
+
+static inline void
+ehooks_post_reentrancy(tsdn_t *tsdn) {
+ tsd_t *tsd = tsdn_null(tsdn) ? tsd_fetch() : tsdn_tsd(tsdn);
+ tsd_post_reentrancy_raw(tsd);
+}
+
+/* Beginning of the public API. */
+void ehooks_init(ehooks_t *ehooks, extent_hooks_t *extent_hooks, unsigned ind);
+
+static inline unsigned
+ehooks_ind_get(const ehooks_t *ehooks) {
+ return ehooks->ind;
+}
+
+static inline void
+ehooks_set_extent_hooks_ptr(ehooks_t *ehooks, extent_hooks_t *extent_hooks) {
+ atomic_store_p(&ehooks->ptr, extent_hooks, ATOMIC_RELEASE);
+}
+
+static inline extent_hooks_t *
+ehooks_get_extent_hooks_ptr(ehooks_t *ehooks) {
+ return (extent_hooks_t *)atomic_load_p(&ehooks->ptr, ATOMIC_ACQUIRE);
+}
+
+static inline bool
+ehooks_are_default(ehooks_t *ehooks) {
+ return ehooks_get_extent_hooks_ptr(ehooks) ==
+ &ehooks_default_extent_hooks;
+}
+
+/*
+ * In some cases, a caller needs to allocate resources before attempting to call
+ * a hook. If that hook is doomed to fail, this is wasteful. We therefore
+ * include some checks for such cases.
+ */
+static inline bool
+ehooks_dalloc_will_fail(ehooks_t *ehooks) {
+ if (ehooks_are_default(ehooks)) {
+ return opt_retain;
+ } else {
+ return ehooks_get_extent_hooks_ptr(ehooks)->dalloc == NULL;
+ }
+}
+
+static inline bool
+ehooks_split_will_fail(ehooks_t *ehooks) {
+ return ehooks_get_extent_hooks_ptr(ehooks)->split == NULL;
+}
+
+static inline bool
+ehooks_merge_will_fail(ehooks_t *ehooks) {
+ return ehooks_get_extent_hooks_ptr(ehooks)->merge == NULL;
+}
+
+static inline bool
+ehooks_guard_will_fail(ehooks_t *ehooks) {
+ /*
+ * Before the guard hooks are officially introduced, limit the use to
+ * the default hooks only.
+ */
+ return !ehooks_are_default(ehooks);
+}
+
+/*
+ * Some hooks are required to return zeroed memory in certain situations. In
+ * debug mode, we do some heuristic checks that they did what they were supposed
+ * to.
+ *
+ * This isn't really ehooks-specific (i.e. anyone can check for zeroed memory).
+ * But incorrect zero information indicates an ehook bug.
+ */
+static inline void
+ehooks_debug_zero_check(void *addr, size_t size) {
+ assert(((uintptr_t)addr & PAGE_MASK) == 0);
+ assert((size & PAGE_MASK) == 0);
+ assert(size > 0);
+ if (config_debug) {
+ /* Check the whole first page. */
+ size_t *p = (size_t *)addr;
+ for (size_t i = 0; i < PAGE / sizeof(size_t); i++) {
+ assert(p[i] == 0);
+ }
+ /*
+ * And 4 spots within. There's a tradeoff here; the larger
+ * this number, the more likely it is that we'll catch a bug
+ * where ehooks return a sparsely non-zero range. But
+ * increasing the number of checks also increases the number of
+ * page faults in debug mode. FreeBSD does much of their
+ * day-to-day development work in debug mode, so we don't want
+ * even the debug builds to be too slow.
+ */
+ const size_t nchecks = 4;
+ assert(PAGE >= sizeof(size_t) * nchecks);
+ for (size_t i = 0; i < nchecks; ++i) {
+ assert(p[i * (size / sizeof(size_t) / nchecks)] == 0);
+ }
+ }
+}
+
+
+static inline void *
+ehooks_alloc(tsdn_t *tsdn, ehooks_t *ehooks, void *new_addr, size_t size,
+ size_t alignment, bool *zero, bool *commit) {
+ bool orig_zero = *zero;
+ void *ret;
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ ret = ehooks_default_alloc_impl(tsdn, new_addr, size,
+ alignment, zero, commit, ehooks_ind_get(ehooks));
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ ret = extent_hooks->alloc(extent_hooks, new_addr, size,
+ alignment, zero, commit, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ }
+ assert(new_addr == NULL || ret == NULL || new_addr == ret);
+ assert(!orig_zero || *zero);
+ if (*zero && ret != NULL) {
+ ehooks_debug_zero_check(ret, size);
+ }
+ return ret;
+}
+
+static inline bool
+ehooks_dalloc(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ bool committed) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ return ehooks_default_dalloc_impl(addr, size);
+ } else if (extent_hooks->dalloc == NULL) {
+ return true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ bool err = extent_hooks->dalloc(extent_hooks, addr, size,
+ committed, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ return err;
+ }
+}
+
+static inline void
+ehooks_destroy(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ bool committed) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ ehooks_default_destroy_impl(addr, size);
+ } else if (extent_hooks->destroy == NULL) {
+ /* Do nothing. */
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ extent_hooks->destroy(extent_hooks, addr, size, committed,
+ ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ }
+}
+
+static inline bool
+ehooks_commit(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ size_t offset, size_t length) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ bool err;
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ err = ehooks_default_commit_impl(addr, offset, length);
+ } else if (extent_hooks->commit == NULL) {
+ err = true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ err = extent_hooks->commit(extent_hooks, addr, size,
+ offset, length, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ }
+ if (!err) {
+ ehooks_debug_zero_check(addr, size);
+ }
+ return err;
+}
+
+static inline bool
+ehooks_decommit(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ size_t offset, size_t length) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ return ehooks_default_decommit_impl(addr, offset, length);
+ } else if (extent_hooks->decommit == NULL) {
+ return true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ bool err = extent_hooks->decommit(extent_hooks, addr, size,
+ offset, length, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ return err;
+ }
+}
+
+static inline bool
+ehooks_purge_lazy(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ size_t offset, size_t length) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+#ifdef PAGES_CAN_PURGE_LAZY
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ return ehooks_default_purge_lazy_impl(addr, offset, length);
+ }
+#endif
+ if (extent_hooks->purge_lazy == NULL) {
+ return true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ bool err = extent_hooks->purge_lazy(extent_hooks, addr, size,
+ offset, length, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ return err;
+ }
+}
+
+static inline bool
+ehooks_purge_forced(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ size_t offset, size_t length) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ /*
+ * It would be correct to have a ehooks_debug_zero_check call at the end
+ * of this function; purge_forced is required to zero. But checking
+ * would touch the page in question, which may have performance
+ * consequences (imagine the hooks are using hugepages, with a global
+ * zero page off). Even in debug mode, it's usually a good idea to
+ * avoid cases that can dramatically increase memory consumption.
+ */
+#ifdef PAGES_CAN_PURGE_FORCED
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ return ehooks_default_purge_forced_impl(addr, offset, length);
+ }
+#endif
+ if (extent_hooks->purge_forced == NULL) {
+ return true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ bool err = extent_hooks->purge_forced(extent_hooks, addr, size,
+ offset, length, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ return err;
+ }
+}
+
+static inline bool
+ehooks_split(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size,
+ size_t size_a, size_t size_b, bool committed) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (ehooks_are_default(ehooks)) {
+ return ehooks_default_split_impl();
+ } else if (extent_hooks->split == NULL) {
+ return true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ bool err = extent_hooks->split(extent_hooks, addr, size, size_a,
+ size_b, committed, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ return err;
+ }
+}
+
+static inline bool
+ehooks_merge(tsdn_t *tsdn, ehooks_t *ehooks, void *addr_a, size_t size_a,
+ void *addr_b, size_t size_b, bool committed) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ return ehooks_default_merge_impl(tsdn, addr_a, addr_b);
+ } else if (extent_hooks->merge == NULL) {
+ return true;
+ } else {
+ ehooks_pre_reentrancy(tsdn);
+ bool err = extent_hooks->merge(extent_hooks, addr_a, size_a,
+ addr_b, size_b, committed, ehooks_ind_get(ehooks));
+ ehooks_post_reentrancy(tsdn);
+ return err;
+ }
+}
+
+static inline void
+ehooks_zero(tsdn_t *tsdn, ehooks_t *ehooks, void *addr, size_t size) {
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ ehooks_default_zero_impl(addr, size);
+ } else {
+ /*
+ * It would be correct to try using the user-provided purge
+ * hooks (since they are required to have zeroed the extent if
+ * they indicate success), but we don't necessarily know their
+ * cost. We'll be conservative and use memset.
+ */
+ memset(addr, 0, size);
+ }
+}
+
+static inline bool
+ehooks_guard(tsdn_t *tsdn, ehooks_t *ehooks, void *guard1, void *guard2) {
+ bool err;
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ ehooks_default_guard_impl(guard1, guard2);
+ err = false;
+ } else {
+ err = true;
+ }
+
+ return err;
+}
+
+static inline bool
+ehooks_unguard(tsdn_t *tsdn, ehooks_t *ehooks, void *guard1, void *guard2) {
+ bool err;
+ extent_hooks_t *extent_hooks = ehooks_get_extent_hooks_ptr(ehooks);
+
+ if (extent_hooks == &ehooks_default_extent_hooks) {
+ ehooks_default_unguard_impl(guard1, guard2);
+ err = false;
+ } else {
+ err = true;
+ }
+
+ return err;
+}
+
+#endif /* JEMALLOC_INTERNAL_EHOOKS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/emap.h b/deps/jemalloc/include/jemalloc/internal/emap.h
new file mode 100644
index 0000000..847af32
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/emap.h
@@ -0,0 +1,357 @@
+#ifndef JEMALLOC_INTERNAL_EMAP_H
+#define JEMALLOC_INTERNAL_EMAP_H
+
+#include "jemalloc/internal/base.h"
+#include "jemalloc/internal/rtree.h"
+
+/*
+ * Note: Ends without at semicolon, so that
+ * EMAP_DECLARE_RTREE_CTX;
+ * in uses will avoid empty-statement warnings.
+ */
+#define EMAP_DECLARE_RTREE_CTX \
+ rtree_ctx_t rtree_ctx_fallback; \
+ rtree_ctx_t *rtree_ctx = tsdn_rtree_ctx(tsdn, &rtree_ctx_fallback)
+
+typedef struct emap_s emap_t;
+struct emap_s {
+ rtree_t rtree;
+};
+
+/* Used to pass rtree lookup context down the path. */
+typedef struct emap_alloc_ctx_t emap_alloc_ctx_t;
+struct emap_alloc_ctx_t {
+ szind_t szind;
+ bool slab;
+};
+
+typedef struct emap_full_alloc_ctx_s emap_full_alloc_ctx_t;
+struct emap_full_alloc_ctx_s {
+ szind_t szind;
+ bool slab;
+ edata_t *edata;
+};
+
+bool emap_init(emap_t *emap, base_t *base, bool zeroed);
+
+void emap_remap(tsdn_t *tsdn, emap_t *emap, edata_t *edata, szind_t szind,
+ bool slab);
+
+void emap_update_edata_state(tsdn_t *tsdn, emap_t *emap, edata_t *edata,
+ extent_state_t state);
+
+/*
+ * The two acquire functions below allow accessing neighbor edatas, if it's safe
+ * and valid to do so (i.e. from the same arena, of the same state, etc.). This
+ * is necessary because the ecache locks are state based, and only protect
+ * edatas with the same state. Therefore the neighbor edata's state needs to be
+ * verified first, before chasing the edata pointer. The returned edata will be
+ * in an acquired state, meaning other threads will be prevented from accessing
+ * it, even if technically the edata can still be discovered from the rtree.
+ *
+ * This means, at any moment when holding pointers to edata, either one of the
+ * state based locks is held (and the edatas are all of the protected state), or
+ * the edatas are in an acquired state (e.g. in active or merging state). The
+ * acquire operation itself (changing the edata to an acquired state) is done
+ * under the state locks.
+ */
+edata_t *emap_try_acquire_edata_neighbor(tsdn_t *tsdn, emap_t *emap,
+ edata_t *edata, extent_pai_t pai, extent_state_t expected_state,
+ bool forward);
+edata_t *emap_try_acquire_edata_neighbor_expand(tsdn_t *tsdn, emap_t *emap,
+ edata_t *edata, extent_pai_t pai, extent_state_t expected_state);
+void emap_release_edata(tsdn_t *tsdn, emap_t *emap, edata_t *edata,
+ extent_state_t new_state);
+
+/*
+ * Associate the given edata with its beginning and end address, setting the
+ * szind and slab info appropriately.
+ * Returns true on error (i.e. resource exhaustion).
+ */
+bool emap_register_boundary(tsdn_t *tsdn, emap_t *emap, edata_t *edata,
+ szind_t szind, bool slab);
+
+/*
+ * Does the same thing, but with the interior of the range, for slab
+ * allocations.
+ *
+ * You might wonder why we don't just have a single emap_register function that
+ * does both depending on the value of 'slab'. The answer is twofold:
+ * - As a practical matter, in places like the extract->split->commit pathway,
+ * we defer the interior operation until we're sure that the commit won't fail
+ * (but we have to register the split boundaries there).
+ * - In general, we're trying to move to a world where the page-specific
+ * allocator doesn't know as much about how the pages it allocates will be
+ * used, and passing a 'slab' parameter everywhere makes that more
+ * complicated.
+ *
+ * Unlike the boundary version, this function can't fail; this is because slabs
+ * can't get big enough to touch a new page that neither of the boundaries
+ * touched, so no allocation is necessary to fill the interior once the boundary
+ * has been touched.
+ */
+void emap_register_interior(tsdn_t *tsdn, emap_t *emap, edata_t *edata,
+ szind_t szind);
+
+void emap_deregister_boundary(tsdn_t *tsdn, emap_t *emap, edata_t *edata);
+void emap_deregister_interior(tsdn_t *tsdn, emap_t *emap, edata_t *edata);
+
+typedef struct emap_prepare_s emap_prepare_t;
+struct emap_prepare_s {
+ rtree_leaf_elm_t *lead_elm_a;
+ rtree_leaf_elm_t *lead_elm_b;
+ rtree_leaf_elm_t *trail_elm_a;
+ rtree_leaf_elm_t *trail_elm_b;
+};
+
+/**
+ * These functions the emap metadata management for merging, splitting, and
+ * reusing extents. In particular, they set the boundary mappings from
+ * addresses to edatas. If the result is going to be used as a slab, you
+ * still need to call emap_register_interior on it, though.
+ *
+ * Remap simply changes the szind and slab status of an extent's boundary
+ * mappings. If the extent is not a slab, it doesn't bother with updating the
+ * end mapping (since lookups only occur in the interior of an extent for
+ * slabs). Since the szind and slab status only make sense for active extents,
+ * this should only be called while activating or deactivating an extent.
+ *
+ * Split and merge have a "prepare" and a "commit" portion. The prepare portion
+ * does the operations that can be done without exclusive access to the extent
+ * in question, while the commit variant requires exclusive access to maintain
+ * the emap invariants. The only function that can fail is emap_split_prepare,
+ * and it returns true on failure (at which point the caller shouldn't commit).
+ *
+ * In all cases, "lead" refers to the lower-addressed extent, and trail to the
+ * higher-addressed one. It's the caller's responsibility to set the edata
+ * state appropriately.
+ */
+bool emap_split_prepare(tsdn_t *tsdn, emap_t *emap, emap_prepare_t *prepare,
+ edata_t *edata, size_t size_a, edata_t *trail, size_t size_b);
+void emap_split_commit(tsdn_t *tsdn, emap_t *emap, emap_prepare_t *prepare,
+ edata_t *lead, size_t size_a, edata_t *trail, size_t size_b);
+void emap_merge_prepare(tsdn_t *tsdn, emap_t *emap, emap_prepare_t *prepare,
+ edata_t *lead, edata_t *trail);
+void emap_merge_commit(tsdn_t *tsdn, emap_t *emap, emap_prepare_t *prepare,
+ edata_t *lead, edata_t *trail);
+
+/* Assert that the emap's view of the given edata matches the edata's view. */
+void emap_do_assert_mapped(tsdn_t *tsdn, emap_t *emap, edata_t *edata);
+static inline void
+emap_assert_mapped(tsdn_t *tsdn, emap_t *emap, edata_t *edata) {
+ if (config_debug) {
+ emap_do_assert_mapped(tsdn, emap, edata);
+ }
+}
+
+/* Assert that the given edata isn't in the map. */
+void emap_do_assert_not_mapped(tsdn_t *tsdn, emap_t *emap, edata_t *edata);
+static inline void
+emap_assert_not_mapped(tsdn_t *tsdn, emap_t *emap, edata_t *edata) {
+ if (config_debug) {
+ emap_do_assert_not_mapped(tsdn, emap, edata);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+emap_edata_in_transition(tsdn_t *tsdn, emap_t *emap, edata_t *edata) {
+ assert(config_debug);
+ emap_assert_mapped(tsdn, emap, edata);
+
+ EMAP_DECLARE_RTREE_CTX;
+ rtree_contents_t contents = rtree_read(tsdn, &emap->rtree, rtree_ctx,
+ (uintptr_t)edata_base_get(edata));
+
+ return edata_state_in_transition(contents.metadata.state);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+emap_edata_is_acquired(tsdn_t *tsdn, emap_t *emap, edata_t *edata) {
+ if (!config_debug) {
+ /* For assertions only. */
+ return false;
+ }
+
+ /*
+ * The edata is considered acquired if no other threads will attempt to
+ * read / write any fields from it. This includes a few cases:
+ *
+ * 1) edata not hooked into emap yet -- This implies the edata just got
+ * allocated or initialized.
+ *
+ * 2) in an active or transition state -- In both cases, the edata can
+ * be discovered from the emap, however the state tracked in the rtree
+ * will prevent other threads from accessing the actual edata.
+ */
+ EMAP_DECLARE_RTREE_CTX;
+ rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, &emap->rtree,
+ rtree_ctx, (uintptr_t)edata_base_get(edata), /* dependent */ true,
+ /* init_missing */ false);
+ if (elm == NULL) {
+ return true;
+ }
+ rtree_contents_t contents = rtree_leaf_elm_read(tsdn, &emap->rtree, elm,
+ /* dependent */ true);
+ if (contents.edata == NULL ||
+ contents.metadata.state == extent_state_active ||
+ edata_state_in_transition(contents.metadata.state)) {
+ return true;
+ }
+
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+extent_assert_can_coalesce(const edata_t *inner, const edata_t *outer) {
+ assert(edata_arena_ind_get(inner) == edata_arena_ind_get(outer));
+ assert(edata_pai_get(inner) == edata_pai_get(outer));
+ assert(edata_committed_get(inner) == edata_committed_get(outer));
+ assert(edata_state_get(inner) == extent_state_active);
+ assert(edata_state_get(outer) == extent_state_merging);
+ assert(!edata_guarded_get(inner) && !edata_guarded_get(outer));
+ assert(edata_base_get(inner) == edata_past_get(outer) ||
+ edata_base_get(outer) == edata_past_get(inner));
+}
+
+JEMALLOC_ALWAYS_INLINE void
+extent_assert_can_expand(const edata_t *original, const edata_t *expand) {
+ assert(edata_arena_ind_get(original) == edata_arena_ind_get(expand));
+ assert(edata_pai_get(original) == edata_pai_get(expand));
+ assert(edata_state_get(original) == extent_state_active);
+ assert(edata_state_get(expand) == extent_state_merging);
+ assert(edata_past_get(original) == edata_base_get(expand));
+}
+
+JEMALLOC_ALWAYS_INLINE edata_t *
+emap_edata_lookup(tsdn_t *tsdn, emap_t *emap, const void *ptr) {
+ EMAP_DECLARE_RTREE_CTX;
+
+ return rtree_read(tsdn, &emap->rtree, rtree_ctx, (uintptr_t)ptr).edata;
+}
+
+/* Fills in alloc_ctx with the info in the map. */
+JEMALLOC_ALWAYS_INLINE void
+emap_alloc_ctx_lookup(tsdn_t *tsdn, emap_t *emap, const void *ptr,
+ emap_alloc_ctx_t *alloc_ctx) {
+ EMAP_DECLARE_RTREE_CTX;
+
+ rtree_metadata_t metadata = rtree_metadata_read(tsdn, &emap->rtree,
+ rtree_ctx, (uintptr_t)ptr);
+ alloc_ctx->szind = metadata.szind;
+ alloc_ctx->slab = metadata.slab;
+}
+
+/* The pointer must be mapped. */
+JEMALLOC_ALWAYS_INLINE void
+emap_full_alloc_ctx_lookup(tsdn_t *tsdn, emap_t *emap, const void *ptr,
+ emap_full_alloc_ctx_t *full_alloc_ctx) {
+ EMAP_DECLARE_RTREE_CTX;
+
+ rtree_contents_t contents = rtree_read(tsdn, &emap->rtree, rtree_ctx,
+ (uintptr_t)ptr);
+ full_alloc_ctx->edata = contents.edata;
+ full_alloc_ctx->szind = contents.metadata.szind;
+ full_alloc_ctx->slab = contents.metadata.slab;
+}
+
+/*
+ * The pointer is allowed to not be mapped.
+ *
+ * Returns true when the pointer is not present.
+ */
+JEMALLOC_ALWAYS_INLINE bool
+emap_full_alloc_ctx_try_lookup(tsdn_t *tsdn, emap_t *emap, const void *ptr,
+ emap_full_alloc_ctx_t *full_alloc_ctx) {
+ EMAP_DECLARE_RTREE_CTX;
+
+ rtree_contents_t contents;
+ bool err = rtree_read_independent(tsdn, &emap->rtree, rtree_ctx,
+ (uintptr_t)ptr, &contents);
+ if (err) {
+ return true;
+ }
+ full_alloc_ctx->edata = contents.edata;
+ full_alloc_ctx->szind = contents.metadata.szind;
+ full_alloc_ctx->slab = contents.metadata.slab;
+ return false;
+}
+
+/*
+ * Only used on the fastpath of free. Returns true when cannot be fulfilled by
+ * fast path, e.g. when the metadata key is not cached.
+ */
+JEMALLOC_ALWAYS_INLINE bool
+emap_alloc_ctx_try_lookup_fast(tsd_t *tsd, emap_t *emap, const void *ptr,
+ emap_alloc_ctx_t *alloc_ctx) {
+ /* Use the unsafe getter since this may gets called during exit. */
+ rtree_ctx_t *rtree_ctx = tsd_rtree_ctxp_get_unsafe(tsd);
+
+ rtree_metadata_t metadata;
+ bool err = rtree_metadata_try_read_fast(tsd_tsdn(tsd), &emap->rtree,
+ rtree_ctx, (uintptr_t)ptr, &metadata);
+ if (err) {
+ return true;
+ }
+ alloc_ctx->szind = metadata.szind;
+ alloc_ctx->slab = metadata.slab;
+ return false;
+}
+
+/*
+ * We want to do batch lookups out of the cache bins, which use
+ * cache_bin_ptr_array_get to access the i'th element of the bin (since they
+ * invert usual ordering in deciding what to flush). This lets the emap avoid
+ * caring about its caller's ordering.
+ */
+typedef const void *(*emap_ptr_getter)(void *ctx, size_t ind);
+/*
+ * This allows size-checking assertions, which we can only do while we're in the
+ * process of edata lookups.
+ */
+typedef void (*emap_metadata_visitor)(void *ctx, emap_full_alloc_ctx_t *alloc_ctx);
+
+typedef union emap_batch_lookup_result_u emap_batch_lookup_result_t;
+union emap_batch_lookup_result_u {
+ edata_t *edata;
+ rtree_leaf_elm_t *rtree_leaf;
+};
+
+JEMALLOC_ALWAYS_INLINE void
+emap_edata_lookup_batch(tsd_t *tsd, emap_t *emap, size_t nptrs,
+ emap_ptr_getter ptr_getter, void *ptr_getter_ctx,
+ emap_metadata_visitor metadata_visitor, void *metadata_visitor_ctx,
+ emap_batch_lookup_result_t *result) {
+ /* Avoids null-checking tsdn in the loop below. */
+ util_assume(tsd != NULL);
+ rtree_ctx_t *rtree_ctx = tsd_rtree_ctxp_get(tsd);
+
+ for (size_t i = 0; i < nptrs; i++) {
+ const void *ptr = ptr_getter(ptr_getter_ctx, i);
+ /*
+ * Reuse the edatas array as a temp buffer, lying a little about
+ * the types.
+ */
+ result[i].rtree_leaf = rtree_leaf_elm_lookup(tsd_tsdn(tsd),
+ &emap->rtree, rtree_ctx, (uintptr_t)ptr,
+ /* dependent */ true, /* init_missing */ false);
+ }
+
+ for (size_t i = 0; i < nptrs; i++) {
+ rtree_leaf_elm_t *elm = result[i].rtree_leaf;
+ rtree_contents_t contents = rtree_leaf_elm_read(tsd_tsdn(tsd),
+ &emap->rtree, elm, /* dependent */ true);
+ result[i].edata = contents.edata;
+ emap_full_alloc_ctx_t alloc_ctx;
+ /*
+ * Not all these fields are read in practice by the metadata
+ * visitor. But the compiler can easily optimize away the ones
+ * that aren't, so no sense in being incomplete.
+ */
+ alloc_ctx.szind = contents.metadata.szind;
+ alloc_ctx.slab = contents.metadata.slab;
+ alloc_ctx.edata = contents.edata;
+ metadata_visitor(metadata_visitor_ctx, &alloc_ctx);
+ }
+}
+
+#endif /* JEMALLOC_INTERNAL_EMAP_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/emitter.h b/deps/jemalloc/include/jemalloc/internal/emitter.h
new file mode 100644
index 0000000..9482f68
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/emitter.h
@@ -0,0 +1,510 @@
+#ifndef JEMALLOC_INTERNAL_EMITTER_H
+#define JEMALLOC_INTERNAL_EMITTER_H
+
+#include "jemalloc/internal/ql.h"
+
+typedef enum emitter_output_e emitter_output_t;
+enum emitter_output_e {
+ emitter_output_json,
+ emitter_output_json_compact,
+ emitter_output_table
+};
+
+typedef enum emitter_justify_e emitter_justify_t;
+enum emitter_justify_e {
+ emitter_justify_left,
+ emitter_justify_right,
+ /* Not for users; just to pass to internal functions. */
+ emitter_justify_none
+};
+
+typedef enum emitter_type_e emitter_type_t;
+enum emitter_type_e {
+ emitter_type_bool,
+ emitter_type_int,
+ emitter_type_int64,
+ emitter_type_unsigned,
+ emitter_type_uint32,
+ emitter_type_uint64,
+ emitter_type_size,
+ emitter_type_ssize,
+ emitter_type_string,
+ /*
+ * A title is a column title in a table; it's just a string, but it's
+ * not quoted.
+ */
+ emitter_type_title,
+};
+
+typedef struct emitter_col_s emitter_col_t;
+struct emitter_col_s {
+ /* Filled in by the user. */
+ emitter_justify_t justify;
+ int width;
+ emitter_type_t type;
+ union {
+ bool bool_val;
+ int int_val;
+ unsigned unsigned_val;
+ uint32_t uint32_val;
+ uint32_t uint32_t_val;
+ uint64_t uint64_val;
+ uint64_t uint64_t_val;
+ size_t size_val;
+ ssize_t ssize_val;
+ const char *str_val;
+ };
+
+ /* Filled in by initialization. */
+ ql_elm(emitter_col_t) link;
+};
+
+typedef struct emitter_row_s emitter_row_t;
+struct emitter_row_s {
+ ql_head(emitter_col_t) cols;
+};
+
+typedef struct emitter_s emitter_t;
+struct emitter_s {
+ emitter_output_t output;
+ /* The output information. */
+ write_cb_t *write_cb;
+ void *cbopaque;
+ int nesting_depth;
+ /* True if we've already emitted a value at the given depth. */
+ bool item_at_depth;
+ /* True if we emitted a key and will emit corresponding value next. */
+ bool emitted_key;
+};
+
+static inline bool
+emitter_outputs_json(emitter_t *emitter) {
+ return emitter->output == emitter_output_json ||
+ emitter->output == emitter_output_json_compact;
+}
+
+/* Internal convenience function. Write to the emitter the given string. */
+JEMALLOC_FORMAT_PRINTF(2, 3)
+static inline void
+emitter_printf(emitter_t *emitter, const char *format, ...) {
+ va_list ap;
+
+ va_start(ap, format);
+ malloc_vcprintf(emitter->write_cb, emitter->cbopaque, format, ap);
+ va_end(ap);
+}
+
+static inline const char * JEMALLOC_FORMAT_ARG(3)
+emitter_gen_fmt(char *out_fmt, size_t out_size, const char *fmt_specifier,
+ emitter_justify_t justify, int width) {
+ size_t written;
+ fmt_specifier++;
+ if (justify == emitter_justify_none) {
+ written = malloc_snprintf(out_fmt, out_size,
+ "%%%s", fmt_specifier);
+ } else if (justify == emitter_justify_left) {
+ written = malloc_snprintf(out_fmt, out_size,
+ "%%-%d%s", width, fmt_specifier);
+ } else {
+ written = malloc_snprintf(out_fmt, out_size,
+ "%%%d%s", width, fmt_specifier);
+ }
+ /* Only happens in case of bad format string, which *we* choose. */
+ assert(written < out_size);
+ return out_fmt;
+}
+
+/*
+ * Internal. Emit the given value type in the relevant encoding (so that the
+ * bool true gets mapped to json "true", but the string "true" gets mapped to
+ * json "\"true\"", for instance.
+ *
+ * Width is ignored if justify is emitter_justify_none.
+ */
+static inline void
+emitter_print_value(emitter_t *emitter, emitter_justify_t justify, int width,
+ emitter_type_t value_type, const void *value) {
+ size_t str_written;
+#define BUF_SIZE 256
+#define FMT_SIZE 10
+ /*
+ * We dynamically generate a format string to emit, to let us use the
+ * snprintf machinery. This is kinda hacky, but gets the job done
+ * quickly without having to think about the various snprintf edge
+ * cases.
+ */
+ char fmt[FMT_SIZE];
+ char buf[BUF_SIZE];
+
+#define EMIT_SIMPLE(type, format) \
+ emitter_printf(emitter, \
+ emitter_gen_fmt(fmt, FMT_SIZE, format, justify, width), \
+ *(const type *)value);
+
+ switch (value_type) {
+ case emitter_type_bool:
+ emitter_printf(emitter,
+ emitter_gen_fmt(fmt, FMT_SIZE, "%s", justify, width),
+ *(const bool *)value ? "true" : "false");
+ break;
+ case emitter_type_int:
+ EMIT_SIMPLE(int, "%d")
+ break;
+ case emitter_type_int64:
+ EMIT_SIMPLE(int64_t, "%" FMTd64)
+ break;
+ case emitter_type_unsigned:
+ EMIT_SIMPLE(unsigned, "%u")
+ break;
+ case emitter_type_ssize:
+ EMIT_SIMPLE(ssize_t, "%zd")
+ break;
+ case emitter_type_size:
+ EMIT_SIMPLE(size_t, "%zu")
+ break;
+ case emitter_type_string:
+ str_written = malloc_snprintf(buf, BUF_SIZE, "\"%s\"",
+ *(const char *const *)value);
+ /*
+ * We control the strings we output; we shouldn't get anything
+ * anywhere near the fmt size.
+ */
+ assert(str_written < BUF_SIZE);
+ emitter_printf(emitter,
+ emitter_gen_fmt(fmt, FMT_SIZE, "%s", justify, width), buf);
+ break;
+ case emitter_type_uint32:
+ EMIT_SIMPLE(uint32_t, "%" FMTu32)
+ break;
+ case emitter_type_uint64:
+ EMIT_SIMPLE(uint64_t, "%" FMTu64)
+ break;
+ case emitter_type_title:
+ EMIT_SIMPLE(char *const, "%s");
+ break;
+ default:
+ unreachable();
+ }
+#undef BUF_SIZE
+#undef FMT_SIZE
+}
+
+
+/* Internal functions. In json mode, tracks nesting state. */
+static inline void
+emitter_nest_inc(emitter_t *emitter) {
+ emitter->nesting_depth++;
+ emitter->item_at_depth = false;
+}
+
+static inline void
+emitter_nest_dec(emitter_t *emitter) {
+ emitter->nesting_depth--;
+ emitter->item_at_depth = true;
+}
+
+static inline void
+emitter_indent(emitter_t *emitter) {
+ int amount = emitter->nesting_depth;
+ const char *indent_str;
+ assert(emitter->output != emitter_output_json_compact);
+ if (emitter->output == emitter_output_json) {
+ indent_str = "\t";
+ } else {
+ amount *= 2;
+ indent_str = " ";
+ }
+ for (int i = 0; i < amount; i++) {
+ emitter_printf(emitter, "%s", indent_str);
+ }
+}
+
+static inline void
+emitter_json_key_prefix(emitter_t *emitter) {
+ assert(emitter_outputs_json(emitter));
+ if (emitter->emitted_key) {
+ emitter->emitted_key = false;
+ return;
+ }
+ if (emitter->item_at_depth) {
+ emitter_printf(emitter, ",");
+ }
+ if (emitter->output != emitter_output_json_compact) {
+ emitter_printf(emitter, "\n");
+ emitter_indent(emitter);
+ }
+}
+
+/******************************************************************************/
+/* Public functions for emitter_t. */
+
+static inline void
+emitter_init(emitter_t *emitter, emitter_output_t emitter_output,
+ write_cb_t *write_cb, void *cbopaque) {
+ emitter->output = emitter_output;
+ emitter->write_cb = write_cb;
+ emitter->cbopaque = cbopaque;
+ emitter->item_at_depth = false;
+ emitter->emitted_key = false;
+ emitter->nesting_depth = 0;
+}
+
+/******************************************************************************/
+/* JSON public API. */
+
+/*
+ * Emits a key (e.g. as appears in an object). The next json entity emitted will
+ * be the corresponding value.
+ */
+static inline void
+emitter_json_key(emitter_t *emitter, const char *json_key) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_key_prefix(emitter);
+ emitter_printf(emitter, "\"%s\":%s", json_key,
+ emitter->output == emitter_output_json_compact ? "" : " ");
+ emitter->emitted_key = true;
+ }
+}
+
+static inline void
+emitter_json_value(emitter_t *emitter, emitter_type_t value_type,
+ const void *value) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_key_prefix(emitter);
+ emitter_print_value(emitter, emitter_justify_none, -1,
+ value_type, value);
+ emitter->item_at_depth = true;
+ }
+}
+
+/* Shorthand for calling emitter_json_key and then emitter_json_value. */
+static inline void
+emitter_json_kv(emitter_t *emitter, const char *json_key,
+ emitter_type_t value_type, const void *value) {
+ emitter_json_key(emitter, json_key);
+ emitter_json_value(emitter, value_type, value);
+}
+
+static inline void
+emitter_json_array_begin(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_key_prefix(emitter);
+ emitter_printf(emitter, "[");
+ emitter_nest_inc(emitter);
+ }
+}
+
+/* Shorthand for calling emitter_json_key and then emitter_json_array_begin. */
+static inline void
+emitter_json_array_kv_begin(emitter_t *emitter, const char *json_key) {
+ emitter_json_key(emitter, json_key);
+ emitter_json_array_begin(emitter);
+}
+
+static inline void
+emitter_json_array_end(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ assert(emitter->nesting_depth > 0);
+ emitter_nest_dec(emitter);
+ if (emitter->output != emitter_output_json_compact) {
+ emitter_printf(emitter, "\n");
+ emitter_indent(emitter);
+ }
+ emitter_printf(emitter, "]");
+ }
+}
+
+static inline void
+emitter_json_object_begin(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_key_prefix(emitter);
+ emitter_printf(emitter, "{");
+ emitter_nest_inc(emitter);
+ }
+}
+
+/* Shorthand for calling emitter_json_key and then emitter_json_object_begin. */
+static inline void
+emitter_json_object_kv_begin(emitter_t *emitter, const char *json_key) {
+ emitter_json_key(emitter, json_key);
+ emitter_json_object_begin(emitter);
+}
+
+static inline void
+emitter_json_object_end(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ assert(emitter->nesting_depth > 0);
+ emitter_nest_dec(emitter);
+ if (emitter->output != emitter_output_json_compact) {
+ emitter_printf(emitter, "\n");
+ emitter_indent(emitter);
+ }
+ emitter_printf(emitter, "}");
+ }
+}
+
+
+/******************************************************************************/
+/* Table public API. */
+
+static inline void
+emitter_table_dict_begin(emitter_t *emitter, const char *table_key) {
+ if (emitter->output == emitter_output_table) {
+ emitter_indent(emitter);
+ emitter_printf(emitter, "%s\n", table_key);
+ emitter_nest_inc(emitter);
+ }
+}
+
+static inline void
+emitter_table_dict_end(emitter_t *emitter) {
+ if (emitter->output == emitter_output_table) {
+ emitter_nest_dec(emitter);
+ }
+}
+
+static inline void
+emitter_table_kv_note(emitter_t *emitter, const char *table_key,
+ emitter_type_t value_type, const void *value,
+ const char *table_note_key, emitter_type_t table_note_value_type,
+ const void *table_note_value) {
+ if (emitter->output == emitter_output_table) {
+ emitter_indent(emitter);
+ emitter_printf(emitter, "%s: ", table_key);
+ emitter_print_value(emitter, emitter_justify_none, -1,
+ value_type, value);
+ if (table_note_key != NULL) {
+ emitter_printf(emitter, " (%s: ", table_note_key);
+ emitter_print_value(emitter, emitter_justify_none, -1,
+ table_note_value_type, table_note_value);
+ emitter_printf(emitter, ")");
+ }
+ emitter_printf(emitter, "\n");
+ }
+ emitter->item_at_depth = true;
+}
+
+static inline void
+emitter_table_kv(emitter_t *emitter, const char *table_key,
+ emitter_type_t value_type, const void *value) {
+ emitter_table_kv_note(emitter, table_key, value_type, value, NULL,
+ emitter_type_bool, NULL);
+}
+
+
+/* Write to the emitter the given string, but only in table mode. */
+JEMALLOC_FORMAT_PRINTF(2, 3)
+static inline void
+emitter_table_printf(emitter_t *emitter, const char *format, ...) {
+ if (emitter->output == emitter_output_table) {
+ va_list ap;
+ va_start(ap, format);
+ malloc_vcprintf(emitter->write_cb, emitter->cbopaque, format, ap);
+ va_end(ap);
+ }
+}
+
+static inline void
+emitter_table_row(emitter_t *emitter, emitter_row_t *row) {
+ if (emitter->output != emitter_output_table) {
+ return;
+ }
+ emitter_col_t *col;
+ ql_foreach(col, &row->cols, link) {
+ emitter_print_value(emitter, col->justify, col->width,
+ col->type, (const void *)&col->bool_val);
+ }
+ emitter_table_printf(emitter, "\n");
+}
+
+static inline void
+emitter_row_init(emitter_row_t *row) {
+ ql_new(&row->cols);
+}
+
+static inline void
+emitter_col_init(emitter_col_t *col, emitter_row_t *row) {
+ ql_elm_new(col, link);
+ ql_tail_insert(&row->cols, col, link);
+}
+
+
+/******************************************************************************/
+/*
+ * Generalized public API. Emits using either JSON or table, according to
+ * settings in the emitter_t. */
+
+/*
+ * Note emits a different kv pair as well, but only in table mode. Omits the
+ * note if table_note_key is NULL.
+ */
+static inline void
+emitter_kv_note(emitter_t *emitter, const char *json_key, const char *table_key,
+ emitter_type_t value_type, const void *value,
+ const char *table_note_key, emitter_type_t table_note_value_type,
+ const void *table_note_value) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_key(emitter, json_key);
+ emitter_json_value(emitter, value_type, value);
+ } else {
+ emitter_table_kv_note(emitter, table_key, value_type, value,
+ table_note_key, table_note_value_type, table_note_value);
+ }
+ emitter->item_at_depth = true;
+}
+
+static inline void
+emitter_kv(emitter_t *emitter, const char *json_key, const char *table_key,
+ emitter_type_t value_type, const void *value) {
+ emitter_kv_note(emitter, json_key, table_key, value_type, value, NULL,
+ emitter_type_bool, NULL);
+}
+
+static inline void
+emitter_dict_begin(emitter_t *emitter, const char *json_key,
+ const char *table_header) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_key(emitter, json_key);
+ emitter_json_object_begin(emitter);
+ } else {
+ emitter_table_dict_begin(emitter, table_header);
+ }
+}
+
+static inline void
+emitter_dict_end(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ emitter_json_object_end(emitter);
+ } else {
+ emitter_table_dict_end(emitter);
+ }
+}
+
+static inline void
+emitter_begin(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ assert(emitter->nesting_depth == 0);
+ emitter_printf(emitter, "{");
+ emitter_nest_inc(emitter);
+ } else {
+ /*
+ * This guarantees that we always call write_cb at least once.
+ * This is useful if some invariant is established by each call
+ * to write_cb, but doesn't hold initially: e.g., some buffer
+ * holds a null-terminated string.
+ */
+ emitter_printf(emitter, "%s", "");
+ }
+}
+
+static inline void
+emitter_end(emitter_t *emitter) {
+ if (emitter_outputs_json(emitter)) {
+ assert(emitter->nesting_depth == 1);
+ emitter_nest_dec(emitter);
+ emitter_printf(emitter, "%s", emitter->output ==
+ emitter_output_json_compact ? "}" : "\n}\n");
+ }
+}
+
+#endif /* JEMALLOC_INTERNAL_EMITTER_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/eset.h b/deps/jemalloc/include/jemalloc/internal/eset.h
new file mode 100644
index 0000000..4f689b4
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/eset.h
@@ -0,0 +1,77 @@
+#ifndef JEMALLOC_INTERNAL_ESET_H
+#define JEMALLOC_INTERNAL_ESET_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/fb.h"
+#include "jemalloc/internal/edata.h"
+#include "jemalloc/internal/mutex.h"
+
+/*
+ * An eset ("extent set") is a quantized collection of extents, with built-in
+ * LRU queue.
+ *
+ * This class is not thread-safe; synchronization must be done externally if
+ * there are mutating operations. One exception is the stats counters, which
+ * may be read without any locking.
+ */
+
+typedef struct eset_bin_s eset_bin_t;
+struct eset_bin_s {
+ edata_heap_t heap;
+ /*
+ * We do first-fit across multiple size classes. If we compared against
+ * the min element in each heap directly, we'd take a cache miss per
+ * extent we looked at. If we co-locate the edata summaries, we only
+ * take a miss on the edata we're actually going to return (which is
+ * inevitable anyways).
+ */
+ edata_cmp_summary_t heap_min;
+};
+
+typedef struct eset_bin_stats_s eset_bin_stats_t;
+struct eset_bin_stats_s {
+ atomic_zu_t nextents;
+ atomic_zu_t nbytes;
+};
+
+typedef struct eset_s eset_t;
+struct eset_s {
+ /* Bitmap for which set bits correspond to non-empty heaps. */
+ fb_group_t bitmap[FB_NGROUPS(SC_NPSIZES + 1)];
+
+ /* Quantized per size class heaps of extents. */
+ eset_bin_t bins[SC_NPSIZES + 1];
+
+ eset_bin_stats_t bin_stats[SC_NPSIZES + 1];
+
+ /* LRU of all extents in heaps. */
+ edata_list_inactive_t lru;
+
+ /* Page sum for all extents in heaps. */
+ atomic_zu_t npages;
+
+ /*
+ * A duplication of the data in the containing ecache. We use this only
+ * for assertions on the states of the passed-in extents.
+ */
+ extent_state_t state;
+};
+
+void eset_init(eset_t *eset, extent_state_t state);
+
+size_t eset_npages_get(eset_t *eset);
+/* Get the number of extents in the given page size index. */
+size_t eset_nextents_get(eset_t *eset, pszind_t ind);
+/* Get the sum total bytes of the extents in the given page size index. */
+size_t eset_nbytes_get(eset_t *eset, pszind_t ind);
+
+void eset_insert(eset_t *eset, edata_t *edata);
+void eset_remove(eset_t *eset, edata_t *edata);
+/*
+ * Select an extent from this eset of the given size and alignment. Returns
+ * null if no such item could be found.
+ */
+edata_t *eset_fit(eset_t *eset, size_t esize, size_t alignment, bool exact_only,
+ unsigned lg_max_fit);
+
+#endif /* JEMALLOC_INTERNAL_ESET_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/exp_grow.h b/deps/jemalloc/include/jemalloc/internal/exp_grow.h
new file mode 100644
index 0000000..8566b8a
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/exp_grow.h
@@ -0,0 +1,50 @@
+#ifndef JEMALLOC_INTERNAL_EXP_GROW_H
+#define JEMALLOC_INTERNAL_EXP_GROW_H
+
+typedef struct exp_grow_s exp_grow_t;
+struct exp_grow_s {
+ /*
+ * Next extent size class in a growing series to use when satisfying a
+ * request via the extent hooks (only if opt_retain). This limits the
+ * number of disjoint virtual memory ranges so that extent merging can
+ * be effective even if multiple arenas' extent allocation requests are
+ * highly interleaved.
+ *
+ * retain_grow_limit is the max allowed size ind to expand (unless the
+ * required size is greater). Default is no limit, and controlled
+ * through mallctl only.
+ */
+ pszind_t next;
+ pszind_t limit;
+};
+
+static inline bool
+exp_grow_size_prepare(exp_grow_t *exp_grow, size_t alloc_size_min,
+ size_t *r_alloc_size, pszind_t *r_skip) {
+ *r_skip = 0;
+ *r_alloc_size = sz_pind2sz(exp_grow->next + *r_skip);
+ while (*r_alloc_size < alloc_size_min) {
+ (*r_skip)++;
+ if (exp_grow->next + *r_skip >=
+ sz_psz2ind(SC_LARGE_MAXCLASS)) {
+ /* Outside legal range. */
+ return true;
+ }
+ *r_alloc_size = sz_pind2sz(exp_grow->next + *r_skip);
+ }
+ return false;
+}
+
+static inline void
+exp_grow_size_commit(exp_grow_t *exp_grow, pszind_t skip) {
+ if (exp_grow->next + skip + 1 <= exp_grow->limit) {
+ exp_grow->next += skip + 1;
+ } else {
+ exp_grow->next = exp_grow->limit;
+ }
+
+}
+
+void exp_grow_init(exp_grow_t *exp_grow);
+
+#endif /* JEMALLOC_INTERNAL_EXP_GROW_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/extent.h b/deps/jemalloc/include/jemalloc/internal/extent.h
new file mode 100644
index 0000000..1d51d41
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/extent.h
@@ -0,0 +1,137 @@
+#ifndef JEMALLOC_INTERNAL_EXTENT_H
+#define JEMALLOC_INTERNAL_EXTENT_H
+
+#include "jemalloc/internal/ecache.h"
+#include "jemalloc/internal/ehooks.h"
+#include "jemalloc/internal/ph.h"
+#include "jemalloc/internal/rtree.h"
+
+/*
+ * This module contains the page-level allocator. It chooses the addresses that
+ * allocations requested by other modules will inhabit, and updates the global
+ * metadata to reflect allocation/deallocation/purging decisions.
+ */
+
+/*
+ * When reuse (and split) an active extent, (1U << opt_lg_extent_max_active_fit)
+ * is the max ratio between the size of the active extent and the new extent.
+ */
+#define LG_EXTENT_MAX_ACTIVE_FIT_DEFAULT 6
+extern size_t opt_lg_extent_max_active_fit;
+
+edata_t *ecache_alloc(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ ecache_t *ecache, edata_t *expand_edata, size_t size, size_t alignment,
+ bool zero, bool guarded);
+edata_t *ecache_alloc_grow(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ ecache_t *ecache, edata_t *expand_edata, size_t size, size_t alignment,
+ bool zero, bool guarded);
+void ecache_dalloc(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ ecache_t *ecache, edata_t *edata);
+edata_t *ecache_evict(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ ecache_t *ecache, size_t npages_min);
+
+void extent_gdump_add(tsdn_t *tsdn, const edata_t *edata);
+void extent_record(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks, ecache_t *ecache,
+ edata_t *edata);
+void extent_dalloc_gap(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ edata_t *edata);
+edata_t *extent_alloc_wrapper(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ void *new_addr, size_t size, size_t alignment, bool zero, bool *commit,
+ bool growing_retained);
+void extent_dalloc_wrapper(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ edata_t *edata);
+void extent_destroy_wrapper(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ edata_t *edata);
+bool extent_commit_wrapper(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ size_t offset, size_t length);
+bool extent_decommit_wrapper(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ size_t offset, size_t length);
+bool extent_purge_lazy_wrapper(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ size_t offset, size_t length);
+bool extent_purge_forced_wrapper(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ size_t offset, size_t length);
+edata_t *extent_split_wrapper(tsdn_t *tsdn, pac_t *pac,
+ ehooks_t *ehooks, edata_t *edata, size_t size_a, size_t size_b,
+ bool holding_core_locks);
+bool extent_merge_wrapper(tsdn_t *tsdn, pac_t *pac, ehooks_t *ehooks,
+ edata_t *a, edata_t *b);
+bool extent_commit_zero(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ bool commit, bool zero, bool growing_retained);
+size_t extent_sn_next(pac_t *pac);
+bool extent_boot(void);
+
+JEMALLOC_ALWAYS_INLINE bool
+extent_neighbor_head_state_mergeable(bool edata_is_head,
+ bool neighbor_is_head, bool forward) {
+ /*
+ * Head states checking: disallow merging if the higher addr extent is a
+ * head extent. This helps preserve first-fit, and more importantly
+ * makes sure no merge across arenas.
+ */
+ if (forward) {
+ if (neighbor_is_head) {
+ return false;
+ }
+ } else {
+ if (edata_is_head) {
+ return false;
+ }
+ }
+ return true;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+extent_can_acquire_neighbor(edata_t *edata, rtree_contents_t contents,
+ extent_pai_t pai, extent_state_t expected_state, bool forward,
+ bool expanding) {
+ edata_t *neighbor = contents.edata;
+ if (neighbor == NULL) {
+ return false;
+ }
+ /* It's not safe to access *neighbor yet; must verify states first. */
+ bool neighbor_is_head = contents.metadata.is_head;
+ if (!extent_neighbor_head_state_mergeable(edata_is_head_get(edata),
+ neighbor_is_head, forward)) {
+ return false;
+ }
+ extent_state_t neighbor_state = contents.metadata.state;
+ if (pai == EXTENT_PAI_PAC) {
+ if (neighbor_state != expected_state) {
+ return false;
+ }
+ /* From this point, it's safe to access *neighbor. */
+ if (!expanding && (edata_committed_get(edata) !=
+ edata_committed_get(neighbor))) {
+ /*
+ * Some platforms (e.g. Windows) require an explicit
+ * commit step (and writing to uncommitted memory is not
+ * allowed).
+ */
+ return false;
+ }
+ } else {
+ if (neighbor_state == extent_state_active) {
+ return false;
+ }
+ /* From this point, it's safe to access *neighbor. */
+ }
+
+ assert(edata_pai_get(edata) == pai);
+ if (edata_pai_get(neighbor) != pai) {
+ return false;
+ }
+ if (opt_retain) {
+ assert(edata_arena_ind_get(edata) ==
+ edata_arena_ind_get(neighbor));
+ } else {
+ if (edata_arena_ind_get(edata) !=
+ edata_arena_ind_get(neighbor)) {
+ return false;
+ }
+ }
+ assert(!edata_guarded_get(edata) && !edata_guarded_get(neighbor));
+
+ return true;
+}
+
+#endif /* JEMALLOC_INTERNAL_EXTENT_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/extent_dss.h b/deps/jemalloc/include/jemalloc/internal/extent_dss.h
new file mode 100644
index 0000000..e8f02ce
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/extent_dss.h
@@ -0,0 +1,26 @@
+#ifndef JEMALLOC_INTERNAL_EXTENT_DSS_H
+#define JEMALLOC_INTERNAL_EXTENT_DSS_H
+
+typedef enum {
+ dss_prec_disabled = 0,
+ dss_prec_primary = 1,
+ dss_prec_secondary = 2,
+
+ dss_prec_limit = 3
+} dss_prec_t;
+#define DSS_PREC_DEFAULT dss_prec_secondary
+#define DSS_DEFAULT "secondary"
+
+extern const char *dss_prec_names[];
+
+extern const char *opt_dss;
+
+dss_prec_t extent_dss_prec_get(void);
+bool extent_dss_prec_set(dss_prec_t dss_prec);
+void *extent_alloc_dss(tsdn_t *tsdn, arena_t *arena, void *new_addr,
+ size_t size, size_t alignment, bool *zero, bool *commit);
+bool extent_in_dss(void *addr);
+bool extent_dss_mergeable(void *addr_a, void *addr_b);
+void extent_dss_boot(void);
+
+#endif /* JEMALLOC_INTERNAL_EXTENT_DSS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/extent_mmap.h b/deps/jemalloc/include/jemalloc/internal/extent_mmap.h
new file mode 100644
index 0000000..55f17ee
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/extent_mmap.h
@@ -0,0 +1,10 @@
+#ifndef JEMALLOC_INTERNAL_EXTENT_MMAP_EXTERNS_H
+#define JEMALLOC_INTERNAL_EXTENT_MMAP_EXTERNS_H
+
+extern bool opt_retain;
+
+void *extent_alloc_mmap(void *new_addr, size_t size, size_t alignment,
+ bool *zero, bool *commit);
+bool extent_dalloc_mmap(void *addr, size_t size);
+
+#endif /* JEMALLOC_INTERNAL_EXTENT_MMAP_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/fb.h b/deps/jemalloc/include/jemalloc/internal/fb.h
new file mode 100644
index 0000000..90c4091
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/fb.h
@@ -0,0 +1,373 @@
+#ifndef JEMALLOC_INTERNAL_FB_H
+#define JEMALLOC_INTERNAL_FB_H
+
+/*
+ * The flat bitmap module. This has a larger API relative to the bitmap module
+ * (supporting things like backwards searches, and searching for both set and
+ * unset bits), at the cost of slower operations for very large bitmaps.
+ *
+ * Initialized flat bitmaps start at all-zeros (all bits unset).
+ */
+
+typedef unsigned long fb_group_t;
+#define FB_GROUP_BITS (ZU(1) << (LG_SIZEOF_LONG + 3))
+#define FB_NGROUPS(nbits) ((nbits) / FB_GROUP_BITS \
+ + ((nbits) % FB_GROUP_BITS == 0 ? 0 : 1))
+
+static inline void
+fb_init(fb_group_t *fb, size_t nbits) {
+ size_t ngroups = FB_NGROUPS(nbits);
+ memset(fb, 0, ngroups * sizeof(fb_group_t));
+}
+
+static inline bool
+fb_empty(fb_group_t *fb, size_t nbits) {
+ size_t ngroups = FB_NGROUPS(nbits);
+ for (size_t i = 0; i < ngroups; i++) {
+ if (fb[i] != 0) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static inline bool
+fb_full(fb_group_t *fb, size_t nbits) {
+ size_t ngroups = FB_NGROUPS(nbits);
+ size_t trailing_bits = nbits % FB_GROUP_BITS;
+ size_t limit = (trailing_bits == 0 ? ngroups : ngroups - 1);
+ for (size_t i = 0; i < limit; i++) {
+ if (fb[i] != ~(fb_group_t)0) {
+ return false;
+ }
+ }
+ if (trailing_bits == 0) {
+ return true;
+ }
+ return fb[ngroups - 1] == ((fb_group_t)1 << trailing_bits) - 1;
+}
+
+static inline bool
+fb_get(fb_group_t *fb, size_t nbits, size_t bit) {
+ assert(bit < nbits);
+ size_t group_ind = bit / FB_GROUP_BITS;
+ size_t bit_ind = bit % FB_GROUP_BITS;
+ return (bool)(fb[group_ind] & ((fb_group_t)1 << bit_ind));
+}
+
+static inline void
+fb_set(fb_group_t *fb, size_t nbits, size_t bit) {
+ assert(bit < nbits);
+ size_t group_ind = bit / FB_GROUP_BITS;
+ size_t bit_ind = bit % FB_GROUP_BITS;
+ fb[group_ind] |= ((fb_group_t)1 << bit_ind);
+}
+
+static inline void
+fb_unset(fb_group_t *fb, size_t nbits, size_t bit) {
+ assert(bit < nbits);
+ size_t group_ind = bit / FB_GROUP_BITS;
+ size_t bit_ind = bit % FB_GROUP_BITS;
+ fb[group_ind] &= ~((fb_group_t)1 << bit_ind);
+}
+
+
+/*
+ * Some implementation details. This visitation function lets us apply a group
+ * visitor to each group in the bitmap (potentially modifying it). The mask
+ * indicates which bits are logically part of the visitation.
+ */
+typedef void (*fb_group_visitor_t)(void *ctx, fb_group_t *fb, fb_group_t mask);
+JEMALLOC_ALWAYS_INLINE void
+fb_visit_impl(fb_group_t *fb, size_t nbits, fb_group_visitor_t visit, void *ctx,
+ size_t start, size_t cnt) {
+ assert(cnt > 0);
+ assert(start + cnt <= nbits);
+ size_t group_ind = start / FB_GROUP_BITS;
+ size_t start_bit_ind = start % FB_GROUP_BITS;
+ /*
+ * The first group is special; it's the only one we don't start writing
+ * to from bit 0.
+ */
+ size_t first_group_cnt = (start_bit_ind + cnt > FB_GROUP_BITS
+ ? FB_GROUP_BITS - start_bit_ind : cnt);
+ /*
+ * We can basically split affected words into:
+ * - The first group, where we touch only the high bits
+ * - The last group, where we touch only the low bits
+ * - The middle, where we set all the bits to the same thing.
+ * We treat each case individually. The last two could be merged, but
+ * this can lead to bad codegen for those middle words.
+ */
+ /* First group */
+ fb_group_t mask = ((~(fb_group_t)0)
+ >> (FB_GROUP_BITS - first_group_cnt))
+ << start_bit_ind;
+ visit(ctx, &fb[group_ind], mask);
+
+ cnt -= first_group_cnt;
+ group_ind++;
+ /* Middle groups */
+ while (cnt > FB_GROUP_BITS) {
+ visit(ctx, &fb[group_ind], ~(fb_group_t)0);
+ cnt -= FB_GROUP_BITS;
+ group_ind++;
+ }
+ /* Last group */
+ if (cnt != 0) {
+ mask = (~(fb_group_t)0) >> (FB_GROUP_BITS - cnt);
+ visit(ctx, &fb[group_ind], mask);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+fb_assign_visitor(void *ctx, fb_group_t *fb, fb_group_t mask) {
+ bool val = *(bool *)ctx;
+ if (val) {
+ *fb |= mask;
+ } else {
+ *fb &= ~mask;
+ }
+}
+
+/* Sets the cnt bits starting at position start. Must not have a 0 count. */
+static inline void
+fb_set_range(fb_group_t *fb, size_t nbits, size_t start, size_t cnt) {
+ bool val = true;
+ fb_visit_impl(fb, nbits, &fb_assign_visitor, &val, start, cnt);
+}
+
+/* Unsets the cnt bits starting at position start. Must not have a 0 count. */
+static inline void
+fb_unset_range(fb_group_t *fb, size_t nbits, size_t start, size_t cnt) {
+ bool val = false;
+ fb_visit_impl(fb, nbits, &fb_assign_visitor, &val, start, cnt);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+fb_scount_visitor(void *ctx, fb_group_t *fb, fb_group_t mask) {
+ size_t *scount = (size_t *)ctx;
+ *scount += popcount_lu(*fb & mask);
+}
+
+/* Finds the number of set bit in the of length cnt starting at start. */
+JEMALLOC_ALWAYS_INLINE size_t
+fb_scount(fb_group_t *fb, size_t nbits, size_t start, size_t cnt) {
+ size_t scount = 0;
+ fb_visit_impl(fb, nbits, &fb_scount_visitor, &scount, start, cnt);
+ return scount;
+}
+
+/* Finds the number of unset bit in the of length cnt starting at start. */
+JEMALLOC_ALWAYS_INLINE size_t
+fb_ucount(fb_group_t *fb, size_t nbits, size_t start, size_t cnt) {
+ size_t scount = fb_scount(fb, nbits, start, cnt);
+ return cnt - scount;
+}
+
+/*
+ * An implementation detail; find the first bit at position >= min_bit with the
+ * value val.
+ *
+ * Returns the number of bits in the bitmap if no such bit exists.
+ */
+JEMALLOC_ALWAYS_INLINE ssize_t
+fb_find_impl(fb_group_t *fb, size_t nbits, size_t start, bool val,
+ bool forward) {
+ assert(start < nbits);
+ size_t ngroups = FB_NGROUPS(nbits);
+ ssize_t group_ind = start / FB_GROUP_BITS;
+ size_t bit_ind = start % FB_GROUP_BITS;
+
+ fb_group_t maybe_invert = (val ? 0 : (fb_group_t)-1);
+
+ fb_group_t group = fb[group_ind];
+ group ^= maybe_invert;
+ if (forward) {
+ /* Only keep ones in bits bit_ind and above. */
+ group &= ~((1LU << bit_ind) - 1);
+ } else {
+ /*
+ * Only keep ones in bits bit_ind and below. You might more
+ * naturally express this as (1 << (bit_ind + 1)) - 1, but
+ * that shifts by an invalid amount if bit_ind is one less than
+ * FB_GROUP_BITS.
+ */
+ group &= ((2LU << bit_ind) - 1);
+ }
+ ssize_t group_ind_bound = forward ? (ssize_t)ngroups : -1;
+ while (group == 0) {
+ group_ind += forward ? 1 : -1;
+ if (group_ind == group_ind_bound) {
+ return forward ? (ssize_t)nbits : (ssize_t)-1;
+ }
+ group = fb[group_ind];
+ group ^= maybe_invert;
+ }
+ assert(group != 0);
+ size_t bit = forward ? ffs_lu(group) : fls_lu(group);
+ size_t pos = group_ind * FB_GROUP_BITS + bit;
+ /*
+ * The high bits of a partially filled last group are zeros, so if we're
+ * looking for zeros we don't want to report an invalid result.
+ */
+ if (forward && !val && pos > nbits) {
+ return nbits;
+ }
+ return pos;
+}
+
+/*
+ * Find the first set bit in the bitmap with an index >= min_bit. Returns the
+ * number of bits in the bitmap if no such bit exists.
+ */
+static inline size_t
+fb_ffu(fb_group_t *fb, size_t nbits, size_t min_bit) {
+ return (size_t)fb_find_impl(fb, nbits, min_bit, /* val */ false,
+ /* forward */ true);
+}
+
+/* The same, but looks for an unset bit. */
+static inline size_t
+fb_ffs(fb_group_t *fb, size_t nbits, size_t min_bit) {
+ return (size_t)fb_find_impl(fb, nbits, min_bit, /* val */ true,
+ /* forward */ true);
+}
+
+/*
+ * Find the last set bit in the bitmap with an index <= max_bit. Returns -1 if
+ * no such bit exists.
+ */
+static inline ssize_t
+fb_flu(fb_group_t *fb, size_t nbits, size_t max_bit) {
+ return fb_find_impl(fb, nbits, max_bit, /* val */ false,
+ /* forward */ false);
+}
+
+static inline ssize_t
+fb_fls(fb_group_t *fb, size_t nbits, size_t max_bit) {
+ return fb_find_impl(fb, nbits, max_bit, /* val */ true,
+ /* forward */ false);
+}
+
+/* Returns whether or not we found a range. */
+JEMALLOC_ALWAYS_INLINE bool
+fb_iter_range_impl(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
+ size_t *r_len, bool val, bool forward) {
+ assert(start < nbits);
+ ssize_t next_range_begin = fb_find_impl(fb, nbits, start, val, forward);
+ if ((forward && next_range_begin == (ssize_t)nbits)
+ || (!forward && next_range_begin == (ssize_t)-1)) {
+ return false;
+ }
+ /* Half open range; the set bits are [begin, end). */
+ ssize_t next_range_end = fb_find_impl(fb, nbits, next_range_begin, !val,
+ forward);
+ if (forward) {
+ *r_begin = next_range_begin;
+ *r_len = next_range_end - next_range_begin;
+ } else {
+ *r_begin = next_range_end + 1;
+ *r_len = next_range_begin - next_range_end;
+ }
+ return true;
+}
+
+/*
+ * Used to iterate through ranges of set bits.
+ *
+ * Tries to find the next contiguous sequence of set bits with a first index >=
+ * start. If one exists, puts the earliest bit of the range in *r_begin, its
+ * length in *r_len, and returns true. Otherwise, returns false (without
+ * touching *r_begin or *r_end).
+ */
+static inline bool
+fb_srange_iter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
+ size_t *r_len) {
+ return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
+ /* val */ true, /* forward */ true);
+}
+
+/*
+ * The same as fb_srange_iter, but searches backwards from start rather than
+ * forwards. (The position returned is still the earliest bit in the range).
+ */
+static inline bool
+fb_srange_riter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
+ size_t *r_len) {
+ return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
+ /* val */ true, /* forward */ false);
+}
+
+/* Similar to fb_srange_iter, but searches for unset bits. */
+static inline bool
+fb_urange_iter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
+ size_t *r_len) {
+ return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
+ /* val */ false, /* forward */ true);
+}
+
+/* Similar to fb_srange_riter, but searches for unset bits. */
+static inline bool
+fb_urange_riter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
+ size_t *r_len) {
+ return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
+ /* val */ false, /* forward */ false);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+fb_range_longest_impl(fb_group_t *fb, size_t nbits, bool val) {
+ size_t begin = 0;
+ size_t longest_len = 0;
+ size_t len = 0;
+ while (begin < nbits && fb_iter_range_impl(fb, nbits, begin, &begin,
+ &len, val, /* forward */ true)) {
+ if (len > longest_len) {
+ longest_len = len;
+ }
+ begin += len;
+ }
+ return longest_len;
+}
+
+static inline size_t
+fb_srange_longest(fb_group_t *fb, size_t nbits) {
+ return fb_range_longest_impl(fb, nbits, /* val */ true);
+}
+
+static inline size_t
+fb_urange_longest(fb_group_t *fb, size_t nbits) {
+ return fb_range_longest_impl(fb, nbits, /* val */ false);
+}
+
+/*
+ * Initializes each bit of dst with the bitwise-AND of the corresponding bits of
+ * src1 and src2. All bitmaps must be the same size.
+ */
+static inline void
+fb_bit_and(fb_group_t *dst, fb_group_t *src1, fb_group_t *src2, size_t nbits) {
+ size_t ngroups = FB_NGROUPS(nbits);
+ for (size_t i = 0; i < ngroups; i++) {
+ dst[i] = src1[i] & src2[i];
+ }
+}
+
+/* Like fb_bit_and, but with bitwise-OR. */
+static inline void
+fb_bit_or(fb_group_t *dst, fb_group_t *src1, fb_group_t *src2, size_t nbits) {
+ size_t ngroups = FB_NGROUPS(nbits);
+ for (size_t i = 0; i < ngroups; i++) {
+ dst[i] = src1[i] | src2[i];
+ }
+}
+
+/* Initializes dst bit i to the negation of source bit i. */
+static inline void
+fb_bit_not(fb_group_t *dst, fb_group_t *src, size_t nbits) {
+ size_t ngroups = FB_NGROUPS(nbits);
+ for (size_t i = 0; i < ngroups; i++) {
+ dst[i] = ~src[i];
+ }
+}
+
+#endif /* JEMALLOC_INTERNAL_FB_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/fxp.h b/deps/jemalloc/include/jemalloc/internal/fxp.h
new file mode 100644
index 0000000..415a982
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/fxp.h
@@ -0,0 +1,126 @@
+#ifndef JEMALLOC_INTERNAL_FXP_H
+#define JEMALLOC_INTERNAL_FXP_H
+
+/*
+ * A simple fixed-point math implementation, supporting only unsigned values
+ * (with overflow being an error).
+ *
+ * It's not in general safe to use floating point in core code, because various
+ * libc implementations we get linked against can assume that malloc won't touch
+ * floating point state and call it with an unusual calling convention.
+ */
+
+/*
+ * High 16 bits are the integer part, low 16 are the fractional part. Or
+ * equivalently, repr == 2**16 * val, where we use "val" to refer to the
+ * (imaginary) fractional representation of the true value.
+ *
+ * We pick a uint32_t here since it's convenient in some places to
+ * double the representation size (i.e. multiplication and division use
+ * 64-bit integer types), and a uint64_t is the largest type we're
+ * certain is available.
+ */
+typedef uint32_t fxp_t;
+#define FXP_INIT_INT(x) ((x) << 16)
+#define FXP_INIT_PERCENT(pct) (((pct) << 16) / 100)
+
+/*
+ * Amount of precision used in parsing and printing numbers. The integer bound
+ * is simply because the integer part of the number gets 16 bits, and so is
+ * bounded by 65536.
+ *
+ * We use a lot of precision for the fractional part, even though most of it
+ * gets rounded off; this lets us get exact values for the important special
+ * case where the denominator is a small power of 2 (for instance,
+ * 1/512 == 0.001953125 is exactly representable even with only 16 bits of
+ * fractional precision). We need to left-shift by 16 before dividing by
+ * 10**precision, so we pick precision to be floor(log(2**48)) = 14.
+ */
+#define FXP_INTEGER_PART_DIGITS 5
+#define FXP_FRACTIONAL_PART_DIGITS 14
+
+/*
+ * In addition to the integer and fractional parts of the number, we need to
+ * include a null character and (possibly) a decimal point.
+ */
+#define FXP_BUF_SIZE (FXP_INTEGER_PART_DIGITS + FXP_FRACTIONAL_PART_DIGITS + 2)
+
+static inline fxp_t
+fxp_add(fxp_t a, fxp_t b) {
+ return a + b;
+}
+
+static inline fxp_t
+fxp_sub(fxp_t a, fxp_t b) {
+ assert(a >= b);
+ return a - b;
+}
+
+static inline fxp_t
+fxp_mul(fxp_t a, fxp_t b) {
+ uint64_t unshifted = (uint64_t)a * (uint64_t)b;
+ /*
+ * Unshifted is (a.val * 2**16) * (b.val * 2**16)
+ * == (a.val * b.val) * 2**32, but we want
+ * (a.val * b.val) * 2 ** 16.
+ */
+ return (uint32_t)(unshifted >> 16);
+}
+
+static inline fxp_t
+fxp_div(fxp_t a, fxp_t b) {
+ assert(b != 0);
+ uint64_t unshifted = ((uint64_t)a << 32) / (uint64_t)b;
+ /*
+ * Unshifted is (a.val * 2**16) * (2**32) / (b.val * 2**16)
+ * == (a.val / b.val) * (2 ** 32), which again corresponds to a right
+ * shift of 16.
+ */
+ return (uint32_t)(unshifted >> 16);
+}
+
+static inline uint32_t
+fxp_round_down(fxp_t a) {
+ return a >> 16;
+}
+
+static inline uint32_t
+fxp_round_nearest(fxp_t a) {
+ uint32_t fractional_part = (a & ((1U << 16) - 1));
+ uint32_t increment = (uint32_t)(fractional_part >= (1U << 15));
+ return (a >> 16) + increment;
+}
+
+/*
+ * Approximately computes x * frac, without the size limitations that would be
+ * imposed by converting u to an fxp_t.
+ */
+static inline size_t
+fxp_mul_frac(size_t x_orig, fxp_t frac) {
+ assert(frac <= (1U << 16));
+ /*
+ * Work around an over-enthusiastic warning about type limits below (on
+ * 32-bit platforms, a size_t is always less than 1ULL << 48).
+ */
+ uint64_t x = (uint64_t)x_orig;
+ /*
+ * If we can guarantee no overflow, multiply first before shifting, to
+ * preserve some precision. Otherwise, shift first and then multiply.
+ * In the latter case, we only lose the low 16 bits of a 48-bit number,
+ * so we're still accurate to within 1/2**32.
+ */
+ if (x < (1ULL << 48)) {
+ return (size_t)((x * frac) >> 16);
+ } else {
+ return (size_t)((x >> 16) * (uint64_t)frac);
+ }
+}
+
+/*
+ * Returns true on error. Otherwise, returns false and updates *ptr to point to
+ * the first character not parsed (because it wasn't a digit).
+ */
+bool fxp_parse(fxp_t *a, const char *ptr, char **end);
+void fxp_print(fxp_t a, char buf[FXP_BUF_SIZE]);
+
+#endif /* JEMALLOC_INTERNAL_FXP_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/hash.h b/deps/jemalloc/include/jemalloc/internal/hash.h
new file mode 100644
index 0000000..7f94567
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/hash.h
@@ -0,0 +1,320 @@
+#ifndef JEMALLOC_INTERNAL_HASH_H
+#define JEMALLOC_INTERNAL_HASH_H
+
+#include "jemalloc/internal/assert.h"
+
+/*
+ * The following hash function is based on MurmurHash3, placed into the public
+ * domain by Austin Appleby. See https://github.com/aappleby/smhasher for
+ * details.
+ */
+
+/******************************************************************************/
+/* Internal implementation. */
+static inline uint32_t
+hash_rotl_32(uint32_t x, int8_t r) {
+ return ((x << r) | (x >> (32 - r)));
+}
+
+static inline uint64_t
+hash_rotl_64(uint64_t x, int8_t r) {
+ return ((x << r) | (x >> (64 - r)));
+}
+
+static inline uint32_t
+hash_get_block_32(const uint32_t *p, int i) {
+ /* Handle unaligned read. */
+ if (unlikely((uintptr_t)p & (sizeof(uint32_t)-1)) != 0) {
+ uint32_t ret;
+
+ memcpy(&ret, (uint8_t *)(p + i), sizeof(uint32_t));
+ return ret;
+ }
+
+ return p[i];
+}
+
+static inline uint64_t
+hash_get_block_64(const uint64_t *p, int i) {
+ /* Handle unaligned read. */
+ if (unlikely((uintptr_t)p & (sizeof(uint64_t)-1)) != 0) {
+ uint64_t ret;
+
+ memcpy(&ret, (uint8_t *)(p + i), sizeof(uint64_t));
+ return ret;
+ }
+
+ return p[i];
+}
+
+static inline uint32_t
+hash_fmix_32(uint32_t h) {
+ h ^= h >> 16;
+ h *= 0x85ebca6b;
+ h ^= h >> 13;
+ h *= 0xc2b2ae35;
+ h ^= h >> 16;
+
+ return h;
+}
+
+static inline uint64_t
+hash_fmix_64(uint64_t k) {
+ k ^= k >> 33;
+ k *= KQU(0xff51afd7ed558ccd);
+ k ^= k >> 33;
+ k *= KQU(0xc4ceb9fe1a85ec53);
+ k ^= k >> 33;
+
+ return k;
+}
+
+static inline uint32_t
+hash_x86_32(const void *key, int len, uint32_t seed) {
+ const uint8_t *data = (const uint8_t *) key;
+ const int nblocks = len / 4;
+
+ uint32_t h1 = seed;
+
+ const uint32_t c1 = 0xcc9e2d51;
+ const uint32_t c2 = 0x1b873593;
+
+ /* body */
+ {
+ const uint32_t *blocks = (const uint32_t *) (data + nblocks*4);
+ int i;
+
+ for (i = -nblocks; i; i++) {
+ uint32_t k1 = hash_get_block_32(blocks, i);
+
+ k1 *= c1;
+ k1 = hash_rotl_32(k1, 15);
+ k1 *= c2;
+
+ h1 ^= k1;
+ h1 = hash_rotl_32(h1, 13);
+ h1 = h1*5 + 0xe6546b64;
+ }
+ }
+
+ /* tail */
+ {
+ const uint8_t *tail = (const uint8_t *) (data + nblocks*4);
+
+ uint32_t k1 = 0;
+
+ switch (len & 3) {
+ case 3: k1 ^= tail[2] << 16; JEMALLOC_FALLTHROUGH;
+ case 2: k1 ^= tail[1] << 8; JEMALLOC_FALLTHROUGH;
+ case 1: k1 ^= tail[0]; k1 *= c1; k1 = hash_rotl_32(k1, 15);
+ k1 *= c2; h1 ^= k1;
+ }
+ }
+
+ /* finalization */
+ h1 ^= len;
+
+ h1 = hash_fmix_32(h1);
+
+ return h1;
+}
+
+static inline void
+hash_x86_128(const void *key, const int len, uint32_t seed,
+ uint64_t r_out[2]) {
+ const uint8_t * data = (const uint8_t *) key;
+ const int nblocks = len / 16;
+
+ uint32_t h1 = seed;
+ uint32_t h2 = seed;
+ uint32_t h3 = seed;
+ uint32_t h4 = seed;
+
+ const uint32_t c1 = 0x239b961b;
+ const uint32_t c2 = 0xab0e9789;
+ const uint32_t c3 = 0x38b34ae5;
+ const uint32_t c4 = 0xa1e38b93;
+
+ /* body */
+ {
+ const uint32_t *blocks = (const uint32_t *) (data + nblocks*16);
+ int i;
+
+ for (i = -nblocks; i; i++) {
+ uint32_t k1 = hash_get_block_32(blocks, i*4 + 0);
+ uint32_t k2 = hash_get_block_32(blocks, i*4 + 1);
+ uint32_t k3 = hash_get_block_32(blocks, i*4 + 2);
+ uint32_t k4 = hash_get_block_32(blocks, i*4 + 3);
+
+ k1 *= c1; k1 = hash_rotl_32(k1, 15); k1 *= c2; h1 ^= k1;
+
+ h1 = hash_rotl_32(h1, 19); h1 += h2;
+ h1 = h1*5 + 0x561ccd1b;
+
+ k2 *= c2; k2 = hash_rotl_32(k2, 16); k2 *= c3; h2 ^= k2;
+
+ h2 = hash_rotl_32(h2, 17); h2 += h3;
+ h2 = h2*5 + 0x0bcaa747;
+
+ k3 *= c3; k3 = hash_rotl_32(k3, 17); k3 *= c4; h3 ^= k3;
+
+ h3 = hash_rotl_32(h3, 15); h3 += h4;
+ h3 = h3*5 + 0x96cd1c35;
+
+ k4 *= c4; k4 = hash_rotl_32(k4, 18); k4 *= c1; h4 ^= k4;
+
+ h4 = hash_rotl_32(h4, 13); h4 += h1;
+ h4 = h4*5 + 0x32ac3b17;
+ }
+ }
+
+ /* tail */
+ {
+ const uint8_t *tail = (const uint8_t *) (data + nblocks*16);
+ uint32_t k1 = 0;
+ uint32_t k2 = 0;
+ uint32_t k3 = 0;
+ uint32_t k4 = 0;
+
+ switch (len & 15) {
+ case 15: k4 ^= tail[14] << 16; JEMALLOC_FALLTHROUGH;
+ case 14: k4 ^= tail[13] << 8; JEMALLOC_FALLTHROUGH;
+ case 13: k4 ^= tail[12] << 0;
+ k4 *= c4; k4 = hash_rotl_32(k4, 18); k4 *= c1; h4 ^= k4;
+ JEMALLOC_FALLTHROUGH;
+ case 12: k3 ^= (uint32_t) tail[11] << 24; JEMALLOC_FALLTHROUGH;
+ case 11: k3 ^= tail[10] << 16; JEMALLOC_FALLTHROUGH;
+ case 10: k3 ^= tail[ 9] << 8; JEMALLOC_FALLTHROUGH;
+ case 9: k3 ^= tail[ 8] << 0;
+ k3 *= c3; k3 = hash_rotl_32(k3, 17); k3 *= c4; h3 ^= k3;
+ JEMALLOC_FALLTHROUGH;
+ case 8: k2 ^= (uint32_t) tail[ 7] << 24; JEMALLOC_FALLTHROUGH;
+ case 7: k2 ^= tail[ 6] << 16; JEMALLOC_FALLTHROUGH;
+ case 6: k2 ^= tail[ 5] << 8; JEMALLOC_FALLTHROUGH;
+ case 5: k2 ^= tail[ 4] << 0;
+ k2 *= c2; k2 = hash_rotl_32(k2, 16); k2 *= c3; h2 ^= k2;
+ JEMALLOC_FALLTHROUGH;
+ case 4: k1 ^= (uint32_t) tail[ 3] << 24; JEMALLOC_FALLTHROUGH;
+ case 3: k1 ^= tail[ 2] << 16; JEMALLOC_FALLTHROUGH;
+ case 2: k1 ^= tail[ 1] << 8; JEMALLOC_FALLTHROUGH;
+ case 1: k1 ^= tail[ 0] << 0;
+ k1 *= c1; k1 = hash_rotl_32(k1, 15); k1 *= c2; h1 ^= k1;
+ break;
+ }
+ }
+
+ /* finalization */
+ h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
+
+ h1 += h2; h1 += h3; h1 += h4;
+ h2 += h1; h3 += h1; h4 += h1;
+
+ h1 = hash_fmix_32(h1);
+ h2 = hash_fmix_32(h2);
+ h3 = hash_fmix_32(h3);
+ h4 = hash_fmix_32(h4);
+
+ h1 += h2; h1 += h3; h1 += h4;
+ h2 += h1; h3 += h1; h4 += h1;
+
+ r_out[0] = (((uint64_t) h2) << 32) | h1;
+ r_out[1] = (((uint64_t) h4) << 32) | h3;
+}
+
+static inline void
+hash_x64_128(const void *key, const int len, const uint32_t seed,
+ uint64_t r_out[2]) {
+ const uint8_t *data = (const uint8_t *) key;
+ const int nblocks = len / 16;
+
+ uint64_t h1 = seed;
+ uint64_t h2 = seed;
+
+ const uint64_t c1 = KQU(0x87c37b91114253d5);
+ const uint64_t c2 = KQU(0x4cf5ad432745937f);
+
+ /* body */
+ {
+ const uint64_t *blocks = (const uint64_t *) (data);
+ int i;
+
+ for (i = 0; i < nblocks; i++) {
+ uint64_t k1 = hash_get_block_64(blocks, i*2 + 0);
+ uint64_t k2 = hash_get_block_64(blocks, i*2 + 1);
+
+ k1 *= c1; k1 = hash_rotl_64(k1, 31); k1 *= c2; h1 ^= k1;
+
+ h1 = hash_rotl_64(h1, 27); h1 += h2;
+ h1 = h1*5 + 0x52dce729;
+
+ k2 *= c2; k2 = hash_rotl_64(k2, 33); k2 *= c1; h2 ^= k2;
+
+ h2 = hash_rotl_64(h2, 31); h2 += h1;
+ h2 = h2*5 + 0x38495ab5;
+ }
+ }
+
+ /* tail */
+ {
+ const uint8_t *tail = (const uint8_t*)(data + nblocks*16);
+ uint64_t k1 = 0;
+ uint64_t k2 = 0;
+
+ switch (len & 15) {
+ case 15: k2 ^= ((uint64_t)(tail[14])) << 48; JEMALLOC_FALLTHROUGH;
+ case 14: k2 ^= ((uint64_t)(tail[13])) << 40; JEMALLOC_FALLTHROUGH;
+ case 13: k2 ^= ((uint64_t)(tail[12])) << 32; JEMALLOC_FALLTHROUGH;
+ case 12: k2 ^= ((uint64_t)(tail[11])) << 24; JEMALLOC_FALLTHROUGH;
+ case 11: k2 ^= ((uint64_t)(tail[10])) << 16; JEMALLOC_FALLTHROUGH;
+ case 10: k2 ^= ((uint64_t)(tail[ 9])) << 8; JEMALLOC_FALLTHROUGH;
+ case 9: k2 ^= ((uint64_t)(tail[ 8])) << 0;
+ k2 *= c2; k2 = hash_rotl_64(k2, 33); k2 *= c1; h2 ^= k2;
+ JEMALLOC_FALLTHROUGH;
+ case 8: k1 ^= ((uint64_t)(tail[ 7])) << 56; JEMALLOC_FALLTHROUGH;
+ case 7: k1 ^= ((uint64_t)(tail[ 6])) << 48; JEMALLOC_FALLTHROUGH;
+ case 6: k1 ^= ((uint64_t)(tail[ 5])) << 40; JEMALLOC_FALLTHROUGH;
+ case 5: k1 ^= ((uint64_t)(tail[ 4])) << 32; JEMALLOC_FALLTHROUGH;
+ case 4: k1 ^= ((uint64_t)(tail[ 3])) << 24; JEMALLOC_FALLTHROUGH;
+ case 3: k1 ^= ((uint64_t)(tail[ 2])) << 16; JEMALLOC_FALLTHROUGH;
+ case 2: k1 ^= ((uint64_t)(tail[ 1])) << 8; JEMALLOC_FALLTHROUGH;
+ case 1: k1 ^= ((uint64_t)(tail[ 0])) << 0;
+ k1 *= c1; k1 = hash_rotl_64(k1, 31); k1 *= c2; h1 ^= k1;
+ break;
+ }
+ }
+
+ /* finalization */
+ h1 ^= len; h2 ^= len;
+
+ h1 += h2;
+ h2 += h1;
+
+ h1 = hash_fmix_64(h1);
+ h2 = hash_fmix_64(h2);
+
+ h1 += h2;
+ h2 += h1;
+
+ r_out[0] = h1;
+ r_out[1] = h2;
+}
+
+/******************************************************************************/
+/* API. */
+static inline void
+hash(const void *key, size_t len, const uint32_t seed, size_t r_hash[2]) {
+ assert(len <= INT_MAX); /* Unfortunate implementation limitation. */
+
+#if (LG_SIZEOF_PTR == 3 && !defined(JEMALLOC_BIG_ENDIAN))
+ hash_x64_128(key, (int)len, seed, (uint64_t *)r_hash);
+#else
+ {
+ uint64_t hashes[2];
+ hash_x86_128(key, (int)len, seed, hashes);
+ r_hash[0] = (size_t)hashes[0];
+ r_hash[1] = (size_t)hashes[1];
+ }
+#endif
+}
+
+#endif /* JEMALLOC_INTERNAL_HASH_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/hook.h b/deps/jemalloc/include/jemalloc/internal/hook.h
new file mode 100644
index 0000000..ee246b1
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/hook.h
@@ -0,0 +1,163 @@
+#ifndef JEMALLOC_INTERNAL_HOOK_H
+#define JEMALLOC_INTERNAL_HOOK_H
+
+#include "jemalloc/internal/tsd.h"
+
+/*
+ * This API is *extremely* experimental, and may get ripped out, changed in API-
+ * and ABI-incompatible ways, be insufficiently or incorrectly documented, etc.
+ *
+ * It allows hooking the stateful parts of the API to see changes as they
+ * happen.
+ *
+ * Allocation hooks are called after the allocation is done, free hooks are
+ * called before the free is done, and expand hooks are called after the
+ * allocation is expanded.
+ *
+ * For realloc and rallocx, if the expansion happens in place, the expansion
+ * hook is called. If it is moved, then the alloc hook is called on the new
+ * location, and then the free hook is called on the old location (i.e. both
+ * hooks are invoked in between the alloc and the dalloc).
+ *
+ * If we return NULL from OOM, then usize might not be trustworthy. Calling
+ * realloc(NULL, size) only calls the alloc hook, and calling realloc(ptr, 0)
+ * only calls the free hook. (Calling realloc(NULL, 0) is treated as malloc(0),
+ * and only calls the alloc hook).
+ *
+ * Reentrancy:
+ * Reentrancy is guarded against from within the hook implementation. If you
+ * call allocator functions from within a hook, the hooks will not be invoked
+ * again.
+ * Threading:
+ * The installation of a hook synchronizes with all its uses. If you can
+ * prove the installation of a hook happens-before a jemalloc entry point,
+ * then the hook will get invoked (unless there's a racing removal).
+ *
+ * Hook insertion appears to be atomic at a per-thread level (i.e. if a thread
+ * allocates and has the alloc hook invoked, then a subsequent free on the
+ * same thread will also have the free hook invoked).
+ *
+ * The *removal* of a hook does *not* block until all threads are done with
+ * the hook. Hook authors have to be resilient to this, and need some
+ * out-of-band mechanism for cleaning up any dynamically allocated memory
+ * associated with their hook.
+ * Ordering:
+ * Order of hook execution is unspecified, and may be different than insertion
+ * order.
+ */
+
+#define HOOK_MAX 4
+
+enum hook_alloc_e {
+ hook_alloc_malloc,
+ hook_alloc_posix_memalign,
+ hook_alloc_aligned_alloc,
+ hook_alloc_calloc,
+ hook_alloc_memalign,
+ hook_alloc_valloc,
+ hook_alloc_mallocx,
+
+ /* The reallocating functions have both alloc and dalloc variants */
+ hook_alloc_realloc,
+ hook_alloc_rallocx,
+};
+/*
+ * We put the enum typedef after the enum, since this file may get included by
+ * jemalloc_cpp.cpp, and C++ disallows enum forward declarations.
+ */
+typedef enum hook_alloc_e hook_alloc_t;
+
+enum hook_dalloc_e {
+ hook_dalloc_free,
+ hook_dalloc_dallocx,
+ hook_dalloc_sdallocx,
+
+ /*
+ * The dalloc halves of reallocation (not called if in-place expansion
+ * happens).
+ */
+ hook_dalloc_realloc,
+ hook_dalloc_rallocx,
+};
+typedef enum hook_dalloc_e hook_dalloc_t;
+
+
+enum hook_expand_e {
+ hook_expand_realloc,
+ hook_expand_rallocx,
+ hook_expand_xallocx,
+};
+typedef enum hook_expand_e hook_expand_t;
+
+typedef void (*hook_alloc)(
+ void *extra, hook_alloc_t type, void *result, uintptr_t result_raw,
+ uintptr_t args_raw[3]);
+
+typedef void (*hook_dalloc)(
+ void *extra, hook_dalloc_t type, void *address, uintptr_t args_raw[3]);
+
+typedef void (*hook_expand)(
+ void *extra, hook_expand_t type, void *address, size_t old_usize,
+ size_t new_usize, uintptr_t result_raw, uintptr_t args_raw[4]);
+
+typedef struct hooks_s hooks_t;
+struct hooks_s {
+ hook_alloc alloc_hook;
+ hook_dalloc dalloc_hook;
+ hook_expand expand_hook;
+ void *extra;
+};
+
+/*
+ * Begin implementation details; everything above this point might one day live
+ * in a public API. Everything below this point never will.
+ */
+
+/*
+ * The realloc pathways haven't gotten any refactoring love in a while, and it's
+ * fairly difficult to pass information from the entry point to the hooks. We
+ * put the informaiton the hooks will need into a struct to encapsulate
+ * everything.
+ *
+ * Much of these pathways are force-inlined, so that the compiler can avoid
+ * materializing this struct until we hit an extern arena function. For fairly
+ * goofy reasons, *many* of the realloc paths hit an extern arena function.
+ * These paths are cold enough that it doesn't matter; eventually, we should
+ * rewrite the realloc code to make the expand-in-place and the
+ * free-then-realloc paths more orthogonal, at which point we don't need to
+ * spread the hook logic all over the place.
+ */
+typedef struct hook_ralloc_args_s hook_ralloc_args_t;
+struct hook_ralloc_args_s {
+ /* I.e. as opposed to rallocx. */
+ bool is_realloc;
+ /*
+ * The expand hook takes 4 arguments, even if only 3 are actually used;
+ * we add an extra one in case the user decides to memcpy without
+ * looking too closely at the hooked function.
+ */
+ uintptr_t args[4];
+};
+
+/*
+ * Returns an opaque handle to be used when removing the hook. NULL means that
+ * we couldn't install the hook.
+ */
+bool hook_boot();
+
+void *hook_install(tsdn_t *tsdn, hooks_t *hooks);
+/* Uninstalls the hook with the handle previously returned from hook_install. */
+void hook_remove(tsdn_t *tsdn, void *opaque);
+
+/* Hooks */
+
+void hook_invoke_alloc(hook_alloc_t type, void *result, uintptr_t result_raw,
+ uintptr_t args_raw[3]);
+
+void hook_invoke_dalloc(hook_dalloc_t type, void *address,
+ uintptr_t args_raw[3]);
+
+void hook_invoke_expand(hook_expand_t type, void *address, size_t old_usize,
+ size_t new_usize, uintptr_t result_raw, uintptr_t args_raw[4]);
+
+#endif /* JEMALLOC_INTERNAL_HOOK_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/hpa.h b/deps/jemalloc/include/jemalloc/internal/hpa.h
new file mode 100644
index 0000000..f356285
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/hpa.h
@@ -0,0 +1,182 @@
+#ifndef JEMALLOC_INTERNAL_HPA_H
+#define JEMALLOC_INTERNAL_HPA_H
+
+#include "jemalloc/internal/exp_grow.h"
+#include "jemalloc/internal/hpa_hooks.h"
+#include "jemalloc/internal/hpa_opts.h"
+#include "jemalloc/internal/pai.h"
+#include "jemalloc/internal/psset.h"
+
+typedef struct hpa_central_s hpa_central_t;
+struct hpa_central_s {
+ /*
+ * The mutex guarding most of the operations on the central data
+ * structure.
+ */
+ malloc_mutex_t mtx;
+ /*
+ * Guards expansion of eden. We separate this from the regular mutex so
+ * that cheaper operations can still continue while we're doing the OS
+ * call.
+ */
+ malloc_mutex_t grow_mtx;
+ /*
+ * Either NULL (if empty), or some integer multiple of a
+ * hugepage-aligned number of hugepages. We carve them off one at a
+ * time to satisfy new pageslab requests.
+ *
+ * Guarded by grow_mtx.
+ */
+ void *eden;
+ size_t eden_len;
+ /* Source for metadata. */
+ base_t *base;
+ /* Number of grow operations done on this hpa_central_t. */
+ uint64_t age_counter;
+
+ /* The HPA hooks. */
+ hpa_hooks_t hooks;
+};
+
+typedef struct hpa_shard_nonderived_stats_s hpa_shard_nonderived_stats_t;
+struct hpa_shard_nonderived_stats_s {
+ /*
+ * The number of times we've purged within a hugepage.
+ *
+ * Guarded by mtx.
+ */
+ uint64_t npurge_passes;
+ /*
+ * The number of individual purge calls we perform (which should always
+ * be bigger than npurge_passes, since each pass purges at least one
+ * extent within a hugepage.
+ *
+ * Guarded by mtx.
+ */
+ uint64_t npurges;
+
+ /*
+ * The number of times we've hugified a pageslab.
+ *
+ * Guarded by mtx.
+ */
+ uint64_t nhugifies;
+ /*
+ * The number of times we've dehugified a pageslab.
+ *
+ * Guarded by mtx.
+ */
+ uint64_t ndehugifies;
+};
+
+/* Completely derived; only used by CTL. */
+typedef struct hpa_shard_stats_s hpa_shard_stats_t;
+struct hpa_shard_stats_s {
+ psset_stats_t psset_stats;
+ hpa_shard_nonderived_stats_t nonderived_stats;
+};
+
+typedef struct hpa_shard_s hpa_shard_t;
+struct hpa_shard_s {
+ /*
+ * pai must be the first member; we cast from a pointer to it to a
+ * pointer to the hpa_shard_t.
+ */
+ pai_t pai;
+
+ /* The central allocator we get our hugepages from. */
+ hpa_central_t *central;
+ /* Protects most of this shard's state. */
+ malloc_mutex_t mtx;
+ /*
+ * Guards the shard's access to the central allocator (preventing
+ * multiple threads operating on this shard from accessing the central
+ * allocator).
+ */
+ malloc_mutex_t grow_mtx;
+ /* The base metadata allocator. */
+ base_t *base;
+
+ /*
+ * This edata cache is the one we use when allocating a small extent
+ * from a pageslab. The pageslab itself comes from the centralized
+ * allocator, and so will use its edata_cache.
+ */
+ edata_cache_fast_t ecf;
+
+ psset_t psset;
+
+ /*
+ * How many grow operations have occurred.
+ *
+ * Guarded by grow_mtx.
+ */
+ uint64_t age_counter;
+
+ /* The arena ind we're associated with. */
+ unsigned ind;
+
+ /*
+ * Our emap. This is just a cache of the emap pointer in the associated
+ * hpa_central.
+ */
+ emap_t *emap;
+
+ /* The configuration choices for this hpa shard. */
+ hpa_shard_opts_t opts;
+
+ /*
+ * How many pages have we started but not yet finished purging in this
+ * hpa shard.
+ */
+ size_t npending_purge;
+
+ /*
+ * Those stats which are copied directly into the CTL-centric hpa shard
+ * stats.
+ */
+ hpa_shard_nonderived_stats_t stats;
+
+ /*
+ * Last time we performed purge on this shard.
+ */
+ nstime_t last_purge;
+};
+
+/*
+ * Whether or not the HPA can be used given the current configuration. This is
+ * is not necessarily a guarantee that it backs its allocations by hugepages,
+ * just that it can function properly given the system it's running on.
+ */
+bool hpa_supported();
+bool hpa_central_init(hpa_central_t *central, base_t *base, const hpa_hooks_t *hooks);
+bool hpa_shard_init(hpa_shard_t *shard, hpa_central_t *central, emap_t *emap,
+ base_t *base, edata_cache_t *edata_cache, unsigned ind,
+ const hpa_shard_opts_t *opts);
+
+void hpa_shard_stats_accum(hpa_shard_stats_t *dst, hpa_shard_stats_t *src);
+void hpa_shard_stats_merge(tsdn_t *tsdn, hpa_shard_t *shard,
+ hpa_shard_stats_t *dst);
+
+/*
+ * Notify the shard that we won't use it for allocations much longer. Due to
+ * the possibility of races, we don't actually prevent allocations; just flush
+ * and disable the embedded edata_cache_small.
+ */
+void hpa_shard_disable(tsdn_t *tsdn, hpa_shard_t *shard);
+void hpa_shard_destroy(tsdn_t *tsdn, hpa_shard_t *shard);
+
+void hpa_shard_set_deferral_allowed(tsdn_t *tsdn, hpa_shard_t *shard,
+ bool deferral_allowed);
+void hpa_shard_do_deferred_work(tsdn_t *tsdn, hpa_shard_t *shard);
+
+/*
+ * We share the fork ordering with the PA and arena prefork handling; that's why
+ * these are 3 and 4 rather than 0 and 1.
+ */
+void hpa_shard_prefork3(tsdn_t *tsdn, hpa_shard_t *shard);
+void hpa_shard_prefork4(tsdn_t *tsdn, hpa_shard_t *shard);
+void hpa_shard_postfork_parent(tsdn_t *tsdn, hpa_shard_t *shard);
+void hpa_shard_postfork_child(tsdn_t *tsdn, hpa_shard_t *shard);
+
+#endif /* JEMALLOC_INTERNAL_HPA_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/hpa_hooks.h b/deps/jemalloc/include/jemalloc/internal/hpa_hooks.h
new file mode 100644
index 0000000..4ea221c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/hpa_hooks.h
@@ -0,0 +1,17 @@
+#ifndef JEMALLOC_INTERNAL_HPA_HOOKS_H
+#define JEMALLOC_INTERNAL_HPA_HOOKS_H
+
+typedef struct hpa_hooks_s hpa_hooks_t;
+struct hpa_hooks_s {
+ void *(*map)(size_t size);
+ void (*unmap)(void *ptr, size_t size);
+ void (*purge)(void *ptr, size_t size);
+ void (*hugify)(void *ptr, size_t size);
+ void (*dehugify)(void *ptr, size_t size);
+ void (*curtime)(nstime_t *r_time, bool first_reading);
+ uint64_t (*ms_since)(nstime_t *r_time);
+};
+
+extern hpa_hooks_t hpa_hooks_default;
+
+#endif /* JEMALLOC_INTERNAL_HPA_HOOKS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/hpa_opts.h b/deps/jemalloc/include/jemalloc/internal/hpa_opts.h
new file mode 100644
index 0000000..ee84fea
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/hpa_opts.h
@@ -0,0 +1,74 @@
+#ifndef JEMALLOC_INTERNAL_HPA_OPTS_H
+#define JEMALLOC_INTERNAL_HPA_OPTS_H
+
+#include "jemalloc/internal/fxp.h"
+
+/*
+ * This file is morally part of hpa.h, but is split out for header-ordering
+ * reasons.
+ */
+
+typedef struct hpa_shard_opts_s hpa_shard_opts_t;
+struct hpa_shard_opts_s {
+ /*
+ * The largest size we'll allocate out of the shard. For those
+ * allocations refused, the caller (in practice, the PA module) will
+ * fall back to the more general (for now) PAC, which can always handle
+ * any allocation request.
+ */
+ size_t slab_max_alloc;
+
+ /*
+ * When the number of active bytes in a hugepage is >=
+ * hugification_threshold, we force hugify it.
+ */
+ size_t hugification_threshold;
+
+ /*
+ * The HPA purges whenever the number of pages exceeds dirty_mult *
+ * active_pages. This may be set to (fxp_t)-1 to disable purging.
+ */
+ fxp_t dirty_mult;
+
+ /*
+ * Whether or not the PAI methods are allowed to defer work to a
+ * subsequent hpa_shard_do_deferred_work() call. Practically, this
+ * corresponds to background threads being enabled. We track this
+ * ourselves for encapsulation purposes.
+ */
+ bool deferral_allowed;
+
+ /*
+ * How long a hugepage has to be a hugification candidate before it will
+ * actually get hugified.
+ */
+ uint64_t hugify_delay_ms;
+
+ /*
+ * Minimum amount of time between purges.
+ */
+ uint64_t min_purge_interval_ms;
+};
+
+#define HPA_SHARD_OPTS_DEFAULT { \
+ /* slab_max_alloc */ \
+ 64 * 1024, \
+ /* hugification_threshold */ \
+ HUGEPAGE * 95 / 100, \
+ /* dirty_mult */ \
+ FXP_INIT_PERCENT(25), \
+ /* \
+ * deferral_allowed \
+ * \
+ * Really, this is always set by the arena during creation \
+ * or by an hpa_shard_set_deferral_allowed call, so the value \
+ * we put here doesn't matter. \
+ */ \
+ false, \
+ /* hugify_delay_ms */ \
+ 10 * 1000, \
+ /* min_purge_interval_ms */ \
+ 5 * 1000 \
+}
+
+#endif /* JEMALLOC_INTERNAL_HPA_OPTS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/hpdata.h b/deps/jemalloc/include/jemalloc/internal/hpdata.h
new file mode 100644
index 0000000..1fb534d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/hpdata.h
@@ -0,0 +1,413 @@
+#ifndef JEMALLOC_INTERNAL_HPDATA_H
+#define JEMALLOC_INTERNAL_HPDATA_H
+
+#include "jemalloc/internal/fb.h"
+#include "jemalloc/internal/ph.h"
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/typed_list.h"
+
+/*
+ * The metadata representation we use for extents in hugepages. While the PAC
+ * uses the edata_t to represent both active and inactive extents, the HP only
+ * uses the edata_t for active ones; instead, inactive extent state is tracked
+ * within hpdata associated with the enclosing hugepage-sized, hugepage-aligned
+ * region of virtual address space.
+ *
+ * An hpdata need not be "truly" backed by a hugepage (which is not necessarily
+ * an observable property of any given region of address space). It's just
+ * hugepage-sized and hugepage-aligned; it's *potentially* huge.
+ */
+typedef struct hpdata_s hpdata_t;
+ph_structs(hpdata_age_heap, hpdata_t);
+struct hpdata_s {
+ /*
+ * We likewise follow the edata convention of mangling names and forcing
+ * the use of accessors -- this lets us add some consistency checks on
+ * access.
+ */
+
+ /*
+ * The address of the hugepage in question. This can't be named h_addr,
+ * since that conflicts with a macro defined in Windows headers.
+ */
+ void *h_address;
+ /* Its age (measured in psset operations). */
+ uint64_t h_age;
+ /* Whether or not we think the hugepage is mapped that way by the OS. */
+ bool h_huge;
+
+ /*
+ * For some properties, we keep parallel sets of bools; h_foo_allowed
+ * and h_in_psset_foo_container. This is a decoupling mechanism to
+ * avoid bothering the hpa (which manages policies) from the psset
+ * (which is the mechanism used to enforce those policies). This allows
+ * all the container management logic to live in one place, without the
+ * HPA needing to know or care how that happens.
+ */
+
+ /*
+ * Whether or not the hpdata is allowed to be used to serve allocations,
+ * and whether or not the psset is currently tracking it as such.
+ */
+ bool h_alloc_allowed;
+ bool h_in_psset_alloc_container;
+
+ /*
+ * The same, but with purging. There's no corresponding
+ * h_in_psset_purge_container, because the psset (currently) always
+ * removes hpdatas from their containers during updates (to implement
+ * LRU for purging).
+ */
+ bool h_purge_allowed;
+
+ /* And with hugifying. */
+ bool h_hugify_allowed;
+ /* When we became a hugification candidate. */
+ nstime_t h_time_hugify_allowed;
+ bool h_in_psset_hugify_container;
+
+ /* Whether or not a purge or hugify is currently happening. */
+ bool h_mid_purge;
+ bool h_mid_hugify;
+
+ /*
+ * Whether or not the hpdata is being updated in the psset (i.e. if
+ * there has been a psset_update_begin call issued without a matching
+ * psset_update_end call). Eventually this will expand to other types
+ * of updates.
+ */
+ bool h_updating;
+
+ /* Whether or not the hpdata is in a psset. */
+ bool h_in_psset;
+
+ union {
+ /* When nonempty (and also nonfull), used by the psset bins. */
+ hpdata_age_heap_link_t age_link;
+ /*
+ * When empty (or not corresponding to any hugepage), list
+ * linkage.
+ */
+ ql_elm(hpdata_t) ql_link_empty;
+ };
+
+ /*
+ * Linkage for the psset to track candidates for purging and hugifying.
+ */
+ ql_elm(hpdata_t) ql_link_purge;
+ ql_elm(hpdata_t) ql_link_hugify;
+
+ /* The length of the largest contiguous sequence of inactive pages. */
+ size_t h_longest_free_range;
+
+ /* Number of active pages. */
+ size_t h_nactive;
+
+ /* A bitmap with bits set in the active pages. */
+ fb_group_t active_pages[FB_NGROUPS(HUGEPAGE_PAGES)];
+
+ /*
+ * Number of dirty or active pages, and a bitmap tracking them. One
+ * way to think of this is as which pages are dirty from the OS's
+ * perspective.
+ */
+ size_t h_ntouched;
+
+ /* The touched pages (using the same definition as above). */
+ fb_group_t touched_pages[FB_NGROUPS(HUGEPAGE_PAGES)];
+};
+
+TYPED_LIST(hpdata_empty_list, hpdata_t, ql_link_empty)
+TYPED_LIST(hpdata_purge_list, hpdata_t, ql_link_purge)
+TYPED_LIST(hpdata_hugify_list, hpdata_t, ql_link_hugify)
+
+ph_proto(, hpdata_age_heap, hpdata_t);
+
+static inline void *
+hpdata_addr_get(const hpdata_t *hpdata) {
+ return hpdata->h_address;
+}
+
+static inline void
+hpdata_addr_set(hpdata_t *hpdata, void *addr) {
+ assert(HUGEPAGE_ADDR2BASE(addr) == addr);
+ hpdata->h_address = addr;
+}
+
+static inline uint64_t
+hpdata_age_get(const hpdata_t *hpdata) {
+ return hpdata->h_age;
+}
+
+static inline void
+hpdata_age_set(hpdata_t *hpdata, uint64_t age) {
+ hpdata->h_age = age;
+}
+
+static inline bool
+hpdata_huge_get(const hpdata_t *hpdata) {
+ return hpdata->h_huge;
+}
+
+static inline bool
+hpdata_alloc_allowed_get(const hpdata_t *hpdata) {
+ return hpdata->h_alloc_allowed;
+}
+
+static inline void
+hpdata_alloc_allowed_set(hpdata_t *hpdata, bool alloc_allowed) {
+ hpdata->h_alloc_allowed = alloc_allowed;
+}
+
+static inline bool
+hpdata_in_psset_alloc_container_get(const hpdata_t *hpdata) {
+ return hpdata->h_in_psset_alloc_container;
+}
+
+static inline void
+hpdata_in_psset_alloc_container_set(hpdata_t *hpdata, bool in_container) {
+ assert(in_container != hpdata->h_in_psset_alloc_container);
+ hpdata->h_in_psset_alloc_container = in_container;
+}
+
+static inline bool
+hpdata_purge_allowed_get(const hpdata_t *hpdata) {
+ return hpdata->h_purge_allowed;
+}
+
+static inline void
+hpdata_purge_allowed_set(hpdata_t *hpdata, bool purge_allowed) {
+ assert(purge_allowed == false || !hpdata->h_mid_purge);
+ hpdata->h_purge_allowed = purge_allowed;
+}
+
+static inline bool
+hpdata_hugify_allowed_get(const hpdata_t *hpdata) {
+ return hpdata->h_hugify_allowed;
+}
+
+static inline void
+hpdata_allow_hugify(hpdata_t *hpdata, nstime_t now) {
+ assert(!hpdata->h_mid_hugify);
+ hpdata->h_hugify_allowed = true;
+ hpdata->h_time_hugify_allowed = now;
+}
+
+static inline nstime_t
+hpdata_time_hugify_allowed(hpdata_t *hpdata) {
+ return hpdata->h_time_hugify_allowed;
+}
+
+static inline void
+hpdata_disallow_hugify(hpdata_t *hpdata) {
+ hpdata->h_hugify_allowed = false;
+}
+
+static inline bool
+hpdata_in_psset_hugify_container_get(const hpdata_t *hpdata) {
+ return hpdata->h_in_psset_hugify_container;
+}
+
+static inline void
+hpdata_in_psset_hugify_container_set(hpdata_t *hpdata, bool in_container) {
+ assert(in_container != hpdata->h_in_psset_hugify_container);
+ hpdata->h_in_psset_hugify_container = in_container;
+}
+
+static inline bool
+hpdata_mid_purge_get(const hpdata_t *hpdata) {
+ return hpdata->h_mid_purge;
+}
+
+static inline void
+hpdata_mid_purge_set(hpdata_t *hpdata, bool mid_purge) {
+ assert(mid_purge != hpdata->h_mid_purge);
+ hpdata->h_mid_purge = mid_purge;
+}
+
+static inline bool
+hpdata_mid_hugify_get(const hpdata_t *hpdata) {
+ return hpdata->h_mid_hugify;
+}
+
+static inline void
+hpdata_mid_hugify_set(hpdata_t *hpdata, bool mid_hugify) {
+ assert(mid_hugify != hpdata->h_mid_hugify);
+ hpdata->h_mid_hugify = mid_hugify;
+}
+
+static inline bool
+hpdata_changing_state_get(const hpdata_t *hpdata) {
+ return hpdata->h_mid_purge || hpdata->h_mid_hugify;
+}
+
+
+static inline bool
+hpdata_updating_get(const hpdata_t *hpdata) {
+ return hpdata->h_updating;
+}
+
+static inline void
+hpdata_updating_set(hpdata_t *hpdata, bool updating) {
+ assert(updating != hpdata->h_updating);
+ hpdata->h_updating = updating;
+}
+
+static inline bool
+hpdata_in_psset_get(const hpdata_t *hpdata) {
+ return hpdata->h_in_psset;
+}
+
+static inline void
+hpdata_in_psset_set(hpdata_t *hpdata, bool in_psset) {
+ assert(in_psset != hpdata->h_in_psset);
+ hpdata->h_in_psset = in_psset;
+}
+
+static inline size_t
+hpdata_longest_free_range_get(const hpdata_t *hpdata) {
+ return hpdata->h_longest_free_range;
+}
+
+static inline void
+hpdata_longest_free_range_set(hpdata_t *hpdata, size_t longest_free_range) {
+ assert(longest_free_range <= HUGEPAGE_PAGES);
+ hpdata->h_longest_free_range = longest_free_range;
+}
+
+static inline size_t
+hpdata_nactive_get(hpdata_t *hpdata) {
+ return hpdata->h_nactive;
+}
+
+static inline size_t
+hpdata_ntouched_get(hpdata_t *hpdata) {
+ return hpdata->h_ntouched;
+}
+
+static inline size_t
+hpdata_ndirty_get(hpdata_t *hpdata) {
+ return hpdata->h_ntouched - hpdata->h_nactive;
+}
+
+static inline size_t
+hpdata_nretained_get(hpdata_t *hpdata) {
+ return HUGEPAGE_PAGES - hpdata->h_ntouched;
+}
+
+static inline void
+hpdata_assert_empty(hpdata_t *hpdata) {
+ assert(fb_empty(hpdata->active_pages, HUGEPAGE_PAGES));
+ assert(hpdata->h_nactive == 0);
+}
+
+/*
+ * Only used in tests, and in hpdata_assert_consistent, below. Verifies some
+ * consistency properties of the hpdata (e.g. that cached counts of page stats
+ * match computed ones).
+ */
+static inline bool
+hpdata_consistent(hpdata_t *hpdata) {
+ if(fb_urange_longest(hpdata->active_pages, HUGEPAGE_PAGES)
+ != hpdata_longest_free_range_get(hpdata)) {
+ return false;
+ }
+ if (fb_scount(hpdata->active_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES)
+ != hpdata->h_nactive) {
+ return false;
+ }
+ if (fb_scount(hpdata->touched_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES)
+ != hpdata->h_ntouched) {
+ return false;
+ }
+ if (hpdata->h_ntouched < hpdata->h_nactive) {
+ return false;
+ }
+ if (hpdata->h_huge && hpdata->h_ntouched != HUGEPAGE_PAGES) {
+ return false;
+ }
+ if (hpdata_changing_state_get(hpdata)
+ && ((hpdata->h_purge_allowed) || hpdata->h_hugify_allowed)) {
+ return false;
+ }
+ if (hpdata_hugify_allowed_get(hpdata)
+ != hpdata_in_psset_hugify_container_get(hpdata)) {
+ return false;
+ }
+ return true;
+}
+
+static inline void
+hpdata_assert_consistent(hpdata_t *hpdata) {
+ assert(hpdata_consistent(hpdata));
+}
+
+static inline bool
+hpdata_empty(hpdata_t *hpdata) {
+ return hpdata->h_nactive == 0;
+}
+
+static inline bool
+hpdata_full(hpdata_t *hpdata) {
+ return hpdata->h_nactive == HUGEPAGE_PAGES;
+}
+
+void hpdata_init(hpdata_t *hpdata, void *addr, uint64_t age);
+
+/*
+ * Given an hpdata which can serve an allocation request, pick and reserve an
+ * offset within that allocation.
+ */
+void *hpdata_reserve_alloc(hpdata_t *hpdata, size_t sz);
+void hpdata_unreserve(hpdata_t *hpdata, void *begin, size_t sz);
+
+/*
+ * The hpdata_purge_prepare_t allows grabbing the metadata required to purge
+ * subranges of a hugepage while holding a lock, drop the lock during the actual
+ * purging of them, and reacquire it to update the metadata again.
+ */
+typedef struct hpdata_purge_state_s hpdata_purge_state_t;
+struct hpdata_purge_state_s {
+ size_t npurged;
+ size_t ndirty_to_purge;
+ fb_group_t to_purge[FB_NGROUPS(HUGEPAGE_PAGES)];
+ size_t next_purge_search_begin;
+};
+
+/*
+ * Initializes purge state. The access to hpdata must be externally
+ * synchronized with other hpdata_* calls.
+ *
+ * You can tell whether or not a thread is purging or hugifying a given hpdata
+ * via hpdata_changing_state_get(hpdata). Racing hugification or purging
+ * operations aren't allowed.
+ *
+ * Once you begin purging, you have to follow through and call hpdata_purge_next
+ * until you're done, and then end. Allocating out of an hpdata undergoing
+ * purging is not allowed.
+ *
+ * Returns the number of dirty pages that will be purged.
+ */
+size_t hpdata_purge_begin(hpdata_t *hpdata, hpdata_purge_state_t *purge_state);
+
+/*
+ * If there are more extents to purge, sets *r_purge_addr and *r_purge_size to
+ * true, and returns true. Otherwise, returns false to indicate that we're
+ * done.
+ *
+ * This requires exclusive access to the purge state, but *not* to the hpdata.
+ * In particular, unreserve calls are allowed while purging (i.e. you can dalloc
+ * into one part of the hpdata while purging a different part).
+ */
+bool hpdata_purge_next(hpdata_t *hpdata, hpdata_purge_state_t *purge_state,
+ void **r_purge_addr, size_t *r_purge_size);
+/*
+ * Updates the hpdata metadata after all purging is done. Needs external
+ * synchronization.
+ */
+void hpdata_purge_end(hpdata_t *hpdata, hpdata_purge_state_t *purge_state);
+
+void hpdata_hugify(hpdata_t *hpdata);
+void hpdata_dehugify(hpdata_t *hpdata);
+
+#endif /* JEMALLOC_INTERNAL_HPDATA_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/inspect.h b/deps/jemalloc/include/jemalloc/internal/inspect.h
new file mode 100644
index 0000000..65fef51
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/inspect.h
@@ -0,0 +1,40 @@
+#ifndef JEMALLOC_INTERNAL_INSPECT_H
+#define JEMALLOC_INTERNAL_INSPECT_H
+
+/*
+ * This module contains the heap introspection capabilities. For now they are
+ * exposed purely through mallctl APIs in the experimental namespace, but this
+ * may change over time.
+ */
+
+/*
+ * The following two structs are for experimental purposes. See
+ * experimental_utilization_query_ctl and
+ * experimental_utilization_batch_query_ctl in src/ctl.c.
+ */
+typedef struct inspect_extent_util_stats_s inspect_extent_util_stats_t;
+struct inspect_extent_util_stats_s {
+ size_t nfree;
+ size_t nregs;
+ size_t size;
+};
+
+typedef struct inspect_extent_util_stats_verbose_s
+ inspect_extent_util_stats_verbose_t;
+
+struct inspect_extent_util_stats_verbose_s {
+ void *slabcur_addr;
+ size_t nfree;
+ size_t nregs;
+ size_t size;
+ size_t bin_nfree;
+ size_t bin_nregs;
+};
+
+void inspect_extent_util_stats_get(tsdn_t *tsdn, const void *ptr,
+ size_t *nfree, size_t *nregs, size_t *size);
+void inspect_extent_util_stats_verbose_get(tsdn_t *tsdn, const void *ptr,
+ size_t *nfree, size_t *nregs, size_t *size,
+ size_t *bin_nfree, size_t *bin_nregs, void **slabcur_addr);
+
+#endif /* JEMALLOC_INTERNAL_INSPECT_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_decls.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_decls.h
new file mode 100644
index 0000000..983027c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_decls.h
@@ -0,0 +1,108 @@
+#ifndef JEMALLOC_INTERNAL_DECLS_H
+#define JEMALLOC_INTERNAL_DECLS_H
+
+#include <math.h>
+#ifdef _WIN32
+# include <windows.h>
+# include "msvc_compat/windows_extra.h"
+# include "msvc_compat/strings.h"
+# ifdef _WIN64
+# if LG_VADDR <= 32
+# error Generate the headers using x64 vcargs
+# endif
+# else
+# if LG_VADDR > 32
+# undef LG_VADDR
+# define LG_VADDR 32
+# endif
+# endif
+#else
+# include <sys/param.h>
+# include <sys/mman.h>
+# if !defined(__pnacl__) && !defined(__native_client__)
+# include <sys/syscall.h>
+# if !defined(SYS_write) && defined(__NR_write)
+# define SYS_write __NR_write
+# endif
+# if defined(SYS_open) && defined(__aarch64__)
+ /* Android headers may define SYS_open to __NR_open even though
+ * __NR_open may not exist on AArch64 (superseded by __NR_openat). */
+# undef SYS_open
+# endif
+# include <sys/uio.h>
+# endif
+# include <pthread.h>
+# if defined(__FreeBSD__) || defined(__DragonFly__)
+# include <pthread_np.h>
+# include <sched.h>
+# if defined(__FreeBSD__)
+# define cpu_set_t cpuset_t
+# endif
+# endif
+# include <signal.h>
+# ifdef JEMALLOC_OS_UNFAIR_LOCK
+# include <os/lock.h>
+# endif
+# ifdef JEMALLOC_GLIBC_MALLOC_HOOK
+# include <sched.h>
+# endif
+# include <errno.h>
+# include <sys/time.h>
+# include <time.h>
+# ifdef JEMALLOC_HAVE_MACH_ABSOLUTE_TIME
+# include <mach/mach_time.h>
+# endif
+#endif
+#include <sys/types.h>
+
+#include <limits.h>
+#ifndef SIZE_T_MAX
+# define SIZE_T_MAX SIZE_MAX
+#endif
+#ifndef SSIZE_MAX
+# define SSIZE_MAX ((ssize_t)(SIZE_T_MAX >> 1))
+#endif
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <stddef.h>
+#ifndef offsetof
+# define offsetof(type, member) ((size_t)&(((type *)NULL)->member))
+#endif
+#include <string.h>
+#include <strings.h>
+#include <ctype.h>
+#ifdef _MSC_VER
+# include <io.h>
+typedef intptr_t ssize_t;
+# define PATH_MAX 1024
+# define STDERR_FILENO 2
+# define __func__ __FUNCTION__
+# ifdef JEMALLOC_HAS_RESTRICT
+# define restrict __restrict
+# endif
+/* Disable warnings about deprecated system functions. */
+# pragma warning(disable: 4996)
+#if _MSC_VER < 1800
+static int
+isblank(int c) {
+ return (c == '\t' || c == ' ');
+}
+#endif
+#else
+# include <unistd.h>
+#endif
+#include <fcntl.h>
+
+/*
+ * The Win32 midl compiler has #define small char; we don't use midl, but
+ * "small" is a nice identifier to have available when talking about size
+ * classes.
+ */
+#ifdef small
+# undef small
+#endif
+
+#endif /* JEMALLOC_INTERNAL_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_defs.h.in b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_defs.h.in
new file mode 100644
index 0000000..3588072
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_defs.h.in
@@ -0,0 +1,427 @@
+#ifndef JEMALLOC_INTERNAL_DEFS_H_
+#define JEMALLOC_INTERNAL_DEFS_H_
+/*
+ * If JEMALLOC_PREFIX is defined via --with-jemalloc-prefix, it will cause all
+ * public APIs to be prefixed. This makes it possible, with some care, to use
+ * multiple allocators simultaneously.
+ */
+#undef JEMALLOC_PREFIX
+#undef JEMALLOC_CPREFIX
+
+/*
+ * Define overrides for non-standard allocator-related functions if they are
+ * present on the system.
+ */
+#undef JEMALLOC_OVERRIDE___LIBC_CALLOC
+#undef JEMALLOC_OVERRIDE___LIBC_FREE
+#undef JEMALLOC_OVERRIDE___LIBC_MALLOC
+#undef JEMALLOC_OVERRIDE___LIBC_MEMALIGN
+#undef JEMALLOC_OVERRIDE___LIBC_REALLOC
+#undef JEMALLOC_OVERRIDE___LIBC_VALLOC
+#undef JEMALLOC_OVERRIDE___POSIX_MEMALIGN
+
+/*
+ * JEMALLOC_PRIVATE_NAMESPACE is used as a prefix for all library-private APIs.
+ * For shared libraries, symbol visibility mechanisms prevent these symbols
+ * from being exported, but for static libraries, naming collisions are a real
+ * possibility.
+ */
+#undef JEMALLOC_PRIVATE_NAMESPACE
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU.
+ */
+#undef CPU_SPINWAIT
+/* 1 if CPU_SPINWAIT is defined, 0 otherwise. */
+#undef HAVE_CPU_SPINWAIT
+
+/*
+ * Number of significant bits in virtual addresses. This may be less than the
+ * total number of bits in a pointer, e.g. on x64, for which the uppermost 16
+ * bits are the same as bit 47.
+ */
+#undef LG_VADDR
+
+/* Defined if C11 atomics are available. */
+#undef JEMALLOC_C11_ATOMICS
+
+/* Defined if GCC __atomic atomics are available. */
+#undef JEMALLOC_GCC_ATOMIC_ATOMICS
+/* and the 8-bit variant support. */
+#undef JEMALLOC_GCC_U8_ATOMIC_ATOMICS
+
+/* Defined if GCC __sync atomics are available. */
+#undef JEMALLOC_GCC_SYNC_ATOMICS
+/* and the 8-bit variant support. */
+#undef JEMALLOC_GCC_U8_SYNC_ATOMICS
+
+/*
+ * Defined if __builtin_clz() and __builtin_clzl() are available.
+ */
+#undef JEMALLOC_HAVE_BUILTIN_CLZ
+
+/*
+ * Defined if os_unfair_lock_*() functions are available, as provided by Darwin.
+ */
+#undef JEMALLOC_OS_UNFAIR_LOCK
+
+/* Defined if syscall(2) is usable. */
+#undef JEMALLOC_USE_SYSCALL
+
+/*
+ * Defined if secure_getenv(3) is available.
+ */
+#undef JEMALLOC_HAVE_SECURE_GETENV
+
+/*
+ * Defined if issetugid(2) is available.
+ */
+#undef JEMALLOC_HAVE_ISSETUGID
+
+/* Defined if pthread_atfork(3) is available. */
+#undef JEMALLOC_HAVE_PTHREAD_ATFORK
+
+/* Defined if pthread_setname_np(3) is available. */
+#undef JEMALLOC_HAVE_PTHREAD_SETNAME_NP
+
+/* Defined if pthread_getname_np(3) is available. */
+#undef JEMALLOC_HAVE_PTHREAD_GETNAME_NP
+
+/* Defined if pthread_get_name_np(3) is available. */
+#undef JEMALLOC_HAVE_PTHREAD_GET_NAME_NP
+
+/*
+ * Defined if clock_gettime(CLOCK_MONOTONIC_COARSE, ...) is available.
+ */
+#undef JEMALLOC_HAVE_CLOCK_MONOTONIC_COARSE
+
+/*
+ * Defined if clock_gettime(CLOCK_MONOTONIC, ...) is available.
+ */
+#undef JEMALLOC_HAVE_CLOCK_MONOTONIC
+
+/*
+ * Defined if mach_absolute_time() is available.
+ */
+#undef JEMALLOC_HAVE_MACH_ABSOLUTE_TIME
+
+/*
+ * Defined if clock_gettime(CLOCK_REALTIME, ...) is available.
+ */
+#undef JEMALLOC_HAVE_CLOCK_REALTIME
+
+/*
+ * Defined if _malloc_thread_cleanup() exists. At least in the case of
+ * FreeBSD, pthread_key_create() allocates, which if used during malloc
+ * bootstrapping will cause recursion into the pthreads library. Therefore, if
+ * _malloc_thread_cleanup() exists, use it as the basis for thread cleanup in
+ * malloc_tsd.
+ */
+#undef JEMALLOC_MALLOC_THREAD_CLEANUP
+
+/*
+ * Defined if threaded initialization is known to be safe on this platform.
+ * Among other things, it must be possible to initialize a mutex without
+ * triggering allocation in order for threaded allocation to be safe.
+ */
+#undef JEMALLOC_THREADED_INIT
+
+/*
+ * Defined if the pthreads implementation defines
+ * _pthread_mutex_init_calloc_cb(), in which case the function is used in order
+ * to avoid recursive allocation during mutex initialization.
+ */
+#undef JEMALLOC_MUTEX_INIT_CB
+
+/* Non-empty if the tls_model attribute is supported. */
+#undef JEMALLOC_TLS_MODEL
+
+/*
+ * JEMALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+#undef JEMALLOC_DEBUG
+
+/* JEMALLOC_STATS enables statistics calculation. */
+#undef JEMALLOC_STATS
+
+/* JEMALLOC_EXPERIMENTAL_SMALLOCX_API enables experimental smallocx API. */
+#undef JEMALLOC_EXPERIMENTAL_SMALLOCX_API
+
+/* JEMALLOC_PROF enables allocation profiling. */
+#undef JEMALLOC_PROF
+
+/* Use libunwind for profile backtracing if defined. */
+#undef JEMALLOC_PROF_LIBUNWIND
+
+/* Use libgcc for profile backtracing if defined. */
+#undef JEMALLOC_PROF_LIBGCC
+
+/* Use gcc intrinsics for profile backtracing if defined. */
+#undef JEMALLOC_PROF_GCC
+
+/*
+ * JEMALLOC_DSS enables use of sbrk(2) to allocate extents from the data storage
+ * segment (DSS).
+ */
+#undef JEMALLOC_DSS
+
+/* Support memory filling (junk/zero). */
+#undef JEMALLOC_FILL
+
+/* Support utrace(2)-based tracing. */
+#undef JEMALLOC_UTRACE
+
+/* Support utrace(2)-based tracing (label based signature). */
+#undef JEMALLOC_UTRACE_LABEL
+
+/* Support optional abort() on OOM. */
+#undef JEMALLOC_XMALLOC
+
+/* Support lazy locking (avoid locking unless a second thread is launched). */
+#undef JEMALLOC_LAZY_LOCK
+
+/*
+ * Minimum allocation alignment is 2^LG_QUANTUM bytes (ignoring tiny size
+ * classes).
+ */
+#undef LG_QUANTUM
+
+/* One page is 2^LG_PAGE bytes. */
+#undef LG_PAGE
+
+/* Maximum number of regions in a slab. */
+#undef CONFIG_LG_SLAB_MAXREGS
+
+/*
+ * One huge page is 2^LG_HUGEPAGE bytes. Note that this is defined even if the
+ * system does not explicitly support huge pages; system calls that require
+ * explicit huge page support are separately configured.
+ */
+#undef LG_HUGEPAGE
+
+/*
+ * If defined, adjacent virtual memory mappings with identical attributes
+ * automatically coalesce, and they fragment when changes are made to subranges.
+ * This is the normal order of things for mmap()/munmap(), but on Windows
+ * VirtualAlloc()/VirtualFree() operations must be precisely matched, i.e.
+ * mappings do *not* coalesce/fragment.
+ */
+#undef JEMALLOC_MAPS_COALESCE
+
+/*
+ * If defined, retain memory for later reuse by default rather than using e.g.
+ * munmap() to unmap freed extents. This is enabled on 64-bit Linux because
+ * common sequences of mmap()/munmap() calls will cause virtual memory map
+ * holes.
+ */
+#undef JEMALLOC_RETAIN
+
+/* TLS is used to map arenas and magazine caches to threads. */
+#undef JEMALLOC_TLS
+
+/*
+ * Used to mark unreachable code to quiet "end of non-void" compiler warnings.
+ * Don't use this directly; instead use unreachable() from util.h
+ */
+#undef JEMALLOC_INTERNAL_UNREACHABLE
+
+/*
+ * ffs*() functions to use for bitmapping. Don't use these directly; instead,
+ * use ffs_*() from util.h.
+ */
+#undef JEMALLOC_INTERNAL_FFSLL
+#undef JEMALLOC_INTERNAL_FFSL
+#undef JEMALLOC_INTERNAL_FFS
+
+/*
+ * popcount*() functions to use for bitmapping.
+ */
+#undef JEMALLOC_INTERNAL_POPCOUNTL
+#undef JEMALLOC_INTERNAL_POPCOUNT
+
+/*
+ * If defined, explicitly attempt to more uniformly distribute large allocation
+ * pointer alignments across all cache indices.
+ */
+#undef JEMALLOC_CACHE_OBLIVIOUS
+
+/*
+ * If defined, enable logging facilities. We make this a configure option to
+ * avoid taking extra branches everywhere.
+ */
+#undef JEMALLOC_LOG
+
+/*
+ * If defined, use readlinkat() (instead of readlink()) to follow
+ * /etc/malloc_conf.
+ */
+#undef JEMALLOC_READLINKAT
+
+/*
+ * Darwin (OS X) uses zones to work around Mach-O symbol override shortcomings.
+ */
+#undef JEMALLOC_ZONE
+
+/*
+ * Methods for determining whether the OS overcommits.
+ * JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY: Linux's
+ * /proc/sys/vm.overcommit_memory file.
+ * JEMALLOC_SYSCTL_VM_OVERCOMMIT: FreeBSD's vm.overcommit sysctl.
+ */
+#undef JEMALLOC_SYSCTL_VM_OVERCOMMIT
+#undef JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY
+
+/* Defined if madvise(2) is available. */
+#undef JEMALLOC_HAVE_MADVISE
+
+/*
+ * Defined if transparent huge pages are supported via the MADV_[NO]HUGEPAGE
+ * arguments to madvise(2).
+ */
+#undef JEMALLOC_HAVE_MADVISE_HUGE
+
+/*
+ * Methods for purging unused pages differ between operating systems.
+ *
+ * madvise(..., MADV_FREE) : This marks pages as being unused, such that they
+ * will be discarded rather than swapped out.
+ * madvise(..., MADV_DONTNEED) : If JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS is
+ * defined, this immediately discards pages,
+ * such that new pages will be demand-zeroed if
+ * the address region is later touched;
+ * otherwise this behaves similarly to
+ * MADV_FREE, though typically with higher
+ * system overhead.
+ */
+#undef JEMALLOC_PURGE_MADVISE_FREE
+#undef JEMALLOC_PURGE_MADVISE_DONTNEED
+#undef JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS
+
+/* Defined if madvise(2) is available but MADV_FREE is not (x86 Linux only). */
+#undef JEMALLOC_DEFINE_MADVISE_FREE
+
+/*
+ * Defined if MADV_DO[NT]DUMP is supported as an argument to madvise.
+ */
+#undef JEMALLOC_MADVISE_DONTDUMP
+
+/*
+ * Defined if MADV_[NO]CORE is supported as an argument to madvise.
+ */
+#undef JEMALLOC_MADVISE_NOCORE
+
+/* Defined if mprotect(2) is available. */
+#undef JEMALLOC_HAVE_MPROTECT
+
+/*
+ * Defined if transparent huge pages (THPs) are supported via the
+ * MADV_[NO]HUGEPAGE arguments to madvise(2), and THP support is enabled.
+ */
+#undef JEMALLOC_THP
+
+/* Defined if posix_madvise is available. */
+#undef JEMALLOC_HAVE_POSIX_MADVISE
+
+/*
+ * Method for purging unused pages using posix_madvise.
+ *
+ * posix_madvise(..., POSIX_MADV_DONTNEED)
+ */
+#undef JEMALLOC_PURGE_POSIX_MADVISE_DONTNEED
+#undef JEMALLOC_PURGE_POSIX_MADVISE_DONTNEED_ZEROS
+
+/*
+ * Defined if memcntl page admin call is supported
+ */
+#undef JEMALLOC_HAVE_MEMCNTL
+
+/*
+ * Defined if malloc_size is supported
+ */
+#undef JEMALLOC_HAVE_MALLOC_SIZE
+
+/* Define if operating system has alloca.h header. */
+#undef JEMALLOC_HAS_ALLOCA_H
+
+/* C99 restrict keyword supported. */
+#undef JEMALLOC_HAS_RESTRICT
+
+/* For use by hash code. */
+#undef JEMALLOC_BIG_ENDIAN
+
+/* sizeof(int) == 2^LG_SIZEOF_INT. */
+#undef LG_SIZEOF_INT
+
+/* sizeof(long) == 2^LG_SIZEOF_LONG. */
+#undef LG_SIZEOF_LONG
+
+/* sizeof(long long) == 2^LG_SIZEOF_LONG_LONG. */
+#undef LG_SIZEOF_LONG_LONG
+
+/* sizeof(intmax_t) == 2^LG_SIZEOF_INTMAX_T. */
+#undef LG_SIZEOF_INTMAX_T
+
+/* glibc malloc hooks (__malloc_hook, __realloc_hook, __free_hook). */
+#undef JEMALLOC_GLIBC_MALLOC_HOOK
+
+/* glibc memalign hook. */
+#undef JEMALLOC_GLIBC_MEMALIGN_HOOK
+
+/* pthread support */
+#undef JEMALLOC_HAVE_PTHREAD
+
+/* dlsym() support */
+#undef JEMALLOC_HAVE_DLSYM
+
+/* Adaptive mutex support in pthreads. */
+#undef JEMALLOC_HAVE_PTHREAD_MUTEX_ADAPTIVE_NP
+
+/* GNU specific sched_getcpu support */
+#undef JEMALLOC_HAVE_SCHED_GETCPU
+
+/* GNU specific sched_setaffinity support */
+#undef JEMALLOC_HAVE_SCHED_SETAFFINITY
+
+/*
+ * If defined, all the features necessary for background threads are present.
+ */
+#undef JEMALLOC_BACKGROUND_THREAD
+
+/*
+ * If defined, jemalloc symbols are not exported (doesn't work when
+ * JEMALLOC_PREFIX is not defined).
+ */
+#undef JEMALLOC_EXPORT
+
+/* config.malloc_conf options string. */
+#undef JEMALLOC_CONFIG_MALLOC_CONF
+
+/* If defined, jemalloc takes the malloc/free/etc. symbol names. */
+#undef JEMALLOC_IS_MALLOC
+
+/*
+ * Defined if strerror_r returns char * if _GNU_SOURCE is defined.
+ */
+#undef JEMALLOC_STRERROR_R_RETURNS_CHAR_WITH_GNU_SOURCE
+
+/* Performs additional safety checks when defined. */
+#undef JEMALLOC_OPT_SAFETY_CHECKS
+
+/* Is C++ support being built? */
+#undef JEMALLOC_ENABLE_CXX
+
+/* Performs additional size checks when defined. */
+#undef JEMALLOC_OPT_SIZE_CHECKS
+
+/* Allows sampled junk and stash for checking use-after-free when defined. */
+#undef JEMALLOC_UAF_DETECTION
+
+/* Darwin VM_MAKE_TAG support */
+#undef JEMALLOC_HAVE_VM_MAKE_TAG
+
+/* If defined, realloc(ptr, 0) defaults to "free" instead of "alloc". */
+#undef JEMALLOC_ZERO_REALLOC_DEFAULT_FREE
+
+#endif /* JEMALLOC_INTERNAL_DEFS_H_ */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_externs.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_externs.h
new file mode 100644
index 0000000..fc834c6
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_externs.h
@@ -0,0 +1,75 @@
+#ifndef JEMALLOC_INTERNAL_EXTERNS_H
+#define JEMALLOC_INTERNAL_EXTERNS_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/hpa_opts.h"
+#include "jemalloc/internal/sec_opts.h"
+#include "jemalloc/internal/tsd_types.h"
+#include "jemalloc/internal/nstime.h"
+
+/* TSD checks this to set thread local slow state accordingly. */
+extern bool malloc_slow;
+
+/* Run-time options. */
+extern bool opt_abort;
+extern bool opt_abort_conf;
+extern bool opt_trust_madvise;
+extern bool opt_confirm_conf;
+extern bool opt_hpa;
+extern hpa_shard_opts_t opt_hpa_opts;
+extern sec_opts_t opt_hpa_sec_opts;
+
+extern const char *opt_junk;
+extern bool opt_junk_alloc;
+extern bool opt_junk_free;
+extern void (*junk_free_callback)(void *ptr, size_t size);
+extern void (*junk_alloc_callback)(void *ptr, size_t size);
+extern bool opt_utrace;
+extern bool opt_xmalloc;
+extern bool opt_experimental_infallible_new;
+extern bool opt_zero;
+extern unsigned opt_narenas;
+extern zero_realloc_action_t opt_zero_realloc_action;
+extern malloc_init_t malloc_init_state;
+extern const char *zero_realloc_mode_names[];
+extern atomic_zu_t zero_realloc_count;
+extern bool opt_cache_oblivious;
+
+/* Escape free-fastpath when ptr & mask == 0 (for sanitization purpose). */
+extern uintptr_t san_cache_bin_nonfast_mask;
+
+/* Number of CPUs. */
+extern unsigned ncpus;
+
+/* Number of arenas used for automatic multiplexing of threads and arenas. */
+extern unsigned narenas_auto;
+
+/* Base index for manual arenas. */
+extern unsigned manual_arena_base;
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+extern atomic_p_t arenas[];
+
+void *a0malloc(size_t size);
+void a0dalloc(void *ptr);
+void *bootstrap_malloc(size_t size);
+void *bootstrap_calloc(size_t num, size_t size);
+void bootstrap_free(void *ptr);
+void arena_set(unsigned ind, arena_t *arena);
+unsigned narenas_total_get(void);
+arena_t *arena_init(tsdn_t *tsdn, unsigned ind, const arena_config_t *config);
+arena_t *arena_choose_hard(tsd_t *tsd, bool internal);
+void arena_migrate(tsd_t *tsd, arena_t *oldarena, arena_t *newarena);
+void iarena_cleanup(tsd_t *tsd);
+void arena_cleanup(tsd_t *tsd);
+size_t batch_alloc(void **ptrs, size_t num, size_t size, int flags);
+void jemalloc_prefork(void);
+void jemalloc_postfork_parent(void);
+void jemalloc_postfork_child(void);
+void je_sdallocx_noflags(void *ptr, size_t size);
+void *malloc_default(size_t size);
+
+#endif /* JEMALLOC_INTERNAL_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_includes.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_includes.h
new file mode 100644
index 0000000..751c112
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_includes.h
@@ -0,0 +1,84 @@
+#ifndef JEMALLOC_INTERNAL_INCLUDES_H
+#define JEMALLOC_INTERNAL_INCLUDES_H
+
+/*
+ * jemalloc can conceptually be broken into components (arena, tcache, etc.),
+ * but there are circular dependencies that cannot be broken without
+ * substantial performance degradation.
+ *
+ * Historically, we dealt with this by each header into four sections (types,
+ * structs, externs, and inlines), and included each header file multiple times
+ * in this file, picking out the portion we want on each pass using the
+ * following #defines:
+ * JEMALLOC_H_TYPES : Preprocessor-defined constants and pseudo-opaque data
+ * types.
+ * JEMALLOC_H_STRUCTS : Data structures.
+ * JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
+ * JEMALLOC_H_INLINES : Inline functions.
+ *
+ * We're moving toward a world in which the dependencies are explicit; each file
+ * will #include the headers it depends on (rather than relying on them being
+ * implicitly available via this file including every header file in the
+ * project).
+ *
+ * We're now in an intermediate state: we've broken up the header files to avoid
+ * having to include each one multiple times, but have not yet moved the
+ * dependency information into the header files (i.e. we still rely on the
+ * ordering in this file to ensure all a header's dependencies are available in
+ * its translation unit). Each component is now broken up into multiple header
+ * files, corresponding to the sections above (e.g. instead of "foo.h", we now
+ * have "foo_types.h", "foo_structs.h", "foo_externs.h", "foo_inlines.h").
+ *
+ * Those files which have been converted to explicitly include their
+ * inter-component dependencies are now in the initial HERMETIC HEADERS
+ * section. All headers may still rely on jemalloc_preamble.h (which, by fiat,
+ * must be included first in every translation unit) for system headers and
+ * global jemalloc definitions, however.
+ */
+
+/******************************************************************************/
+/* TYPES */
+/******************************************************************************/
+
+#include "jemalloc/internal/arena_types.h"
+#include "jemalloc/internal/tcache_types.h"
+#include "jemalloc/internal/prof_types.h"
+
+/******************************************************************************/
+/* STRUCTS */
+/******************************************************************************/
+
+#include "jemalloc/internal/prof_structs.h"
+#include "jemalloc/internal/arena_structs.h"
+#include "jemalloc/internal/tcache_structs.h"
+#include "jemalloc/internal/background_thread_structs.h"
+
+/******************************************************************************/
+/* EXTERNS */
+/******************************************************************************/
+
+#include "jemalloc/internal/jemalloc_internal_externs.h"
+#include "jemalloc/internal/arena_externs.h"
+#include "jemalloc/internal/large_externs.h"
+#include "jemalloc/internal/tcache_externs.h"
+#include "jemalloc/internal/prof_externs.h"
+#include "jemalloc/internal/background_thread_externs.h"
+
+/******************************************************************************/
+/* INLINES */
+/******************************************************************************/
+
+#include "jemalloc/internal/jemalloc_internal_inlines_a.h"
+/*
+ * Include portions of arena code interleaved with tcache code in order to
+ * resolve circular dependencies.
+ */
+#include "jemalloc/internal/arena_inlines_a.h"
+#include "jemalloc/internal/jemalloc_internal_inlines_b.h"
+#include "jemalloc/internal/tcache_inlines.h"
+#include "jemalloc/internal/arena_inlines_b.h"
+#include "jemalloc/internal/jemalloc_internal_inlines_c.h"
+#include "jemalloc/internal/prof_inlines.h"
+#include "jemalloc/internal/background_thread_inlines.h"
+
+#endif /* JEMALLOC_INTERNAL_INCLUDES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_a.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_a.h
new file mode 100644
index 0000000..9e27cc3
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_a.h
@@ -0,0 +1,122 @@
+#ifndef JEMALLOC_INTERNAL_INLINES_A_H
+#define JEMALLOC_INTERNAL_INLINES_A_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/bit_util.h"
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/ticker.h"
+
+JEMALLOC_ALWAYS_INLINE malloc_cpuid_t
+malloc_getcpu(void) {
+ assert(have_percpu_arena);
+#if defined(_WIN32)
+ return GetCurrentProcessorNumber();
+#elif defined(JEMALLOC_HAVE_SCHED_GETCPU)
+ return (malloc_cpuid_t)sched_getcpu();
+#else
+ not_reached();
+ return -1;
+#endif
+}
+
+/* Return the chosen arena index based on current cpu. */
+JEMALLOC_ALWAYS_INLINE unsigned
+percpu_arena_choose(void) {
+ assert(have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena));
+
+ malloc_cpuid_t cpuid = malloc_getcpu();
+ assert(cpuid >= 0);
+
+ unsigned arena_ind;
+ if ((opt_percpu_arena == percpu_arena) || ((unsigned)cpuid < ncpus /
+ 2)) {
+ arena_ind = cpuid;
+ } else {
+ assert(opt_percpu_arena == per_phycpu_arena);
+ /* Hyper threads on the same physical CPU share arena. */
+ arena_ind = cpuid - ncpus / 2;
+ }
+
+ return arena_ind;
+}
+
+/* Return the limit of percpu auto arena range, i.e. arenas[0...ind_limit). */
+JEMALLOC_ALWAYS_INLINE unsigned
+percpu_arena_ind_limit(percpu_arena_mode_t mode) {
+ assert(have_percpu_arena && PERCPU_ARENA_ENABLED(mode));
+ if (mode == per_phycpu_arena && ncpus > 1) {
+ if (ncpus % 2) {
+ /* This likely means a misconfig. */
+ return ncpus / 2 + 1;
+ }
+ return ncpus / 2;
+ } else {
+ return ncpus;
+ }
+}
+
+static inline arena_t *
+arena_get(tsdn_t *tsdn, unsigned ind, bool init_if_missing) {
+ arena_t *ret;
+
+ assert(ind < MALLOCX_ARENA_LIMIT);
+
+ ret = (arena_t *)atomic_load_p(&arenas[ind], ATOMIC_ACQUIRE);
+ if (unlikely(ret == NULL)) {
+ if (init_if_missing) {
+ ret = arena_init(tsdn, ind, &arena_config_default);
+ }
+ }
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tcache_available(tsd_t *tsd) {
+ /*
+ * Thread specific auto tcache might be unavailable if: 1) during tcache
+ * initialization, or 2) disabled through thread.tcache.enabled mallctl
+ * or config options. This check covers all cases.
+ */
+ if (likely(tsd_tcache_enabled_get(tsd))) {
+ /* Associated arena == NULL implies tcache init in progress. */
+ if (config_debug && tsd_tcache_slowp_get(tsd)->arena != NULL) {
+ tcache_assert_initialized(tsd_tcachep_get(tsd));
+ }
+ return true;
+ }
+
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE tcache_t *
+tcache_get(tsd_t *tsd) {
+ if (!tcache_available(tsd)) {
+ return NULL;
+ }
+
+ return tsd_tcachep_get(tsd);
+}
+
+JEMALLOC_ALWAYS_INLINE tcache_slow_t *
+tcache_slow_get(tsd_t *tsd) {
+ if (!tcache_available(tsd)) {
+ return NULL;
+ }
+
+ return tsd_tcache_slowp_get(tsd);
+}
+
+static inline void
+pre_reentrancy(tsd_t *tsd, arena_t *arena) {
+ /* arena is the current context. Reentry from a0 is not allowed. */
+ assert(arena != arena_get(tsd_tsdn(tsd), 0, false));
+ tsd_pre_reentrancy_raw(tsd);
+}
+
+static inline void
+post_reentrancy(tsd_t *tsd) {
+ tsd_post_reentrancy_raw(tsd);
+}
+
+#endif /* JEMALLOC_INTERNAL_INLINES_A_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_b.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_b.h
new file mode 100644
index 0000000..152f8a0
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_b.h
@@ -0,0 +1,103 @@
+#ifndef JEMALLOC_INTERNAL_INLINES_B_H
+#define JEMALLOC_INTERNAL_INLINES_B_H
+
+#include "jemalloc/internal/extent.h"
+
+static inline void
+percpu_arena_update(tsd_t *tsd, unsigned cpu) {
+ assert(have_percpu_arena);
+ arena_t *oldarena = tsd_arena_get(tsd);
+ assert(oldarena != NULL);
+ unsigned oldind = arena_ind_get(oldarena);
+
+ if (oldind != cpu) {
+ unsigned newind = cpu;
+ arena_t *newarena = arena_get(tsd_tsdn(tsd), newind, true);
+ assert(newarena != NULL);
+
+ /* Set new arena/tcache associations. */
+ arena_migrate(tsd, oldarena, newarena);
+ tcache_t *tcache = tcache_get(tsd);
+ if (tcache != NULL) {
+ tcache_slow_t *tcache_slow = tsd_tcache_slowp_get(tsd);
+ tcache_arena_reassociate(tsd_tsdn(tsd), tcache_slow,
+ tcache, newarena);
+ }
+ }
+}
+
+
+/* Choose an arena based on a per-thread value. */
+static inline arena_t *
+arena_choose_impl(tsd_t *tsd, arena_t *arena, bool internal) {
+ arena_t *ret;
+
+ if (arena != NULL) {
+ return arena;
+ }
+
+ /* During reentrancy, arena 0 is the safest bet. */
+ if (unlikely(tsd_reentrancy_level_get(tsd) > 0)) {
+ return arena_get(tsd_tsdn(tsd), 0, true);
+ }
+
+ ret = internal ? tsd_iarena_get(tsd) : tsd_arena_get(tsd);
+ if (unlikely(ret == NULL)) {
+ ret = arena_choose_hard(tsd, internal);
+ assert(ret);
+ if (tcache_available(tsd)) {
+ tcache_slow_t *tcache_slow = tsd_tcache_slowp_get(tsd);
+ tcache_t *tcache = tsd_tcachep_get(tsd);
+ if (tcache_slow->arena != NULL) {
+ /* See comments in tsd_tcache_data_init().*/
+ assert(tcache_slow->arena ==
+ arena_get(tsd_tsdn(tsd), 0, false));
+ if (tcache_slow->arena != ret) {
+ tcache_arena_reassociate(tsd_tsdn(tsd),
+ tcache_slow, tcache, ret);
+ }
+ } else {
+ tcache_arena_associate(tsd_tsdn(tsd),
+ tcache_slow, tcache, ret);
+ }
+ }
+ }
+
+ /*
+ * Note that for percpu arena, if the current arena is outside of the
+ * auto percpu arena range, (i.e. thread is assigned to a manually
+ * managed arena), then percpu arena is skipped.
+ */
+ if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena) &&
+ !internal && (arena_ind_get(ret) <
+ percpu_arena_ind_limit(opt_percpu_arena)) && (ret->last_thd !=
+ tsd_tsdn(tsd))) {
+ unsigned ind = percpu_arena_choose();
+ if (arena_ind_get(ret) != ind) {
+ percpu_arena_update(tsd, ind);
+ ret = tsd_arena_get(tsd);
+ }
+ ret->last_thd = tsd_tsdn(tsd);
+ }
+
+ return ret;
+}
+
+static inline arena_t *
+arena_choose(tsd_t *tsd, arena_t *arena) {
+ return arena_choose_impl(tsd, arena, false);
+}
+
+static inline arena_t *
+arena_ichoose(tsd_t *tsd, arena_t *arena) {
+ return arena_choose_impl(tsd, arena, true);
+}
+
+static inline bool
+arena_is_auto(arena_t *arena) {
+ assert(narenas_auto > 0);
+
+ return (arena_ind_get(arena) < manual_arena_base);
+}
+
+#endif /* JEMALLOC_INTERNAL_INLINES_B_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h
new file mode 100644
index 0000000..2cd7e7c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h
@@ -0,0 +1,391 @@
+#ifndef JEMALLOC_INTERNAL_INLINES_C_H
+#define JEMALLOC_INTERNAL_INLINES_C_H
+
+#include "jemalloc/internal/hook.h"
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/log.h"
+#include "jemalloc/internal/sz.h"
+#include "jemalloc/internal/thread_event.h"
+#include "jemalloc/internal/witness.h"
+
+/*
+ * Translating the names of the 'i' functions:
+ * Abbreviations used in the first part of the function name (before
+ * alloc/dalloc) describe what that function accomplishes:
+ * a: arena (query)
+ * s: size (query, or sized deallocation)
+ * e: extent (query)
+ * p: aligned (allocates)
+ * vs: size (query, without knowing that the pointer is into the heap)
+ * r: rallocx implementation
+ * x: xallocx implementation
+ * Abbreviations used in the second part of the function name (after
+ * alloc/dalloc) describe the arguments it takes
+ * z: whether to return zeroed memory
+ * t: accepts a tcache_t * parameter
+ * m: accepts an arena_t * parameter
+ */
+
+JEMALLOC_ALWAYS_INLINE arena_t *
+iaalloc(tsdn_t *tsdn, const void *ptr) {
+ assert(ptr != NULL);
+
+ return arena_aalloc(tsdn, ptr);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+isalloc(tsdn_t *tsdn, const void *ptr) {
+ assert(ptr != NULL);
+
+ return arena_salloc(tsdn, ptr);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+iallocztm(tsdn_t *tsdn, size_t size, szind_t ind, bool zero, tcache_t *tcache,
+ bool is_internal, arena_t *arena, bool slow_path) {
+ void *ret;
+
+ assert(!is_internal || tcache == NULL);
+ assert(!is_internal || arena == NULL || arena_is_auto(arena));
+ if (!tsdn_null(tsdn) && tsd_reentrancy_level_get(tsdn_tsd(tsdn)) == 0) {
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+ }
+
+ ret = arena_malloc(tsdn, arena, size, ind, zero, tcache, slow_path);
+ if (config_stats && is_internal && likely(ret != NULL)) {
+ arena_internal_add(iaalloc(tsdn, ret), isalloc(tsdn, ret));
+ }
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ialloc(tsd_t *tsd, size_t size, szind_t ind, bool zero, bool slow_path) {
+ return iallocztm(tsd_tsdn(tsd), size, ind, zero, tcache_get(tsd), false,
+ NULL, slow_path);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ipallocztm(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
+ tcache_t *tcache, bool is_internal, arena_t *arena) {
+ void *ret;
+
+ assert(usize != 0);
+ assert(usize == sz_sa2u(usize, alignment));
+ assert(!is_internal || tcache == NULL);
+ assert(!is_internal || arena == NULL || arena_is_auto(arena));
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+
+ ret = arena_palloc(tsdn, arena, usize, alignment, zero, tcache);
+ assert(ALIGNMENT_ADDR2BASE(ret, alignment) == ret);
+ if (config_stats && is_internal && likely(ret != NULL)) {
+ arena_internal_add(iaalloc(tsdn, ret), isalloc(tsdn, ret));
+ }
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ipalloct(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
+ tcache_t *tcache, arena_t *arena) {
+ return ipallocztm(tsdn, usize, alignment, zero, tcache, false, arena);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ipalloc(tsd_t *tsd, size_t usize, size_t alignment, bool zero) {
+ return ipallocztm(tsd_tsdn(tsd), usize, alignment, zero,
+ tcache_get(tsd), false, NULL);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+ivsalloc(tsdn_t *tsdn, const void *ptr) {
+ return arena_vsalloc(tsdn, ptr);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+idalloctm(tsdn_t *tsdn, void *ptr, tcache_t *tcache,
+ emap_alloc_ctx_t *alloc_ctx, bool is_internal, bool slow_path) {
+ assert(ptr != NULL);
+ assert(!is_internal || tcache == NULL);
+ assert(!is_internal || arena_is_auto(iaalloc(tsdn, ptr)));
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+ if (config_stats && is_internal) {
+ arena_internal_sub(iaalloc(tsdn, ptr), isalloc(tsdn, ptr));
+ }
+ if (!is_internal && !tsdn_null(tsdn) &&
+ tsd_reentrancy_level_get(tsdn_tsd(tsdn)) != 0) {
+ assert(tcache == NULL);
+ }
+ arena_dalloc(tsdn, ptr, tcache, alloc_ctx, slow_path);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+idalloc(tsd_t *tsd, void *ptr) {
+ idalloctm(tsd_tsdn(tsd), ptr, tcache_get(tsd), NULL, false, true);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+isdalloct(tsdn_t *tsdn, void *ptr, size_t size, tcache_t *tcache,
+ emap_alloc_ctx_t *alloc_ctx, bool slow_path) {
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+ arena_sdalloc(tsdn, ptr, size, tcache, alloc_ctx, slow_path);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+iralloct_realign(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
+ size_t alignment, bool zero, tcache_t *tcache, arena_t *arena,
+ hook_ralloc_args_t *hook_args) {
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+ void *p;
+ size_t usize, copysize;
+
+ usize = sz_sa2u(size, alignment);
+ if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) {
+ return NULL;
+ }
+ p = ipalloct(tsdn, usize, alignment, zero, tcache, arena);
+ if (p == NULL) {
+ return NULL;
+ }
+ /*
+ * Copy at most size bytes (not size+extra), since the caller has no
+ * expectation that the extra bytes will be reliably preserved.
+ */
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(p, ptr, copysize);
+ hook_invoke_alloc(hook_args->is_realloc
+ ? hook_alloc_realloc : hook_alloc_rallocx, p, (uintptr_t)p,
+ hook_args->args);
+ hook_invoke_dalloc(hook_args->is_realloc
+ ? hook_dalloc_realloc : hook_dalloc_rallocx, ptr, hook_args->args);
+ isdalloct(tsdn, ptr, oldsize, tcache, NULL, true);
+ return p;
+}
+
+/*
+ * is_realloc threads through the knowledge of whether or not this call comes
+ * from je_realloc (as opposed to je_rallocx); this ensures that we pass the
+ * correct entry point into any hooks.
+ * Note that these functions are all force-inlined, so no actual bool gets
+ * passed-around anywhere.
+ */
+JEMALLOC_ALWAYS_INLINE void *
+iralloct(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t alignment,
+ bool zero, tcache_t *tcache, arena_t *arena, hook_ralloc_args_t *hook_args)
+{
+ assert(ptr != NULL);
+ assert(size != 0);
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+
+ if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
+ != 0) {
+ /*
+ * Existing object alignment is inadequate; allocate new space
+ * and copy.
+ */
+ return iralloct_realign(tsdn, ptr, oldsize, size, alignment,
+ zero, tcache, arena, hook_args);
+ }
+
+ return arena_ralloc(tsdn, arena, ptr, oldsize, size, alignment, zero,
+ tcache, hook_args);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+iralloc(tsd_t *tsd, void *ptr, size_t oldsize, size_t size, size_t alignment,
+ bool zero, hook_ralloc_args_t *hook_args) {
+ return iralloct(tsd_tsdn(tsd), ptr, oldsize, size, alignment, zero,
+ tcache_get(tsd), NULL, hook_args);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+ixalloc(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t extra,
+ size_t alignment, bool zero, size_t *newsize) {
+ assert(ptr != NULL);
+ assert(size != 0);
+ witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
+ WITNESS_RANK_CORE, 0);
+
+ if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
+ != 0) {
+ /* Existing object alignment is inadequate. */
+ *newsize = oldsize;
+ return true;
+ }
+
+ return arena_ralloc_no_move(tsdn, ptr, oldsize, size, extra, zero,
+ newsize);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+fastpath_success_finish(tsd_t *tsd, uint64_t allocated_after,
+ cache_bin_t *bin, void *ret) {
+ thread_allocated_set(tsd, allocated_after);
+ if (config_stats) {
+ bin->tstats.nrequests++;
+ }
+
+ LOG("core.malloc.exit", "result: %p", ret);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+malloc_initialized(void) {
+ return (malloc_init_state == malloc_init_initialized);
+}
+
+/*
+ * malloc() fastpath. Included here so that we can inline it into operator new;
+ * function call overhead there is non-negligible as a fraction of total CPU in
+ * allocation-heavy C++ programs. We take the fallback alloc to allow malloc
+ * (which can return NULL) to differ in its behavior from operator new (which
+ * can't). It matches the signature of malloc / operator new so that we can
+ * tail-call the fallback allocator, allowing us to avoid setting up the call
+ * frame in the common case.
+ *
+ * Fastpath assumes size <= SC_LOOKUP_MAXCLASS, and that we hit
+ * tcache. If either of these is false, we tail-call to the slowpath,
+ * malloc_default(). Tail-calling is used to avoid any caller-saved
+ * registers.
+ *
+ * fastpath supports ticker and profiling, both of which will also
+ * tail-call to the slowpath if they fire.
+ */
+JEMALLOC_ALWAYS_INLINE void *
+imalloc_fastpath(size_t size, void *(fallback_alloc)(size_t)) {
+ LOG("core.malloc.entry", "size: %zu", size);
+ if (tsd_get_allocates() && unlikely(!malloc_initialized())) {
+ return fallback_alloc(size);
+ }
+
+ tsd_t *tsd = tsd_get(false);
+ if (unlikely((size > SC_LOOKUP_MAXCLASS) || tsd == NULL)) {
+ return fallback_alloc(size);
+ }
+ /*
+ * The code below till the branch checking the next_event threshold may
+ * execute before malloc_init(), in which case the threshold is 0 to
+ * trigger slow path and initialization.
+ *
+ * Note that when uninitialized, only the fast-path variants of the sz /
+ * tsd facilities may be called.
+ */
+ szind_t ind;
+ /*
+ * The thread_allocated counter in tsd serves as a general purpose
+ * accumulator for bytes of allocation to trigger different types of
+ * events. usize is always needed to advance thread_allocated, though
+ * it's not always needed in the core allocation logic.
+ */
+ size_t usize;
+ sz_size2index_usize_fastpath(size, &ind, &usize);
+ /* Fast path relies on size being a bin. */
+ assert(ind < SC_NBINS);
+ assert((SC_LOOKUP_MAXCLASS < SC_SMALL_MAXCLASS) &&
+ (size <= SC_SMALL_MAXCLASS));
+
+ uint64_t allocated, threshold;
+ te_malloc_fastpath_ctx(tsd, &allocated, &threshold);
+ uint64_t allocated_after = allocated + usize;
+ /*
+ * The ind and usize might be uninitialized (or partially) before
+ * malloc_init(). The assertions check for: 1) full correctness (usize
+ * & ind) when initialized; and 2) guaranteed slow-path (threshold == 0)
+ * when !initialized.
+ */
+ if (!malloc_initialized()) {
+ assert(threshold == 0);
+ } else {
+ assert(ind == sz_size2index(size));
+ assert(usize > 0 && usize == sz_index2size(ind));
+ }
+ /*
+ * Check for events and tsd non-nominal (fast_threshold will be set to
+ * 0) in a single branch.
+ */
+ if (unlikely(allocated_after >= threshold)) {
+ return fallback_alloc(size);
+ }
+ assert(tsd_fast(tsd));
+
+ tcache_t *tcache = tsd_tcachep_get(tsd);
+ assert(tcache == tcache_get(tsd));
+ cache_bin_t *bin = &tcache->bins[ind];
+ bool tcache_success;
+ void *ret;
+
+ /*
+ * We split up the code this way so that redundant low-water
+ * computation doesn't happen on the (more common) case in which we
+ * don't touch the low water mark. The compiler won't do this
+ * duplication on its own.
+ */
+ ret = cache_bin_alloc_easy(bin, &tcache_success);
+ if (tcache_success) {
+ fastpath_success_finish(tsd, allocated_after, bin, ret);
+ return ret;
+ }
+ ret = cache_bin_alloc(bin, &tcache_success);
+ if (tcache_success) {
+ fastpath_success_finish(tsd, allocated_after, bin, ret);
+ return ret;
+ }
+
+ return fallback_alloc(size);
+}
+
+JEMALLOC_ALWAYS_INLINE int
+iget_defrag_hint(tsdn_t *tsdn, void* ptr) {
+ int defrag = 0;
+ emap_alloc_ctx_t alloc_ctx;
+ emap_alloc_ctx_lookup(tsdn, &arena_emap_global, ptr, &alloc_ctx);
+ if (likely(alloc_ctx.slab)) {
+ /* Small allocation. */
+ edata_t *slab = emap_edata_lookup(tsdn, &arena_emap_global, ptr);
+ arena_t *arena = arena_get_from_edata(slab);
+ szind_t binind = edata_szind_get(slab);
+ unsigned binshard = edata_binshard_get(slab);
+ bin_t *bin = arena_get_bin(arena, binind, binshard);
+ malloc_mutex_lock(tsdn, &bin->lock);
+ arena_dalloc_bin_locked_info_t info;
+ arena_dalloc_bin_locked_begin(&info, binind);
+ /* Don't bother moving allocations from the slab currently used for new allocations */
+ if (slab != bin->slabcur) {
+ int free_in_slab = edata_nfree_get(slab);
+ if (free_in_slab) {
+ const bin_info_t *bin_info = &bin_infos[binind];
+ /* Find number of non-full slabs and the number of regs in them */
+ unsigned long curslabs = 0;
+ size_t curregs = 0;
+ /* Run on all bin shards (usually just one) */
+ for (uint32_t i=0; i< bin_info->n_shards; i++) {
+ bin_t *bb = arena_get_bin(arena, binind, i);
+ curslabs += bb->stats.nonfull_slabs;
+ /* Deduct the regs in full slabs (they're not part of the game) */
+ unsigned long full_slabs = bb->stats.curslabs - bb->stats.nonfull_slabs;
+ curregs += bb->stats.curregs - full_slabs * bin_info->nregs;
+ if (bb->slabcur) {
+ /* Remove slabcur from the overall utilization (not a candidate to nove from) */
+ curregs -= bin_info->nregs - edata_nfree_get(bb->slabcur);
+ curslabs -= 1;
+ }
+ }
+ /* Compare the utilization ratio of the slab in question to the total average
+ * among non-full slabs. To avoid precision loss in division, we do that by
+ * extrapolating the usage of the slab as if all slabs have the same usage.
+ * If this slab is less used than the average, we'll prefer to move the data
+ * to hopefully more used ones. To avoid stagnation when all slabs have the same
+ * utilization, we give additional 12.5% weight to the decision to defrag. */
+ defrag = (bin_info->nregs - free_in_slab) * curslabs <= curregs + curregs / 8;
+ }
+ }
+ arena_dalloc_bin_locked_finish(tsdn, arena, bin, &info);
+ malloc_mutex_unlock(tsdn, &bin->lock);
+ }
+ return defrag;
+}
+
+#endif /* JEMALLOC_INTERNAL_INLINES_C_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_macros.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_macros.h
new file mode 100644
index 0000000..e97b5f9
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_macros.h
@@ -0,0 +1,111 @@
+#ifndef JEMALLOC_INTERNAL_MACROS_H
+#define JEMALLOC_INTERNAL_MACROS_H
+
+#ifdef JEMALLOC_DEBUG
+# define JEMALLOC_ALWAYS_INLINE static inline
+#else
+# ifdef _MSC_VER
+# define JEMALLOC_ALWAYS_INLINE static __forceinline
+# else
+# define JEMALLOC_ALWAYS_INLINE JEMALLOC_ATTR(always_inline) static inline
+# endif
+#endif
+#ifdef _MSC_VER
+# define inline _inline
+#endif
+
+#define UNUSED JEMALLOC_ATTR(unused)
+
+#define ZU(z) ((size_t)z)
+#define ZD(z) ((ssize_t)z)
+#define QU(q) ((uint64_t)q)
+#define QD(q) ((int64_t)q)
+
+#define KZU(z) ZU(z##ULL)
+#define KZD(z) ZD(z##LL)
+#define KQU(q) QU(q##ULL)
+#define KQD(q) QI(q##LL)
+
+#ifndef __DECONST
+# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+#endif
+
+#if !defined(JEMALLOC_HAS_RESTRICT) || defined(__cplusplus)
+# define restrict
+#endif
+
+/* Various function pointers are static and immutable except during testing. */
+#ifdef JEMALLOC_JET
+# define JET_MUTABLE
+#else
+# define JET_MUTABLE const
+#endif
+
+#define JEMALLOC_VA_ARGS_HEAD(head, ...) head
+#define JEMALLOC_VA_ARGS_TAIL(head, ...) __VA_ARGS__
+
+/* Diagnostic suppression macros */
+#if defined(_MSC_VER) && !defined(__clang__)
+# define JEMALLOC_DIAGNOSTIC_PUSH __pragma(warning(push))
+# define JEMALLOC_DIAGNOSTIC_POP __pragma(warning(pop))
+# define JEMALLOC_DIAGNOSTIC_IGNORE(W) __pragma(warning(disable:W))
+# define JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
+# define JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS
+# define JEMALLOC_DIAGNOSTIC_IGNORE_ALLOC_SIZE_LARGER_THAN
+# define JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS
+/* #pragma GCC diagnostic first appeared in gcc 4.6. */
+#elif (defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && \
+ (__GNUC_MINOR__ > 5)))) || defined(__clang__)
+/*
+ * The JEMALLOC_PRAGMA__ macro is an implementation detail of the GCC and Clang
+ * diagnostic suppression macros and should not be used anywhere else.
+ */
+# define JEMALLOC_PRAGMA__(X) _Pragma(#X)
+# define JEMALLOC_DIAGNOSTIC_PUSH JEMALLOC_PRAGMA__(GCC diagnostic push)
+# define JEMALLOC_DIAGNOSTIC_POP JEMALLOC_PRAGMA__(GCC diagnostic pop)
+# define JEMALLOC_DIAGNOSTIC_IGNORE(W) \
+ JEMALLOC_PRAGMA__(GCC diagnostic ignored W)
+
+/*
+ * The -Wmissing-field-initializers warning is buggy in GCC versions < 5.1 and
+ * all clang versions up to version 7 (currently trunk, unreleased). This macro
+ * suppresses the warning for the affected compiler versions only.
+ */
+# if ((defined(__GNUC__) && !defined(__clang__)) && (__GNUC__ < 5)) || \
+ defined(__clang__)
+# define JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS \
+ JEMALLOC_DIAGNOSTIC_IGNORE("-Wmissing-field-initializers")
+# else
+# define JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
+# endif
+
+# define JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS \
+ JEMALLOC_DIAGNOSTIC_IGNORE("-Wtype-limits")
+# define JEMALLOC_DIAGNOSTIC_IGNORE_UNUSED_PARAMETER \
+ JEMALLOC_DIAGNOSTIC_IGNORE("-Wunused-parameter")
+# if defined(__GNUC__) && !defined(__clang__) && (__GNUC__ >= 7)
+# define JEMALLOC_DIAGNOSTIC_IGNORE_ALLOC_SIZE_LARGER_THAN \
+ JEMALLOC_DIAGNOSTIC_IGNORE("-Walloc-size-larger-than=")
+# else
+# define JEMALLOC_DIAGNOSTIC_IGNORE_ALLOC_SIZE_LARGER_THAN
+# endif
+# define JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS \
+ JEMALLOC_DIAGNOSTIC_PUSH \
+ JEMALLOC_DIAGNOSTIC_IGNORE_UNUSED_PARAMETER
+#else
+# define JEMALLOC_DIAGNOSTIC_PUSH
+# define JEMALLOC_DIAGNOSTIC_POP
+# define JEMALLOC_DIAGNOSTIC_IGNORE(W)
+# define JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
+# define JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS
+# define JEMALLOC_DIAGNOSTIC_IGNORE_ALLOC_SIZE_LARGER_THAN
+# define JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS
+#endif
+
+/*
+ * Disables spurious diagnostics for all headers. Since these headers are not
+ * included by users directly, it does not affect their diagnostic settings.
+ */
+JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS
+
+#endif /* JEMALLOC_INTERNAL_MACROS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_types.h b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_types.h
new file mode 100644
index 0000000..62c2b59
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_types.h
@@ -0,0 +1,130 @@
+#ifndef JEMALLOC_INTERNAL_TYPES_H
+#define JEMALLOC_INTERNAL_TYPES_H
+
+#include "jemalloc/internal/quantum.h"
+
+/* Processor / core id type. */
+typedef int malloc_cpuid_t;
+
+/* When realloc(non-null-ptr, 0) is called, what happens? */
+enum zero_realloc_action_e {
+ /* Realloc(ptr, 0) is free(ptr); return malloc(0); */
+ zero_realloc_action_alloc = 0,
+ /* Realloc(ptr, 0) is free(ptr); */
+ zero_realloc_action_free = 1,
+ /* Realloc(ptr, 0) aborts. */
+ zero_realloc_action_abort = 2
+};
+typedef enum zero_realloc_action_e zero_realloc_action_t;
+
+/* Signature of write callback. */
+typedef void (write_cb_t)(void *, const char *);
+
+enum malloc_init_e {
+ malloc_init_uninitialized = 3,
+ malloc_init_a0_initialized = 2,
+ malloc_init_recursible = 1,
+ malloc_init_initialized = 0 /* Common case --> jnz. */
+};
+typedef enum malloc_init_e malloc_init_t;
+
+/*
+ * Flags bits:
+ *
+ * a: arena
+ * t: tcache
+ * 0: unused
+ * z: zero
+ * n: alignment
+ *
+ * aaaaaaaa aaaatttt tttttttt 0znnnnnn
+ */
+#define MALLOCX_ARENA_BITS 12
+#define MALLOCX_TCACHE_BITS 12
+#define MALLOCX_LG_ALIGN_BITS 6
+#define MALLOCX_ARENA_SHIFT 20
+#define MALLOCX_TCACHE_SHIFT 8
+#define MALLOCX_ARENA_MASK \
+ (((1 << MALLOCX_ARENA_BITS) - 1) << MALLOCX_ARENA_SHIFT)
+/* NB: Arena index bias decreases the maximum number of arenas by 1. */
+#define MALLOCX_ARENA_LIMIT ((1 << MALLOCX_ARENA_BITS) - 1)
+#define MALLOCX_TCACHE_MASK \
+ (((1 << MALLOCX_TCACHE_BITS) - 1) << MALLOCX_TCACHE_SHIFT)
+#define MALLOCX_TCACHE_MAX ((1 << MALLOCX_TCACHE_BITS) - 3)
+#define MALLOCX_LG_ALIGN_MASK ((1 << MALLOCX_LG_ALIGN_BITS) - 1)
+/* Use MALLOCX_ALIGN_GET() if alignment may not be specified in flags. */
+#define MALLOCX_ALIGN_GET_SPECIFIED(flags) \
+ (ZU(1) << (flags & MALLOCX_LG_ALIGN_MASK))
+#define MALLOCX_ALIGN_GET(flags) \
+ (MALLOCX_ALIGN_GET_SPECIFIED(flags) & (SIZE_T_MAX-1))
+#define MALLOCX_ZERO_GET(flags) \
+ ((bool)(flags & MALLOCX_ZERO))
+
+#define MALLOCX_TCACHE_GET(flags) \
+ (((unsigned)((flags & MALLOCX_TCACHE_MASK) >> MALLOCX_TCACHE_SHIFT)) - 2)
+#define MALLOCX_ARENA_GET(flags) \
+ (((unsigned)(((unsigned)flags) >> MALLOCX_ARENA_SHIFT)) - 1)
+
+/* Smallest size class to support. */
+#define TINY_MIN (1U << LG_TINY_MIN)
+
+#define LONG ((size_t)(1U << LG_SIZEOF_LONG))
+#define LONG_MASK (LONG - 1)
+
+/* Return the smallest long multiple that is >= a. */
+#define LONG_CEILING(a) \
+ (((a) + LONG_MASK) & ~LONG_MASK)
+
+#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
+#define PTR_MASK (SIZEOF_PTR - 1)
+
+/* Return the smallest (void *) multiple that is >= a. */
+#define PTR_CEILING(a) \
+ (((a) + PTR_MASK) & ~PTR_MASK)
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing.
+ * In addition, this controls the spacing of cacheline-spaced size classes.
+ *
+ * CACHELINE cannot be based on LG_CACHELINE because __declspec(align()) can
+ * only handle raw constants.
+ */
+#define LG_CACHELINE 6
+#define CACHELINE 64
+#define CACHELINE_MASK (CACHELINE - 1)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
+
+/* Return the nearest aligned address at or below a. */
+#define ALIGNMENT_ADDR2BASE(a, alignment) \
+ ((void *)((uintptr_t)(a) & ((~(alignment)) + 1)))
+
+/* Return the offset between a and the nearest aligned address at or below a. */
+#define ALIGNMENT_ADDR2OFFSET(a, alignment) \
+ ((size_t)((uintptr_t)(a) & (alignment - 1)))
+
+/* Return the smallest alignment multiple that is >= s. */
+#define ALIGNMENT_CEILING(s, alignment) \
+ (((s) + (alignment - 1)) & ((~(alignment)) + 1))
+
+/* Declare a variable-length array. */
+#if __STDC_VERSION__ < 199901L
+# ifdef _MSC_VER
+# include <malloc.h>
+# define alloca _alloca
+# else
+# ifdef JEMALLOC_HAS_ALLOCA_H
+# include <alloca.h>
+# else
+# include <stdlib.h>
+# endif
+# endif
+# define VARIABLE_ARRAY(type, name, count) \
+ type *name = alloca(sizeof(type) * (count))
+#else
+# define VARIABLE_ARRAY(type, name, count) type name[(count)]
+#endif
+
+#endif /* JEMALLOC_INTERNAL_TYPES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/jemalloc_preamble.h.in b/deps/jemalloc/include/jemalloc/internal/jemalloc_preamble.h.in
new file mode 100644
index 0000000..5ce77d9
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/jemalloc_preamble.h.in
@@ -0,0 +1,263 @@
+#ifndef JEMALLOC_PREAMBLE_H
+#define JEMALLOC_PREAMBLE_H
+
+#include "jemalloc_internal_defs.h"
+#include "jemalloc/internal/jemalloc_internal_decls.h"
+
+#if defined(JEMALLOC_UTRACE) || defined(JEMALLOC_UTRACE_LABEL)
+#include <sys/ktrace.h>
+# if defined(JEMALLOC_UTRACE)
+# define UTRACE_CALL(p, l) utrace(p, l)
+# else
+# define UTRACE_CALL(p, l) utrace("jemalloc_process", p, l)
+# define JEMALLOC_UTRACE
+# endif
+#endif
+
+#define JEMALLOC_NO_DEMANGLE
+#ifdef JEMALLOC_JET
+# undef JEMALLOC_IS_MALLOC
+# define JEMALLOC_N(n) jet_##n
+# include "jemalloc/internal/public_namespace.h"
+# define JEMALLOC_NO_RENAME
+# include "../jemalloc@install_suffix@.h"
+# undef JEMALLOC_NO_RENAME
+#else
+# define JEMALLOC_N(n) @private_namespace@##n
+# include "../jemalloc@install_suffix@.h"
+#endif
+
+#if defined(JEMALLOC_OSATOMIC)
+#include <libkern/OSAtomic.h>
+#endif
+
+#ifdef JEMALLOC_ZONE
+#include <mach/mach_error.h>
+#include <mach/mach_init.h>
+#include <mach/vm_map.h>
+#endif
+
+#include "jemalloc/internal/jemalloc_internal_macros.h"
+
+/*
+ * Note that the ordering matters here; the hook itself is name-mangled. We
+ * want the inclusion of hooks to happen early, so that we hook as much as
+ * possible.
+ */
+#ifndef JEMALLOC_NO_PRIVATE_NAMESPACE
+# ifndef JEMALLOC_JET
+# include "jemalloc/internal/private_namespace.h"
+# else
+# include "jemalloc/internal/private_namespace_jet.h"
+# endif
+#endif
+#include "jemalloc/internal/test_hooks.h"
+
+#ifdef JEMALLOC_DEFINE_MADVISE_FREE
+# define JEMALLOC_MADV_FREE 8
+#endif
+
+static const bool config_debug =
+#ifdef JEMALLOC_DEBUG
+ true
+#else
+ false
+#endif
+ ;
+static const bool have_dss =
+#ifdef JEMALLOC_DSS
+ true
+#else
+ false
+#endif
+ ;
+static const bool have_madvise_huge =
+#ifdef JEMALLOC_HAVE_MADVISE_HUGE
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_fill =
+#ifdef JEMALLOC_FILL
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_lazy_lock =
+#ifdef JEMALLOC_LAZY_LOCK
+ true
+#else
+ false
+#endif
+ ;
+static const char * const config_malloc_conf = JEMALLOC_CONFIG_MALLOC_CONF;
+static const bool config_prof =
+#ifdef JEMALLOC_PROF
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_prof_libgcc =
+#ifdef JEMALLOC_PROF_LIBGCC
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_prof_libunwind =
+#ifdef JEMALLOC_PROF_LIBUNWIND
+ true
+#else
+ false
+#endif
+ ;
+static const bool maps_coalesce =
+#ifdef JEMALLOC_MAPS_COALESCE
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_stats =
+#ifdef JEMALLOC_STATS
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_tls =
+#ifdef JEMALLOC_TLS
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_utrace =
+#ifdef JEMALLOC_UTRACE
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_xmalloc =
+#ifdef JEMALLOC_XMALLOC
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_cache_oblivious =
+#ifdef JEMALLOC_CACHE_OBLIVIOUS
+ true
+#else
+ false
+#endif
+ ;
+/*
+ * Undocumented, for jemalloc development use only at the moment. See the note
+ * in jemalloc/internal/log.h.
+ */
+static const bool config_log =
+#ifdef JEMALLOC_LOG
+ true
+#else
+ false
+#endif
+ ;
+/*
+ * Are extra safety checks enabled; things like checking the size of sized
+ * deallocations, double-frees, etc.
+ */
+static const bool config_opt_safety_checks =
+#ifdef JEMALLOC_OPT_SAFETY_CHECKS
+ true
+#elif defined(JEMALLOC_DEBUG)
+ /*
+ * This lets us only guard safety checks by one flag instead of two; fast
+ * checks can guard solely by config_opt_safety_checks and run in debug mode
+ * too.
+ */
+ true
+#else
+ false
+#endif
+ ;
+
+/*
+ * Extra debugging of sized deallocations too onerous to be included in the
+ * general safety checks.
+ */
+static const bool config_opt_size_checks =
+#if defined(JEMALLOC_OPT_SIZE_CHECKS) || defined(JEMALLOC_DEBUG)
+ true
+#else
+ false
+#endif
+ ;
+
+static const bool config_uaf_detection =
+#if defined(JEMALLOC_UAF_DETECTION) || defined(JEMALLOC_DEBUG)
+ true
+#else
+ false
+#endif
+ ;
+
+/* Whether or not the C++ extensions are enabled. */
+static const bool config_enable_cxx =
+#ifdef JEMALLOC_ENABLE_CXX
+ true
+#else
+ false
+#endif
+;
+
+#if defined(_WIN32) || defined(JEMALLOC_HAVE_SCHED_GETCPU)
+/* Currently percpu_arena depends on sched_getcpu. */
+#define JEMALLOC_PERCPU_ARENA
+#endif
+static const bool have_percpu_arena =
+#ifdef JEMALLOC_PERCPU_ARENA
+ true
+#else
+ false
+#endif
+ ;
+/*
+ * Undocumented, and not recommended; the application should take full
+ * responsibility for tracking provenance.
+ */
+static const bool force_ivsalloc =
+#ifdef JEMALLOC_FORCE_IVSALLOC
+ true
+#else
+ false
+#endif
+ ;
+static const bool have_background_thread =
+#ifdef JEMALLOC_BACKGROUND_THREAD
+ true
+#else
+ false
+#endif
+ ;
+static const bool config_high_res_timer =
+#ifdef JEMALLOC_HAVE_CLOCK_REALTIME
+ true
+#else
+ false
+#endif
+ ;
+
+static const bool have_memcntl =
+#ifdef JEMALLOC_HAVE_MEMCNTL
+ true
+#else
+ false
+#endif
+ ;
+
+#endif /* JEMALLOC_PREAMBLE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/large_externs.h b/deps/jemalloc/include/jemalloc/internal/large_externs.h
new file mode 100644
index 0000000..8e09122
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/large_externs.h
@@ -0,0 +1,24 @@
+#ifndef JEMALLOC_INTERNAL_LARGE_EXTERNS_H
+#define JEMALLOC_INTERNAL_LARGE_EXTERNS_H
+
+#include "jemalloc/internal/hook.h"
+
+void *large_malloc(tsdn_t *tsdn, arena_t *arena, size_t usize, bool zero);
+void *large_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment,
+ bool zero);
+bool large_ralloc_no_move(tsdn_t *tsdn, edata_t *edata, size_t usize_min,
+ size_t usize_max, bool zero);
+void *large_ralloc(tsdn_t *tsdn, arena_t *arena, void *ptr, size_t usize,
+ size_t alignment, bool zero, tcache_t *tcache,
+ hook_ralloc_args_t *hook_args);
+
+void large_dalloc_prep_locked(tsdn_t *tsdn, edata_t *edata);
+void large_dalloc_finish(tsdn_t *tsdn, edata_t *edata);
+void large_dalloc(tsdn_t *tsdn, edata_t *edata);
+size_t large_salloc(tsdn_t *tsdn, const edata_t *edata);
+void large_prof_info_get(tsd_t *tsd, edata_t *edata, prof_info_t *prof_info,
+ bool reset_recent);
+void large_prof_tctx_reset(edata_t *edata);
+void large_prof_info_set(edata_t *edata, prof_tctx_t *tctx, size_t size);
+
+#endif /* JEMALLOC_INTERNAL_LARGE_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/lockedint.h b/deps/jemalloc/include/jemalloc/internal/lockedint.h
new file mode 100644
index 0000000..d020ebe
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/lockedint.h
@@ -0,0 +1,204 @@
+#ifndef JEMALLOC_INTERNAL_LOCKEDINT_H
+#define JEMALLOC_INTERNAL_LOCKEDINT_H
+
+/*
+ * In those architectures that support 64-bit atomics, we use atomic updates for
+ * our 64-bit values. Otherwise, we use a plain uint64_t and synchronize
+ * externally.
+ */
+
+typedef struct locked_u64_s locked_u64_t;
+#ifdef JEMALLOC_ATOMIC_U64
+struct locked_u64_s {
+ atomic_u64_t val;
+};
+#else
+/* Must hold the associated mutex. */
+struct locked_u64_s {
+ uint64_t val;
+};
+#endif
+
+typedef struct locked_zu_s locked_zu_t;
+struct locked_zu_s {
+ atomic_zu_t val;
+};
+
+#ifndef JEMALLOC_ATOMIC_U64
+# define LOCKEDINT_MTX_DECLARE(name) malloc_mutex_t name;
+# define LOCKEDINT_MTX_INIT(mu, name, rank, rank_mode) \
+ malloc_mutex_init(&(mu), name, rank, rank_mode)
+# define LOCKEDINT_MTX(mtx) (&(mtx))
+# define LOCKEDINT_MTX_LOCK(tsdn, mu) malloc_mutex_lock(tsdn, &(mu))
+# define LOCKEDINT_MTX_UNLOCK(tsdn, mu) malloc_mutex_unlock(tsdn, &(mu))
+# define LOCKEDINT_MTX_PREFORK(tsdn, mu) malloc_mutex_prefork(tsdn, &(mu))
+# define LOCKEDINT_MTX_POSTFORK_PARENT(tsdn, mu) \
+ malloc_mutex_postfork_parent(tsdn, &(mu))
+# define LOCKEDINT_MTX_POSTFORK_CHILD(tsdn, mu) \
+ malloc_mutex_postfork_child(tsdn, &(mu))
+#else
+# define LOCKEDINT_MTX_DECLARE(name)
+# define LOCKEDINT_MTX(mtx) NULL
+# define LOCKEDINT_MTX_INIT(mu, name, rank, rank_mode) false
+# define LOCKEDINT_MTX_LOCK(tsdn, mu)
+# define LOCKEDINT_MTX_UNLOCK(tsdn, mu)
+# define LOCKEDINT_MTX_PREFORK(tsdn, mu)
+# define LOCKEDINT_MTX_POSTFORK_PARENT(tsdn, mu)
+# define LOCKEDINT_MTX_POSTFORK_CHILD(tsdn, mu)
+#endif
+
+#ifdef JEMALLOC_ATOMIC_U64
+# define LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx) assert((mtx) == NULL)
+#else
+# define LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx) \
+ malloc_mutex_assert_owner(tsdn, (mtx))
+#endif
+
+static inline uint64_t
+locked_read_u64(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_u64_t *p) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+#ifdef JEMALLOC_ATOMIC_U64
+ return atomic_load_u64(&p->val, ATOMIC_RELAXED);
+#else
+ return p->val;
+#endif
+}
+
+static inline void
+locked_inc_u64(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_u64_t *p,
+ uint64_t x) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+#ifdef JEMALLOC_ATOMIC_U64
+ atomic_fetch_add_u64(&p->val, x, ATOMIC_RELAXED);
+#else
+ p->val += x;
+#endif
+}
+
+static inline void
+locked_dec_u64(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_u64_t *p,
+ uint64_t x) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+#ifdef JEMALLOC_ATOMIC_U64
+ uint64_t r = atomic_fetch_sub_u64(&p->val, x, ATOMIC_RELAXED);
+ assert(r - x <= r);
+#else
+ p->val -= x;
+ assert(p->val + x >= p->val);
+#endif
+}
+
+/* Increment and take modulus. Returns whether the modulo made any change. */
+static inline bool
+locked_inc_mod_u64(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_u64_t *p,
+ const uint64_t x, const uint64_t modulus) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+ uint64_t before, after;
+ bool overflow;
+#ifdef JEMALLOC_ATOMIC_U64
+ before = atomic_load_u64(&p->val, ATOMIC_RELAXED);
+ do {
+ after = before + x;
+ assert(after >= before);
+ overflow = (after >= modulus);
+ if (overflow) {
+ after %= modulus;
+ }
+ } while (!atomic_compare_exchange_weak_u64(&p->val, &before, after,
+ ATOMIC_RELAXED, ATOMIC_RELAXED));
+#else
+ before = p->val;
+ after = before + x;
+ overflow = (after >= modulus);
+ if (overflow) {
+ after %= modulus;
+ }
+ p->val = after;
+#endif
+ return overflow;
+}
+
+/*
+ * Non-atomically sets *dst += src. *dst needs external synchronization.
+ * This lets us avoid the cost of a fetch_add when its unnecessary (note that
+ * the types here are atomic).
+ */
+static inline void
+locked_inc_u64_unsynchronized(locked_u64_t *dst, uint64_t src) {
+#ifdef JEMALLOC_ATOMIC_U64
+ uint64_t cur_dst = atomic_load_u64(&dst->val, ATOMIC_RELAXED);
+ atomic_store_u64(&dst->val, src + cur_dst, ATOMIC_RELAXED);
+#else
+ dst->val += src;
+#endif
+}
+
+static inline uint64_t
+locked_read_u64_unsynchronized(locked_u64_t *p) {
+#ifdef JEMALLOC_ATOMIC_U64
+ return atomic_load_u64(&p->val, ATOMIC_RELAXED);
+#else
+ return p->val;
+#endif
+}
+
+static inline void
+locked_init_u64_unsynchronized(locked_u64_t *p, uint64_t x) {
+#ifdef JEMALLOC_ATOMIC_U64
+ atomic_store_u64(&p->val, x, ATOMIC_RELAXED);
+#else
+ p->val = x;
+#endif
+}
+
+static inline size_t
+locked_read_zu(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_zu_t *p) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+#ifdef JEMALLOC_ATOMIC_U64
+ return atomic_load_zu(&p->val, ATOMIC_RELAXED);
+#else
+ return atomic_load_zu(&p->val, ATOMIC_RELAXED);
+#endif
+}
+
+static inline void
+locked_inc_zu(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_zu_t *p,
+ size_t x) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+#ifdef JEMALLOC_ATOMIC_U64
+ atomic_fetch_add_zu(&p->val, x, ATOMIC_RELAXED);
+#else
+ size_t cur = atomic_load_zu(&p->val, ATOMIC_RELAXED);
+ atomic_store_zu(&p->val, cur + x, ATOMIC_RELAXED);
+#endif
+}
+
+static inline void
+locked_dec_zu(tsdn_t *tsdn, malloc_mutex_t *mtx, locked_zu_t *p,
+ size_t x) {
+ LOCKEDINT_MTX_ASSERT_INTERNAL(tsdn, mtx);
+#ifdef JEMALLOC_ATOMIC_U64
+ size_t r = atomic_fetch_sub_zu(&p->val, x, ATOMIC_RELAXED);
+ assert(r - x <= r);
+#else
+ size_t cur = atomic_load_zu(&p->val, ATOMIC_RELAXED);
+ atomic_store_zu(&p->val, cur - x, ATOMIC_RELAXED);
+#endif
+}
+
+/* Like the _u64 variant, needs an externally synchronized *dst. */
+static inline void
+locked_inc_zu_unsynchronized(locked_zu_t *dst, size_t src) {
+ size_t cur_dst = atomic_load_zu(&dst->val, ATOMIC_RELAXED);
+ atomic_store_zu(&dst->val, src + cur_dst, ATOMIC_RELAXED);
+}
+
+/*
+ * Unlike the _u64 variant, this is safe to call unconditionally.
+ */
+static inline size_t
+locked_read_atomic_zu(locked_zu_t *p) {
+ return atomic_load_zu(&p->val, ATOMIC_RELAXED);
+}
+
+#endif /* JEMALLOC_INTERNAL_LOCKEDINT_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/log.h b/deps/jemalloc/include/jemalloc/internal/log.h
new file mode 100644
index 0000000..6420858
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/log.h
@@ -0,0 +1,115 @@
+#ifndef JEMALLOC_INTERNAL_LOG_H
+#define JEMALLOC_INTERNAL_LOG_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/malloc_io.h"
+#include "jemalloc/internal/mutex.h"
+
+#ifdef JEMALLOC_LOG
+# define JEMALLOC_LOG_VAR_BUFSIZE 1000
+#else
+# define JEMALLOC_LOG_VAR_BUFSIZE 1
+#endif
+
+#define JEMALLOC_LOG_BUFSIZE 4096
+
+/*
+ * The log malloc_conf option is a '|'-delimited list of log_var name segments
+ * which should be logged. The names are themselves hierarchical, with '.' as
+ * the delimiter (a "segment" is just a prefix in the log namespace). So, if
+ * you have:
+ *
+ * log("arena", "log msg for arena"); // 1
+ * log("arena.a", "log msg for arena.a"); // 2
+ * log("arena.b", "log msg for arena.b"); // 3
+ * log("arena.a.a", "log msg for arena.a.a"); // 4
+ * log("extent.a", "log msg for extent.a"); // 5
+ * log("extent.b", "log msg for extent.b"); // 6
+ *
+ * And your malloc_conf option is "log=arena.a|extent", then lines 2, 4, 5, and
+ * 6 will print at runtime. You can enable logging from all log vars by
+ * writing "log=.".
+ *
+ * None of this should be regarded as a stable API for right now. It's intended
+ * as a debugging interface, to let us keep around some of our printf-debugging
+ * statements.
+ */
+
+extern char log_var_names[JEMALLOC_LOG_VAR_BUFSIZE];
+extern atomic_b_t log_init_done;
+
+typedef struct log_var_s log_var_t;
+struct log_var_s {
+ /*
+ * Lowest bit is "inited", second lowest is "enabled". Putting them in
+ * a single word lets us avoid any fences on weak architectures.
+ */
+ atomic_u_t state;
+ const char *name;
+};
+
+#define LOG_NOT_INITIALIZED 0U
+#define LOG_INITIALIZED_NOT_ENABLED 1U
+#define LOG_ENABLED 2U
+
+#define LOG_VAR_INIT(name_str) {ATOMIC_INIT(LOG_NOT_INITIALIZED), name_str}
+
+/*
+ * Returns the value we should assume for state (which is not necessarily
+ * accurate; if logging is done before logging has finished initializing, then
+ * we default to doing the safe thing by logging everything).
+ */
+unsigned log_var_update_state(log_var_t *log_var);
+
+/* We factor out the metadata management to allow us to test more easily. */
+#define log_do_begin(log_var) \
+if (config_log) { \
+ unsigned log_state = atomic_load_u(&(log_var).state, \
+ ATOMIC_RELAXED); \
+ if (unlikely(log_state == LOG_NOT_INITIALIZED)) { \
+ log_state = log_var_update_state(&(log_var)); \
+ assert(log_state != LOG_NOT_INITIALIZED); \
+ } \
+ if (log_state == LOG_ENABLED) { \
+ {
+ /* User code executes here. */
+#define log_do_end(log_var) \
+ } \
+ } \
+}
+
+/*
+ * MSVC has some preprocessor bugs in its expansion of __VA_ARGS__ during
+ * preprocessing. To work around this, we take all potential extra arguments in
+ * a var-args functions. Since a varargs macro needs at least one argument in
+ * the "...", we accept the format string there, and require that the first
+ * argument in this "..." is a const char *.
+ */
+static inline void
+log_impl_varargs(const char *name, ...) {
+ char buf[JEMALLOC_LOG_BUFSIZE];
+ va_list ap;
+
+ va_start(ap, name);
+ const char *format = va_arg(ap, const char *);
+ size_t dst_offset = 0;
+ dst_offset += malloc_snprintf(buf, JEMALLOC_LOG_BUFSIZE, "%s: ", name);
+ dst_offset += malloc_vsnprintf(buf + dst_offset,
+ JEMALLOC_LOG_BUFSIZE - dst_offset, format, ap);
+ dst_offset += malloc_snprintf(buf + dst_offset,
+ JEMALLOC_LOG_BUFSIZE - dst_offset, "\n");
+ va_end(ap);
+
+ malloc_write(buf);
+}
+
+/* Call as log("log.var.str", "format_string %d", arg_for_format_string); */
+#define LOG(log_var_str, ...) \
+do { \
+ static log_var_t log_var = LOG_VAR_INIT(log_var_str); \
+ log_do_begin(log_var) \
+ log_impl_varargs((log_var).name, __VA_ARGS__); \
+ log_do_end(log_var) \
+} while (0)
+
+#endif /* JEMALLOC_INTERNAL_LOG_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/malloc_io.h b/deps/jemalloc/include/jemalloc/internal/malloc_io.h
new file mode 100644
index 0000000..a375bda
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/malloc_io.h
@@ -0,0 +1,105 @@
+#ifndef JEMALLOC_INTERNAL_MALLOC_IO_H
+#define JEMALLOC_INTERNAL_MALLOC_IO_H
+
+#include "jemalloc/internal/jemalloc_internal_types.h"
+
+#ifdef _WIN32
+# ifdef _WIN64
+# define FMT64_PREFIX "ll"
+# define FMTPTR_PREFIX "ll"
+# else
+# define FMT64_PREFIX "ll"
+# define FMTPTR_PREFIX ""
+# endif
+# define FMTd32 "d"
+# define FMTu32 "u"
+# define FMTx32 "x"
+# define FMTd64 FMT64_PREFIX "d"
+# define FMTu64 FMT64_PREFIX "u"
+# define FMTx64 FMT64_PREFIX "x"
+# define FMTdPTR FMTPTR_PREFIX "d"
+# define FMTuPTR FMTPTR_PREFIX "u"
+# define FMTxPTR FMTPTR_PREFIX "x"
+#else
+# include <inttypes.h>
+# define FMTd32 PRId32
+# define FMTu32 PRIu32
+# define FMTx32 PRIx32
+# define FMTd64 PRId64
+# define FMTu64 PRIu64
+# define FMTx64 PRIx64
+# define FMTdPTR PRIdPTR
+# define FMTuPTR PRIuPTR
+# define FMTxPTR PRIxPTR
+#endif
+
+/* Size of stack-allocated buffer passed to buferror(). */
+#define BUFERROR_BUF 64
+
+/*
+ * Size of stack-allocated buffer used by malloc_{,v,vc}printf(). This must be
+ * large enough for all possible uses within jemalloc.
+ */
+#define MALLOC_PRINTF_BUFSIZE 4096
+
+write_cb_t wrtmessage;
+int buferror(int err, char *buf, size_t buflen);
+uintmax_t malloc_strtoumax(const char *restrict nptr, char **restrict endptr,
+ int base);
+void malloc_write(const char *s);
+
+/*
+ * malloc_vsnprintf() supports a subset of snprintf(3) that avoids floating
+ * point math.
+ */
+size_t malloc_vsnprintf(char *str, size_t size, const char *format,
+ va_list ap);
+size_t malloc_snprintf(char *str, size_t size, const char *format, ...)
+ JEMALLOC_FORMAT_PRINTF(3, 4);
+/*
+ * The caller can set write_cb to null to choose to print with the
+ * je_malloc_message hook.
+ */
+void malloc_vcprintf(write_cb_t *write_cb, void *cbopaque, const char *format,
+ va_list ap);
+void malloc_cprintf(write_cb_t *write_cb, void *cbopaque, const char *format,
+ ...) JEMALLOC_FORMAT_PRINTF(3, 4);
+void malloc_printf(const char *format, ...) JEMALLOC_FORMAT_PRINTF(1, 2);
+
+static inline ssize_t
+malloc_write_fd(int fd, const void *buf, size_t count) {
+#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_write)
+ /*
+ * Use syscall(2) rather than write(2) when possible in order to avoid
+ * the possibility of memory allocation within libc. This is necessary
+ * on FreeBSD; most operating systems do not have this problem though.
+ *
+ * syscall() returns long or int, depending on platform, so capture the
+ * result in the widest plausible type to avoid compiler warnings.
+ */
+ long result = syscall(SYS_write, fd, buf, count);
+#else
+ ssize_t result = (ssize_t)write(fd, buf,
+#ifdef _WIN32
+ (unsigned int)
+#endif
+ count);
+#endif
+ return (ssize_t)result;
+}
+
+static inline ssize_t
+malloc_read_fd(int fd, void *buf, size_t count) {
+#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_read)
+ long result = syscall(SYS_read, fd, buf, count);
+#else
+ ssize_t result = read(fd, buf,
+#ifdef _WIN32
+ (unsigned int)
+#endif
+ count);
+#endif
+ return (ssize_t)result;
+}
+
+#endif /* JEMALLOC_INTERNAL_MALLOC_IO_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/mpsc_queue.h b/deps/jemalloc/include/jemalloc/internal/mpsc_queue.h
new file mode 100644
index 0000000..316ea9b
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/mpsc_queue.h
@@ -0,0 +1,134 @@
+#ifndef JEMALLOC_INTERNAL_MPSC_QUEUE_H
+#define JEMALLOC_INTERNAL_MPSC_QUEUE_H
+
+#include "jemalloc/internal/atomic.h"
+
+/*
+ * A concurrent implementation of a multi-producer, single-consumer queue. It
+ * supports three concurrent operations:
+ * - Push
+ * - Push batch
+ * - Pop batch
+ *
+ * These operations are all lock-free.
+ *
+ * The implementation is the simple two-stack queue built on a Treiber stack.
+ * It's not terribly efficient, but this isn't expected to go into anywhere with
+ * hot code. In fact, we don't really even need queue semantics in any
+ * anticipated use cases; we could get away with just the stack. But this way
+ * lets us frame the API in terms of the existing list types, which is a nice
+ * convenience. We can save on cache misses by introducing our own (parallel)
+ * single-linked list type here, and dropping FIFO semantics, if we need this to
+ * get faster. Since we're currently providing queue semantics though, we use
+ * the prev field in the link rather than the next field for Treiber-stack
+ * linkage, so that we can preserve order for bash-pushed lists (recall that the
+ * two-stack tricks reverses orders in the lock-free first stack).
+ */
+
+#define mpsc_queue(a_type) \
+struct { \
+ atomic_p_t tail; \
+}
+
+#define mpsc_queue_proto(a_attr, a_prefix, a_queue_type, a_type, \
+ a_list_type) \
+/* Initialize a queue. */ \
+a_attr void \
+a_prefix##new(a_queue_type *queue); \
+/* Insert all items in src into the queue, clearing src. */ \
+a_attr void \
+a_prefix##push_batch(a_queue_type *queue, a_list_type *src); \
+/* Insert node into the queue. */ \
+a_attr void \
+a_prefix##push(a_queue_type *queue, a_type *node); \
+/* \
+ * Pop all items in the queue into the list at dst. dst should already \
+ * be initialized (and may contain existing items, which then remain \
+ * in dst). \
+ */ \
+a_attr void \
+a_prefix##pop_batch(a_queue_type *queue, a_list_type *dst);
+
+#define mpsc_queue_gen(a_attr, a_prefix, a_queue_type, a_type, \
+ a_list_type, a_link) \
+a_attr void \
+a_prefix##new(a_queue_type *queue) { \
+ atomic_store_p(&queue->tail, NULL, ATOMIC_RELAXED); \
+} \
+a_attr void \
+a_prefix##push_batch(a_queue_type *queue, a_list_type *src) { \
+ /* \
+ * Reuse the ql list next field as the Treiber stack next \
+ * field. \
+ */ \
+ a_type *first = ql_first(src); \
+ a_type *last = ql_last(src, a_link); \
+ void* cur_tail = atomic_load_p(&queue->tail, ATOMIC_RELAXED); \
+ do { \
+ /* \
+ * Note that this breaks the queue ring structure; \
+ * it's not a ring any more! \
+ */ \
+ first->a_link.qre_prev = cur_tail; \
+ /* \
+ * Note: the upcoming CAS doesn't need an atomic; every \
+ * push only needs to synchronize with the next pop, \
+ * which we get from the release sequence rules. \
+ */ \
+ } while (!atomic_compare_exchange_weak_p(&queue->tail, \
+ &cur_tail, last, ATOMIC_RELEASE, ATOMIC_RELAXED)); \
+ ql_new(src); \
+} \
+a_attr void \
+a_prefix##push(a_queue_type *queue, a_type *node) { \
+ ql_elm_new(node, a_link); \
+ a_list_type list; \
+ ql_new(&list); \
+ ql_head_insert(&list, node, a_link); \
+ a_prefix##push_batch(queue, &list); \
+} \
+a_attr void \
+a_prefix##pop_batch(a_queue_type *queue, a_list_type *dst) { \
+ a_type *tail = atomic_load_p(&queue->tail, ATOMIC_RELAXED); \
+ if (tail == NULL) { \
+ /* \
+ * In the common special case where there are no \
+ * pending elements, bail early without a costly RMW. \
+ */ \
+ return; \
+ } \
+ tail = atomic_exchange_p(&queue->tail, NULL, ATOMIC_ACQUIRE); \
+ /* \
+ * It's a single-consumer queue, so if cur started non-NULL, \
+ * it'd better stay non-NULL. \
+ */ \
+ assert(tail != NULL); \
+ /* \
+ * We iterate through the stack and both fix up the link \
+ * structure (stack insertion broke the list requirement that \
+ * the list be circularly linked). It's just as efficient at \
+ * this point to make the queue a "real" queue, so do that as \
+ * well. \
+ * If this ever gets to be a hot spot, we can omit this fixup \
+ * and make the queue a bag (i.e. not necessarily ordered), but \
+ * that would mean jettisoning the existing list API as the \
+ * batch pushing/popping interface. \
+ */ \
+ a_list_type reversed; \
+ ql_new(&reversed); \
+ while (tail != NULL) { \
+ /* \
+ * Pop an item off the stack, prepend it onto the list \
+ * (reversing the order). Recall that we use the \
+ * list prev field as the Treiber stack next field to \
+ * preserve order of batch-pushed items when reversed. \
+ */ \
+ a_type *next = tail->a_link.qre_prev; \
+ ql_elm_new(tail, a_link); \
+ ql_head_insert(&reversed, tail, a_link); \
+ tail = next; \
+ } \
+ ql_concat(dst, &reversed, a_link); \
+}
+
+#endif /* JEMALLOC_INTERNAL_MPSC_QUEUE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/mutex.h b/deps/jemalloc/include/jemalloc/internal/mutex.h
new file mode 100644
index 0000000..63a0b1b
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/mutex.h
@@ -0,0 +1,319 @@
+#ifndef JEMALLOC_INTERNAL_MUTEX_H
+#define JEMALLOC_INTERNAL_MUTEX_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/mutex_prof.h"
+#include "jemalloc/internal/tsd.h"
+#include "jemalloc/internal/witness.h"
+
+extern int64_t opt_mutex_max_spin;
+
+typedef enum {
+ /* Can only acquire one mutex of a given witness rank at a time. */
+ malloc_mutex_rank_exclusive,
+ /*
+ * Can acquire multiple mutexes of the same witness rank, but in
+ * address-ascending order only.
+ */
+ malloc_mutex_address_ordered
+} malloc_mutex_lock_order_t;
+
+typedef struct malloc_mutex_s malloc_mutex_t;
+struct malloc_mutex_s {
+ union {
+ struct {
+ /*
+ * prof_data is defined first to reduce cacheline
+ * bouncing: the data is not touched by the mutex holder
+ * during unlocking, while might be modified by
+ * contenders. Having it before the mutex itself could
+ * avoid prefetching a modified cacheline (for the
+ * unlocking thread).
+ */
+ mutex_prof_data_t prof_data;
+#ifdef _WIN32
+# if _WIN32_WINNT >= 0x0600
+ SRWLOCK lock;
+# else
+ CRITICAL_SECTION lock;
+# endif
+#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
+ os_unfair_lock lock;
+#elif (defined(JEMALLOC_MUTEX_INIT_CB))
+ pthread_mutex_t lock;
+ malloc_mutex_t *postponed_next;
+#else
+ pthread_mutex_t lock;
+#endif
+ /*
+ * Hint flag to avoid exclusive cache line contention
+ * during spin waiting
+ */
+ atomic_b_t locked;
+ };
+ /*
+ * We only touch witness when configured w/ debug. However we
+ * keep the field in a union when !debug so that we don't have
+ * to pollute the code base with #ifdefs, while avoid paying the
+ * memory cost.
+ */
+#if !defined(JEMALLOC_DEBUG)
+ witness_t witness;
+ malloc_mutex_lock_order_t lock_order;
+#endif
+ };
+
+#if defined(JEMALLOC_DEBUG)
+ witness_t witness;
+ malloc_mutex_lock_order_t lock_order;
+#endif
+};
+
+#ifdef _WIN32
+# if _WIN32_WINNT >= 0x0600
+# define MALLOC_MUTEX_LOCK(m) AcquireSRWLockExclusive(&(m)->lock)
+# define MALLOC_MUTEX_UNLOCK(m) ReleaseSRWLockExclusive(&(m)->lock)
+# define MALLOC_MUTEX_TRYLOCK(m) (!TryAcquireSRWLockExclusive(&(m)->lock))
+# else
+# define MALLOC_MUTEX_LOCK(m) EnterCriticalSection(&(m)->lock)
+# define MALLOC_MUTEX_UNLOCK(m) LeaveCriticalSection(&(m)->lock)
+# define MALLOC_MUTEX_TRYLOCK(m) (!TryEnterCriticalSection(&(m)->lock))
+# endif
+#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
+# define MALLOC_MUTEX_LOCK(m) os_unfair_lock_lock(&(m)->lock)
+# define MALLOC_MUTEX_UNLOCK(m) os_unfair_lock_unlock(&(m)->lock)
+# define MALLOC_MUTEX_TRYLOCK(m) (!os_unfair_lock_trylock(&(m)->lock))
+#else
+# define MALLOC_MUTEX_LOCK(m) pthread_mutex_lock(&(m)->lock)
+# define MALLOC_MUTEX_UNLOCK(m) pthread_mutex_unlock(&(m)->lock)
+# define MALLOC_MUTEX_TRYLOCK(m) (pthread_mutex_trylock(&(m)->lock) != 0)
+#endif
+
+#define LOCK_PROF_DATA_INITIALIZER \
+ {NSTIME_ZERO_INITIALIZER, NSTIME_ZERO_INITIALIZER, 0, 0, 0, \
+ ATOMIC_INIT(0), 0, NULL, 0}
+
+#ifdef _WIN32
+# define MALLOC_MUTEX_INITIALIZER
+#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
+# if defined(JEMALLOC_DEBUG)
+# define MALLOC_MUTEX_INITIALIZER \
+ {{{LOCK_PROF_DATA_INITIALIZER, OS_UNFAIR_LOCK_INIT, ATOMIC_INIT(false)}}, \
+ WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT), 0}
+# else
+# define MALLOC_MUTEX_INITIALIZER \
+ {{{LOCK_PROF_DATA_INITIALIZER, OS_UNFAIR_LOCK_INIT, ATOMIC_INIT(false)}}, \
+ WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
+# endif
+#elif (defined(JEMALLOC_MUTEX_INIT_CB))
+# if (defined(JEMALLOC_DEBUG))
+# define MALLOC_MUTEX_INITIALIZER \
+ {{{LOCK_PROF_DATA_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, NULL, ATOMIC_INIT(false)}}, \
+ WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT), 0}
+# else
+# define MALLOC_MUTEX_INITIALIZER \
+ {{{LOCK_PROF_DATA_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, NULL, ATOMIC_INIT(false)}}, \
+ WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
+# endif
+
+#else
+# define MALLOC_MUTEX_TYPE PTHREAD_MUTEX_DEFAULT
+# if defined(JEMALLOC_DEBUG)
+# define MALLOC_MUTEX_INITIALIZER \
+ {{{LOCK_PROF_DATA_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, ATOMIC_INIT(false)}}, \
+ WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT), 0}
+# else
+# define MALLOC_MUTEX_INITIALIZER \
+ {{{LOCK_PROF_DATA_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, ATOMIC_INIT(false)}}, \
+ WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
+# endif
+#endif
+
+#ifdef JEMALLOC_LAZY_LOCK
+extern bool isthreaded;
+#else
+# undef isthreaded /* Undo private_namespace.h definition. */
+# define isthreaded true
+#endif
+
+bool malloc_mutex_init(malloc_mutex_t *mutex, const char *name,
+ witness_rank_t rank, malloc_mutex_lock_order_t lock_order);
+void malloc_mutex_prefork(tsdn_t *tsdn, malloc_mutex_t *mutex);
+void malloc_mutex_postfork_parent(tsdn_t *tsdn, malloc_mutex_t *mutex);
+void malloc_mutex_postfork_child(tsdn_t *tsdn, malloc_mutex_t *mutex);
+bool malloc_mutex_boot(void);
+void malloc_mutex_prof_data_reset(tsdn_t *tsdn, malloc_mutex_t *mutex);
+
+void malloc_mutex_lock_slow(malloc_mutex_t *mutex);
+
+static inline void
+malloc_mutex_lock_final(malloc_mutex_t *mutex) {
+ MALLOC_MUTEX_LOCK(mutex);
+ atomic_store_b(&mutex->locked, true, ATOMIC_RELAXED);
+}
+
+static inline bool
+malloc_mutex_trylock_final(malloc_mutex_t *mutex) {
+ return MALLOC_MUTEX_TRYLOCK(mutex);
+}
+
+static inline void
+mutex_owner_stats_update(tsdn_t *tsdn, malloc_mutex_t *mutex) {
+ if (config_stats) {
+ mutex_prof_data_t *data = &mutex->prof_data;
+ data->n_lock_ops++;
+ if (data->prev_owner != tsdn) {
+ data->prev_owner = tsdn;
+ data->n_owner_switches++;
+ }
+ }
+}
+
+/* Trylock: return false if the lock is successfully acquired. */
+static inline bool
+malloc_mutex_trylock(tsdn_t *tsdn, malloc_mutex_t *mutex) {
+ witness_assert_not_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+ if (isthreaded) {
+ if (malloc_mutex_trylock_final(mutex)) {
+ atomic_store_b(&mutex->locked, true, ATOMIC_RELAXED);
+ return true;
+ }
+ mutex_owner_stats_update(tsdn, mutex);
+ }
+ witness_lock(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+
+ return false;
+}
+
+/* Aggregate lock prof data. */
+static inline void
+malloc_mutex_prof_merge(mutex_prof_data_t *sum, mutex_prof_data_t *data) {
+ nstime_add(&sum->tot_wait_time, &data->tot_wait_time);
+ if (nstime_compare(&sum->max_wait_time, &data->max_wait_time) < 0) {
+ nstime_copy(&sum->max_wait_time, &data->max_wait_time);
+ }
+
+ sum->n_wait_times += data->n_wait_times;
+ sum->n_spin_acquired += data->n_spin_acquired;
+
+ if (sum->max_n_thds < data->max_n_thds) {
+ sum->max_n_thds = data->max_n_thds;
+ }
+ uint32_t cur_n_waiting_thds = atomic_load_u32(&sum->n_waiting_thds,
+ ATOMIC_RELAXED);
+ uint32_t new_n_waiting_thds = cur_n_waiting_thds + atomic_load_u32(
+ &data->n_waiting_thds, ATOMIC_RELAXED);
+ atomic_store_u32(&sum->n_waiting_thds, new_n_waiting_thds,
+ ATOMIC_RELAXED);
+ sum->n_owner_switches += data->n_owner_switches;
+ sum->n_lock_ops += data->n_lock_ops;
+}
+
+static inline void
+malloc_mutex_lock(tsdn_t *tsdn, malloc_mutex_t *mutex) {
+ witness_assert_not_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+ if (isthreaded) {
+ if (malloc_mutex_trylock_final(mutex)) {
+ malloc_mutex_lock_slow(mutex);
+ atomic_store_b(&mutex->locked, true, ATOMIC_RELAXED);
+ }
+ mutex_owner_stats_update(tsdn, mutex);
+ }
+ witness_lock(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+}
+
+static inline void
+malloc_mutex_unlock(tsdn_t *tsdn, malloc_mutex_t *mutex) {
+ atomic_store_b(&mutex->locked, false, ATOMIC_RELAXED);
+ witness_unlock(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+ if (isthreaded) {
+ MALLOC_MUTEX_UNLOCK(mutex);
+ }
+}
+
+static inline void
+malloc_mutex_assert_owner(tsdn_t *tsdn, malloc_mutex_t *mutex) {
+ witness_assert_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+}
+
+static inline void
+malloc_mutex_assert_not_owner(tsdn_t *tsdn, malloc_mutex_t *mutex) {
+ witness_assert_not_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
+}
+
+static inline void
+malloc_mutex_prof_copy(mutex_prof_data_t *dst, mutex_prof_data_t *source) {
+ /*
+ * Not *really* allowed (we shouldn't be doing non-atomic loads of
+ * atomic data), but the mutex protection makes this safe, and writing
+ * a member-for-member copy is tedious for this situation.
+ */
+ *dst = *source;
+ /* n_wait_thds is not reported (modified w/o locking). */
+ atomic_store_u32(&dst->n_waiting_thds, 0, ATOMIC_RELAXED);
+}
+
+/* Copy the prof data from mutex for processing. */
+static inline void
+malloc_mutex_prof_read(tsdn_t *tsdn, mutex_prof_data_t *data,
+ malloc_mutex_t *mutex) {
+ /* Can only read holding the mutex. */
+ malloc_mutex_assert_owner(tsdn, mutex);
+ malloc_mutex_prof_copy(data, &mutex->prof_data);
+}
+
+static inline void
+malloc_mutex_prof_accum(tsdn_t *tsdn, mutex_prof_data_t *data,
+ malloc_mutex_t *mutex) {
+ mutex_prof_data_t *source = &mutex->prof_data;
+ /* Can only read holding the mutex. */
+ malloc_mutex_assert_owner(tsdn, mutex);
+
+ nstime_add(&data->tot_wait_time, &source->tot_wait_time);
+ if (nstime_compare(&source->max_wait_time, &data->max_wait_time) > 0) {
+ nstime_copy(&data->max_wait_time, &source->max_wait_time);
+ }
+ data->n_wait_times += source->n_wait_times;
+ data->n_spin_acquired += source->n_spin_acquired;
+ if (data->max_n_thds < source->max_n_thds) {
+ data->max_n_thds = source->max_n_thds;
+ }
+ /* n_wait_thds is not reported. */
+ atomic_store_u32(&data->n_waiting_thds, 0, ATOMIC_RELAXED);
+ data->n_owner_switches += source->n_owner_switches;
+ data->n_lock_ops += source->n_lock_ops;
+}
+
+/* Compare the prof data and update to the maximum. */
+static inline void
+malloc_mutex_prof_max_update(tsdn_t *tsdn, mutex_prof_data_t *data,
+ malloc_mutex_t *mutex) {
+ mutex_prof_data_t *source = &mutex->prof_data;
+ /* Can only read holding the mutex. */
+ malloc_mutex_assert_owner(tsdn, mutex);
+
+ if (nstime_compare(&source->tot_wait_time, &data->tot_wait_time) > 0) {
+ nstime_copy(&data->tot_wait_time, &source->tot_wait_time);
+ }
+ if (nstime_compare(&source->max_wait_time, &data->max_wait_time) > 0) {
+ nstime_copy(&data->max_wait_time, &source->max_wait_time);
+ }
+ if (source->n_wait_times > data->n_wait_times) {
+ data->n_wait_times = source->n_wait_times;
+ }
+ if (source->n_spin_acquired > data->n_spin_acquired) {
+ data->n_spin_acquired = source->n_spin_acquired;
+ }
+ if (source->max_n_thds > data->max_n_thds) {
+ data->max_n_thds = source->max_n_thds;
+ }
+ if (source->n_owner_switches > data->n_owner_switches) {
+ data->n_owner_switches = source->n_owner_switches;
+ }
+ if (source->n_lock_ops > data->n_lock_ops) {
+ data->n_lock_ops = source->n_lock_ops;
+ }
+ /* n_wait_thds is not reported. */
+}
+
+#endif /* JEMALLOC_INTERNAL_MUTEX_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/mutex_prof.h b/deps/jemalloc/include/jemalloc/internal/mutex_prof.h
new file mode 100644
index 0000000..4a526a5
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/mutex_prof.h
@@ -0,0 +1,117 @@
+#ifndef JEMALLOC_INTERNAL_MUTEX_PROF_H
+#define JEMALLOC_INTERNAL_MUTEX_PROF_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/nstime.h"
+#include "jemalloc/internal/tsd_types.h"
+
+#define MUTEX_PROF_GLOBAL_MUTEXES \
+ OP(background_thread) \
+ OP(max_per_bg_thd) \
+ OP(ctl) \
+ OP(prof) \
+ OP(prof_thds_data) \
+ OP(prof_dump) \
+ OP(prof_recent_alloc) \
+ OP(prof_recent_dump) \
+ OP(prof_stats)
+
+typedef enum {
+#define OP(mtx) global_prof_mutex_##mtx,
+ MUTEX_PROF_GLOBAL_MUTEXES
+#undef OP
+ mutex_prof_num_global_mutexes
+} mutex_prof_global_ind_t;
+
+#define MUTEX_PROF_ARENA_MUTEXES \
+ OP(large) \
+ OP(extent_avail) \
+ OP(extents_dirty) \
+ OP(extents_muzzy) \
+ OP(extents_retained) \
+ OP(decay_dirty) \
+ OP(decay_muzzy) \
+ OP(base) \
+ OP(tcache_list) \
+ OP(hpa_shard) \
+ OP(hpa_shard_grow) \
+ OP(hpa_sec)
+
+typedef enum {
+#define OP(mtx) arena_prof_mutex_##mtx,
+ MUTEX_PROF_ARENA_MUTEXES
+#undef OP
+ mutex_prof_num_arena_mutexes
+} mutex_prof_arena_ind_t;
+
+/*
+ * The forth parameter is a boolean value that is true for derived rate counters
+ * and false for real ones.
+ */
+#define MUTEX_PROF_UINT64_COUNTERS \
+ OP(num_ops, uint64_t, "n_lock_ops", false, num_ops) \
+ OP(num_ops_ps, uint64_t, "(#/sec)", true, num_ops) \
+ OP(num_wait, uint64_t, "n_waiting", false, num_wait) \
+ OP(num_wait_ps, uint64_t, "(#/sec)", true, num_wait) \
+ OP(num_spin_acq, uint64_t, "n_spin_acq", false, num_spin_acq) \
+ OP(num_spin_acq_ps, uint64_t, "(#/sec)", true, num_spin_acq) \
+ OP(num_owner_switch, uint64_t, "n_owner_switch", false, num_owner_switch) \
+ OP(num_owner_switch_ps, uint64_t, "(#/sec)", true, num_owner_switch) \
+ OP(total_wait_time, uint64_t, "total_wait_ns", false, total_wait_time) \
+ OP(total_wait_time_ps, uint64_t, "(#/sec)", true, total_wait_time) \
+ OP(max_wait_time, uint64_t, "max_wait_ns", false, max_wait_time)
+
+#define MUTEX_PROF_UINT32_COUNTERS \
+ OP(max_num_thds, uint32_t, "max_n_thds", false, max_num_thds)
+
+#define MUTEX_PROF_COUNTERS \
+ MUTEX_PROF_UINT64_COUNTERS \
+ MUTEX_PROF_UINT32_COUNTERS
+
+#define OP(counter, type, human, derived, base_counter) mutex_counter_##counter,
+
+#define COUNTER_ENUM(counter_list, t) \
+ typedef enum { \
+ counter_list \
+ mutex_prof_num_##t##_counters \
+ } mutex_prof_##t##_counter_ind_t;
+
+COUNTER_ENUM(MUTEX_PROF_UINT64_COUNTERS, uint64_t)
+COUNTER_ENUM(MUTEX_PROF_UINT32_COUNTERS, uint32_t)
+
+#undef COUNTER_ENUM
+#undef OP
+
+typedef struct {
+ /*
+ * Counters touched on the slow path, i.e. when there is lock
+ * contention. We update them once we have the lock.
+ */
+ /* Total time (in nano seconds) spent waiting on this mutex. */
+ nstime_t tot_wait_time;
+ /* Max time (in nano seconds) spent on a single lock operation. */
+ nstime_t max_wait_time;
+ /* # of times have to wait for this mutex (after spinning). */
+ uint64_t n_wait_times;
+ /* # of times acquired the mutex through local spinning. */
+ uint64_t n_spin_acquired;
+ /* Max # of threads waiting for the mutex at the same time. */
+ uint32_t max_n_thds;
+ /* Current # of threads waiting on the lock. Atomic synced. */
+ atomic_u32_t n_waiting_thds;
+
+ /*
+ * Data touched on the fast path. These are modified right after we
+ * grab the lock, so it's placed closest to the end (i.e. right before
+ * the lock) so that we have a higher chance of them being on the same
+ * cacheline.
+ */
+ /* # of times the mutex holder is different than the previous one. */
+ uint64_t n_owner_switches;
+ /* Previous mutex holder, to facilitate n_owner_switches. */
+ tsdn_t *prev_owner;
+ /* # of lock() operations in total. */
+ uint64_t n_lock_ops;
+} mutex_prof_data_t;
+
+#endif /* JEMALLOC_INTERNAL_MUTEX_PROF_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/nstime.h b/deps/jemalloc/include/jemalloc/internal/nstime.h
new file mode 100644
index 0000000..486e5cc
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/nstime.h
@@ -0,0 +1,73 @@
+#ifndef JEMALLOC_INTERNAL_NSTIME_H
+#define JEMALLOC_INTERNAL_NSTIME_H
+
+/* Maximum supported number of seconds (~584 years). */
+#define NSTIME_SEC_MAX KQU(18446744072)
+
+#define NSTIME_MAGIC ((uint32_t)0xb8a9ce37)
+#ifdef JEMALLOC_DEBUG
+# define NSTIME_ZERO_INITIALIZER {0, NSTIME_MAGIC}
+#else
+# define NSTIME_ZERO_INITIALIZER {0}
+#endif
+
+typedef struct {
+ uint64_t ns;
+#ifdef JEMALLOC_DEBUG
+ uint32_t magic; /* Tracks if initialized. */
+#endif
+} nstime_t;
+
+static const nstime_t nstime_zero = NSTIME_ZERO_INITIALIZER;
+
+void nstime_init(nstime_t *time, uint64_t ns);
+void nstime_init2(nstime_t *time, uint64_t sec, uint64_t nsec);
+uint64_t nstime_ns(const nstime_t *time);
+uint64_t nstime_sec(const nstime_t *time);
+uint64_t nstime_msec(const nstime_t *time);
+uint64_t nstime_nsec(const nstime_t *time);
+void nstime_copy(nstime_t *time, const nstime_t *source);
+int nstime_compare(const nstime_t *a, const nstime_t *b);
+void nstime_add(nstime_t *time, const nstime_t *addend);
+void nstime_iadd(nstime_t *time, uint64_t addend);
+void nstime_subtract(nstime_t *time, const nstime_t *subtrahend);
+void nstime_isubtract(nstime_t *time, uint64_t subtrahend);
+void nstime_imultiply(nstime_t *time, uint64_t multiplier);
+void nstime_idivide(nstime_t *time, uint64_t divisor);
+uint64_t nstime_divide(const nstime_t *time, const nstime_t *divisor);
+uint64_t nstime_ns_since(const nstime_t *past);
+
+typedef bool (nstime_monotonic_t)(void);
+extern nstime_monotonic_t *JET_MUTABLE nstime_monotonic;
+
+typedef void (nstime_update_t)(nstime_t *);
+extern nstime_update_t *JET_MUTABLE nstime_update;
+
+typedef void (nstime_prof_update_t)(nstime_t *);
+extern nstime_prof_update_t *JET_MUTABLE nstime_prof_update;
+
+void nstime_init_update(nstime_t *time);
+void nstime_prof_init_update(nstime_t *time);
+
+enum prof_time_res_e {
+ prof_time_res_default = 0,
+ prof_time_res_high = 1
+};
+typedef enum prof_time_res_e prof_time_res_t;
+
+extern prof_time_res_t opt_prof_time_res;
+extern const char *prof_time_res_mode_names[];
+
+JEMALLOC_ALWAYS_INLINE void
+nstime_init_zero(nstime_t *time) {
+ nstime_copy(time, &nstime_zero);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+nstime_equals_zero(nstime_t *time) {
+ int diff = nstime_compare(time, &nstime_zero);
+ assert(diff >= 0);
+ return diff == 0;
+}
+
+#endif /* JEMALLOC_INTERNAL_NSTIME_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/pa.h b/deps/jemalloc/include/jemalloc/internal/pa.h
new file mode 100644
index 0000000..4748a05
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/pa.h
@@ -0,0 +1,243 @@
+#ifndef JEMALLOC_INTERNAL_PA_H
+#define JEMALLOC_INTERNAL_PA_H
+
+#include "jemalloc/internal/base.h"
+#include "jemalloc/internal/decay.h"
+#include "jemalloc/internal/ecache.h"
+#include "jemalloc/internal/edata_cache.h"
+#include "jemalloc/internal/emap.h"
+#include "jemalloc/internal/hpa.h"
+#include "jemalloc/internal/lockedint.h"
+#include "jemalloc/internal/pac.h"
+#include "jemalloc/internal/pai.h"
+#include "jemalloc/internal/sec.h"
+
+/*
+ * The page allocator; responsible for acquiring pages of memory for
+ * allocations. It picks the implementation of the page allocator interface
+ * (i.e. a pai_t) to handle a given page-level allocation request. For now, the
+ * only such implementation is the PAC code ("page allocator classic"), but
+ * others will be coming soon.
+ */
+
+typedef struct pa_central_s pa_central_t;
+struct pa_central_s {
+ hpa_central_t hpa;
+};
+
+/*
+ * The stats for a particular pa_shard. Because of the way the ctl module
+ * handles stats epoch data collection (it has its own arena_stats, and merges
+ * the stats from each arena into it), this needs to live in the arena_stats_t;
+ * hence we define it here and let the pa_shard have a pointer (rather than the
+ * more natural approach of just embedding it in the pa_shard itself).
+ *
+ * We follow the arena_stats_t approach of marking the derived fields. These
+ * are the ones that are not maintained on their own; instead, their values are
+ * derived during those stats merges.
+ */
+typedef struct pa_shard_stats_s pa_shard_stats_t;
+struct pa_shard_stats_s {
+ /* Number of edata_t structs allocated by base, but not being used. */
+ size_t edata_avail; /* Derived. */
+ /*
+ * Stats specific to the PAC. For now, these are the only stats that
+ * exist, but there will eventually be other page allocators. Things
+ * like edata_avail make sense in a cross-PA sense, but things like
+ * npurges don't.
+ */
+ pac_stats_t pac_stats;
+};
+
+/*
+ * The local allocator handle. Keeps the state necessary to satisfy page-sized
+ * allocations.
+ *
+ * The contents are mostly internal to the PA module. The key exception is that
+ * arena decay code is allowed to grab pointers to the dirty and muzzy ecaches
+ * decay_ts, for a couple of queries, passing them back to a PA function, or
+ * acquiring decay.mtx and looking at decay.purging. The reasoning is that,
+ * while PA decides what and how to purge, the arena code decides when and where
+ * (e.g. on what thread). It's allowed to use the presence of another purger to
+ * decide.
+ * (The background thread code also touches some other decay internals, but
+ * that's not fundamental; its' just an artifact of a partial refactoring, and
+ * its accesses could be straightforwardly moved inside the decay module).
+ */
+typedef struct pa_shard_s pa_shard_t;
+struct pa_shard_s {
+ /* The central PA this shard is associated with. */
+ pa_central_t *central;
+
+ /*
+ * Number of pages in active extents.
+ *
+ * Synchronization: atomic.
+ */
+ atomic_zu_t nactive;
+
+ /*
+ * Whether or not we should prefer the hugepage allocator. Atomic since
+ * it may be concurrently modified by a thread setting extent hooks.
+ * Note that we still may do HPA operations in this arena; if use_hpa is
+ * changed from true to false, we'll free back to the hugepage allocator
+ * for those allocations.
+ */
+ atomic_b_t use_hpa;
+
+ /*
+ * If we never used the HPA to begin with, it wasn't initialized, and so
+ * we shouldn't try to e.g. acquire its mutexes during fork. This
+ * tracks that knowledge.
+ */
+ bool ever_used_hpa;
+
+ /* Allocates from a PAC. */
+ pac_t pac;
+
+ /*
+ * We place a small extent cache in front of the HPA, since we intend
+ * these configurations to use many fewer arenas, and therefore have a
+ * higher risk of hot locks.
+ */
+ sec_t hpa_sec;
+ hpa_shard_t hpa_shard;
+
+ /* The source of edata_t objects. */
+ edata_cache_t edata_cache;
+
+ unsigned ind;
+
+ malloc_mutex_t *stats_mtx;
+ pa_shard_stats_t *stats;
+
+ /* The emap this shard is tied to. */
+ emap_t *emap;
+
+ /* The base from which we get the ehooks and allocate metadat. */
+ base_t *base;
+};
+
+static inline bool
+pa_shard_dont_decay_muzzy(pa_shard_t *shard) {
+ return ecache_npages_get(&shard->pac.ecache_muzzy) == 0 &&
+ pac_decay_ms_get(&shard->pac, extent_state_muzzy) <= 0;
+}
+
+static inline ehooks_t *
+pa_shard_ehooks_get(pa_shard_t *shard) {
+ return base_ehooks_get(shard->base);
+}
+
+/* Returns true on error. */
+bool pa_central_init(pa_central_t *central, base_t *base, bool hpa,
+ hpa_hooks_t *hpa_hooks);
+
+/* Returns true on error. */
+bool pa_shard_init(tsdn_t *tsdn, pa_shard_t *shard, pa_central_t *central,
+ emap_t *emap, base_t *base, unsigned ind, pa_shard_stats_t *stats,
+ malloc_mutex_t *stats_mtx, nstime_t *cur_time, size_t oversize_threshold,
+ ssize_t dirty_decay_ms, ssize_t muzzy_decay_ms);
+
+/*
+ * This isn't exposed to users; we allow late enablement of the HPA shard so
+ * that we can boot without worrying about the HPA, then turn it on in a0.
+ */
+bool pa_shard_enable_hpa(tsdn_t *tsdn, pa_shard_t *shard,
+ const hpa_shard_opts_t *hpa_opts, const sec_opts_t *hpa_sec_opts);
+
+/*
+ * We stop using the HPA when custom extent hooks are installed, but still
+ * redirect deallocations to it.
+ */
+void pa_shard_disable_hpa(tsdn_t *tsdn, pa_shard_t *shard);
+
+/*
+ * This does the PA-specific parts of arena reset (i.e. freeing all active
+ * allocations).
+ */
+void pa_shard_reset(tsdn_t *tsdn, pa_shard_t *shard);
+
+/*
+ * Destroy all the remaining retained extents. Should only be called after
+ * decaying all active, dirty, and muzzy extents to the retained state, as the
+ * last step in destroying the shard.
+ */
+void pa_shard_destroy(tsdn_t *tsdn, pa_shard_t *shard);
+
+/* Gets an edata for the given allocation. */
+edata_t *pa_alloc(tsdn_t *tsdn, pa_shard_t *shard, size_t size,
+ size_t alignment, bool slab, szind_t szind, bool zero, bool guarded,
+ bool *deferred_work_generated);
+/* Returns true on error, in which case nothing changed. */
+bool pa_expand(tsdn_t *tsdn, pa_shard_t *shard, edata_t *edata, size_t old_size,
+ size_t new_size, szind_t szind, bool zero, bool *deferred_work_generated);
+/*
+ * The same. Sets *generated_dirty to true if we produced new dirty pages, and
+ * false otherwise.
+ */
+bool pa_shrink(tsdn_t *tsdn, pa_shard_t *shard, edata_t *edata, size_t old_size,
+ size_t new_size, szind_t szind, bool *deferred_work_generated);
+/*
+ * Frees the given edata back to the pa. Sets *generated_dirty if we produced
+ * new dirty pages (well, we always set it for now; but this need not be the
+ * case).
+ * (We could make generated_dirty the return value of course, but this is more
+ * consistent with the shrink pathway and our error codes here).
+ */
+void pa_dalloc(tsdn_t *tsdn, pa_shard_t *shard, edata_t *edata,
+ bool *deferred_work_generated);
+bool pa_decay_ms_set(tsdn_t *tsdn, pa_shard_t *shard, extent_state_t state,
+ ssize_t decay_ms, pac_purge_eagerness_t eagerness);
+ssize_t pa_decay_ms_get(pa_shard_t *shard, extent_state_t state);
+
+/*
+ * Do deferred work on this PA shard.
+ *
+ * Morally, this should do both PAC decay and the HPA deferred work. For now,
+ * though, the arena, background thread, and PAC modules are tightly interwoven
+ * in a way that's tricky to extricate, so we only do the HPA-specific parts.
+ */
+void pa_shard_set_deferral_allowed(tsdn_t *tsdn, pa_shard_t *shard,
+ bool deferral_allowed);
+void pa_shard_do_deferred_work(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_try_deferred_work(tsdn_t *tsdn, pa_shard_t *shard);
+uint64_t pa_shard_time_until_deferred_work(tsdn_t *tsdn, pa_shard_t *shard);
+
+/******************************************************************************/
+/*
+ * Various bits of "boring" functionality that are still part of this module,
+ * but that we relegate to pa_extra.c, to keep the core logic in pa.c as
+ * readable as possible.
+ */
+
+/*
+ * These fork phases are synchronized with the arena fork phase numbering to
+ * make it easy to keep straight. That's why there's no prefork1.
+ */
+void pa_shard_prefork0(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_prefork2(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_prefork3(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_prefork4(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_prefork5(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_postfork_parent(tsdn_t *tsdn, pa_shard_t *shard);
+void pa_shard_postfork_child(tsdn_t *tsdn, pa_shard_t *shard);
+
+void pa_shard_basic_stats_merge(pa_shard_t *shard, size_t *nactive,
+ size_t *ndirty, size_t *nmuzzy);
+
+void pa_shard_stats_merge(tsdn_t *tsdn, pa_shard_t *shard,
+ pa_shard_stats_t *pa_shard_stats_out, pac_estats_t *estats_out,
+ hpa_shard_stats_t *hpa_stats_out, sec_stats_t *sec_stats_out,
+ size_t *resident);
+
+/*
+ * Reads the PA-owned mutex stats into the output stats array, at the
+ * appropriate positions. Morally, these stats should really live in
+ * pa_shard_stats_t, but the indices are sort of baked into the various mutex
+ * prof macros. This would be a good thing to do at some point.
+ */
+void pa_shard_mtx_stats_read(tsdn_t *tsdn, pa_shard_t *shard,
+ mutex_prof_data_t mutex_prof_data[mutex_prof_num_arena_mutexes]);
+
+#endif /* JEMALLOC_INTERNAL_PA_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/pac.h b/deps/jemalloc/include/jemalloc/internal/pac.h
new file mode 100644
index 0000000..01c4e6a
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/pac.h
@@ -0,0 +1,179 @@
+#ifndef JEMALLOC_INTERNAL_PAC_H
+#define JEMALLOC_INTERNAL_PAC_H
+
+#include "jemalloc/internal/exp_grow.h"
+#include "jemalloc/internal/pai.h"
+#include "san_bump.h"
+
+
+/*
+ * Page allocator classic; an implementation of the PAI interface that:
+ * - Can be used for arenas with custom extent hooks.
+ * - Can always satisfy any allocation request (including highly-fragmentary
+ * ones).
+ * - Can use efficient OS-level zeroing primitives for demand-filled pages.
+ */
+
+/* How "eager" decay/purging should be. */
+enum pac_purge_eagerness_e {
+ PAC_PURGE_ALWAYS,
+ PAC_PURGE_NEVER,
+ PAC_PURGE_ON_EPOCH_ADVANCE
+};
+typedef enum pac_purge_eagerness_e pac_purge_eagerness_t;
+
+typedef struct pac_decay_stats_s pac_decay_stats_t;
+struct pac_decay_stats_s {
+ /* Total number of purge sweeps. */
+ locked_u64_t npurge;
+ /* Total number of madvise calls made. */
+ locked_u64_t nmadvise;
+ /* Total number of pages purged. */
+ locked_u64_t purged;
+};
+
+typedef struct pac_estats_s pac_estats_t;
+struct pac_estats_s {
+ /*
+ * Stats for a given index in the range [0, SC_NPSIZES] in the various
+ * ecache_ts.
+ * We track both bytes and # of extents: two extents in the same bucket
+ * may have different sizes if adjacent size classes differ by more than
+ * a page, so bytes cannot always be derived from # of extents.
+ */
+ size_t ndirty;
+ size_t dirty_bytes;
+ size_t nmuzzy;
+ size_t muzzy_bytes;
+ size_t nretained;
+ size_t retained_bytes;
+};
+
+typedef struct pac_stats_s pac_stats_t;
+struct pac_stats_s {
+ pac_decay_stats_t decay_dirty;
+ pac_decay_stats_t decay_muzzy;
+
+ /*
+ * Number of unused virtual memory bytes currently retained. Retained
+ * bytes are technically mapped (though always decommitted or purged),
+ * but they are excluded from the mapped statistic (above).
+ */
+ size_t retained; /* Derived. */
+
+ /*
+ * Number of bytes currently mapped, excluding retained memory (and any
+ * base-allocated memory, which is tracked by the arena stats).
+ *
+ * We name this "pac_mapped" to avoid confusion with the arena_stats
+ * "mapped".
+ */
+ atomic_zu_t pac_mapped;
+
+ /* VM space had to be leaked (undocumented). Normally 0. */
+ atomic_zu_t abandoned_vm;
+};
+
+typedef struct pac_s pac_t;
+struct pac_s {
+ /*
+ * Must be the first member (we convert it to a PAC given only a
+ * pointer). The handle to the allocation interface.
+ */
+ pai_t pai;
+ /*
+ * Collections of extents that were previously allocated. These are
+ * used when allocating extents, in an attempt to re-use address space.
+ *
+ * Synchronization: internal.
+ */
+ ecache_t ecache_dirty;
+ ecache_t ecache_muzzy;
+ ecache_t ecache_retained;
+
+ base_t *base;
+ emap_t *emap;
+ edata_cache_t *edata_cache;
+
+ /* The grow info for the retained ecache. */
+ exp_grow_t exp_grow;
+ malloc_mutex_t grow_mtx;
+
+ /* Special allocator for guarded frequently reused extents. */
+ san_bump_alloc_t sba;
+
+ /* How large extents should be before getting auto-purged. */
+ atomic_zu_t oversize_threshold;
+
+ /*
+ * Decay-based purging state, responsible for scheduling extent state
+ * transitions.
+ *
+ * Synchronization: via the internal mutex.
+ */
+ decay_t decay_dirty; /* dirty --> muzzy */
+ decay_t decay_muzzy; /* muzzy --> retained */
+
+ malloc_mutex_t *stats_mtx;
+ pac_stats_t *stats;
+
+ /* Extent serial number generator state. */
+ atomic_zu_t extent_sn_next;
+};
+
+bool pac_init(tsdn_t *tsdn, pac_t *pac, base_t *base, emap_t *emap,
+ edata_cache_t *edata_cache, nstime_t *cur_time, size_t oversize_threshold,
+ ssize_t dirty_decay_ms, ssize_t muzzy_decay_ms, pac_stats_t *pac_stats,
+ malloc_mutex_t *stats_mtx);
+
+static inline size_t
+pac_mapped(pac_t *pac) {
+ return atomic_load_zu(&pac->stats->pac_mapped, ATOMIC_RELAXED);
+}
+
+static inline ehooks_t *
+pac_ehooks_get(pac_t *pac) {
+ return base_ehooks_get(pac->base);
+}
+
+/*
+ * All purging functions require holding decay->mtx. This is one of the few
+ * places external modules are allowed to peek inside pa_shard_t internals.
+ */
+
+/*
+ * Decays the number of pages currently in the ecache. This might not leave the
+ * ecache empty if other threads are inserting dirty objects into it
+ * concurrently with the call.
+ */
+void pac_decay_all(tsdn_t *tsdn, pac_t *pac, decay_t *decay,
+ pac_decay_stats_t *decay_stats, ecache_t *ecache, bool fully_decay);
+/*
+ * Updates decay settings for the current time, and conditionally purges in
+ * response (depending on decay_purge_setting). Returns whether or not the
+ * epoch advanced.
+ */
+bool pac_maybe_decay_purge(tsdn_t *tsdn, pac_t *pac, decay_t *decay,
+ pac_decay_stats_t *decay_stats, ecache_t *ecache,
+ pac_purge_eagerness_t eagerness);
+
+/*
+ * Gets / sets the maximum amount that we'll grow an arena down the
+ * grow-retained pathways (unless forced to by an allocaction request).
+ *
+ * Set new_limit to NULL if it's just a query, or old_limit to NULL if you don't
+ * care about the previous value.
+ *
+ * Returns true on error (if the new limit is not valid).
+ */
+bool pac_retain_grow_limit_get_set(tsdn_t *tsdn, pac_t *pac, size_t *old_limit,
+ size_t *new_limit);
+
+bool pac_decay_ms_set(tsdn_t *tsdn, pac_t *pac, extent_state_t state,
+ ssize_t decay_ms, pac_purge_eagerness_t eagerness);
+ssize_t pac_decay_ms_get(pac_t *pac, extent_state_t state);
+
+void pac_reset(tsdn_t *tsdn, pac_t *pac);
+void pac_destroy(tsdn_t *tsdn, pac_t *pac);
+
+#endif /* JEMALLOC_INTERNAL_PAC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/pages.h b/deps/jemalloc/include/jemalloc/internal/pages.h
new file mode 100644
index 0000000..ad1f606
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/pages.h
@@ -0,0 +1,119 @@
+#ifndef JEMALLOC_INTERNAL_PAGES_EXTERNS_H
+#define JEMALLOC_INTERNAL_PAGES_EXTERNS_H
+
+/* Page size. LG_PAGE is determined by the configure script. */
+#ifdef PAGE_MASK
+# undef PAGE_MASK
+#endif
+#define PAGE ((size_t)(1U << LG_PAGE))
+#define PAGE_MASK ((size_t)(PAGE - 1))
+/* Return the page base address for the page containing address a. */
+#define PAGE_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~PAGE_MASK))
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + PAGE_MASK) & ~PAGE_MASK)
+/* Return the largest pagesize multiple that is <=s. */
+#define PAGE_FLOOR(s) \
+ ((s) & ~PAGE_MASK)
+
+/* Huge page size. LG_HUGEPAGE is determined by the configure script. */
+#define HUGEPAGE ((size_t)(1U << LG_HUGEPAGE))
+#define HUGEPAGE_MASK ((size_t)(HUGEPAGE - 1))
+
+#if LG_HUGEPAGE != 0
+# define HUGEPAGE_PAGES (HUGEPAGE / PAGE)
+#else
+/*
+ * It's convenient to define arrays (or bitmaps) of HUGEPAGE_PAGES lengths. If
+ * we can't autodetect the hugepage size, it gets treated as 0, in which case
+ * we'll trigger a compiler error in those arrays. Avoid this case by ensuring
+ * that this value is at least 1. (We won't ever run in this degraded state;
+ * hpa_supported() returns false in this case.
+ */
+# define HUGEPAGE_PAGES 1
+#endif
+
+/* Return the huge page base address for the huge page containing address a. */
+#define HUGEPAGE_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~HUGEPAGE_MASK))
+/* Return the smallest pagesize multiple that is >= s. */
+#define HUGEPAGE_CEILING(s) \
+ (((s) + HUGEPAGE_MASK) & ~HUGEPAGE_MASK)
+
+/* PAGES_CAN_PURGE_LAZY is defined if lazy purging is supported. */
+#if defined(_WIN32) || defined(JEMALLOC_PURGE_MADVISE_FREE)
+# define PAGES_CAN_PURGE_LAZY
+#endif
+/*
+ * PAGES_CAN_PURGE_FORCED is defined if forced purging is supported.
+ *
+ * The only supported way to hard-purge on Windows is to decommit and then
+ * re-commit, but doing so is racy, and if re-commit fails it's a pain to
+ * propagate the "poisoned" memory state. Since we typically decommit as the
+ * next step after purging on Windows anyway, there's no point in adding such
+ * complexity.
+ */
+#if !defined(_WIN32) && ((defined(JEMALLOC_PURGE_MADVISE_DONTNEED) && \
+ defined(JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS)) || \
+ defined(JEMALLOC_MAPS_COALESCE))
+# define PAGES_CAN_PURGE_FORCED
+#endif
+
+static const bool pages_can_purge_lazy =
+#ifdef PAGES_CAN_PURGE_LAZY
+ true
+#else
+ false
+#endif
+ ;
+static const bool pages_can_purge_forced =
+#ifdef PAGES_CAN_PURGE_FORCED
+ true
+#else
+ false
+#endif
+ ;
+
+#if defined(JEMALLOC_HAVE_MADVISE_HUGE) || defined(JEMALLOC_HAVE_MEMCNTL)
+# define PAGES_CAN_HUGIFY
+#endif
+
+static const bool pages_can_hugify =
+#ifdef PAGES_CAN_HUGIFY
+ true
+#else
+ false
+#endif
+ ;
+
+typedef enum {
+ thp_mode_default = 0, /* Do not change hugepage settings. */
+ thp_mode_always = 1, /* Always set MADV_HUGEPAGE. */
+ thp_mode_never = 2, /* Always set MADV_NOHUGEPAGE. */
+
+ thp_mode_names_limit = 3, /* Used for option processing. */
+ thp_mode_not_supported = 3 /* No THP support detected. */
+} thp_mode_t;
+
+#define THP_MODE_DEFAULT thp_mode_default
+extern thp_mode_t opt_thp;
+extern thp_mode_t init_system_thp_mode; /* Initial system wide state. */
+extern const char *thp_mode_names[];
+
+void *pages_map(void *addr, size_t size, size_t alignment, bool *commit);
+void pages_unmap(void *addr, size_t size);
+bool pages_commit(void *addr, size_t size);
+bool pages_decommit(void *addr, size_t size);
+bool pages_purge_lazy(void *addr, size_t size);
+bool pages_purge_forced(void *addr, size_t size);
+bool pages_huge(void *addr, size_t size);
+bool pages_nohuge(void *addr, size_t size);
+bool pages_dontdump(void *addr, size_t size);
+bool pages_dodump(void *addr, size_t size);
+bool pages_boot(void);
+void pages_set_thp_state (void *ptr, size_t size);
+void pages_mark_guards(void *head, void *tail);
+void pages_unmark_guards(void *head, void *tail);
+
+#endif /* JEMALLOC_INTERNAL_PAGES_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/pai.h b/deps/jemalloc/include/jemalloc/internal/pai.h
new file mode 100644
index 0000000..d978cd7
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/pai.h
@@ -0,0 +1,95 @@
+#ifndef JEMALLOC_INTERNAL_PAI_H
+#define JEMALLOC_INTERNAL_PAI_H
+
+/* An interface for page allocation. */
+
+typedef struct pai_s pai_t;
+struct pai_s {
+ /* Returns NULL on failure. */
+ edata_t *(*alloc)(tsdn_t *tsdn, pai_t *self, size_t size,
+ size_t alignment, bool zero, bool guarded, bool frequent_reuse,
+ bool *deferred_work_generated);
+ /*
+ * Returns the number of extents added to the list (which may be fewer
+ * than requested, in case of OOM). The list should already be
+ * initialized. The only alignment guarantee is page-alignment, and
+ * the results are not necessarily zeroed.
+ */
+ size_t (*alloc_batch)(tsdn_t *tsdn, pai_t *self, size_t size,
+ size_t nallocs, edata_list_active_t *results,
+ bool *deferred_work_generated);
+ bool (*expand)(tsdn_t *tsdn, pai_t *self, edata_t *edata,
+ size_t old_size, size_t new_size, bool zero,
+ bool *deferred_work_generated);
+ bool (*shrink)(tsdn_t *tsdn, pai_t *self, edata_t *edata,
+ size_t old_size, size_t new_size, bool *deferred_work_generated);
+ void (*dalloc)(tsdn_t *tsdn, pai_t *self, edata_t *edata,
+ bool *deferred_work_generated);
+ /* This function empties out list as a side-effect of being called. */
+ void (*dalloc_batch)(tsdn_t *tsdn, pai_t *self,
+ edata_list_active_t *list, bool *deferred_work_generated);
+ uint64_t (*time_until_deferred_work)(tsdn_t *tsdn, pai_t *self);
+};
+
+/*
+ * These are just simple convenience functions to avoid having to reference the
+ * same pai_t twice on every invocation.
+ */
+
+static inline edata_t *
+pai_alloc(tsdn_t *tsdn, pai_t *self, size_t size, size_t alignment,
+ bool zero, bool guarded, bool frequent_reuse,
+ bool *deferred_work_generated) {
+ return self->alloc(tsdn, self, size, alignment, zero, guarded,
+ frequent_reuse, deferred_work_generated);
+}
+
+static inline size_t
+pai_alloc_batch(tsdn_t *tsdn, pai_t *self, size_t size, size_t nallocs,
+ edata_list_active_t *results, bool *deferred_work_generated) {
+ return self->alloc_batch(tsdn, self, size, nallocs, results,
+ deferred_work_generated);
+}
+
+static inline bool
+pai_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
+ size_t new_size, bool zero, bool *deferred_work_generated) {
+ return self->expand(tsdn, self, edata, old_size, new_size, zero,
+ deferred_work_generated);
+}
+
+static inline bool
+pai_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
+ size_t new_size, bool *deferred_work_generated) {
+ return self->shrink(tsdn, self, edata, old_size, new_size,
+ deferred_work_generated);
+}
+
+static inline void
+pai_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata,
+ bool *deferred_work_generated) {
+ self->dalloc(tsdn, self, edata, deferred_work_generated);
+}
+
+static inline void
+pai_dalloc_batch(tsdn_t *tsdn, pai_t *self, edata_list_active_t *list,
+ bool *deferred_work_generated) {
+ self->dalloc_batch(tsdn, self, list, deferred_work_generated);
+}
+
+static inline uint64_t
+pai_time_until_deferred_work(tsdn_t *tsdn, pai_t *self) {
+ return self->time_until_deferred_work(tsdn, self);
+}
+
+/*
+ * An implementation of batch allocation that simply calls alloc once for
+ * each item in the list.
+ */
+size_t pai_alloc_batch_default(tsdn_t *tsdn, pai_t *self, size_t size,
+ size_t nallocs, edata_list_active_t *results, bool *deferred_work_generated);
+/* Ditto, for dalloc. */
+void pai_dalloc_batch_default(tsdn_t *tsdn, pai_t *self,
+ edata_list_active_t *list, bool *deferred_work_generated);
+
+#endif /* JEMALLOC_INTERNAL_PAI_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/peak.h b/deps/jemalloc/include/jemalloc/internal/peak.h
new file mode 100644
index 0000000..59da3e4
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/peak.h
@@ -0,0 +1,37 @@
+#ifndef JEMALLOC_INTERNAL_PEAK_H
+#define JEMALLOC_INTERNAL_PEAK_H
+
+typedef struct peak_s peak_t;
+struct peak_s {
+ /* The highest recorded peak value, after adjustment (see below). */
+ uint64_t cur_max;
+ /*
+ * The difference between alloc and dalloc at the last set_zero call;
+ * this lets us cancel out the appropriate amount of excess.
+ */
+ uint64_t adjustment;
+};
+
+#define PEAK_INITIALIZER {0, 0}
+
+static inline uint64_t
+peak_max(peak_t *peak) {
+ return peak->cur_max;
+}
+
+static inline void
+peak_update(peak_t *peak, uint64_t alloc, uint64_t dalloc) {
+ int64_t candidate_max = (int64_t)(alloc - dalloc - peak->adjustment);
+ if (candidate_max > (int64_t)peak->cur_max) {
+ peak->cur_max = candidate_max;
+ }
+}
+
+/* Resets the counter to zero; all peaks are now relative to this point. */
+static inline void
+peak_set_zero(peak_t *peak, uint64_t alloc, uint64_t dalloc) {
+ peak->cur_max = 0;
+ peak->adjustment = alloc - dalloc;
+}
+
+#endif /* JEMALLOC_INTERNAL_PEAK_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/peak_event.h b/deps/jemalloc/include/jemalloc/internal/peak_event.h
new file mode 100644
index 0000000..b808ce0
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/peak_event.h
@@ -0,0 +1,24 @@
+#ifndef JEMALLOC_INTERNAL_PEAK_EVENT_H
+#define JEMALLOC_INTERNAL_PEAK_EVENT_H
+
+/*
+ * While peak.h contains the simple helper struct that tracks state, this
+ * contains the allocator tie-ins (and knows about tsd, the event module, etc.).
+ */
+
+/* Update the peak with current tsd state. */
+void peak_event_update(tsd_t *tsd);
+/* Set current state to zero. */
+void peak_event_zero(tsd_t *tsd);
+uint64_t peak_event_max(tsd_t *tsd);
+
+/* Manual hooks. */
+/* The activity-triggered hooks. */
+uint64_t peak_alloc_new_event_wait(tsd_t *tsd);
+uint64_t peak_alloc_postponed_event_wait(tsd_t *tsd);
+void peak_alloc_event_handler(tsd_t *tsd, uint64_t elapsed);
+uint64_t peak_dalloc_new_event_wait(tsd_t *tsd);
+uint64_t peak_dalloc_postponed_event_wait(tsd_t *tsd);
+void peak_dalloc_event_handler(tsd_t *tsd, uint64_t elapsed);
+
+#endif /* JEMALLOC_INTERNAL_PEAK_EVENT_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/ph.h b/deps/jemalloc/include/jemalloc/internal/ph.h
new file mode 100644
index 0000000..5f091c5
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ph.h
@@ -0,0 +1,520 @@
+#ifndef JEMALLOC_INTERNAL_PH_H
+#define JEMALLOC_INTERNAL_PH_H
+
+/*
+ * A Pairing Heap implementation.
+ *
+ * "The Pairing Heap: A New Form of Self-Adjusting Heap"
+ * https://www.cs.cmu.edu/~sleator/papers/pairing-heaps.pdf
+ *
+ * With auxiliary twopass list, described in a follow on paper.
+ *
+ * "Pairing Heaps: Experiments and Analysis"
+ * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.2988&rep=rep1&type=pdf
+ *
+ *******************************************************************************
+ *
+ * We include a non-obvious optimization:
+ * - First, we introduce a new pop-and-link operation; pop the two most
+ * recently-inserted items off the aux-list, link them, and push the resulting
+ * heap.
+ * - We maintain a count of the number of insertions since the last time we
+ * merged the aux-list (i.e. via first() or remove_first()). After N inserts,
+ * we do ffs(N) pop-and-link operations.
+ *
+ * One way to think of this is that we're progressively building up a tree in
+ * the aux-list, rather than a linked-list (think of the series of merges that
+ * will be performed as the aux-count grows).
+ *
+ * There's a couple reasons we benefit from this:
+ * - Ordinarily, after N insertions, the aux-list is of size N. With our
+ * strategy, it's of size O(log(N)). So we decrease the worst-case time of
+ * first() calls, and reduce the average cost of remove_min calls. Since
+ * these almost always occur while holding a lock, we practically reduce the
+ * frequency of unusually long hold times.
+ * - This moves the bulk of the work of merging the aux-list onto the threads
+ * that are inserting into the heap. In some common scenarios, insertions
+ * happen in bulk, from a single thread (think tcache flushing; we potentially
+ * move many slabs from slabs_full to slabs_nonfull). All the nodes in this
+ * case are in the inserting threads cache, and linking them is very cheap
+ * (cache misses dominate linking cost). Without this optimization, linking
+ * happens on the next call to remove_first. Since that remove_first call
+ * likely happens on a different thread (or at least, after the cache has
+ * gotten cold if done on the same thread), deferring linking trades cheap
+ * link operations now for expensive ones later.
+ *
+ * The ffs trick keeps amortized insert cost at constant time. Similar
+ * strategies based on periodically sorting the list after a batch of operations
+ * perform worse than this in practice, even with various fancy tricks; they
+ * all took amortized complexity of an insert from O(1) to O(log(n)).
+ */
+
+typedef int (*ph_cmp_t)(void *, void *);
+
+/* Node structure. */
+typedef struct phn_link_s phn_link_t;
+struct phn_link_s {
+ void *prev;
+ void *next;
+ void *lchild;
+};
+
+typedef struct ph_s ph_t;
+struct ph_s {
+ void *root;
+ /*
+ * Inserts done since the last aux-list merge. This is not necessarily
+ * the size of the aux-list, since it's possible that removals have
+ * happened since, and we don't track whether or not those removals are
+ * from the aux list.
+ */
+ size_t auxcount;
+};
+
+JEMALLOC_ALWAYS_INLINE phn_link_t *
+phn_link_get(void *phn, size_t offset) {
+ return (phn_link_t *)(((uintptr_t)phn) + offset);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+phn_link_init(void *phn, size_t offset) {
+ phn_link_get(phn, offset)->prev = NULL;
+ phn_link_get(phn, offset)->next = NULL;
+ phn_link_get(phn, offset)->lchild = NULL;
+}
+
+/* Internal utility helpers. */
+JEMALLOC_ALWAYS_INLINE void *
+phn_lchild_get(void *phn, size_t offset) {
+ return phn_link_get(phn, offset)->lchild;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+phn_lchild_set(void *phn, void *lchild, size_t offset) {
+ phn_link_get(phn, offset)->lchild = lchild;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+phn_next_get(void *phn, size_t offset) {
+ return phn_link_get(phn, offset)->next;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+phn_next_set(void *phn, void *next, size_t offset) {
+ phn_link_get(phn, offset)->next = next;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+phn_prev_get(void *phn, size_t offset) {
+ return phn_link_get(phn, offset)->prev;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+phn_prev_set(void *phn, void *prev, size_t offset) {
+ phn_link_get(phn, offset)->prev = prev;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+phn_merge_ordered(void *phn0, void *phn1, size_t offset,
+ ph_cmp_t cmp) {
+ void *phn0child;
+
+ assert(phn0 != NULL);
+ assert(phn1 != NULL);
+ assert(cmp(phn0, phn1) <= 0);
+
+ phn_prev_set(phn1, phn0, offset);
+ phn0child = phn_lchild_get(phn0, offset);
+ phn_next_set(phn1, phn0child, offset);
+ if (phn0child != NULL) {
+ phn_prev_set(phn0child, phn1, offset);
+ }
+ phn_lchild_set(phn0, phn1, offset);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+phn_merge(void *phn0, void *phn1, size_t offset, ph_cmp_t cmp) {
+ void *result;
+ if (phn0 == NULL) {
+ result = phn1;
+ } else if (phn1 == NULL) {
+ result = phn0;
+ } else if (cmp(phn0, phn1) < 0) {
+ phn_merge_ordered(phn0, phn1, offset, cmp);
+ result = phn0;
+ } else {
+ phn_merge_ordered(phn1, phn0, offset, cmp);
+ result = phn1;
+ }
+ return result;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+phn_merge_siblings(void *phn, size_t offset, ph_cmp_t cmp) {
+ void *head = NULL;
+ void *tail = NULL;
+ void *phn0 = phn;
+ void *phn1 = phn_next_get(phn0, offset);
+
+ /*
+ * Multipass merge, wherein the first two elements of a FIFO
+ * are repeatedly merged, and each result is appended to the
+ * singly linked FIFO, until the FIFO contains only a single
+ * element. We start with a sibling list but no reference to
+ * its tail, so we do a single pass over the sibling list to
+ * populate the FIFO.
+ */
+ if (phn1 != NULL) {
+ void *phnrest = phn_next_get(phn1, offset);
+ if (phnrest != NULL) {
+ phn_prev_set(phnrest, NULL, offset);
+ }
+ phn_prev_set(phn0, NULL, offset);
+ phn_next_set(phn0, NULL, offset);
+ phn_prev_set(phn1, NULL, offset);
+ phn_next_set(phn1, NULL, offset);
+ phn0 = phn_merge(phn0, phn1, offset, cmp);
+ head = tail = phn0;
+ phn0 = phnrest;
+ while (phn0 != NULL) {
+ phn1 = phn_next_get(phn0, offset);
+ if (phn1 != NULL) {
+ phnrest = phn_next_get(phn1, offset);
+ if (phnrest != NULL) {
+ phn_prev_set(phnrest, NULL, offset);
+ }
+ phn_prev_set(phn0, NULL, offset);
+ phn_next_set(phn0, NULL, offset);
+ phn_prev_set(phn1, NULL, offset);
+ phn_next_set(phn1, NULL, offset);
+ phn0 = phn_merge(phn0, phn1, offset, cmp);
+ phn_next_set(tail, phn0, offset);
+ tail = phn0;
+ phn0 = phnrest;
+ } else {
+ phn_next_set(tail, phn0, offset);
+ tail = phn0;
+ phn0 = NULL;
+ }
+ }
+ phn0 = head;
+ phn1 = phn_next_get(phn0, offset);
+ if (phn1 != NULL) {
+ while (true) {
+ head = phn_next_get(phn1, offset);
+ assert(phn_prev_get(phn0, offset) == NULL);
+ phn_next_set(phn0, NULL, offset);
+ assert(phn_prev_get(phn1, offset) == NULL);
+ phn_next_set(phn1, NULL, offset);
+ phn0 = phn_merge(phn0, phn1, offset, cmp);
+ if (head == NULL) {
+ break;
+ }
+ phn_next_set(tail, phn0, offset);
+ tail = phn0;
+ phn0 = head;
+ phn1 = phn_next_get(phn0, offset);
+ }
+ }
+ }
+ return phn0;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+ph_merge_aux(ph_t *ph, size_t offset, ph_cmp_t cmp) {
+ ph->auxcount = 0;
+ void *phn = phn_next_get(ph->root, offset);
+ if (phn != NULL) {
+ phn_prev_set(ph->root, NULL, offset);
+ phn_next_set(ph->root, NULL, offset);
+ phn_prev_set(phn, NULL, offset);
+ phn = phn_merge_siblings(phn, offset, cmp);
+ assert(phn_next_get(phn, offset) == NULL);
+ ph->root = phn_merge(ph->root, phn, offset, cmp);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ph_merge_children(void *phn, size_t offset, ph_cmp_t cmp) {
+ void *result;
+ void *lchild = phn_lchild_get(phn, offset);
+ if (lchild == NULL) {
+ result = NULL;
+ } else {
+ result = phn_merge_siblings(lchild, offset, cmp);
+ }
+ return result;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+ph_new(ph_t *ph) {
+ ph->root = NULL;
+ ph->auxcount = 0;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+ph_empty(ph_t *ph) {
+ return ph->root == NULL;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ph_first(ph_t *ph, size_t offset, ph_cmp_t cmp) {
+ if (ph->root == NULL) {
+ return NULL;
+ }
+ ph_merge_aux(ph, offset, cmp);
+ return ph->root;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ph_any(ph_t *ph, size_t offset) {
+ if (ph->root == NULL) {
+ return NULL;
+ }
+ void *aux = phn_next_get(ph->root, offset);
+ if (aux != NULL) {
+ return aux;
+ }
+ return ph->root;
+}
+
+/* Returns true if we should stop trying to merge. */
+JEMALLOC_ALWAYS_INLINE bool
+ph_try_aux_merge_pair(ph_t *ph, size_t offset, ph_cmp_t cmp) {
+ assert(ph->root != NULL);
+ void *phn0 = phn_next_get(ph->root, offset);
+ if (phn0 == NULL) {
+ return true;
+ }
+ void *phn1 = phn_next_get(phn0, offset);
+ if (phn1 == NULL) {
+ return true;
+ }
+ void *next_phn1 = phn_next_get(phn1, offset);
+ phn_next_set(phn0, NULL, offset);
+ phn_prev_set(phn0, NULL, offset);
+ phn_next_set(phn1, NULL, offset);
+ phn_prev_set(phn1, NULL, offset);
+ phn0 = phn_merge(phn0, phn1, offset, cmp);
+ phn_next_set(phn0, next_phn1, offset);
+ if (next_phn1 != NULL) {
+ phn_prev_set(next_phn1, phn0, offset);
+ }
+ phn_next_set(ph->root, phn0, offset);
+ phn_prev_set(phn0, ph->root, offset);
+ return next_phn1 == NULL;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+ph_insert(ph_t *ph, void *phn, size_t offset, ph_cmp_t cmp) {
+ phn_link_init(phn, offset);
+
+ /*
+ * Treat the root as an aux list during insertion, and lazily merge
+ * during a_prefix##remove_first(). For elements that are inserted,
+ * then removed via a_prefix##remove() before the aux list is ever
+ * processed, this makes insert/remove constant-time, whereas eager
+ * merging would make insert O(log n).
+ */
+ if (ph->root == NULL) {
+ ph->root = phn;
+ } else {
+ /*
+ * As a special case, check to see if we can replace the root.
+ * This is practically common in some important cases, and lets
+ * us defer some insertions (hopefully, until the point where
+ * some of the items in the aux list have been removed, savings
+ * us from linking them at all).
+ */
+ if (cmp(phn, ph->root) < 0) {
+ phn_lchild_set(phn, ph->root, offset);
+ phn_prev_set(ph->root, phn, offset);
+ ph->root = phn;
+ ph->auxcount = 0;
+ return;
+ }
+ ph->auxcount++;
+ phn_next_set(phn, phn_next_get(ph->root, offset), offset);
+ if (phn_next_get(ph->root, offset) != NULL) {
+ phn_prev_set(phn_next_get(ph->root, offset), phn,
+ offset);
+ }
+ phn_prev_set(phn, ph->root, offset);
+ phn_next_set(ph->root, phn, offset);
+ }
+ if (ph->auxcount > 1) {
+ unsigned nmerges = ffs_zu(ph->auxcount - 1);
+ bool done = false;
+ for (unsigned i = 0; i < nmerges && !done; i++) {
+ done = ph_try_aux_merge_pair(ph, offset, cmp);
+ }
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+ph_remove_first(ph_t *ph, size_t offset, ph_cmp_t cmp) {
+ void *ret;
+
+ if (ph->root == NULL) {
+ return NULL;
+ }
+ ph_merge_aux(ph, offset, cmp);
+ ret = ph->root;
+ ph->root = ph_merge_children(ph->root, offset, cmp);
+
+ return ret;
+
+}
+
+JEMALLOC_ALWAYS_INLINE void
+ph_remove(ph_t *ph, void *phn, size_t offset, ph_cmp_t cmp) {
+ void *replace;
+ void *parent;
+
+ if (ph->root == phn) {
+ /*
+ * We can delete from aux list without merging it, but we need
+ * to merge if we are dealing with the root node and it has
+ * children.
+ */
+ if (phn_lchild_get(phn, offset) == NULL) {
+ ph->root = phn_next_get(phn, offset);
+ if (ph->root != NULL) {
+ phn_prev_set(ph->root, NULL, offset);
+ }
+ return;
+ }
+ ph_merge_aux(ph, offset, cmp);
+ if (ph->root == phn) {
+ ph->root = ph_merge_children(ph->root, offset, cmp);
+ return;
+ }
+ }
+
+ /* Get parent (if phn is leftmost child) before mutating. */
+ if ((parent = phn_prev_get(phn, offset)) != NULL) {
+ if (phn_lchild_get(parent, offset) != phn) {
+ parent = NULL;
+ }
+ }
+ /* Find a possible replacement node, and link to parent. */
+ replace = ph_merge_children(phn, offset, cmp);
+ /* Set next/prev for sibling linked list. */
+ if (replace != NULL) {
+ if (parent != NULL) {
+ phn_prev_set(replace, parent, offset);
+ phn_lchild_set(parent, replace, offset);
+ } else {
+ phn_prev_set(replace, phn_prev_get(phn, offset),
+ offset);
+ if (phn_prev_get(phn, offset) != NULL) {
+ phn_next_set(phn_prev_get(phn, offset), replace,
+ offset);
+ }
+ }
+ phn_next_set(replace, phn_next_get(phn, offset), offset);
+ if (phn_next_get(phn, offset) != NULL) {
+ phn_prev_set(phn_next_get(phn, offset), replace,
+ offset);
+ }
+ } else {
+ if (parent != NULL) {
+ void *next = phn_next_get(phn, offset);
+ phn_lchild_set(parent, next, offset);
+ if (next != NULL) {
+ phn_prev_set(next, parent, offset);
+ }
+ } else {
+ assert(phn_prev_get(phn, offset) != NULL);
+ phn_next_set(
+ phn_prev_get(phn, offset),
+ phn_next_get(phn, offset), offset);
+ }
+ if (phn_next_get(phn, offset) != NULL) {
+ phn_prev_set(
+ phn_next_get(phn, offset),
+ phn_prev_get(phn, offset), offset);
+ }
+ }
+}
+
+#define ph_structs(a_prefix, a_type) \
+typedef struct { \
+ phn_link_t link; \
+} a_prefix##_link_t; \
+ \
+typedef struct { \
+ ph_t ph; \
+} a_prefix##_t;
+
+/*
+ * The ph_proto() macro generates function prototypes that correspond to the
+ * functions generated by an equivalently parameterized call to ph_gen().
+ */
+#define ph_proto(a_attr, a_prefix, a_type) \
+ \
+a_attr void a_prefix##_new(a_prefix##_t *ph); \
+a_attr bool a_prefix##_empty(a_prefix##_t *ph); \
+a_attr a_type *a_prefix##_first(a_prefix##_t *ph); \
+a_attr a_type *a_prefix##_any(a_prefix##_t *ph); \
+a_attr void a_prefix##_insert(a_prefix##_t *ph, a_type *phn); \
+a_attr a_type *a_prefix##_remove_first(a_prefix##_t *ph); \
+a_attr void a_prefix##_remove(a_prefix##_t *ph, a_type *phn); \
+a_attr a_type *a_prefix##_remove_any(a_prefix##_t *ph);
+
+/* The ph_gen() macro generates a type-specific pairing heap implementation. */
+#define ph_gen(a_attr, a_prefix, a_type, a_field, a_cmp) \
+JEMALLOC_ALWAYS_INLINE int \
+a_prefix##_ph_cmp(void *a, void *b) { \
+ return a_cmp((a_type *)a, (a_type *)b); \
+} \
+ \
+a_attr void \
+a_prefix##_new(a_prefix##_t *ph) { \
+ ph_new(&ph->ph); \
+} \
+ \
+a_attr bool \
+a_prefix##_empty(a_prefix##_t *ph) { \
+ return ph_empty(&ph->ph); \
+} \
+ \
+a_attr a_type * \
+a_prefix##_first(a_prefix##_t *ph) { \
+ return ph_first(&ph->ph, offsetof(a_type, a_field), \
+ &a_prefix##_ph_cmp); \
+} \
+ \
+a_attr a_type * \
+a_prefix##_any(a_prefix##_t *ph) { \
+ return ph_any(&ph->ph, offsetof(a_type, a_field)); \
+} \
+ \
+a_attr void \
+a_prefix##_insert(a_prefix##_t *ph, a_type *phn) { \
+ ph_insert(&ph->ph, phn, offsetof(a_type, a_field), \
+ a_prefix##_ph_cmp); \
+} \
+ \
+a_attr a_type * \
+a_prefix##_remove_first(a_prefix##_t *ph) { \
+ return ph_remove_first(&ph->ph, offsetof(a_type, a_field), \
+ a_prefix##_ph_cmp); \
+} \
+ \
+a_attr void \
+a_prefix##_remove(a_prefix##_t *ph, a_type *phn) { \
+ ph_remove(&ph->ph, phn, offsetof(a_type, a_field), \
+ a_prefix##_ph_cmp); \
+} \
+ \
+a_attr a_type * \
+a_prefix##_remove_any(a_prefix##_t *ph) { \
+ a_type *ret = a_prefix##_any(ph); \
+ if (ret != NULL) { \
+ a_prefix##_remove(ph, ret); \
+ } \
+ return ret; \
+}
+
+#endif /* JEMALLOC_INTERNAL_PH_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/private_namespace.sh b/deps/jemalloc/include/jemalloc/internal/private_namespace.sh
new file mode 100755
index 0000000..6ef1346
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/private_namespace.sh
@@ -0,0 +1,5 @@
+#!/bin/sh
+
+for symbol in `cat "$@"` ; do
+ echo "#define ${symbol} JEMALLOC_N(${symbol})"
+done
diff --git a/deps/jemalloc/include/jemalloc/internal/private_symbols.sh b/deps/jemalloc/include/jemalloc/internal/private_symbols.sh
new file mode 100755
index 0000000..442a259
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/private_symbols.sh
@@ -0,0 +1,51 @@
+#!/bin/sh
+#
+# Generate private_symbols[_jet].awk.
+#
+# Usage: private_symbols.sh <sym_prefix> <sym>*
+#
+# <sym_prefix> is typically "" or "_".
+
+sym_prefix=$1
+shift
+
+cat <<EOF
+#!/usr/bin/env awk -f
+
+BEGIN {
+ sym_prefix = "${sym_prefix}"
+ split("\\
+EOF
+
+for public_sym in "$@" ; do
+ cat <<EOF
+ ${sym_prefix}${public_sym} \\
+EOF
+done
+
+cat <<"EOF"
+ ", exported_symbol_names)
+ # Store exported symbol names as keys in exported_symbols.
+ for (i in exported_symbol_names) {
+ exported_symbols[exported_symbol_names[i]] = 1
+ }
+}
+
+# Process 'nm -a <c_source.o>' output.
+#
+# Handle lines like:
+# 0000000000000008 D opt_junk
+# 0000000000007574 T malloc_initialized
+(NF == 3 && $2 ~ /^[ABCDGRSTVW]$/ && !($3 in exported_symbols) && $3 ~ /^[A-Za-z0-9_]+$/) {
+ print substr($3, 1+length(sym_prefix), length($3)-length(sym_prefix))
+}
+
+# Process 'dumpbin /SYMBOLS <c_source.obj>' output.
+#
+# Handle lines like:
+# 353 00008098 SECT4 notype External | opt_junk
+# 3F1 00000000 SECT7 notype () External | malloc_initialized
+($3 ~ /^SECT[0-9]+/ && $(NF-2) == "External" && !($NF in exported_symbols)) {
+ print $NF
+}
+EOF
diff --git a/deps/jemalloc/include/jemalloc/internal/prng.h b/deps/jemalloc/include/jemalloc/internal/prng.h
new file mode 100644
index 0000000..14542aa
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prng.h
@@ -0,0 +1,168 @@
+#ifndef JEMALLOC_INTERNAL_PRNG_H
+#define JEMALLOC_INTERNAL_PRNG_H
+
+#include "jemalloc/internal/bit_util.h"
+
+/*
+ * Simple linear congruential pseudo-random number generator:
+ *
+ * prng(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example, the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+
+/******************************************************************************/
+/* INTERNAL DEFINITIONS -- IGNORE */
+/******************************************************************************/
+#define PRNG_A_32 UINT32_C(1103515241)
+#define PRNG_C_32 UINT32_C(12347)
+
+#define PRNG_A_64 UINT64_C(6364136223846793005)
+#define PRNG_C_64 UINT64_C(1442695040888963407)
+
+JEMALLOC_ALWAYS_INLINE uint32_t
+prng_state_next_u32(uint32_t state) {
+ return (state * PRNG_A_32) + PRNG_C_32;
+}
+
+JEMALLOC_ALWAYS_INLINE uint64_t
+prng_state_next_u64(uint64_t state) {
+ return (state * PRNG_A_64) + PRNG_C_64;
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+prng_state_next_zu(size_t state) {
+#if LG_SIZEOF_PTR == 2
+ return (state * PRNG_A_32) + PRNG_C_32;
+#elif LG_SIZEOF_PTR == 3
+ return (state * PRNG_A_64) + PRNG_C_64;
+#else
+#error Unsupported pointer size
+#endif
+}
+
+/******************************************************************************/
+/* BEGIN PUBLIC API */
+/******************************************************************************/
+
+/*
+ * The prng_lg_range functions give a uniform int in the half-open range [0,
+ * 2**lg_range).
+ */
+
+JEMALLOC_ALWAYS_INLINE uint32_t
+prng_lg_range_u32(uint32_t *state, unsigned lg_range) {
+ assert(lg_range > 0);
+ assert(lg_range <= 32);
+
+ *state = prng_state_next_u32(*state);
+ uint32_t ret = *state >> (32 - lg_range);
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE uint64_t
+prng_lg_range_u64(uint64_t *state, unsigned lg_range) {
+ assert(lg_range > 0);
+ assert(lg_range <= 64);
+
+ *state = prng_state_next_u64(*state);
+ uint64_t ret = *state >> (64 - lg_range);
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+prng_lg_range_zu(size_t *state, unsigned lg_range) {
+ assert(lg_range > 0);
+ assert(lg_range <= ZU(1) << (3 + LG_SIZEOF_PTR));
+
+ *state = prng_state_next_zu(*state);
+ size_t ret = *state >> ((ZU(1) << (3 + LG_SIZEOF_PTR)) - lg_range);
+
+ return ret;
+}
+
+/*
+ * The prng_range functions behave like the prng_lg_range, but return a result
+ * in [0, range) instead of [0, 2**lg_range).
+ */
+
+JEMALLOC_ALWAYS_INLINE uint32_t
+prng_range_u32(uint32_t *state, uint32_t range) {
+ assert(range != 0);
+ /*
+ * If range were 1, lg_range would be 0, so the shift in
+ * prng_lg_range_u32 would be a shift of a 32-bit variable by 32 bits,
+ * which is UB. Just handle this case as a one-off.
+ */
+ if (range == 1) {
+ return 0;
+ }
+
+ /* Compute the ceiling of lg(range). */
+ unsigned lg_range = ffs_u32(pow2_ceil_u32(range));
+
+ /* Generate a result in [0..range) via repeated trial. */
+ uint32_t ret;
+ do {
+ ret = prng_lg_range_u32(state, lg_range);
+ } while (ret >= range);
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE uint64_t
+prng_range_u64(uint64_t *state, uint64_t range) {
+ assert(range != 0);
+
+ /* See the note in prng_range_u32. */
+ if (range == 1) {
+ return 0;
+ }
+
+ /* Compute the ceiling of lg(range). */
+ unsigned lg_range = ffs_u64(pow2_ceil_u64(range));
+
+ /* Generate a result in [0..range) via repeated trial. */
+ uint64_t ret;
+ do {
+ ret = prng_lg_range_u64(state, lg_range);
+ } while (ret >= range);
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+prng_range_zu(size_t *state, size_t range) {
+ assert(range != 0);
+
+ /* See the note in prng_range_u32. */
+ if (range == 1) {
+ return 0;
+ }
+
+ /* Compute the ceiling of lg(range). */
+ unsigned lg_range = ffs_u64(pow2_ceil_u64(range));
+
+ /* Generate a result in [0..range) via repeated trial. */
+ size_t ret;
+ do {
+ ret = prng_lg_range_zu(state, lg_range);
+ } while (ret >= range);
+
+ return ret;
+}
+
+#endif /* JEMALLOC_INTERNAL_PRNG_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_data.h b/deps/jemalloc/include/jemalloc/internal/prof_data.h
new file mode 100644
index 0000000..4c8e22c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_data.h
@@ -0,0 +1,37 @@
+#ifndef JEMALLOC_INTERNAL_PROF_DATA_H
+#define JEMALLOC_INTERNAL_PROF_DATA_H
+
+#include "jemalloc/internal/mutex.h"
+
+extern malloc_mutex_t bt2gctx_mtx;
+extern malloc_mutex_t tdatas_mtx;
+extern malloc_mutex_t prof_dump_mtx;
+
+extern malloc_mutex_t *gctx_locks;
+extern malloc_mutex_t *tdata_locks;
+
+extern size_t prof_unbiased_sz[PROF_SC_NSIZES];
+extern size_t prof_shifted_unbiased_cnt[PROF_SC_NSIZES];
+
+void prof_bt_hash(const void *key, size_t r_hash[2]);
+bool prof_bt_keycomp(const void *k1, const void *k2);
+
+bool prof_data_init(tsd_t *tsd);
+prof_tctx_t *prof_lookup(tsd_t *tsd, prof_bt_t *bt);
+char *prof_thread_name_alloc(tsd_t *tsd, const char *thread_name);
+int prof_thread_name_set_impl(tsd_t *tsd, const char *thread_name);
+void prof_unbias_map_init();
+void prof_dump_impl(tsd_t *tsd, write_cb_t *prof_dump_write, void *cbopaque,
+ prof_tdata_t *tdata, bool leakcheck);
+prof_tdata_t * prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid,
+ uint64_t thr_discrim, char *thread_name, bool active);
+void prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata);
+void prof_reset(tsd_t *tsd, size_t lg_sample);
+void prof_tctx_try_destroy(tsd_t *tsd, prof_tctx_t *tctx);
+
+/* Used in unit tests. */
+size_t prof_tdata_count(void);
+size_t prof_bt_count(void);
+void prof_cnt_all(prof_cnt_t *cnt_all);
+
+#endif /* JEMALLOC_INTERNAL_PROF_DATA_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_externs.h b/deps/jemalloc/include/jemalloc/internal/prof_externs.h
new file mode 100644
index 0000000..bdff134
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_externs.h
@@ -0,0 +1,95 @@
+#ifndef JEMALLOC_INTERNAL_PROF_EXTERNS_H
+#define JEMALLOC_INTERNAL_PROF_EXTERNS_H
+
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/prof_hook.h"
+
+extern bool opt_prof;
+extern bool opt_prof_active;
+extern bool opt_prof_thread_active_init;
+extern size_t opt_lg_prof_sample; /* Mean bytes between samples. */
+extern ssize_t opt_lg_prof_interval; /* lg(prof_interval). */
+extern bool opt_prof_gdump; /* High-water memory dumping. */
+extern bool opt_prof_final; /* Final profile dumping. */
+extern bool opt_prof_leak; /* Dump leak summary at exit. */
+extern bool opt_prof_leak_error; /* Exit with error code if memory leaked */
+extern bool opt_prof_accum; /* Report cumulative bytes. */
+extern bool opt_prof_log; /* Turn logging on at boot. */
+extern char opt_prof_prefix[
+ /* Minimize memory bloat for non-prof builds. */
+#ifdef JEMALLOC_PROF
+ PATH_MAX +
+#endif
+ 1];
+extern bool opt_prof_unbias;
+
+/* For recording recent allocations */
+extern ssize_t opt_prof_recent_alloc_max;
+
+/* Whether to use thread name provided by the system or by mallctl. */
+extern bool opt_prof_sys_thread_name;
+
+/* Whether to record per size class counts and request size totals. */
+extern bool opt_prof_stats;
+
+/* Accessed via prof_active_[gs]et{_unlocked,}(). */
+extern bool prof_active_state;
+
+/* Accessed via prof_gdump_[gs]et{_unlocked,}(). */
+extern bool prof_gdump_val;
+
+/* Profile dump interval, measured in bytes allocated. */
+extern uint64_t prof_interval;
+
+/*
+ * Initialized as opt_lg_prof_sample, and potentially modified during profiling
+ * resets.
+ */
+extern size_t lg_prof_sample;
+
+extern bool prof_booted;
+
+void prof_backtrace_hook_set(prof_backtrace_hook_t hook);
+prof_backtrace_hook_t prof_backtrace_hook_get();
+
+void prof_dump_hook_set(prof_dump_hook_t hook);
+prof_dump_hook_t prof_dump_hook_get();
+
+/* Functions only accessed in prof_inlines.h */
+prof_tdata_t *prof_tdata_init(tsd_t *tsd);
+prof_tdata_t *prof_tdata_reinit(tsd_t *tsd, prof_tdata_t *tdata);
+
+void prof_alloc_rollback(tsd_t *tsd, prof_tctx_t *tctx);
+void prof_malloc_sample_object(tsd_t *tsd, const void *ptr, size_t size,
+ size_t usize, prof_tctx_t *tctx);
+void prof_free_sampled_object(tsd_t *tsd, size_t usize, prof_info_t *prof_info);
+prof_tctx_t *prof_tctx_create(tsd_t *tsd);
+void prof_idump(tsdn_t *tsdn);
+bool prof_mdump(tsd_t *tsd, const char *filename);
+void prof_gdump(tsdn_t *tsdn);
+
+void prof_tdata_cleanup(tsd_t *tsd);
+bool prof_active_get(tsdn_t *tsdn);
+bool prof_active_set(tsdn_t *tsdn, bool active);
+const char *prof_thread_name_get(tsd_t *tsd);
+int prof_thread_name_set(tsd_t *tsd, const char *thread_name);
+bool prof_thread_active_get(tsd_t *tsd);
+bool prof_thread_active_set(tsd_t *tsd, bool active);
+bool prof_thread_active_init_get(tsdn_t *tsdn);
+bool prof_thread_active_init_set(tsdn_t *tsdn, bool active_init);
+bool prof_gdump_get(tsdn_t *tsdn);
+bool prof_gdump_set(tsdn_t *tsdn, bool active);
+void prof_boot0(void);
+void prof_boot1(void);
+bool prof_boot2(tsd_t *tsd, base_t *base);
+void prof_prefork0(tsdn_t *tsdn);
+void prof_prefork1(tsdn_t *tsdn);
+void prof_postfork_parent(tsdn_t *tsdn);
+void prof_postfork_child(tsdn_t *tsdn);
+
+/* Only accessed by thread event. */
+uint64_t prof_sample_new_event_wait(tsd_t *tsd);
+uint64_t prof_sample_postponed_event_wait(tsd_t *tsd);
+void prof_sample_event_handler(tsd_t *tsd, uint64_t elapsed);
+
+#endif /* JEMALLOC_INTERNAL_PROF_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_hook.h b/deps/jemalloc/include/jemalloc/internal/prof_hook.h
new file mode 100644
index 0000000..150d19d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_hook.h
@@ -0,0 +1,21 @@
+#ifndef JEMALLOC_INTERNAL_PROF_HOOK_H
+#define JEMALLOC_INTERNAL_PROF_HOOK_H
+
+/*
+ * The hooks types of which are declared in this file are experimental and
+ * undocumented, thus the typedefs are located in an 'internal' header.
+ */
+
+/*
+ * A hook to mock out backtrace functionality. This can be handy, since it's
+ * otherwise difficult to guarantee that two allocations are reported as coming
+ * from the exact same stack trace in the presence of an optimizing compiler.
+ */
+typedef void (*prof_backtrace_hook_t)(void **, unsigned *, unsigned);
+
+/*
+ * A callback hook that notifies about recently dumped heap profile.
+ */
+typedef void (*prof_dump_hook_t)(const char *filename);
+
+#endif /* JEMALLOC_INTERNAL_PROF_HOOK_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_inlines.h b/deps/jemalloc/include/jemalloc/internal/prof_inlines.h
new file mode 100644
index 0000000..a8e7e7f
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_inlines.h
@@ -0,0 +1,261 @@
+#ifndef JEMALLOC_INTERNAL_PROF_INLINES_H
+#define JEMALLOC_INTERNAL_PROF_INLINES_H
+
+#include "jemalloc/internal/safety_check.h"
+#include "jemalloc/internal/sz.h"
+#include "jemalloc/internal/thread_event.h"
+
+JEMALLOC_ALWAYS_INLINE void
+prof_active_assert() {
+ cassert(config_prof);
+ /*
+ * If opt_prof is off, then prof_active must always be off, regardless
+ * of whether prof_active_mtx is in effect or not.
+ */
+ assert(opt_prof || !prof_active_state);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+prof_active_get_unlocked(void) {
+ prof_active_assert();
+ /*
+ * Even if opt_prof is true, sampling can be temporarily disabled by
+ * setting prof_active to false. No locking is used when reading
+ * prof_active in the fast path, so there are no guarantees regarding
+ * how long it will take for all threads to notice state changes.
+ */
+ return prof_active_state;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+prof_gdump_get_unlocked(void) {
+ /*
+ * No locking is used when reading prof_gdump_val in the fast path, so
+ * there are no guarantees regarding how long it will take for all
+ * threads to notice state changes.
+ */
+ return prof_gdump_val;
+}
+
+JEMALLOC_ALWAYS_INLINE prof_tdata_t *
+prof_tdata_get(tsd_t *tsd, bool create) {
+ prof_tdata_t *tdata;
+
+ cassert(config_prof);
+
+ tdata = tsd_prof_tdata_get(tsd);
+ if (create) {
+ assert(tsd_reentrancy_level_get(tsd) == 0);
+ if (unlikely(tdata == NULL)) {
+ if (tsd_nominal(tsd)) {
+ tdata = prof_tdata_init(tsd);
+ tsd_prof_tdata_set(tsd, tdata);
+ }
+ } else if (unlikely(tdata->expired)) {
+ tdata = prof_tdata_reinit(tsd, tdata);
+ tsd_prof_tdata_set(tsd, tdata);
+ }
+ assert(tdata == NULL || tdata->attached);
+ }
+
+ return tdata;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_info_get(tsd_t *tsd, const void *ptr, emap_alloc_ctx_t *alloc_ctx,
+ prof_info_t *prof_info) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+ assert(prof_info != NULL);
+
+ arena_prof_info_get(tsd, ptr, alloc_ctx, prof_info, false);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_info_get_and_reset_recent(tsd_t *tsd, const void *ptr,
+ emap_alloc_ctx_t *alloc_ctx, prof_info_t *prof_info) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+ assert(prof_info != NULL);
+
+ arena_prof_info_get(tsd, ptr, alloc_ctx, prof_info, true);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_tctx_reset(tsd_t *tsd, const void *ptr, emap_alloc_ctx_t *alloc_ctx) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+
+ arena_prof_tctx_reset(tsd, ptr, alloc_ctx);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_tctx_reset_sampled(tsd_t *tsd, const void *ptr) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+
+ arena_prof_tctx_reset_sampled(tsd, ptr);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_info_set(tsd_t *tsd, edata_t *edata, prof_tctx_t *tctx, size_t size) {
+ cassert(config_prof);
+ assert(edata != NULL);
+ assert((uintptr_t)tctx > (uintptr_t)1U);
+
+ arena_prof_info_set(tsd, edata, tctx, size);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+prof_sample_should_skip(tsd_t *tsd, bool sample_event) {
+ cassert(config_prof);
+
+ /* Fastpath: no need to load tdata */
+ if (likely(!sample_event)) {
+ return true;
+ }
+
+ /*
+ * sample_event is always obtained from the thread event module, and
+ * whenever it's true, it means that the thread event module has
+ * already checked the reentrancy level.
+ */
+ assert(tsd_reentrancy_level_get(tsd) == 0);
+
+ prof_tdata_t *tdata = prof_tdata_get(tsd, true);
+ if (unlikely(tdata == NULL)) {
+ return true;
+ }
+
+ return !tdata->active;
+}
+
+JEMALLOC_ALWAYS_INLINE prof_tctx_t *
+prof_alloc_prep(tsd_t *tsd, bool prof_active, bool sample_event) {
+ prof_tctx_t *ret;
+
+ if (!prof_active ||
+ likely(prof_sample_should_skip(tsd, sample_event))) {
+ ret = (prof_tctx_t *)(uintptr_t)1U;
+ } else {
+ ret = prof_tctx_create(tsd);
+ }
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_malloc(tsd_t *tsd, const void *ptr, size_t size, size_t usize,
+ emap_alloc_ctx_t *alloc_ctx, prof_tctx_t *tctx) {
+ cassert(config_prof);
+ assert(ptr != NULL);
+ assert(usize == isalloc(tsd_tsdn(tsd), ptr));
+
+ if (unlikely((uintptr_t)tctx > (uintptr_t)1U)) {
+ prof_malloc_sample_object(tsd, ptr, size, usize, tctx);
+ } else {
+ prof_tctx_reset(tsd, ptr, alloc_ctx);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_realloc(tsd_t *tsd, const void *ptr, size_t size, size_t usize,
+ prof_tctx_t *tctx, bool prof_active, const void *old_ptr, size_t old_usize,
+ prof_info_t *old_prof_info, bool sample_event) {
+ bool sampled, old_sampled, moved;
+
+ cassert(config_prof);
+ assert(ptr != NULL || (uintptr_t)tctx <= (uintptr_t)1U);
+
+ if (prof_active && ptr != NULL) {
+ assert(usize == isalloc(tsd_tsdn(tsd), ptr));
+ if (prof_sample_should_skip(tsd, sample_event)) {
+ /*
+ * Don't sample. The usize passed to prof_alloc_prep()
+ * was larger than what actually got allocated, so a
+ * backtrace was captured for this allocation, even
+ * though its actual usize was insufficient to cross the
+ * sample threshold.
+ */
+ prof_alloc_rollback(tsd, tctx);
+ tctx = (prof_tctx_t *)(uintptr_t)1U;
+ }
+ }
+
+ sampled = ((uintptr_t)tctx > (uintptr_t)1U);
+ old_sampled = ((uintptr_t)old_prof_info->alloc_tctx > (uintptr_t)1U);
+ moved = (ptr != old_ptr);
+
+ if (unlikely(sampled)) {
+ prof_malloc_sample_object(tsd, ptr, size, usize, tctx);
+ } else if (moved) {
+ prof_tctx_reset(tsd, ptr, NULL);
+ } else if (unlikely(old_sampled)) {
+ /*
+ * prof_tctx_reset() would work for the !moved case as well,
+ * but prof_tctx_reset_sampled() is slightly cheaper, and the
+ * proper thing to do here in the presence of explicit
+ * knowledge re: moved state.
+ */
+ prof_tctx_reset_sampled(tsd, ptr);
+ } else {
+ prof_info_t prof_info;
+ prof_info_get(tsd, ptr, NULL, &prof_info);
+ assert((uintptr_t)prof_info.alloc_tctx == (uintptr_t)1U);
+ }
+
+ /*
+ * The prof_free_sampled_object() call must come after the
+ * prof_malloc_sample_object() call, because tctx and old_tctx may be
+ * the same, in which case reversing the call order could cause the tctx
+ * to be prematurely destroyed as a side effect of momentarily zeroed
+ * counters.
+ */
+ if (unlikely(old_sampled)) {
+ prof_free_sampled_object(tsd, old_usize, old_prof_info);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+prof_sample_align(size_t orig_align) {
+ /*
+ * Enforce page alignment, so that sampled allocations can be identified
+ * w/o metadata lookup.
+ */
+ assert(opt_prof);
+ return (opt_cache_oblivious && orig_align < PAGE) ? PAGE :
+ orig_align;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+prof_sample_aligned(const void *ptr) {
+ return ((uintptr_t)ptr & PAGE_MASK) == 0;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+prof_sampled(tsd_t *tsd, const void *ptr) {
+ prof_info_t prof_info;
+ prof_info_get(tsd, ptr, NULL, &prof_info);
+ bool sampled = (uintptr_t)prof_info.alloc_tctx > (uintptr_t)1U;
+ if (sampled) {
+ assert(prof_sample_aligned(ptr));
+ }
+ return sampled;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+prof_free(tsd_t *tsd, const void *ptr, size_t usize,
+ emap_alloc_ctx_t *alloc_ctx) {
+ prof_info_t prof_info;
+ prof_info_get_and_reset_recent(tsd, ptr, alloc_ctx, &prof_info);
+
+ cassert(config_prof);
+ assert(usize == isalloc(tsd_tsdn(tsd), ptr));
+
+ if (unlikely((uintptr_t)prof_info.alloc_tctx > (uintptr_t)1U)) {
+ assert(prof_sample_aligned(ptr));
+ prof_free_sampled_object(tsd, usize, &prof_info);
+ }
+}
+
+#endif /* JEMALLOC_INTERNAL_PROF_INLINES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_log.h b/deps/jemalloc/include/jemalloc/internal/prof_log.h
new file mode 100644
index 0000000..ccb557d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_log.h
@@ -0,0 +1,22 @@
+#ifndef JEMALLOC_INTERNAL_PROF_LOG_H
+#define JEMALLOC_INTERNAL_PROF_LOG_H
+
+#include "jemalloc/internal/mutex.h"
+
+extern malloc_mutex_t log_mtx;
+
+void prof_try_log(tsd_t *tsd, size_t usize, prof_info_t *prof_info);
+bool prof_log_init(tsd_t *tsdn);
+
+/* Used in unit tests. */
+size_t prof_log_bt_count(void);
+size_t prof_log_alloc_count(void);
+size_t prof_log_thr_count(void);
+bool prof_log_is_logging(void);
+bool prof_log_rep_check(void);
+void prof_log_dummy_set(bool new_value);
+
+bool prof_log_start(tsdn_t *tsdn, const char *filename);
+bool prof_log_stop(tsdn_t *tsdn);
+
+#endif /* JEMALLOC_INTERNAL_PROF_LOG_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_recent.h b/deps/jemalloc/include/jemalloc/internal/prof_recent.h
new file mode 100644
index 0000000..df41023
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_recent.h
@@ -0,0 +1,23 @@
+#ifndef JEMALLOC_INTERNAL_PROF_RECENT_H
+#define JEMALLOC_INTERNAL_PROF_RECENT_H
+
+extern malloc_mutex_t prof_recent_alloc_mtx;
+extern malloc_mutex_t prof_recent_dump_mtx;
+
+bool prof_recent_alloc_prepare(tsd_t *tsd, prof_tctx_t *tctx);
+void prof_recent_alloc(tsd_t *tsd, edata_t *edata, size_t size, size_t usize);
+void prof_recent_alloc_reset(tsd_t *tsd, edata_t *edata);
+bool prof_recent_init();
+void edata_prof_recent_alloc_init(edata_t *edata);
+
+/* Used in unit tests. */
+typedef ql_head(prof_recent_t) prof_recent_list_t;
+extern prof_recent_list_t prof_recent_alloc_list;
+edata_t *prof_recent_alloc_edata_get_no_lock_test(const prof_recent_t *node);
+prof_recent_t *edata_prof_recent_alloc_get_no_lock_test(const edata_t *edata);
+
+ssize_t prof_recent_alloc_max_ctl_read();
+ssize_t prof_recent_alloc_max_ctl_write(tsd_t *tsd, ssize_t max);
+void prof_recent_alloc_dump(tsd_t *tsd, write_cb_t *write_cb, void *cbopaque);
+
+#endif /* JEMALLOC_INTERNAL_PROF_RECENT_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_stats.h b/deps/jemalloc/include/jemalloc/internal/prof_stats.h
new file mode 100644
index 0000000..7954e82
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_stats.h
@@ -0,0 +1,17 @@
+#ifndef JEMALLOC_INTERNAL_PROF_STATS_H
+#define JEMALLOC_INTERNAL_PROF_STATS_H
+
+typedef struct prof_stats_s prof_stats_t;
+struct prof_stats_s {
+ uint64_t req_sum;
+ uint64_t count;
+};
+
+extern malloc_mutex_t prof_stats_mtx;
+
+void prof_stats_inc(tsd_t *tsd, szind_t ind, size_t size);
+void prof_stats_dec(tsd_t *tsd, szind_t ind, size_t size);
+void prof_stats_get_live(tsd_t *tsd, szind_t ind, prof_stats_t *stats);
+void prof_stats_get_accum(tsd_t *tsd, szind_t ind, prof_stats_t *stats);
+
+#endif /* JEMALLOC_INTERNAL_PROF_STATS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_structs.h b/deps/jemalloc/include/jemalloc/internal/prof_structs.h
new file mode 100644
index 0000000..dd22115
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_structs.h
@@ -0,0 +1,221 @@
+#ifndef JEMALLOC_INTERNAL_PROF_STRUCTS_H
+#define JEMALLOC_INTERNAL_PROF_STRUCTS_H
+
+#include "jemalloc/internal/ckh.h"
+#include "jemalloc/internal/edata.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/prng.h"
+#include "jemalloc/internal/rb.h"
+
+struct prof_bt_s {
+ /* Backtrace, stored as len program counters. */
+ void **vec;
+ unsigned len;
+};
+
+#ifdef JEMALLOC_PROF_LIBGCC
+/* Data structure passed to libgcc _Unwind_Backtrace() callback functions. */
+typedef struct {
+ void **vec;
+ unsigned *len;
+ unsigned max;
+} prof_unwind_data_t;
+#endif
+
+struct prof_cnt_s {
+ /* Profiling counters. */
+ uint64_t curobjs;
+ uint64_t curobjs_shifted_unbiased;
+ uint64_t curbytes;
+ uint64_t curbytes_unbiased;
+ uint64_t accumobjs;
+ uint64_t accumobjs_shifted_unbiased;
+ uint64_t accumbytes;
+ uint64_t accumbytes_unbiased;
+};
+
+typedef enum {
+ prof_tctx_state_initializing,
+ prof_tctx_state_nominal,
+ prof_tctx_state_dumping,
+ prof_tctx_state_purgatory /* Dumper must finish destroying. */
+} prof_tctx_state_t;
+
+struct prof_tctx_s {
+ /* Thread data for thread that performed the allocation. */
+ prof_tdata_t *tdata;
+
+ /*
+ * Copy of tdata->thr_{uid,discrim}, necessary because tdata may be
+ * defunct during teardown.
+ */
+ uint64_t thr_uid;
+ uint64_t thr_discrim;
+
+ /*
+ * Reference count of how many times this tctx object is referenced in
+ * recent allocation / deallocation records, protected by tdata->lock.
+ */
+ uint64_t recent_count;
+
+ /* Profiling counters, protected by tdata->lock. */
+ prof_cnt_t cnts;
+
+ /* Associated global context. */
+ prof_gctx_t *gctx;
+
+ /*
+ * UID that distinguishes multiple tctx's created by the same thread,
+ * but coexisting in gctx->tctxs. There are two ways that such
+ * coexistence can occur:
+ * - A dumper thread can cause a tctx to be retained in the purgatory
+ * state.
+ * - Although a single "producer" thread must create all tctx's which
+ * share the same thr_uid, multiple "consumers" can each concurrently
+ * execute portions of prof_tctx_destroy(). prof_tctx_destroy() only
+ * gets called once each time cnts.cur{objs,bytes} drop to 0, but this
+ * threshold can be hit again before the first consumer finishes
+ * executing prof_tctx_destroy().
+ */
+ uint64_t tctx_uid;
+
+ /* Linkage into gctx's tctxs. */
+ rb_node(prof_tctx_t) tctx_link;
+
+ /*
+ * True during prof_alloc_prep()..prof_malloc_sample_object(), prevents
+ * sample vs destroy race.
+ */
+ bool prepared;
+
+ /* Current dump-related state, protected by gctx->lock. */
+ prof_tctx_state_t state;
+
+ /*
+ * Copy of cnts snapshotted during early dump phase, protected by
+ * dump_mtx.
+ */
+ prof_cnt_t dump_cnts;
+};
+typedef rb_tree(prof_tctx_t) prof_tctx_tree_t;
+
+struct prof_info_s {
+ /* Time when the allocation was made. */
+ nstime_t alloc_time;
+ /* Points to the prof_tctx_t corresponding to the allocation. */
+ prof_tctx_t *alloc_tctx;
+ /* Allocation request size. */
+ size_t alloc_size;
+};
+
+struct prof_gctx_s {
+ /* Protects nlimbo, cnt_summed, and tctxs. */
+ malloc_mutex_t *lock;
+
+ /*
+ * Number of threads that currently cause this gctx to be in a state of
+ * limbo due to one of:
+ * - Initializing this gctx.
+ * - Initializing per thread counters associated with this gctx.
+ * - Preparing to destroy this gctx.
+ * - Dumping a heap profile that includes this gctx.
+ * nlimbo must be 1 (single destroyer) in order to safely destroy the
+ * gctx.
+ */
+ unsigned nlimbo;
+
+ /*
+ * Tree of profile counters, one for each thread that has allocated in
+ * this context.
+ */
+ prof_tctx_tree_t tctxs;
+
+ /* Linkage for tree of contexts to be dumped. */
+ rb_node(prof_gctx_t) dump_link;
+
+ /* Temporary storage for summation during dump. */
+ prof_cnt_t cnt_summed;
+
+ /* Associated backtrace. */
+ prof_bt_t bt;
+
+ /* Backtrace vector, variable size, referred to by bt. */
+ void *vec[1];
+};
+typedef rb_tree(prof_gctx_t) prof_gctx_tree_t;
+
+struct prof_tdata_s {
+ malloc_mutex_t *lock;
+
+ /* Monotonically increasing unique thread identifier. */
+ uint64_t thr_uid;
+
+ /*
+ * Monotonically increasing discriminator among tdata structures
+ * associated with the same thr_uid.
+ */
+ uint64_t thr_discrim;
+
+ /* Included in heap profile dumps if non-NULL. */
+ char *thread_name;
+
+ bool attached;
+ bool expired;
+
+ rb_node(prof_tdata_t) tdata_link;
+
+ /*
+ * Counter used to initialize prof_tctx_t's tctx_uid. No locking is
+ * necessary when incrementing this field, because only one thread ever
+ * does so.
+ */
+ uint64_t tctx_uid_next;
+
+ /*
+ * Hash of (prof_bt_t *)-->(prof_tctx_t *). Each thread tracks
+ * backtraces for which it has non-zero allocation/deallocation counters
+ * associated with thread-specific prof_tctx_t objects. Other threads
+ * may write to prof_tctx_t contents when freeing associated objects.
+ */
+ ckh_t bt2tctx;
+
+ /* State used to avoid dumping while operating on prof internals. */
+ bool enq;
+ bool enq_idump;
+ bool enq_gdump;
+
+ /*
+ * Set to true during an early dump phase for tdata's which are
+ * currently being dumped. New threads' tdata's have this initialized
+ * to false so that they aren't accidentally included in later dump
+ * phases.
+ */
+ bool dumping;
+
+ /*
+ * True if profiling is active for this tdata's thread
+ * (thread.prof.active mallctl).
+ */
+ bool active;
+
+ /* Temporary storage for summation during dump. */
+ prof_cnt_t cnt_summed;
+
+ /* Backtrace vector, used for calls to prof_backtrace(). */
+ void *vec[PROF_BT_MAX];
+};
+typedef rb_tree(prof_tdata_t) prof_tdata_tree_t;
+
+struct prof_recent_s {
+ nstime_t alloc_time;
+ nstime_t dalloc_time;
+
+ ql_elm(prof_recent_t) link;
+ size_t size;
+ size_t usize;
+ atomic_p_t alloc_edata; /* NULL means allocation has been freed. */
+ prof_tctx_t *alloc_tctx;
+ prof_tctx_t *dalloc_tctx;
+};
+
+#endif /* JEMALLOC_INTERNAL_PROF_STRUCTS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_sys.h b/deps/jemalloc/include/jemalloc/internal/prof_sys.h
new file mode 100644
index 0000000..3d25a42
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_sys.h
@@ -0,0 +1,30 @@
+#ifndef JEMALLOC_INTERNAL_PROF_SYS_H
+#define JEMALLOC_INTERNAL_PROF_SYS_H
+
+extern malloc_mutex_t prof_dump_filename_mtx;
+extern base_t *prof_base;
+
+void bt_init(prof_bt_t *bt, void **vec);
+void prof_backtrace(tsd_t *tsd, prof_bt_t *bt);
+void prof_hooks_init();
+void prof_unwind_init();
+void prof_sys_thread_name_fetch(tsd_t *tsd);
+int prof_getpid(void);
+void prof_get_default_filename(tsdn_t *tsdn, char *filename, uint64_t ind);
+bool prof_prefix_set(tsdn_t *tsdn, const char *prefix);
+void prof_fdump_impl(tsd_t *tsd);
+void prof_idump_impl(tsd_t *tsd);
+bool prof_mdump_impl(tsd_t *tsd, const char *filename);
+void prof_gdump_impl(tsd_t *tsd);
+
+/* Used in unit tests. */
+typedef int (prof_sys_thread_name_read_t)(char *buf, size_t limit);
+extern prof_sys_thread_name_read_t *JET_MUTABLE prof_sys_thread_name_read;
+typedef int (prof_dump_open_file_t)(const char *, int);
+extern prof_dump_open_file_t *JET_MUTABLE prof_dump_open_file;
+typedef ssize_t (prof_dump_write_file_t)(int, const void *, size_t);
+extern prof_dump_write_file_t *JET_MUTABLE prof_dump_write_file;
+typedef int (prof_dump_open_maps_t)();
+extern prof_dump_open_maps_t *JET_MUTABLE prof_dump_open_maps;
+
+#endif /* JEMALLOC_INTERNAL_PROF_SYS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/prof_types.h b/deps/jemalloc/include/jemalloc/internal/prof_types.h
new file mode 100644
index 0000000..ba62865
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/prof_types.h
@@ -0,0 +1,75 @@
+#ifndef JEMALLOC_INTERNAL_PROF_TYPES_H
+#define JEMALLOC_INTERNAL_PROF_TYPES_H
+
+typedef struct prof_bt_s prof_bt_t;
+typedef struct prof_cnt_s prof_cnt_t;
+typedef struct prof_tctx_s prof_tctx_t;
+typedef struct prof_info_s prof_info_t;
+typedef struct prof_gctx_s prof_gctx_t;
+typedef struct prof_tdata_s prof_tdata_t;
+typedef struct prof_recent_s prof_recent_t;
+
+/* Option defaults. */
+#ifdef JEMALLOC_PROF
+# define PROF_PREFIX_DEFAULT "jeprof"
+#else
+# define PROF_PREFIX_DEFAULT ""
+#endif
+#define LG_PROF_SAMPLE_DEFAULT 19
+#define LG_PROF_INTERVAL_DEFAULT -1
+
+/*
+ * Hard limit on stack backtrace depth. The version of prof_backtrace() that
+ * is based on __builtin_return_address() necessarily has a hard-coded number
+ * of backtrace frame handlers, and should be kept in sync with this setting.
+ */
+#define PROF_BT_MAX 128
+
+/* Initial hash table size. */
+#define PROF_CKH_MINITEMS 64
+
+/* Size of memory buffer to use when writing dump files. */
+#ifndef JEMALLOC_PROF
+/* Minimize memory bloat for non-prof builds. */
+# define PROF_DUMP_BUFSIZE 1
+#elif defined(JEMALLOC_DEBUG)
+/* Use a small buffer size in debug build, mainly to facilitate testing. */
+# define PROF_DUMP_BUFSIZE 16
+#else
+# define PROF_DUMP_BUFSIZE 65536
+#endif
+
+/* Size of size class related tables */
+#ifdef JEMALLOC_PROF
+# define PROF_SC_NSIZES SC_NSIZES
+#else
+/* Minimize memory bloat for non-prof builds. */
+# define PROF_SC_NSIZES 1
+#endif
+
+/* Size of stack-allocated buffer used by prof_printf(). */
+#define PROF_PRINTF_BUFSIZE 128
+
+/*
+ * Number of mutexes shared among all gctx's. No space is allocated for these
+ * unless profiling is enabled, so it's okay to over-provision.
+ */
+#define PROF_NCTX_LOCKS 1024
+
+/*
+ * Number of mutexes shared among all tdata's. No space is allocated for these
+ * unless profiling is enabled, so it's okay to over-provision.
+ */
+#define PROF_NTDATA_LOCKS 256
+
+/* Minimize memory bloat for non-prof builds. */
+#ifdef JEMALLOC_PROF
+#define PROF_DUMP_FILENAME_LEN (PATH_MAX + 1)
+#else
+#define PROF_DUMP_FILENAME_LEN 1
+#endif
+
+/* Default number of recent allocations to record. */
+#define PROF_RECENT_ALLOC_MAX_DEFAULT 0
+
+#endif /* JEMALLOC_INTERNAL_PROF_TYPES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/psset.h b/deps/jemalloc/include/jemalloc/internal/psset.h
new file mode 100644
index 0000000..e1d6497
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/psset.h
@@ -0,0 +1,131 @@
+#ifndef JEMALLOC_INTERNAL_PSSET_H
+#define JEMALLOC_INTERNAL_PSSET_H
+
+#include "jemalloc/internal/hpdata.h"
+
+/*
+ * A page-slab set. What the eset is to PAC, the psset is to HPA. It maintains
+ * a collection of page-slabs (the intent being that they are backed by
+ * hugepages, or at least could be), and handles allocation and deallocation
+ * requests.
+ */
+
+/*
+ * One more than the maximum pszind_t we will serve out of the HPA.
+ * Practically, we expect only the first few to be actually used. This
+ * corresponds to a maximum size of of 512MB on systems with 4k pages and
+ * SC_NGROUP == 4, which is already an unreasonably large maximum. Morally, you
+ * can think of this as being SC_NPSIZES, but there's no sense in wasting that
+ * much space in the arena, making bitmaps that much larger, etc.
+ */
+#define PSSET_NPSIZES 64
+
+/*
+ * We keep two purge lists per page size class; one for hugified hpdatas (at
+ * index 2*pszind), and one for the non-hugified hpdatas (at index 2*pszind +
+ * 1). This lets us implement a preference for purging non-hugified hpdatas
+ * among similarly-dirty ones.
+ * We reserve the last two indices for empty slabs, in that case purging
+ * hugified ones (which are definitionally all waste) before non-hugified ones
+ * (i.e. reversing the order).
+ */
+#define PSSET_NPURGE_LISTS (2 * PSSET_NPSIZES)
+
+typedef struct psset_bin_stats_s psset_bin_stats_t;
+struct psset_bin_stats_s {
+ /* How many pageslabs are in this bin? */
+ size_t npageslabs;
+ /* Of them, how many pages are active? */
+ size_t nactive;
+ /* And how many are dirty? */
+ size_t ndirty;
+};
+
+typedef struct psset_stats_s psset_stats_t;
+struct psset_stats_s {
+ /*
+ * The second index is huge stats; nonfull_slabs[pszind][0] contains
+ * stats for the non-huge slabs in bucket pszind, while
+ * nonfull_slabs[pszind][1] contains stats for the huge slabs.
+ */
+ psset_bin_stats_t nonfull_slabs[PSSET_NPSIZES][2];
+
+ /*
+ * Full slabs don't live in any edata heap, but we still track their
+ * stats.
+ */
+ psset_bin_stats_t full_slabs[2];
+
+ /* Empty slabs are similar. */
+ psset_bin_stats_t empty_slabs[2];
+};
+
+typedef struct psset_s psset_t;
+struct psset_s {
+ /*
+ * The pageslabs, quantized by the size class of the largest contiguous
+ * free run of pages in a pageslab.
+ */
+ hpdata_age_heap_t pageslabs[PSSET_NPSIZES];
+ /* Bitmap for which set bits correspond to non-empty heaps. */
+ fb_group_t pageslab_bitmap[FB_NGROUPS(PSSET_NPSIZES)];
+ /*
+ * The sum of all bin stats in stats. This lets us quickly answer
+ * queries for the number of dirty, active, and retained pages in the
+ * entire set.
+ */
+ psset_bin_stats_t merged_stats;
+ psset_stats_t stats;
+ /*
+ * Slabs with no active allocations, but which are allowed to serve new
+ * allocations.
+ */
+ hpdata_empty_list_t empty;
+ /*
+ * Slabs which are available to be purged, ordered by how much we want
+ * to purge them (with later indices indicating slabs we want to purge
+ * more).
+ */
+ hpdata_purge_list_t to_purge[PSSET_NPURGE_LISTS];
+ /* Bitmap for which set bits correspond to non-empty purge lists. */
+ fb_group_t purge_bitmap[FB_NGROUPS(PSSET_NPURGE_LISTS)];
+ /* Slabs which are available to be hugified. */
+ hpdata_hugify_list_t to_hugify;
+};
+
+void psset_init(psset_t *psset);
+void psset_stats_accum(psset_stats_t *dst, psset_stats_t *src);
+
+/*
+ * Begin or end updating the given pageslab's metadata. While the pageslab is
+ * being updated, it won't be returned from psset_fit calls.
+ */
+void psset_update_begin(psset_t *psset, hpdata_t *ps);
+void psset_update_end(psset_t *psset, hpdata_t *ps);
+
+/* Analogous to the eset_fit; pick a hpdata to serve the request. */
+hpdata_t *psset_pick_alloc(psset_t *psset, size_t size);
+/* Pick one to purge. */
+hpdata_t *psset_pick_purge(psset_t *psset);
+/* Pick one to hugify. */
+hpdata_t *psset_pick_hugify(psset_t *psset);
+
+void psset_insert(psset_t *psset, hpdata_t *ps);
+void psset_remove(psset_t *psset, hpdata_t *ps);
+
+static inline size_t
+psset_npageslabs(psset_t *psset) {
+ return psset->merged_stats.npageslabs;
+}
+
+static inline size_t
+psset_nactive(psset_t *psset) {
+ return psset->merged_stats.nactive;
+}
+
+static inline size_t
+psset_ndirty(psset_t *psset) {
+ return psset->merged_stats.ndirty;
+}
+
+#endif /* JEMALLOC_INTERNAL_PSSET_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/public_namespace.sh b/deps/jemalloc/include/jemalloc/internal/public_namespace.sh
new file mode 100755
index 0000000..4d415ba
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/public_namespace.sh
@@ -0,0 +1,6 @@
+#!/bin/sh
+
+for nm in `cat $1` ; do
+ n=`echo ${nm} |tr ':' ' ' |awk '{print $1}'`
+ echo "#define je_${n} JEMALLOC_N(${n})"
+done
diff --git a/deps/jemalloc/include/jemalloc/internal/public_unnamespace.sh b/deps/jemalloc/include/jemalloc/internal/public_unnamespace.sh
new file mode 100755
index 0000000..4239d17
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/public_unnamespace.sh
@@ -0,0 +1,6 @@
+#!/bin/sh
+
+for nm in `cat $1` ; do
+ n=`echo ${nm} |tr ':' ' ' |awk '{print $1}'`
+ echo "#undef je_${n}"
+done
diff --git a/deps/jemalloc/include/jemalloc/internal/ql.h b/deps/jemalloc/include/jemalloc/internal/ql.h
new file mode 100644
index 0000000..c7f52f8
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ql.h
@@ -0,0 +1,197 @@
+#ifndef JEMALLOC_INTERNAL_QL_H
+#define JEMALLOC_INTERNAL_QL_H
+
+#include "jemalloc/internal/qr.h"
+
+/*
+ * A linked-list implementation.
+ *
+ * This is built on top of the ring implementation, but that can be viewed as an
+ * implementation detail (i.e. trying to advance past the tail of the list
+ * doesn't wrap around).
+ *
+ * You define a struct like so:
+ * typedef strucy my_s my_t;
+ * struct my_s {
+ * int data;
+ * ql_elm(my_t) my_link;
+ * };
+ *
+ * // We wobble between "list" and "head" for this type; we're now mostly
+ * // heading towards "list".
+ * typedef ql_head(my_t) my_list_t;
+ *
+ * You then pass a my_list_t * for a_head arguments, a my_t * for a_elm
+ * arguments, the token "my_link" for a_field arguments, and the token "my_t"
+ * for a_type arguments.
+ */
+
+/* List definitions. */
+#define ql_head(a_type) \
+struct { \
+ a_type *qlh_first; \
+}
+
+/* Static initializer for an empty list. */
+#define ql_head_initializer(a_head) {NULL}
+
+/* The field definition. */
+#define ql_elm(a_type) qr(a_type)
+
+/* A pointer to the first element in the list, or NULL if the list is empty. */
+#define ql_first(a_head) ((a_head)->qlh_first)
+
+/* Dynamically initializes a list. */
+#define ql_new(a_head) do { \
+ ql_first(a_head) = NULL; \
+} while (0)
+
+/*
+ * Sets dest to be the contents of src (overwriting any elements there), leaving
+ * src empty.
+ */
+#define ql_move(a_head_dest, a_head_src) do { \
+ ql_first(a_head_dest) = ql_first(a_head_src); \
+ ql_new(a_head_src); \
+} while (0)
+
+/* True if the list is empty, otherwise false. */
+#define ql_empty(a_head) (ql_first(a_head) == NULL)
+
+/*
+ * Initializes a ql_elm. Must be called even if the field is about to be
+ * overwritten.
+ */
+#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
+
+/*
+ * Obtains the last item in the list.
+ */
+#define ql_last(a_head, a_field) \
+ (ql_empty(a_head) ? NULL : qr_prev(ql_first(a_head), a_field))
+
+/*
+ * Gets a pointer to the next/prev element in the list. Trying to advance past
+ * the end or retreat before the beginning of the list returns NULL.
+ */
+#define ql_next(a_head, a_elm, a_field) \
+ ((ql_last(a_head, a_field) != (a_elm)) \
+ ? qr_next((a_elm), a_field) : NULL)
+#define ql_prev(a_head, a_elm, a_field) \
+ ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
+ : NULL)
+
+/* Inserts a_elm before a_qlelm in the list. */
+#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
+ qr_before_insert((a_qlelm), (a_elm), a_field); \
+ if (ql_first(a_head) == (a_qlelm)) { \
+ ql_first(a_head) = (a_elm); \
+ } \
+} while (0)
+
+/* Inserts a_elm after a_qlelm in the list. */
+#define ql_after_insert(a_qlelm, a_elm, a_field) \
+ qr_after_insert((a_qlelm), (a_elm), a_field)
+
+/* Inserts a_elm as the first item in the list. */
+#define ql_head_insert(a_head, a_elm, a_field) do { \
+ if (!ql_empty(a_head)) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = (a_elm); \
+} while (0)
+
+/* Inserts a_elm as the last item in the list. */
+#define ql_tail_insert(a_head, a_elm, a_field) do { \
+ if (!ql_empty(a_head)) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = qr_next((a_elm), a_field); \
+} while (0)
+
+/*
+ * Given lists a = [a_1, ..., a_n] and [b_1, ..., b_n], results in:
+ * a = [a1, ..., a_n, b_1, ..., b_n] and b = [].
+ */
+#define ql_concat(a_head_a, a_head_b, a_field) do { \
+ if (ql_empty(a_head_a)) { \
+ ql_move(a_head_a, a_head_b); \
+ } else if (!ql_empty(a_head_b)) { \
+ qr_meld(ql_first(a_head_a), ql_first(a_head_b), \
+ a_field); \
+ ql_new(a_head_b); \
+ } \
+} while (0)
+
+/* Removes a_elm from the list. */
+#define ql_remove(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) == (a_elm)) { \
+ ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
+ } \
+ if (ql_first(a_head) != (a_elm)) { \
+ qr_remove((a_elm), a_field); \
+ } else { \
+ ql_new(a_head); \
+ } \
+} while (0)
+
+/* Removes the first item in the list. */
+#define ql_head_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_first(a_head); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+/* Removes the last item in the list. */
+#define ql_tail_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_last(a_head, a_field); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+/*
+ * Given a = [a_1, a_2, ..., a_n-1, a_n, a_n+1, ...],
+ * ql_split(a, a_n, b, some_field) results in
+ * a = [a_1, a_2, ..., a_n-1]
+ * and replaces b's contents with:
+ * b = [a_n, a_n+1, ...]
+ */
+#define ql_split(a_head_a, a_elm, a_head_b, a_field) do { \
+ if (ql_first(a_head_a) == (a_elm)) { \
+ ql_move(a_head_b, a_head_a); \
+ } else { \
+ qr_split(ql_first(a_head_a), (a_elm), a_field); \
+ ql_first(a_head_b) = (a_elm); \
+ } \
+} while (0)
+
+/*
+ * An optimized version of:
+ * a_type *t = ql_first(a_head);
+ * ql_remove((a_head), t, a_field);
+ * ql_tail_insert((a_head), t, a_field);
+ */
+#define ql_rotate(a_head, a_field) do { \
+ ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
+} while (0)
+
+/*
+ * Helper macro to iterate over each element in a list in order, starting from
+ * the head (or in reverse order, starting from the tail). The usage is
+ * (assuming my_t and my_list_t defined as above).
+ *
+ * int sum(my_list_t *list) {
+ * int sum = 0;
+ * my_t *iter;
+ * ql_foreach(iter, list, link) {
+ * sum += iter->data;
+ * }
+ * return sum;
+ * }
+ */
+
+#define ql_foreach(a_var, a_head, a_field) \
+ qr_foreach((a_var), ql_first(a_head), a_field)
+
+#define ql_reverse_foreach(a_var, a_head, a_field) \
+ qr_reverse_foreach((a_var), ql_first(a_head), a_field)
+
+#endif /* JEMALLOC_INTERNAL_QL_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/qr.h b/deps/jemalloc/include/jemalloc/internal/qr.h
new file mode 100644
index 0000000..ece4f55
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/qr.h
@@ -0,0 +1,140 @@
+#ifndef JEMALLOC_INTERNAL_QR_H
+#define JEMALLOC_INTERNAL_QR_H
+
+/*
+ * A ring implementation based on an embedded circular doubly-linked list.
+ *
+ * You define your struct like so:
+ *
+ * typedef struct my_s my_t;
+ * struct my_s {
+ * int data;
+ * qr(my_t) my_link;
+ * };
+ *
+ * And then pass a my_t * into macros for a_qr arguments, and the token
+ * "my_link" into a_field fields.
+ */
+
+/* Ring definitions. */
+#define qr(a_type) \
+struct { \
+ a_type *qre_next; \
+ a_type *qre_prev; \
+}
+
+/*
+ * Initialize a qr link. Every link must be initialized before being used, even
+ * if that initialization is going to be immediately overwritten (say, by being
+ * passed into an insertion macro).
+ */
+#define qr_new(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+/*
+ * Go forwards or backwards in the ring. Note that (the ring being circular), this
+ * always succeeds -- you just keep looping around and around the ring if you
+ * chase pointers without end.
+ */
+#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
+#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
+
+/*
+ * Given two rings:
+ * a -> a_1 -> ... -> a_n --
+ * ^ |
+ * |------------------------
+ *
+ * b -> b_1 -> ... -> b_n --
+ * ^ |
+ * |------------------------
+ *
+ * Results in the ring:
+ * a -> a_1 -> ... -> a_n -> b -> b_1 -> ... -> b_n --
+ * ^ |
+ * |-------------------------------------------------|
+ *
+ * a_qr_a can directly be a qr_next() macro, but a_qr_b cannot.
+ */
+#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
+ (a_qr_b)->a_field.qre_prev->a_field.qre_next = \
+ (a_qr_a)->a_field.qre_prev; \
+ (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
+ (a_qr_b)->a_field.qre_prev = \
+ (a_qr_b)->a_field.qre_prev->a_field.qre_next; \
+ (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
+ (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
+} while (0)
+
+/*
+ * Logically, this is just a meld. The intent, though, is that a_qrelm is a
+ * single-element ring, so that "before" has a more obvious interpretation than
+ * meld.
+ */
+#define qr_before_insert(a_qrelm, a_qr, a_field) \
+ qr_meld((a_qrelm), (a_qr), a_field)
+
+/* Ditto, but inserting after rather than before. */
+#define qr_after_insert(a_qrelm, a_qr, a_field) \
+ qr_before_insert(qr_next(a_qrelm, a_field), (a_qr), a_field)
+
+/*
+ * Inverts meld; given the ring:
+ * a -> a_1 -> ... -> a_n -> b -> b_1 -> ... -> b_n --
+ * ^ |
+ * |-------------------------------------------------|
+ *
+ * Results in two rings:
+ * a -> a_1 -> ... -> a_n --
+ * ^ |
+ * |------------------------
+ *
+ * b -> b_1 -> ... -> b_n --
+ * ^ |
+ * |------------------------
+ *
+ * qr_meld() and qr_split() are functionally equivalent, so there's no need to
+ * have two copies of the code.
+ */
+#define qr_split(a_qr_a, a_qr_b, a_field) \
+ qr_meld((a_qr_a), (a_qr_b), a_field)
+
+/*
+ * Splits off a_qr from the rest of its ring, so that it becomes a
+ * single-element ring.
+ */
+#define qr_remove(a_qr, a_field) \
+ qr_split(qr_next(a_qr, a_field), (a_qr), a_field)
+
+/*
+ * Helper macro to iterate over each element in a ring exactly once, starting
+ * with a_qr. The usage is (assuming my_t defined as above):
+ *
+ * int sum(my_t *item) {
+ * int sum = 0;
+ * my_t *iter;
+ * qr_foreach(iter, item, link) {
+ * sum += iter->data;
+ * }
+ * return sum;
+ * }
+ */
+#define qr_foreach(var, a_qr, a_field) \
+ for ((var) = (a_qr); \
+ (var) != NULL; \
+ (var) = (((var)->a_field.qre_next != (a_qr)) \
+ ? (var)->a_field.qre_next : NULL))
+
+/*
+ * The same (and with the same usage) as qr_foreach, but in the opposite order,
+ * ending with a_qr.
+ */
+#define qr_reverse_foreach(var, a_qr, a_field) \
+ for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
+ (var) != NULL; \
+ (var) = (((var) != (a_qr)) \
+ ? (var)->a_field.qre_prev : NULL))
+
+#endif /* JEMALLOC_INTERNAL_QR_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/quantum.h b/deps/jemalloc/include/jemalloc/internal/quantum.h
new file mode 100644
index 0000000..c22d753
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/quantum.h
@@ -0,0 +1,87 @@
+#ifndef JEMALLOC_INTERNAL_QUANTUM_H
+#define JEMALLOC_INTERNAL_QUANTUM_H
+
+/*
+ * Minimum allocation alignment is 2^LG_QUANTUM bytes (ignoring tiny size
+ * classes).
+ */
+#ifndef LG_QUANTUM
+# if (defined(__i386__) || defined(_M_IX86))
+# define LG_QUANTUM 4
+# endif
+# ifdef __ia64__
+# define LG_QUANTUM 4
+# endif
+# ifdef __alpha__
+# define LG_QUANTUM 4
+# endif
+# if (defined(__sparc64__) || defined(__sparcv9) || defined(__sparc_v9__))
+# define LG_QUANTUM 4
+# endif
+# if (defined(__amd64__) || defined(__x86_64__) || defined(_M_X64))
+# define LG_QUANTUM 4
+# endif
+# ifdef __arm__
+# define LG_QUANTUM 3
+# endif
+# ifdef __aarch64__
+# define LG_QUANTUM 4
+# endif
+# ifdef __hppa__
+# define LG_QUANTUM 4
+# endif
+# ifdef __loongarch__
+# define LG_QUANTUM 4
+# endif
+# ifdef __m68k__
+# define LG_QUANTUM 3
+# endif
+# ifdef __mips__
+# if defined(__mips_n32) || defined(__mips_n64)
+# define LG_QUANTUM 4
+# else
+# define LG_QUANTUM 3
+# endif
+# endif
+# ifdef __nios2__
+# define LG_QUANTUM 3
+# endif
+# ifdef __or1k__
+# define LG_QUANTUM 3
+# endif
+# ifdef __powerpc__
+# define LG_QUANTUM 4
+# endif
+# if defined(__riscv) || defined(__riscv__)
+# define LG_QUANTUM 4
+# endif
+# ifdef __s390__
+# define LG_QUANTUM 4
+# endif
+# if (defined (__SH3E__) || defined(__SH4_SINGLE__) || defined(__SH4__) || \
+ defined(__SH4_SINGLE_ONLY__))
+# define LG_QUANTUM 4
+# endif
+# ifdef __tile__
+# define LG_QUANTUM 4
+# endif
+# ifdef __le32__
+# define LG_QUANTUM 4
+# endif
+# ifdef __arc__
+# define LG_QUANTUM 3
+# endif
+# ifndef LG_QUANTUM
+# error "Unknown minimum alignment for architecture; specify via "
+ "--with-lg-quantum"
+# endif
+#endif
+
+#define QUANTUM ((size_t)(1U << LG_QUANTUM))
+#define QUANTUM_MASK (QUANTUM - 1)
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
+
+#endif /* JEMALLOC_INTERNAL_QUANTUM_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/rb.h b/deps/jemalloc/include/jemalloc/internal/rb.h
new file mode 100644
index 0000000..a9a51cb
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/rb.h
@@ -0,0 +1,1856 @@
+#ifndef JEMALLOC_INTERNAL_RB_H
+#define JEMALLOC_INTERNAL_RB_H
+
+/*-
+ *******************************************************************************
+ *
+ * cpp macro implementation of left-leaning 2-3 red-black trees. Parent
+ * pointers are not used, and color bits are stored in the least significant
+ * bit of right-child pointers (if RB_COMPACT is defined), thus making node
+ * linkage as compact as is possible for red-black trees.
+ *
+ * Usage:
+ *
+ * #include <stdint.h>
+ * #include <stdbool.h>
+ * #define NDEBUG // (Optional, see assert(3).)
+ * #include <assert.h>
+ * #define RB_COMPACT // (Optional, embed color bits in right-child pointers.)
+ * #include <rb.h>
+ * ...
+ *
+ *******************************************************************************
+ */
+
+#ifndef __PGI
+#define RB_COMPACT
+#endif
+
+/*
+ * Each node in the RB tree consumes at least 1 byte of space (for the linkage
+ * if nothing else, so there are a maximum of sizeof(void *) << 3 rb tree nodes
+ * in any process (and thus, at most sizeof(void *) << 3 nodes in any rb tree).
+ * The choice of algorithm bounds the depth of a tree to twice the binary log of
+ * the number of elements in the tree; the following bound follows.
+ */
+#define RB_MAX_DEPTH (sizeof(void *) << 4)
+
+#ifdef RB_COMPACT
+/* Node structure. */
+#define rb_node(a_type) \
+struct { \
+ a_type *rbn_left; \
+ a_type *rbn_right_red; \
+}
+#else
+#define rb_node(a_type) \
+struct { \
+ a_type *rbn_left; \
+ a_type *rbn_right; \
+ bool rbn_red; \
+}
+#endif
+
+/* Root structure. */
+#define rb_tree(a_type) \
+struct { \
+ a_type *rbt_root; \
+}
+
+/* Left accessors. */
+#define rbtn_left_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_left)
+#define rbtn_left_set(a_type, a_field, a_node, a_left) do { \
+ (a_node)->a_field.rbn_left = a_left; \
+} while (0)
+
+#ifdef RB_COMPACT
+/* Right accessors. */
+#define rbtn_right_get(a_type, a_field, a_node) \
+ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((ssize_t)-2)))
+#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
+ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
+} while (0)
+
+/* Color accessors. */
+#define rbtn_red_get(a_type, a_field, a_node) \
+ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((size_t)1)))
+#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
+ | ((ssize_t)a_red)); \
+} while (0)
+#define rbtn_red_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
+ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
+} while (0)
+#define rbtn_black_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
+} while (0)
+
+/* Node initializer. */
+#define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \
+ /* Bookkeeping bit cannot be used by node pointer. */ \
+ assert(((uintptr_t)(a_node) & 0x1) == 0); \
+ rbtn_left_set(a_type, a_field, (a_node), NULL); \
+ rbtn_right_set(a_type, a_field, (a_node), NULL); \
+ rbtn_red_set(a_type, a_field, (a_node)); \
+} while (0)
+#else
+/* Right accessors. */
+#define rbtn_right_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_right)
+#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
+ (a_node)->a_field.rbn_right = a_right; \
+} while (0)
+
+/* Color accessors. */
+#define rbtn_red_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_red)
+#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
+ (a_node)->a_field.rbn_red = (a_red); \
+} while (0)
+#define rbtn_red_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_red = true; \
+} while (0)
+#define rbtn_black_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_red = false; \
+} while (0)
+
+/* Node initializer. */
+#define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \
+ rbtn_left_set(a_type, a_field, (a_node), NULL); \
+ rbtn_right_set(a_type, a_field, (a_node), NULL); \
+ rbtn_red_set(a_type, a_field, (a_node)); \
+} while (0)
+#endif
+
+/* Tree initializer. */
+#define rb_new(a_type, a_field, a_rbt) do { \
+ (a_rbt)->rbt_root = NULL; \
+} while (0)
+
+/* Internal utility macros. */
+#define rbtn_first(a_type, a_field, a_rbt, a_root, r_node) do { \
+ (r_node) = (a_root); \
+ if ((r_node) != NULL) { \
+ for (; \
+ rbtn_left_get(a_type, a_field, (r_node)) != NULL; \
+ (r_node) = rbtn_left_get(a_type, a_field, (r_node))) { \
+ } \
+ } \
+} while (0)
+
+#define rbtn_last(a_type, a_field, a_rbt, a_root, r_node) do { \
+ (r_node) = (a_root); \
+ if ((r_node) != NULL) { \
+ for (; rbtn_right_get(a_type, a_field, (r_node)) != NULL; \
+ (r_node) = rbtn_right_get(a_type, a_field, (r_node))) { \
+ } \
+ } \
+} while (0)
+
+#define rbtn_rotate_left(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbtn_right_get(a_type, a_field, (a_node)); \
+ rbtn_right_set(a_type, a_field, (a_node), \
+ rbtn_left_get(a_type, a_field, (r_node))); \
+ rbtn_left_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbtn_rotate_right(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbtn_left_get(a_type, a_field, (a_node)); \
+ rbtn_left_set(a_type, a_field, (a_node), \
+ rbtn_right_get(a_type, a_field, (r_node))); \
+ rbtn_right_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rb_summarized_only_false(...)
+#define rb_summarized_only_true(...) __VA_ARGS__
+#define rb_empty_summarize(a_node, a_lchild, a_rchild) false
+
+/*
+ * The rb_proto() and rb_summarized_proto() macros generate function prototypes
+ * that correspond to the functions generated by an equivalently parameterized
+ * call to rb_gen() or rb_summarized_gen(), respectively.
+ */
+
+#define rb_proto(a_attr, a_prefix, a_rbt_type, a_type) \
+ rb_proto_impl(a_attr, a_prefix, a_rbt_type, a_type, false)
+#define rb_summarized_proto(a_attr, a_prefix, a_rbt_type, a_type) \
+ rb_proto_impl(a_attr, a_prefix, a_rbt_type, a_type, true)
+#define rb_proto_impl(a_attr, a_prefix, a_rbt_type, a_type, \
+ a_is_summarized) \
+a_attr void \
+a_prefix##new(a_rbt_type *rbtree); \
+a_attr bool \
+a_prefix##empty(a_rbt_type *rbtree); \
+a_attr a_type * \
+a_prefix##first(a_rbt_type *rbtree); \
+a_attr a_type * \
+a_prefix##last(a_rbt_type *rbtree); \
+a_attr a_type * \
+a_prefix##next(a_rbt_type *rbtree, a_type *node); \
+a_attr a_type * \
+a_prefix##prev(a_rbt_type *rbtree, a_type *node); \
+a_attr a_type * \
+a_prefix##search(a_rbt_type *rbtree, const a_type *key); \
+a_attr a_type * \
+a_prefix##nsearch(a_rbt_type *rbtree, const a_type *key); \
+a_attr a_type * \
+a_prefix##psearch(a_rbt_type *rbtree, const a_type *key); \
+a_attr void \
+a_prefix##insert(a_rbt_type *rbtree, a_type *node); \
+a_attr void \
+a_prefix##remove(a_rbt_type *rbtree, a_type *node); \
+a_attr a_type * \
+a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
+ a_rbt_type *, a_type *, void *), void *arg); \
+a_attr a_type * \
+a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg); \
+a_attr void \
+a_prefix##destroy(a_rbt_type *rbtree, void (*cb)(a_type *, void *), \
+ void *arg); \
+/* Extended API */ \
+rb_summarized_only_##a_is_summarized( \
+a_attr void \
+a_prefix##update_summaries(a_rbt_type *rbtree, a_type *node); \
+a_attr bool \
+a_prefix##empty_filtered(a_rbt_type *rbtree, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##first_filtered(a_rbt_type *rbtree, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##last_filtered(a_rbt_type *rbtree, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##next_filtered(a_rbt_type *rbtree, a_type *node, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##prev_filtered(a_rbt_type *rbtree, a_type *node, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##search_filtered(a_rbt_type *rbtree, const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##nsearch_filtered(a_rbt_type *rbtree, const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##psearch_filtered(a_rbt_type *rbtree, const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##iter_filtered(a_rbt_type *rbtree, a_type *start, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+a_attr a_type * \
+a_prefix##reverse_iter_filtered(a_rbt_type *rbtree, a_type *start, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx); \
+)
+
+/*
+ * The rb_gen() macro generates a type-specific red-black tree implementation,
+ * based on the above cpp macros.
+ * Arguments:
+ *
+ * a_attr:
+ * Function attribute for generated functions (ex: static).
+ * a_prefix:
+ * Prefix for generated functions (ex: ex_).
+ * a_rb_type:
+ * Type for red-black tree data structure (ex: ex_t).
+ * a_type:
+ * Type for red-black tree node data structure (ex: ex_node_t).
+ * a_field:
+ * Name of red-black tree node linkage (ex: ex_link).
+ * a_cmp:
+ * Node comparison function name, with the following prototype:
+ *
+ * int a_cmp(a_type *a_node, a_type *a_other);
+ * ^^^^^^
+ * or a_key
+ * Interpretation of comparison function return values:
+ * -1 : a_node < a_other
+ * 0 : a_node == a_other
+ * 1 : a_node > a_other
+ * In all cases, the a_node or a_key macro argument is the first argument to
+ * the comparison function, which makes it possible to write comparison
+ * functions that treat the first argument specially. a_cmp must be a total
+ * order on values inserted into the tree -- duplicates are not allowed.
+ *
+ * Assuming the following setup:
+ *
+ * typedef struct ex_node_s ex_node_t;
+ * struct ex_node_s {
+ * rb_node(ex_node_t) ex_link;
+ * };
+ * typedef rb_tree(ex_node_t) ex_t;
+ * rb_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp)
+ *
+ * The following API is generated:
+ *
+ * static void
+ * ex_new(ex_t *tree);
+ * Description: Initialize a red-black tree structure.
+ * Args:
+ * tree: Pointer to an uninitialized red-black tree object.
+ *
+ * static bool
+ * ex_empty(ex_t *tree);
+ * Description: Determine whether tree is empty.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * Ret: True if tree is empty, false otherwise.
+ *
+ * static ex_node_t *
+ * ex_first(ex_t *tree);
+ * static ex_node_t *
+ * ex_last(ex_t *tree);
+ * Description: Get the first/last node in tree.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * Ret: First/last node in tree, or NULL if tree is empty.
+ *
+ * static ex_node_t *
+ * ex_next(ex_t *tree, ex_node_t *node);
+ * static ex_node_t *
+ * ex_prev(ex_t *tree, ex_node_t *node);
+ * Description: Get node's successor/predecessor.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * node: A node in tree.
+ * Ret: node's successor/predecessor in tree, or NULL if node is
+ * last/first.
+ *
+ * static ex_node_t *
+ * ex_search(ex_t *tree, const ex_node_t *key);
+ * Description: Search for node that matches key.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * key : Search key.
+ * Ret: Node in tree that matches key, or NULL if no match.
+ *
+ * static ex_node_t *
+ * ex_nsearch(ex_t *tree, const ex_node_t *key);
+ * static ex_node_t *
+ * ex_psearch(ex_t *tree, const ex_node_t *key);
+ * Description: Search for node that matches key. If no match is found,
+ * return what would be key's successor/predecessor, were
+ * key in tree.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * key : Search key.
+ * Ret: Node in tree that matches key, or if no match, hypothetical node's
+ * successor/predecessor (NULL if no successor/predecessor).
+ *
+ * static void
+ * ex_insert(ex_t *tree, ex_node_t *node);
+ * Description: Insert node into tree.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * node: Node to be inserted into tree.
+ *
+ * static void
+ * ex_remove(ex_t *tree, ex_node_t *node);
+ * Description: Remove node from tree.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * node: Node in tree to be removed.
+ *
+ * static ex_node_t *
+ * ex_iter(ex_t *tree, ex_node_t *start, ex_node_t *(*cb)(ex_t *,
+ * ex_node_t *, void *), void *arg);
+ * static ex_node_t *
+ * ex_reverse_iter(ex_t *tree, ex_node_t *start, ex_node *(*cb)(ex_t *,
+ * ex_node_t *, void *), void *arg);
+ * Description: Iterate forward/backward over tree, starting at node. If
+ * tree is modified, iteration must be immediately
+ * terminated by the callback function that causes the
+ * modification.
+ * Args:
+ * tree : Pointer to an initialized red-black tree object.
+ * start: Node at which to start iteration, or NULL to start at
+ * first/last node.
+ * cb : Callback function, which is called for each node during
+ * iteration. Under normal circumstances the callback function
+ * should return NULL, which causes iteration to continue. If a
+ * callback function returns non-NULL, iteration is immediately
+ * terminated and the non-NULL return value is returned by the
+ * iterator. This is useful for re-starting iteration after
+ * modifying tree.
+ * arg : Opaque pointer passed to cb().
+ * Ret: NULL if iteration completed, or the non-NULL callback return value
+ * that caused termination of the iteration.
+ *
+ * static void
+ * ex_destroy(ex_t *tree, void (*cb)(ex_node_t *, void *), void *arg);
+ * Description: Iterate over the tree with post-order traversal, remove
+ * each node, and run the callback if non-null. This is
+ * used for destroying a tree without paying the cost to
+ * rebalance it. The tree must not be otherwise altered
+ * during traversal.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * cb : Callback function, which, if non-null, is called for each node
+ * during iteration. There is no way to stop iteration once it
+ * has begun.
+ * arg : Opaque pointer passed to cb().
+ *
+ * The rb_summarized_gen() macro generates all the functions above, but has an
+ * expanded interface. In introduces the notion of summarizing subtrees, and of
+ * filtering searches in the tree according to the information contained in
+ * those summaries.
+ * The extra macro argument is:
+ * a_summarize:
+ * Tree summarization function name, with the following prototype:
+ *
+ * bool a_summarize(a_type *a_node, const a_type *a_left_child,
+ * const a_type *a_right_child);
+ *
+ * This function should update a_node with the summary of the subtree rooted
+ * there, using the data contained in it and the summaries in a_left_child
+ * and a_right_child. One or both of them may be NULL. When the tree
+ * changes due to an insertion or removal, it updates the summaries of all
+ * nodes whose subtrees have changed (always updating the summaries of
+ * children before their parents). If the user alters a node in the tree in
+ * a way that may change its summary, they can call the generated
+ * update_summaries function to bubble up the summary changes to the root.
+ * It should return true if the summary changed (or may have changed), and
+ * false if it didn't (which will allow the implementation to terminate
+ * "bubbling up" the summaries early).
+ * As the parameter names indicate, the children are ordered as they are in
+ * the tree, a_left_child, if it is not NULL, compares less than a_node,
+ * which in turn compares less than a_right_child (if a_right_child is not
+ * NULL).
+ *
+ * Using the same setup as above but replacing the macro with
+ * rb_summarized_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp,
+ * ex_summarize)
+ *
+ * Generates all the previous functions, but adds some more:
+ *
+ * static void
+ * ex_update_summaries(ex_t *tree, ex_node_t *node);
+ * Description: Recompute all summaries of ancestors of node.
+ * Args:
+ * tree: Pointer to an initialized red-black tree object.
+ * node: The element of the tree whose summary may have changed.
+ *
+ * For each of ex_empty, ex_first, ex_last, ex_next, ex_prev, ex_search,
+ * ex_nsearch, ex_psearch, ex_iter, and ex_reverse_iter, an additional function
+ * is generated as well, with the suffix _filtered (e.g. ex_empty_filtered,
+ * ex_first_filtered, etc.). These use the concept of a "filter"; a binary
+ * property some node either satisfies or does not satisfy. Clever use of the
+ * a_summary argument to rb_summarized_gen can allow efficient computation of
+ * these predicates across whole subtrees of the tree.
+ * The extended API functions accept three additional arguments after the
+ * arguments to the corresponding non-extended equivalent.
+ *
+ * ex_fn(..., bool (*filter_node)(void *, ex_node_t *),
+ * bool (*filter_subtree)(void *, ex_node_t *), void *filter_ctx);
+ * filter_node : Returns true if the node passes the filter.
+ * filter_subtree : Returns true if some node in the subtree rooted at
+ * node passes the filter.
+ * filter_ctx : A context argument passed to the filters.
+ *
+ * For a more concrete example of summarizing and filtering, suppose we're using
+ * the red-black tree to track a set of integers:
+ *
+ * struct ex_node_s {
+ * rb_node(ex_node_t) ex_link;
+ * unsigned data;
+ * };
+ *
+ * Suppose, for some application-specific reason, we want to be able to quickly
+ * find numbers in the set which are divisible by large powers of 2 (say, for
+ * aligned allocation purposes). We augment the node with a summary field:
+ *
+ * struct ex_node_s {
+ * rb_node(ex_node_t) ex_link;
+ * unsigned data;
+ * unsigned max_subtree_ffs;
+ * }
+ *
+ * and define our summarization function as follows:
+ *
+ * bool
+ * ex_summarize(ex_node_t *node, const ex_node_t *lchild,
+ * const ex_node_t *rchild) {
+ * unsigned new_max_subtree_ffs = ffs(node->data);
+ * if (lchild != NULL && lchild->max_subtree_ffs > new_max_subtree_ffs) {
+ * new_max_subtree_ffs = lchild->max_subtree_ffs;
+ * }
+ * if (rchild != NULL && rchild->max_subtree_ffs > new_max_subtree_ffs) {
+ * new_max_subtree_ffs = rchild->max_subtree_ffs;
+ * }
+ * bool changed = (node->max_subtree_ffs != new_max_subtree_ffs)
+ * node->max_subtree_ffs = new_max_subtree_ffs;
+ * // This could be "return true" without any correctness or big-O
+ * // performance changes; but practically, precisely reporting summary
+ * // changes reduces the amount of work that has to be done when "bubbling
+ * // up" summary changes.
+ * return changed;
+ * }
+ *
+ * We can now implement our filter functions as follows:
+ * bool
+ * ex_filter_node(void *filter_ctx, ex_node_t *node) {
+ * unsigned required_ffs = *(unsigned *)filter_ctx;
+ * return ffs(node->data) >= required_ffs;
+ * }
+ * bool
+ * ex_filter_subtree(void *filter_ctx, ex_node_t *node) {
+ * unsigned required_ffs = *(unsigned *)filter_ctx;
+ * return node->max_subtree_ffs >= required_ffs;
+ * }
+ *
+ * We can now easily search for, e.g., the smallest integer in the set that's
+ * divisible by 128:
+ * ex_node_t *
+ * find_div_128(ex_tree_t *tree) {
+ * unsigned min_ffs = 7;
+ * return ex_first_filtered(tree, &ex_filter_node, &ex_filter_subtree,
+ * &min_ffs);
+ * }
+ *
+ * We could with similar ease:
+ * - Fnd the next multiple of 128 in the set that's larger than 12345 (with
+ * ex_nsearch_filtered)
+ * - Iterate over just those multiples of 64 that are in the set (with
+ * ex_iter_filtered)
+ * - Determine if the set contains any multiples of 1024 (with
+ * ex_empty_filtered).
+ *
+ * Some possibly subtle API notes:
+ * - The node argument to ex_next_filtered and ex_prev_filtered need not pass
+ * the filter; it will find the next/prev node that passes the filter.
+ * - ex_search_filtered will fail even for a node in the tree, if that node does
+ * not pass the filter. ex_psearch_filtered and ex_nsearch_filtered behave
+ * similarly; they may return a node larger/smaller than the key, even if a
+ * node equivalent to the key is in the tree (but does not pass the filter).
+ * - Similarly, if the start argument to a filtered iteration function does not
+ * pass the filter, the callback won't be invoked on it.
+ *
+ * These should make sense after a moment's reflection; each post-condition is
+ * the same as with the unfiltered version, with the added constraint that the
+ * returned node must pass the filter.
+ */
+#define rb_gen(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp) \
+ rb_gen_impl(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp, \
+ rb_empty_summarize, false)
+#define rb_summarized_gen(a_attr, a_prefix, a_rbt_type, a_type, \
+ a_field, a_cmp, a_summarize) \
+ rb_gen_impl(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp, \
+ a_summarize, true)
+
+#define rb_gen_impl(a_attr, a_prefix, a_rbt_type, a_type, \
+ a_field, a_cmp, a_summarize, a_is_summarized) \
+typedef struct { \
+ a_type *node; \
+ int cmp; \
+} a_prefix##path_entry_t; \
+static inline void \
+a_prefix##summarize_range(a_prefix##path_entry_t *rfirst, \
+ a_prefix##path_entry_t *rlast) { \
+ while ((uintptr_t)rlast >= (uintptr_t)rfirst) { \
+ a_type *node = rlast->node; \
+ /* Avoid a warning when a_summarize is rb_empty_summarize. */ \
+ (void)node; \
+ bool changed = a_summarize(node, rbtn_left_get(a_type, a_field, \
+ node), rbtn_right_get(a_type, a_field, node)); \
+ if (!changed) { \
+ break; \
+ } \
+ rlast--; \
+ } \
+} \
+/* On the remove pathways, we sometimes swap the node being removed */\
+/* and its first successor; in such cases we need to do two range */\
+/* updates; one from the node to its (former) swapped successor, the */\
+/* next from that successor to the root (with either allowed to */\
+/* bail out early if appropriate. */\
+static inline void \
+a_prefix##summarize_swapped_range(a_prefix##path_entry_t *rfirst, \
+ a_prefix##path_entry_t *rlast, a_prefix##path_entry_t *swap_loc) { \
+ if (swap_loc == NULL || rlast <= swap_loc) { \
+ a_prefix##summarize_range(rfirst, rlast); \
+ } else { \
+ a_prefix##summarize_range(swap_loc + 1, rlast); \
+ (void)a_summarize(swap_loc->node, \
+ rbtn_left_get(a_type, a_field, swap_loc->node), \
+ rbtn_right_get(a_type, a_field, swap_loc->node)); \
+ a_prefix##summarize_range(rfirst, swap_loc - 1); \
+ } \
+} \
+a_attr void \
+a_prefix##new(a_rbt_type *rbtree) { \
+ rb_new(a_type, a_field, rbtree); \
+} \
+a_attr bool \
+a_prefix##empty(a_rbt_type *rbtree) { \
+ return (rbtree->rbt_root == NULL); \
+} \
+a_attr a_type * \
+a_prefix##first(a_rbt_type *rbtree) { \
+ a_type *ret; \
+ rbtn_first(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##last(a_rbt_type *rbtree) { \
+ a_type *ret; \
+ rbtn_last(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##next(a_rbt_type *rbtree, a_type *node) { \
+ a_type *ret; \
+ if (rbtn_right_get(a_type, a_field, node) != NULL) { \
+ rbtn_first(a_type, a_field, rbtree, rbtn_right_get(a_type, \
+ a_field, node), ret); \
+ } else { \
+ a_type *tnode = rbtree->rbt_root; \
+ assert(tnode != NULL); \
+ ret = NULL; \
+ while (true) { \
+ int cmp = (a_cmp)(node, tnode); \
+ if (cmp < 0) { \
+ ret = tnode; \
+ tnode = rbtn_left_get(a_type, a_field, tnode); \
+ } else if (cmp > 0) { \
+ tnode = rbtn_right_get(a_type, a_field, tnode); \
+ } else { \
+ break; \
+ } \
+ assert(tnode != NULL); \
+ } \
+ } \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##prev(a_rbt_type *rbtree, a_type *node) { \
+ a_type *ret; \
+ if (rbtn_left_get(a_type, a_field, node) != NULL) { \
+ rbtn_last(a_type, a_field, rbtree, rbtn_left_get(a_type, \
+ a_field, node), ret); \
+ } else { \
+ a_type *tnode = rbtree->rbt_root; \
+ assert(tnode != NULL); \
+ ret = NULL; \
+ while (true) { \
+ int cmp = (a_cmp)(node, tnode); \
+ if (cmp < 0) { \
+ tnode = rbtn_left_get(a_type, a_field, tnode); \
+ } else if (cmp > 0) { \
+ ret = tnode; \
+ tnode = rbtn_right_get(a_type, a_field, tnode); \
+ } else { \
+ break; \
+ } \
+ assert(tnode != NULL); \
+ } \
+ } \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##search(a_rbt_type *rbtree, const a_type *key) { \
+ a_type *ret; \
+ int cmp; \
+ ret = rbtree->rbt_root; \
+ while (ret != NULL \
+ && (cmp = (a_cmp)(key, ret)) != 0) { \
+ if (cmp < 0) { \
+ ret = rbtn_left_get(a_type, a_field, ret); \
+ } else { \
+ ret = rbtn_right_get(a_type, a_field, ret); \
+ } \
+ } \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##nsearch(a_rbt_type *rbtree, const a_type *key) { \
+ a_type *ret; \
+ a_type *tnode = rbtree->rbt_root; \
+ ret = NULL; \
+ while (tnode != NULL) { \
+ int cmp = (a_cmp)(key, tnode); \
+ if (cmp < 0) { \
+ ret = tnode; \
+ tnode = rbtn_left_get(a_type, a_field, tnode); \
+ } else if (cmp > 0) { \
+ tnode = rbtn_right_get(a_type, a_field, tnode); \
+ } else { \
+ ret = tnode; \
+ break; \
+ } \
+ } \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##psearch(a_rbt_type *rbtree, const a_type *key) { \
+ a_type *ret; \
+ a_type *tnode = rbtree->rbt_root; \
+ ret = NULL; \
+ while (tnode != NULL) { \
+ int cmp = (a_cmp)(key, tnode); \
+ if (cmp < 0) { \
+ tnode = rbtn_left_get(a_type, a_field, tnode); \
+ } else if (cmp > 0) { \
+ ret = tnode; \
+ tnode = rbtn_right_get(a_type, a_field, tnode); \
+ } else { \
+ ret = tnode; \
+ break; \
+ } \
+ } \
+ return ret; \
+} \
+a_attr void \
+a_prefix##insert(a_rbt_type *rbtree, a_type *node) { \
+ a_prefix##path_entry_t path[RB_MAX_DEPTH]; \
+ a_prefix##path_entry_t *pathp; \
+ rbt_node_new(a_type, a_field, rbtree, node); \
+ /* Wind. */ \
+ path->node = rbtree->rbt_root; \
+ for (pathp = path; pathp->node != NULL; pathp++) { \
+ int cmp = pathp->cmp = a_cmp(node, pathp->node); \
+ assert(cmp != 0); \
+ if (cmp < 0) { \
+ pathp[1].node = rbtn_left_get(a_type, a_field, \
+ pathp->node); \
+ } else { \
+ pathp[1].node = rbtn_right_get(a_type, a_field, \
+ pathp->node); \
+ } \
+ } \
+ pathp->node = node; \
+ /* A loop invariant we maintain is that all nodes with */\
+ /* out-of-date summaries live in path[0], path[1], ..., *pathp. */\
+ /* To maintain this, we have to summarize node, since we */\
+ /* decrement pathp before the first iteration. */\
+ assert(rbtn_left_get(a_type, a_field, node) == NULL); \
+ assert(rbtn_right_get(a_type, a_field, node) == NULL); \
+ (void)a_summarize(node, NULL, NULL); \
+ /* Unwind. */ \
+ for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
+ a_type *cnode = pathp->node; \
+ if (pathp->cmp < 0) { \
+ a_type *left = pathp[1].node; \
+ rbtn_left_set(a_type, a_field, cnode, left); \
+ if (rbtn_red_get(a_type, a_field, left)) { \
+ a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
+ if (leftleft != NULL && rbtn_red_get(a_type, a_field, \
+ leftleft)) { \
+ /* Fix up 4-node. */ \
+ a_type *tnode; \
+ rbtn_black_set(a_type, a_field, leftleft); \
+ rbtn_rotate_right(a_type, a_field, cnode, tnode); \
+ (void)a_summarize(cnode, \
+ rbtn_left_get(a_type, a_field, cnode), \
+ rbtn_right_get(a_type, a_field, cnode)); \
+ cnode = tnode; \
+ } \
+ } else { \
+ a_prefix##summarize_range(path, pathp); \
+ return; \
+ } \
+ } else { \
+ a_type *right = pathp[1].node; \
+ rbtn_right_set(a_type, a_field, cnode, right); \
+ if (rbtn_red_get(a_type, a_field, right)) { \
+ a_type *left = rbtn_left_get(a_type, a_field, cnode); \
+ if (left != NULL && rbtn_red_get(a_type, a_field, \
+ left)) { \
+ /* Split 4-node. */ \
+ rbtn_black_set(a_type, a_field, left); \
+ rbtn_black_set(a_type, a_field, right); \
+ rbtn_red_set(a_type, a_field, cnode); \
+ } else { \
+ /* Lean left. */ \
+ a_type *tnode; \
+ bool tred = rbtn_red_get(a_type, a_field, cnode); \
+ rbtn_rotate_left(a_type, a_field, cnode, tnode); \
+ rbtn_color_set(a_type, a_field, tnode, tred); \
+ rbtn_red_set(a_type, a_field, cnode); \
+ (void)a_summarize(cnode, \
+ rbtn_left_get(a_type, a_field, cnode), \
+ rbtn_right_get(a_type, a_field, cnode)); \
+ cnode = tnode; \
+ } \
+ } else { \
+ a_prefix##summarize_range(path, pathp); \
+ return; \
+ } \
+ } \
+ pathp->node = cnode; \
+ (void)a_summarize(cnode, \
+ rbtn_left_get(a_type, a_field, cnode), \
+ rbtn_right_get(a_type, a_field, cnode)); \
+ } \
+ /* Set root, and make it black. */ \
+ rbtree->rbt_root = path->node; \
+ rbtn_black_set(a_type, a_field, rbtree->rbt_root); \
+} \
+a_attr void \
+a_prefix##remove(a_rbt_type *rbtree, a_type *node) { \
+ a_prefix##path_entry_t path[RB_MAX_DEPTH]; \
+ a_prefix##path_entry_t *pathp; \
+ a_prefix##path_entry_t *nodep; \
+ a_prefix##path_entry_t *swap_loc; \
+ /* This is a "real" sentinel -- NULL means we didn't swap the */\
+ /* node to be pruned with one of its successors, and so */\
+ /* summarization can terminate early whenever some summary */\
+ /* doesn't change. */\
+ swap_loc = NULL; \
+ /* This is just to silence a compiler warning. */ \
+ nodep = NULL; \
+ /* Wind. */ \
+ path->node = rbtree->rbt_root; \
+ for (pathp = path; pathp->node != NULL; pathp++) { \
+ int cmp = pathp->cmp = a_cmp(node, pathp->node); \
+ if (cmp < 0) { \
+ pathp[1].node = rbtn_left_get(a_type, a_field, \
+ pathp->node); \
+ } else { \
+ pathp[1].node = rbtn_right_get(a_type, a_field, \
+ pathp->node); \
+ if (cmp == 0) { \
+ /* Find node's successor, in preparation for swap. */ \
+ pathp->cmp = 1; \
+ nodep = pathp; \
+ for (pathp++; pathp->node != NULL; pathp++) { \
+ pathp->cmp = -1; \
+ pathp[1].node = rbtn_left_get(a_type, a_field, \
+ pathp->node); \
+ } \
+ break; \
+ } \
+ } \
+ } \
+ assert(nodep->node == node); \
+ pathp--; \
+ if (pathp->node != node) { \
+ /* Swap node with its successor. */ \
+ swap_loc = nodep; \
+ bool tred = rbtn_red_get(a_type, a_field, pathp->node); \
+ rbtn_color_set(a_type, a_field, pathp->node, \
+ rbtn_red_get(a_type, a_field, node)); \
+ rbtn_left_set(a_type, a_field, pathp->node, \
+ rbtn_left_get(a_type, a_field, node)); \
+ /* If node's successor is its right child, the following code */\
+ /* will do the wrong thing for the right child pointer. */\
+ /* However, it doesn't matter, because the pointer will be */\
+ /* properly set when the successor is pruned. */\
+ rbtn_right_set(a_type, a_field, pathp->node, \
+ rbtn_right_get(a_type, a_field, node)); \
+ rbtn_color_set(a_type, a_field, node, tred); \
+ /* The pruned leaf node's child pointers are never accessed */\
+ /* again, so don't bother setting them to nil. */\
+ nodep->node = pathp->node; \
+ pathp->node = node; \
+ if (nodep == path) { \
+ rbtree->rbt_root = nodep->node; \
+ } else { \
+ if (nodep[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, nodep[-1].node, \
+ nodep->node); \
+ } else { \
+ rbtn_right_set(a_type, a_field, nodep[-1].node, \
+ nodep->node); \
+ } \
+ } \
+ } else { \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ if (left != NULL) { \
+ /* node has no successor, but it has a left child. */\
+ /* Splice node out, without losing the left child. */\
+ assert(!rbtn_red_get(a_type, a_field, node)); \
+ assert(rbtn_red_get(a_type, a_field, left)); \
+ rbtn_black_set(a_type, a_field, left); \
+ if (pathp == path) { \
+ rbtree->rbt_root = left; \
+ /* Nothing to summarize -- the subtree rooted at the */\
+ /* node's left child hasn't changed, and it's now the */\
+ /* root. */\
+ } else { \
+ if (pathp[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, pathp[-1].node, \
+ left); \
+ } else { \
+ rbtn_right_set(a_type, a_field, pathp[-1].node, \
+ left); \
+ } \
+ a_prefix##summarize_swapped_range(path, &pathp[-1], \
+ swap_loc); \
+ } \
+ return; \
+ } else if (pathp == path) { \
+ /* The tree only contained one node. */ \
+ rbtree->rbt_root = NULL; \
+ return; \
+ } \
+ } \
+ /* We've now established the invariant that the node has no right */\
+ /* child (well, morally; we didn't bother nulling it out if we */\
+ /* swapped it with its successor), and that the only nodes with */\
+ /* out-of-date summaries live in path[0], path[1], ..., pathp[-1].*/\
+ if (rbtn_red_get(a_type, a_field, pathp->node)) { \
+ /* Prune red node, which requires no fixup. */ \
+ assert(pathp[-1].cmp < 0); \
+ rbtn_left_set(a_type, a_field, pathp[-1].node, NULL); \
+ a_prefix##summarize_swapped_range(path, &pathp[-1], swap_loc); \
+ return; \
+ } \
+ /* The node to be pruned is black, so unwind until balance is */\
+ /* restored. */\
+ pathp->node = NULL; \
+ for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
+ assert(pathp->cmp != 0); \
+ if (pathp->cmp < 0) { \
+ rbtn_left_set(a_type, a_field, pathp->node, \
+ pathp[1].node); \
+ if (rbtn_red_get(a_type, a_field, pathp->node)) { \
+ a_type *right = rbtn_right_get(a_type, a_field, \
+ pathp->node); \
+ a_type *rightleft = rbtn_left_get(a_type, a_field, \
+ right); \
+ a_type *tnode; \
+ if (rightleft != NULL && rbtn_red_get(a_type, a_field, \
+ rightleft)) { \
+ /* In the following diagrams, ||, //, and \\ */\
+ /* indicate the path to the removed node. */\
+ /* */\
+ /* || */\
+ /* pathp(r) */\
+ /* // \ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (r) */\
+ /* */\
+ rbtn_black_set(a_type, a_field, pathp->node); \
+ rbtn_rotate_right(a_type, a_field, right, tnode); \
+ rbtn_right_set(a_type, a_field, pathp->node, tnode);\
+ rbtn_rotate_left(a_type, a_field, pathp->node, \
+ tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ (void)a_summarize(right, \
+ rbtn_left_get(a_type, a_field, right), \
+ rbtn_right_get(a_type, a_field, right)); \
+ } else { \
+ /* || */\
+ /* pathp(r) */\
+ /* // \ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (b) */\
+ /* */\
+ rbtn_rotate_left(a_type, a_field, pathp->node, \
+ tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ } \
+ (void)a_summarize(tnode, rbtn_left_get(a_type, a_field, \
+ tnode), rbtn_right_get(a_type, a_field, tnode)); \
+ /* Balance restored, but rotation modified subtree */\
+ /* root. */\
+ assert((uintptr_t)pathp > (uintptr_t)path); \
+ if (pathp[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, pathp[-1].node, \
+ tnode); \
+ } else { \
+ rbtn_right_set(a_type, a_field, pathp[-1].node, \
+ tnode); \
+ } \
+ a_prefix##summarize_swapped_range(path, &pathp[-1], \
+ swap_loc); \
+ return; \
+ } else { \
+ a_type *right = rbtn_right_get(a_type, a_field, \
+ pathp->node); \
+ a_type *rightleft = rbtn_left_get(a_type, a_field, \
+ right); \
+ if (rightleft != NULL && rbtn_red_get(a_type, a_field, \
+ rightleft)) { \
+ /* || */\
+ /* pathp(b) */\
+ /* // \ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (r) */\
+ a_type *tnode; \
+ rbtn_black_set(a_type, a_field, rightleft); \
+ rbtn_rotate_right(a_type, a_field, right, tnode); \
+ rbtn_right_set(a_type, a_field, pathp->node, tnode);\
+ rbtn_rotate_left(a_type, a_field, pathp->node, \
+ tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ (void)a_summarize(right, \
+ rbtn_left_get(a_type, a_field, right), \
+ rbtn_right_get(a_type, a_field, right)); \
+ (void)a_summarize(tnode, \
+ rbtn_left_get(a_type, a_field, tnode), \
+ rbtn_right_get(a_type, a_field, tnode)); \
+ /* Balance restored, but rotation modified */\
+ /* subtree root, which may actually be the tree */\
+ /* root. */\
+ if (pathp == path) { \
+ /* Set root. */ \
+ rbtree->rbt_root = tnode; \
+ } else { \
+ if (pathp[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, \
+ pathp[-1].node, tnode); \
+ } else { \
+ rbtn_right_set(a_type, a_field, \
+ pathp[-1].node, tnode); \
+ } \
+ a_prefix##summarize_swapped_range(path, \
+ &pathp[-1], swap_loc); \
+ } \
+ return; \
+ } else { \
+ /* || */\
+ /* pathp(b) */\
+ /* // \ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (b) */\
+ a_type *tnode; \
+ rbtn_red_set(a_type, a_field, pathp->node); \
+ rbtn_rotate_left(a_type, a_field, pathp->node, \
+ tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ (void)a_summarize(tnode, \
+ rbtn_left_get(a_type, a_field, tnode), \
+ rbtn_right_get(a_type, a_field, tnode)); \
+ pathp->node = tnode; \
+ } \
+ } \
+ } else { \
+ a_type *left; \
+ rbtn_right_set(a_type, a_field, pathp->node, \
+ pathp[1].node); \
+ left = rbtn_left_get(a_type, a_field, pathp->node); \
+ if (rbtn_red_get(a_type, a_field, left)) { \
+ a_type *tnode; \
+ a_type *leftright = rbtn_right_get(a_type, a_field, \
+ left); \
+ a_type *leftrightleft = rbtn_left_get(a_type, a_field, \
+ leftright); \
+ if (leftrightleft != NULL && rbtn_red_get(a_type, \
+ a_field, leftrightleft)) { \
+ /* || */\
+ /* pathp(b) */\
+ /* / \\ */\
+ /* (r) (b) */\
+ /* \ */\
+ /* (b) */\
+ /* / */\
+ /* (r) */\
+ a_type *unode; \
+ rbtn_black_set(a_type, a_field, leftrightleft); \
+ rbtn_rotate_right(a_type, a_field, pathp->node, \
+ unode); \
+ rbtn_rotate_right(a_type, a_field, pathp->node, \
+ tnode); \
+ rbtn_right_set(a_type, a_field, unode, tnode); \
+ rbtn_rotate_left(a_type, a_field, unode, tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ (void)a_summarize(unode, \
+ rbtn_left_get(a_type, a_field, unode), \
+ rbtn_right_get(a_type, a_field, unode)); \
+ } else { \
+ /* || */\
+ /* pathp(b) */\
+ /* / \\ */\
+ /* (r) (b) */\
+ /* \ */\
+ /* (b) */\
+ /* / */\
+ /* (b) */\
+ assert(leftright != NULL); \
+ rbtn_red_set(a_type, a_field, leftright); \
+ rbtn_rotate_right(a_type, a_field, pathp->node, \
+ tnode); \
+ rbtn_black_set(a_type, a_field, tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ } \
+ (void)a_summarize(tnode, \
+ rbtn_left_get(a_type, a_field, tnode), \
+ rbtn_right_get(a_type, a_field, tnode)); \
+ /* Balance restored, but rotation modified subtree */\
+ /* root, which may actually be the tree root. */\
+ if (pathp == path) { \
+ /* Set root. */ \
+ rbtree->rbt_root = tnode; \
+ } else { \
+ if (pathp[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, pathp[-1].node, \
+ tnode); \
+ } else { \
+ rbtn_right_set(a_type, a_field, pathp[-1].node, \
+ tnode); \
+ } \
+ a_prefix##summarize_swapped_range(path, &pathp[-1], \
+ swap_loc); \
+ } \
+ return; \
+ } else if (rbtn_red_get(a_type, a_field, pathp->node)) { \
+ a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
+ if (leftleft != NULL && rbtn_red_get(a_type, a_field, \
+ leftleft)) { \
+ /* || */\
+ /* pathp(r) */\
+ /* / \\ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (r) */\
+ a_type *tnode; \
+ rbtn_black_set(a_type, a_field, pathp->node); \
+ rbtn_red_set(a_type, a_field, left); \
+ rbtn_black_set(a_type, a_field, leftleft); \
+ rbtn_rotate_right(a_type, a_field, pathp->node, \
+ tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ (void)a_summarize(tnode, \
+ rbtn_left_get(a_type, a_field, tnode), \
+ rbtn_right_get(a_type, a_field, tnode)); \
+ /* Balance restored, but rotation modified */\
+ /* subtree root. */\
+ assert((uintptr_t)pathp > (uintptr_t)path); \
+ if (pathp[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, pathp[-1].node, \
+ tnode); \
+ } else { \
+ rbtn_right_set(a_type, a_field, pathp[-1].node, \
+ tnode); \
+ } \
+ a_prefix##summarize_swapped_range(path, &pathp[-1], \
+ swap_loc); \
+ return; \
+ } else { \
+ /* || */\
+ /* pathp(r) */\
+ /* / \\ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (b) */\
+ rbtn_red_set(a_type, a_field, left); \
+ rbtn_black_set(a_type, a_field, pathp->node); \
+ /* Balance restored. */ \
+ a_prefix##summarize_swapped_range(path, pathp, \
+ swap_loc); \
+ return; \
+ } \
+ } else { \
+ a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
+ if (leftleft != NULL && rbtn_red_get(a_type, a_field, \
+ leftleft)) { \
+ /* || */\
+ /* pathp(b) */\
+ /* / \\ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (r) */\
+ a_type *tnode; \
+ rbtn_black_set(a_type, a_field, leftleft); \
+ rbtn_rotate_right(a_type, a_field, pathp->node, \
+ tnode); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ (void)a_summarize(tnode, \
+ rbtn_left_get(a_type, a_field, tnode), \
+ rbtn_right_get(a_type, a_field, tnode)); \
+ /* Balance restored, but rotation modified */\
+ /* subtree root, which may actually be the tree */\
+ /* root. */\
+ if (pathp == path) { \
+ /* Set root. */ \
+ rbtree->rbt_root = tnode; \
+ } else { \
+ if (pathp[-1].cmp < 0) { \
+ rbtn_left_set(a_type, a_field, \
+ pathp[-1].node, tnode); \
+ } else { \
+ rbtn_right_set(a_type, a_field, \
+ pathp[-1].node, tnode); \
+ } \
+ a_prefix##summarize_swapped_range(path, \
+ &pathp[-1], swap_loc); \
+ } \
+ return; \
+ } else { \
+ /* || */\
+ /* pathp(b) */\
+ /* / \\ */\
+ /* (b) (b) */\
+ /* / */\
+ /* (b) */\
+ rbtn_red_set(a_type, a_field, left); \
+ (void)a_summarize(pathp->node, \
+ rbtn_left_get(a_type, a_field, pathp->node), \
+ rbtn_right_get(a_type, a_field, pathp->node)); \
+ } \
+ } \
+ } \
+ } \
+ /* Set root. */ \
+ rbtree->rbt_root = path->node; \
+ assert(!rbtn_red_get(a_type, a_field, rbtree->rbt_root)); \
+} \
+a_attr a_type * \
+a_prefix##iter_recurse(a_rbt_type *rbtree, a_type *node, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
+ if (node == NULL) { \
+ return NULL; \
+ } else { \
+ a_type *ret; \
+ if ((ret = a_prefix##iter_recurse(rbtree, rbtn_left_get(a_type, \
+ a_field, node), cb, arg)) != NULL || (ret = cb(rbtree, node, \
+ arg)) != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
+ a_field, node), cb, arg); \
+ } \
+} \
+a_attr a_type * \
+a_prefix##iter_start(a_rbt_type *rbtree, a_type *start, a_type *node, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
+ int cmp = a_cmp(start, node); \
+ if (cmp < 0) { \
+ a_type *ret; \
+ if ((ret = a_prefix##iter_start(rbtree, start, \
+ rbtn_left_get(a_type, a_field, node), cb, arg)) != NULL || \
+ (ret = cb(rbtree, node, arg)) != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
+ a_field, node), cb, arg); \
+ } else if (cmp > 0) { \
+ return a_prefix##iter_start(rbtree, start, \
+ rbtn_right_get(a_type, a_field, node), cb, arg); \
+ } else { \
+ a_type *ret; \
+ if ((ret = cb(rbtree, node, arg)) != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
+ a_field, node), cb, arg); \
+ } \
+} \
+a_attr a_type * \
+a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
+ a_rbt_type *, a_type *, void *), void *arg) { \
+ a_type *ret; \
+ if (start != NULL) { \
+ ret = a_prefix##iter_start(rbtree, start, rbtree->rbt_root, \
+ cb, arg); \
+ } else { \
+ ret = a_prefix##iter_recurse(rbtree, rbtree->rbt_root, cb, arg);\
+ } \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##reverse_iter_recurse(a_rbt_type *rbtree, a_type *node, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
+ if (node == NULL) { \
+ return NULL; \
+ } else { \
+ a_type *ret; \
+ if ((ret = a_prefix##reverse_iter_recurse(rbtree, \
+ rbtn_right_get(a_type, a_field, node), cb, arg)) != NULL || \
+ (ret = cb(rbtree, node, arg)) != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##reverse_iter_recurse(rbtree, \
+ rbtn_left_get(a_type, a_field, node), cb, arg); \
+ } \
+} \
+a_attr a_type * \
+a_prefix##reverse_iter_start(a_rbt_type *rbtree, a_type *start, \
+ a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
+ void *arg) { \
+ int cmp = a_cmp(start, node); \
+ if (cmp > 0) { \
+ a_type *ret; \
+ if ((ret = a_prefix##reverse_iter_start(rbtree, start, \
+ rbtn_right_get(a_type, a_field, node), cb, arg)) != NULL || \
+ (ret = cb(rbtree, node, arg)) != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##reverse_iter_recurse(rbtree, \
+ rbtn_left_get(a_type, a_field, node), cb, arg); \
+ } else if (cmp < 0) { \
+ return a_prefix##reverse_iter_start(rbtree, start, \
+ rbtn_left_get(a_type, a_field, node), cb, arg); \
+ } else { \
+ a_type *ret; \
+ if ((ret = cb(rbtree, node, arg)) != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##reverse_iter_recurse(rbtree, \
+ rbtn_left_get(a_type, a_field, node), cb, arg); \
+ } \
+} \
+a_attr a_type * \
+a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
+ a_type *ret; \
+ if (start != NULL) { \
+ ret = a_prefix##reverse_iter_start(rbtree, start, \
+ rbtree->rbt_root, cb, arg); \
+ } else { \
+ ret = a_prefix##reverse_iter_recurse(rbtree, rbtree->rbt_root, \
+ cb, arg); \
+ } \
+ return ret; \
+} \
+a_attr void \
+a_prefix##destroy_recurse(a_rbt_type *rbtree, a_type *node, void (*cb)( \
+ a_type *, void *), void *arg) { \
+ if (node == NULL) { \
+ return; \
+ } \
+ a_prefix##destroy_recurse(rbtree, rbtn_left_get(a_type, a_field, \
+ node), cb, arg); \
+ rbtn_left_set(a_type, a_field, (node), NULL); \
+ a_prefix##destroy_recurse(rbtree, rbtn_right_get(a_type, a_field, \
+ node), cb, arg); \
+ rbtn_right_set(a_type, a_field, (node), NULL); \
+ if (cb) { \
+ cb(node, arg); \
+ } \
+} \
+a_attr void \
+a_prefix##destroy(a_rbt_type *rbtree, void (*cb)(a_type *, void *), \
+ void *arg) { \
+ a_prefix##destroy_recurse(rbtree, rbtree->rbt_root, cb, arg); \
+ rbtree->rbt_root = NULL; \
+} \
+/* BEGIN SUMMARIZED-ONLY IMPLEMENTATION */ \
+rb_summarized_only_##a_is_summarized( \
+static inline a_prefix##path_entry_t * \
+a_prefix##wind(a_rbt_type *rbtree, \
+ a_prefix##path_entry_t path[RB_MAX_DEPTH], a_type *node) { \
+ a_prefix##path_entry_t *pathp; \
+ path->node = rbtree->rbt_root; \
+ for (pathp = path; ; pathp++) { \
+ assert((size_t)(pathp - path) < RB_MAX_DEPTH); \
+ pathp->cmp = a_cmp(node, pathp->node); \
+ if (pathp->cmp < 0) { \
+ pathp[1].node = rbtn_left_get(a_type, a_field, \
+ pathp->node); \
+ } else if (pathp->cmp == 0) { \
+ return pathp; \
+ } else { \
+ pathp[1].node = rbtn_right_get(a_type, a_field, \
+ pathp->node); \
+ } \
+ } \
+ unreachable(); \
+} \
+a_attr void \
+a_prefix##update_summaries(a_rbt_type *rbtree, a_type *node) { \
+ a_prefix##path_entry_t path[RB_MAX_DEPTH]; \
+ a_prefix##path_entry_t *pathp = a_prefix##wind(rbtree, path, node); \
+ a_prefix##summarize_range(path, pathp); \
+} \
+a_attr bool \
+a_prefix##empty_filtered(a_rbt_type *rbtree, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *node = rbtree->rbt_root; \
+ return node == NULL || !filter_subtree(filter_ctx, node); \
+} \
+static inline a_type * \
+a_prefix##first_filtered_from_node(a_type *node, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ assert(node != NULL && filter_subtree(filter_ctx, node)); \
+ while (true) { \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ a_type *right = rbtn_right_get(a_type, a_field, node); \
+ if (left != NULL && filter_subtree(filter_ctx, left)) { \
+ node = left; \
+ } else if (filter_node(filter_ctx, node)) { \
+ return node; \
+ } else { \
+ assert(right != NULL \
+ && filter_subtree(filter_ctx, right)); \
+ node = right; \
+ } \
+ } \
+ unreachable(); \
+} \
+a_attr a_type * \
+a_prefix##first_filtered(a_rbt_type *rbtree, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *node = rbtree->rbt_root; \
+ if (node == NULL || !filter_subtree(filter_ctx, node)) { \
+ return NULL; \
+ } \
+ return a_prefix##first_filtered_from_node(node, filter_node, \
+ filter_subtree, filter_ctx); \
+} \
+static inline a_type * \
+a_prefix##last_filtered_from_node(a_type *node, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ assert(node != NULL && filter_subtree(filter_ctx, node)); \
+ while (true) { \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ a_type *right = rbtn_right_get(a_type, a_field, node); \
+ if (right != NULL && filter_subtree(filter_ctx, right)) { \
+ node = right; \
+ } else if (filter_node(filter_ctx, node)) { \
+ return node; \
+ } else { \
+ assert(left != NULL \
+ && filter_subtree(filter_ctx, left)); \
+ node = left; \
+ } \
+ } \
+ unreachable(); \
+} \
+a_attr a_type * \
+a_prefix##last_filtered(a_rbt_type *rbtree, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *node = rbtree->rbt_root; \
+ if (node == NULL || !filter_subtree(filter_ctx, node)) { \
+ return NULL; \
+ } \
+ return a_prefix##last_filtered_from_node(node, filter_node, \
+ filter_subtree, filter_ctx); \
+} \
+/* Internal implementation function. Search for a node comparing */\
+/* equal to key matching the filter. If such a node is in the tree, */\
+/* return it. Additionally, the caller has the option to ask for */\
+/* bounds on the next / prev node in the tree passing the filter. */\
+/* If nextbound is true, then this function will do one of the */\
+/* following: */\
+/* - Fill in *nextbound_node with the smallest node in the tree */\
+/* greater than key passing the filter, and NULL-out */\
+/* *nextbound_subtree. */\
+/* - Fill in *nextbound_subtree with a parent of that node which is */\
+/* not a parent of the searched-for node, and NULL-out */\
+/* *nextbound_node. */\
+/* - NULL-out both *nextbound_node and *nextbound_subtree, in which */\
+/* case no node greater than key but passing the filter is in the */\
+/* tree. */\
+/* The prevbound case is similar. If the caller knows that key is in */\
+/* the tree and that the subtree rooted at key does not contain a */\
+/* node satisfying the bound being searched for, then they can pass */\
+/* false for include_subtree, in which case we won't bother searching */\
+/* there (risking a cache miss). */\
+/* */\
+/* This API is unfortunately complex; but the logic for filtered */\
+/* searches is very subtle, and otherwise we would have to repeat it */\
+/* multiple times for filtered search, nsearch, psearch, next, and */\
+/* prev. */\
+static inline a_type * \
+a_prefix##search_with_filter_bounds(a_rbt_type *rbtree, \
+ const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx, \
+ bool include_subtree, \
+ bool nextbound, a_type **nextbound_node, a_type **nextbound_subtree, \
+ bool prevbound, a_type **prevbound_node, a_type **prevbound_subtree) {\
+ if (nextbound) { \
+ *nextbound_node = NULL; \
+ *nextbound_subtree = NULL; \
+ } \
+ if (prevbound) { \
+ *prevbound_node = NULL; \
+ *prevbound_subtree = NULL; \
+ } \
+ a_type *tnode = rbtree->rbt_root; \
+ while (tnode != NULL && filter_subtree(filter_ctx, tnode)) { \
+ int cmp = a_cmp(key, tnode); \
+ a_type *tleft = rbtn_left_get(a_type, a_field, tnode); \
+ a_type *tright = rbtn_right_get(a_type, a_field, tnode); \
+ if (cmp < 0) { \
+ if (nextbound) { \
+ if (filter_node(filter_ctx, tnode)) { \
+ *nextbound_node = tnode; \
+ *nextbound_subtree = NULL; \
+ } else if (tright != NULL && filter_subtree( \
+ filter_ctx, tright)) { \
+ *nextbound_node = NULL; \
+ *nextbound_subtree = tright; \
+ } \
+ } \
+ tnode = tleft; \
+ } else if (cmp > 0) { \
+ if (prevbound) { \
+ if (filter_node(filter_ctx, tnode)) { \
+ *prevbound_node = tnode; \
+ *prevbound_subtree = NULL; \
+ } else if (tleft != NULL && filter_subtree( \
+ filter_ctx, tleft)) { \
+ *prevbound_node = NULL; \
+ *prevbound_subtree = tleft; \
+ } \
+ } \
+ tnode = tright; \
+ } else { \
+ if (filter_node(filter_ctx, tnode)) { \
+ return tnode; \
+ } \
+ if (include_subtree) { \
+ if (prevbound && tleft != NULL && filter_subtree( \
+ filter_ctx, tleft)) { \
+ *prevbound_node = NULL; \
+ *prevbound_subtree = tleft; \
+ } \
+ if (nextbound && tright != NULL && filter_subtree( \
+ filter_ctx, tright)) { \
+ *nextbound_node = NULL; \
+ *nextbound_subtree = tright; \
+ } \
+ } \
+ return NULL; \
+ } \
+ } \
+ return NULL; \
+} \
+a_attr a_type * \
+a_prefix##next_filtered(a_rbt_type *rbtree, a_type *node, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *nright = rbtn_right_get(a_type, a_field, node); \
+ if (nright != NULL && filter_subtree(filter_ctx, nright)) { \
+ return a_prefix##first_filtered_from_node(nright, filter_node, \
+ filter_subtree, filter_ctx); \
+ } \
+ a_type *node_candidate; \
+ a_type *subtree_candidate; \
+ a_type *search_result = a_prefix##search_with_filter_bounds( \
+ rbtree, node, filter_node, filter_subtree, filter_ctx, \
+ /* include_subtree */ false, \
+ /* nextbound */ true, &node_candidate, &subtree_candidate, \
+ /* prevbound */ false, NULL, NULL); \
+ assert(node == search_result \
+ || !filter_node(filter_ctx, node)); \
+ if (node_candidate != NULL) { \
+ return node_candidate; \
+ } \
+ if (subtree_candidate != NULL) { \
+ return a_prefix##first_filtered_from_node( \
+ subtree_candidate, filter_node, filter_subtree, \
+ filter_ctx); \
+ } \
+ return NULL; \
+} \
+a_attr a_type * \
+a_prefix##prev_filtered(a_rbt_type *rbtree, a_type *node, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *nleft = rbtn_left_get(a_type, a_field, node); \
+ if (nleft != NULL && filter_subtree(filter_ctx, nleft)) { \
+ return a_prefix##last_filtered_from_node(nleft, filter_node, \
+ filter_subtree, filter_ctx); \
+ } \
+ a_type *node_candidate; \
+ a_type *subtree_candidate; \
+ a_type *search_result = a_prefix##search_with_filter_bounds( \
+ rbtree, node, filter_node, filter_subtree, filter_ctx, \
+ /* include_subtree */ false, \
+ /* nextbound */ false, NULL, NULL, \
+ /* prevbound */ true, &node_candidate, &subtree_candidate); \
+ assert(node == search_result \
+ || !filter_node(filter_ctx, node)); \
+ if (node_candidate != NULL) { \
+ return node_candidate; \
+ } \
+ if (subtree_candidate != NULL) { \
+ return a_prefix##last_filtered_from_node( \
+ subtree_candidate, filter_node, filter_subtree, \
+ filter_ctx); \
+ } \
+ return NULL; \
+} \
+a_attr a_type * \
+a_prefix##search_filtered(a_rbt_type *rbtree, const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *result = a_prefix##search_with_filter_bounds(rbtree, key, \
+ filter_node, filter_subtree, filter_ctx, \
+ /* include_subtree */ false, \
+ /* nextbound */ false, NULL, NULL, \
+ /* prevbound */ false, NULL, NULL); \
+ return result; \
+} \
+a_attr a_type * \
+a_prefix##nsearch_filtered(a_rbt_type *rbtree, const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *node_candidate; \
+ a_type *subtree_candidate; \
+ a_type *result = a_prefix##search_with_filter_bounds(rbtree, key, \
+ filter_node, filter_subtree, filter_ctx, \
+ /* include_subtree */ true, \
+ /* nextbound */ true, &node_candidate, &subtree_candidate, \
+ /* prevbound */ false, NULL, NULL); \
+ if (result != NULL) { \
+ return result; \
+ } \
+ if (node_candidate != NULL) { \
+ return node_candidate; \
+ } \
+ if (subtree_candidate != NULL) { \
+ return a_prefix##first_filtered_from_node( \
+ subtree_candidate, filter_node, filter_subtree, \
+ filter_ctx); \
+ } \
+ return NULL; \
+} \
+a_attr a_type * \
+a_prefix##psearch_filtered(a_rbt_type *rbtree, const a_type *key, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *node_candidate; \
+ a_type *subtree_candidate; \
+ a_type *result = a_prefix##search_with_filter_bounds(rbtree, key, \
+ filter_node, filter_subtree, filter_ctx, \
+ /* include_subtree */ true, \
+ /* nextbound */ false, NULL, NULL, \
+ /* prevbound */ true, &node_candidate, &subtree_candidate); \
+ if (result != NULL) { \
+ return result; \
+ } \
+ if (node_candidate != NULL) { \
+ return node_candidate; \
+ } \
+ if (subtree_candidate != NULL) { \
+ return a_prefix##last_filtered_from_node( \
+ subtree_candidate, filter_node, filter_subtree, \
+ filter_ctx); \
+ } \
+ return NULL; \
+} \
+a_attr a_type * \
+a_prefix##iter_recurse_filtered(a_rbt_type *rbtree, a_type *node, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ if (node == NULL || !filter_subtree(filter_ctx, node)) { \
+ return NULL; \
+ } \
+ a_type *ret; \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ a_type *right = rbtn_right_get(a_type, a_field, node); \
+ ret = a_prefix##iter_recurse_filtered(rbtree, left, cb, arg, \
+ filter_node, filter_subtree, filter_ctx); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ if (filter_node(filter_ctx, node)) { \
+ ret = cb(rbtree, node, arg); \
+ } \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##iter_recurse_filtered(rbtree, right, cb, arg, \
+ filter_node, filter_subtree, filter_ctx); \
+} \
+a_attr a_type * \
+a_prefix##iter_start_filtered(a_rbt_type *rbtree, a_type *start, \
+ a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
+ void *arg, bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ if (!filter_subtree(filter_ctx, node)) { \
+ return NULL; \
+ } \
+ int cmp = a_cmp(start, node); \
+ a_type *ret; \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ a_type *right = rbtn_right_get(a_type, a_field, node); \
+ if (cmp < 0) { \
+ ret = a_prefix##iter_start_filtered(rbtree, start, left, cb, \
+ arg, filter_node, filter_subtree, filter_ctx); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ if (filter_node(filter_ctx, node)) { \
+ ret = cb(rbtree, node, arg); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ } \
+ return a_prefix##iter_recurse_filtered(rbtree, right, cb, arg, \
+ filter_node, filter_subtree, filter_ctx); \
+ } else if (cmp > 0) { \
+ return a_prefix##iter_start_filtered(rbtree, start, right, \
+ cb, arg, filter_node, filter_subtree, filter_ctx); \
+ } else { \
+ if (filter_node(filter_ctx, node)) { \
+ ret = cb(rbtree, node, arg); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ } \
+ return a_prefix##iter_recurse_filtered(rbtree, right, cb, arg, \
+ filter_node, filter_subtree, filter_ctx); \
+ } \
+} \
+a_attr a_type * \
+a_prefix##iter_filtered(a_rbt_type *rbtree, a_type *start, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *ret; \
+ if (start != NULL) { \
+ ret = a_prefix##iter_start_filtered(rbtree, start, \
+ rbtree->rbt_root, cb, arg, filter_node, filter_subtree, \
+ filter_ctx); \
+ } else { \
+ ret = a_prefix##iter_recurse_filtered(rbtree, rbtree->rbt_root, \
+ cb, arg, filter_node, filter_subtree, filter_ctx); \
+ } \
+ return ret; \
+} \
+a_attr a_type * \
+a_prefix##reverse_iter_recurse_filtered(a_rbt_type *rbtree, \
+ a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
+ void *arg, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ if (node == NULL || !filter_subtree(filter_ctx, node)) { \
+ return NULL; \
+ } \
+ a_type *ret; \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ a_type *right = rbtn_right_get(a_type, a_field, node); \
+ ret = a_prefix##reverse_iter_recurse_filtered(rbtree, right, cb, \
+ arg, filter_node, filter_subtree, filter_ctx); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ if (filter_node(filter_ctx, node)) { \
+ ret = cb(rbtree, node, arg); \
+ } \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ return a_prefix##reverse_iter_recurse_filtered(rbtree, left, cb, \
+ arg, filter_node, filter_subtree, filter_ctx); \
+} \
+a_attr a_type * \
+a_prefix##reverse_iter_start_filtered(a_rbt_type *rbtree, a_type *start,\
+ a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
+ void *arg, bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ if (!filter_subtree(filter_ctx, node)) { \
+ return NULL; \
+ } \
+ int cmp = a_cmp(start, node); \
+ a_type *ret; \
+ a_type *left = rbtn_left_get(a_type, a_field, node); \
+ a_type *right = rbtn_right_get(a_type, a_field, node); \
+ if (cmp > 0) { \
+ ret = a_prefix##reverse_iter_start_filtered(rbtree, start, \
+ right, cb, arg, filter_node, filter_subtree, filter_ctx); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ if (filter_node(filter_ctx, node)) { \
+ ret = cb(rbtree, node, arg); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ } \
+ return a_prefix##reverse_iter_recurse_filtered(rbtree, left, cb,\
+ arg, filter_node, filter_subtree, filter_ctx); \
+ } else if (cmp < 0) { \
+ return a_prefix##reverse_iter_start_filtered(rbtree, start, \
+ left, cb, arg, filter_node, filter_subtree, filter_ctx); \
+ } else { \
+ if (filter_node(filter_ctx, node)) { \
+ ret = cb(rbtree, node, arg); \
+ if (ret != NULL) { \
+ return ret; \
+ } \
+ } \
+ return a_prefix##reverse_iter_recurse_filtered(rbtree, left, cb,\
+ arg, filter_node, filter_subtree, filter_ctx); \
+ } \
+} \
+a_attr a_type * \
+a_prefix##reverse_iter_filtered(a_rbt_type *rbtree, a_type *start, \
+ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg, \
+ bool (*filter_node)(void *, a_type *), \
+ bool (*filter_subtree)(void *, a_type *), \
+ void *filter_ctx) { \
+ a_type *ret; \
+ if (start != NULL) { \
+ ret = a_prefix##reverse_iter_start_filtered(rbtree, start, \
+ rbtree->rbt_root, cb, arg, filter_node, filter_subtree, \
+ filter_ctx); \
+ } else { \
+ ret = a_prefix##reverse_iter_recurse_filtered(rbtree, \
+ rbtree->rbt_root, cb, arg, filter_node, filter_subtree, \
+ filter_ctx); \
+ } \
+ return ret; \
+} \
+) /* end rb_summarized_only */
+
+#endif /* JEMALLOC_INTERNAL_RB_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/rtree.h b/deps/jemalloc/include/jemalloc/internal/rtree.h
new file mode 100644
index 0000000..a00adb2
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/rtree.h
@@ -0,0 +1,554 @@
+#ifndef JEMALLOC_INTERNAL_RTREE_H
+#define JEMALLOC_INTERNAL_RTREE_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/rtree_tsd.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/tsd.h"
+
+/*
+ * This radix tree implementation is tailored to the singular purpose of
+ * associating metadata with extents that are currently owned by jemalloc.
+ *
+ *******************************************************************************
+ */
+
+/* Number of high insignificant bits. */
+#define RTREE_NHIB ((1U << (LG_SIZEOF_PTR+3)) - LG_VADDR)
+/* Number of low insigificant bits. */
+#define RTREE_NLIB LG_PAGE
+/* Number of significant bits. */
+#define RTREE_NSB (LG_VADDR - RTREE_NLIB)
+/* Number of levels in radix tree. */
+#if RTREE_NSB <= 10
+# define RTREE_HEIGHT 1
+#elif RTREE_NSB <= 36
+# define RTREE_HEIGHT 2
+#elif RTREE_NSB <= 52
+# define RTREE_HEIGHT 3
+#else
+# error Unsupported number of significant virtual address bits
+#endif
+/* Use compact leaf representation if virtual address encoding allows. */
+#if RTREE_NHIB >= LG_CEIL(SC_NSIZES)
+# define RTREE_LEAF_COMPACT
+#endif
+
+typedef struct rtree_node_elm_s rtree_node_elm_t;
+struct rtree_node_elm_s {
+ atomic_p_t child; /* (rtree_{node,leaf}_elm_t *) */
+};
+
+typedef struct rtree_metadata_s rtree_metadata_t;
+struct rtree_metadata_s {
+ szind_t szind;
+ extent_state_t state; /* Mirrors edata->state. */
+ bool is_head; /* Mirrors edata->is_head. */
+ bool slab;
+};
+
+typedef struct rtree_contents_s rtree_contents_t;
+struct rtree_contents_s {
+ edata_t *edata;
+ rtree_metadata_t metadata;
+};
+
+#define RTREE_LEAF_STATE_WIDTH EDATA_BITS_STATE_WIDTH
+#define RTREE_LEAF_STATE_SHIFT 2
+#define RTREE_LEAF_STATE_MASK MASK(RTREE_LEAF_STATE_WIDTH, RTREE_LEAF_STATE_SHIFT)
+
+struct rtree_leaf_elm_s {
+#ifdef RTREE_LEAF_COMPACT
+ /*
+ * Single pointer-width field containing all three leaf element fields.
+ * For example, on a 64-bit x64 system with 48 significant virtual
+ * memory address bits, the index, edata, and slab fields are packed as
+ * such:
+ *
+ * x: index
+ * e: edata
+ * s: state
+ * h: is_head
+ * b: slab
+ *
+ * 00000000 xxxxxxxx eeeeeeee [...] eeeeeeee e00ssshb
+ */
+ atomic_p_t le_bits;
+#else
+ atomic_p_t le_edata; /* (edata_t *) */
+ /*
+ * From high to low bits: szind (8 bits), state (4 bits), is_head, slab
+ */
+ atomic_u_t le_metadata;
+#endif
+};
+
+typedef struct rtree_level_s rtree_level_t;
+struct rtree_level_s {
+ /* Number of key bits distinguished by this level. */
+ unsigned bits;
+ /*
+ * Cumulative number of key bits distinguished by traversing to
+ * corresponding tree level.
+ */
+ unsigned cumbits;
+};
+
+typedef struct rtree_s rtree_t;
+struct rtree_s {
+ base_t *base;
+ malloc_mutex_t init_lock;
+ /* Number of elements based on rtree_levels[0].bits. */
+#if RTREE_HEIGHT > 1
+ rtree_node_elm_t root[1U << (RTREE_NSB/RTREE_HEIGHT)];
+#else
+ rtree_leaf_elm_t root[1U << (RTREE_NSB/RTREE_HEIGHT)];
+#endif
+};
+
+/*
+ * Split the bits into one to three partitions depending on number of
+ * significant bits. It the number of bits does not divide evenly into the
+ * number of levels, place one remainder bit per level starting at the leaf
+ * level.
+ */
+static const rtree_level_t rtree_levels[] = {
+#if RTREE_HEIGHT == 1
+ {RTREE_NSB, RTREE_NHIB + RTREE_NSB}
+#elif RTREE_HEIGHT == 2
+ {RTREE_NSB/2, RTREE_NHIB + RTREE_NSB/2},
+ {RTREE_NSB/2 + RTREE_NSB%2, RTREE_NHIB + RTREE_NSB}
+#elif RTREE_HEIGHT == 3
+ {RTREE_NSB/3, RTREE_NHIB + RTREE_NSB/3},
+ {RTREE_NSB/3 + RTREE_NSB%3/2,
+ RTREE_NHIB + RTREE_NSB/3*2 + RTREE_NSB%3/2},
+ {RTREE_NSB/3 + RTREE_NSB%3 - RTREE_NSB%3/2, RTREE_NHIB + RTREE_NSB}
+#else
+# error Unsupported rtree height
+#endif
+};
+
+bool rtree_new(rtree_t *rtree, base_t *base, bool zeroed);
+
+rtree_leaf_elm_t *rtree_leaf_elm_lookup_hard(tsdn_t *tsdn, rtree_t *rtree,
+ rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent, bool init_missing);
+
+JEMALLOC_ALWAYS_INLINE unsigned
+rtree_leaf_maskbits(void) {
+ unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
+ unsigned cumbits = (rtree_levels[RTREE_HEIGHT-1].cumbits -
+ rtree_levels[RTREE_HEIGHT-1].bits);
+ return ptrbits - cumbits;
+}
+
+JEMALLOC_ALWAYS_INLINE uintptr_t
+rtree_leafkey(uintptr_t key) {
+ uintptr_t mask = ~((ZU(1) << rtree_leaf_maskbits()) - 1);
+ return (key & mask);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+rtree_cache_direct_map(uintptr_t key) {
+ return (size_t)((key >> rtree_leaf_maskbits()) &
+ (RTREE_CTX_NCACHE - 1));
+}
+
+JEMALLOC_ALWAYS_INLINE uintptr_t
+rtree_subkey(uintptr_t key, unsigned level) {
+ unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
+ unsigned cumbits = rtree_levels[level].cumbits;
+ unsigned shiftbits = ptrbits - cumbits;
+ unsigned maskbits = rtree_levels[level].bits;
+ uintptr_t mask = (ZU(1) << maskbits) - 1;
+ return ((key >> shiftbits) & mask);
+}
+
+/*
+ * Atomic getters.
+ *
+ * dependent: Reading a value on behalf of a pointer to a valid allocation
+ * is guaranteed to be a clean read even without synchronization,
+ * because the rtree update became visible in memory before the
+ * pointer came into existence.
+ * !dependent: An arbitrary read, e.g. on behalf of ivsalloc(), may not be
+ * dependent on a previous rtree write, which means a stale read
+ * could result if synchronization were omitted here.
+ */
+# ifdef RTREE_LEAF_COMPACT
+JEMALLOC_ALWAYS_INLINE uintptr_t
+rtree_leaf_elm_bits_read(tsdn_t *tsdn, rtree_t *rtree,
+ rtree_leaf_elm_t *elm, bool dependent) {
+ return (uintptr_t)atomic_load_p(&elm->le_bits, dependent
+ ? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
+}
+
+JEMALLOC_ALWAYS_INLINE uintptr_t
+rtree_leaf_elm_bits_encode(rtree_contents_t contents) {
+ assert((uintptr_t)contents.edata % (uintptr_t)EDATA_ALIGNMENT == 0);
+ uintptr_t edata_bits = (uintptr_t)contents.edata
+ & (((uintptr_t)1 << LG_VADDR) - 1);
+
+ uintptr_t szind_bits = (uintptr_t)contents.metadata.szind << LG_VADDR;
+ uintptr_t slab_bits = (uintptr_t)contents.metadata.slab;
+ uintptr_t is_head_bits = (uintptr_t)contents.metadata.is_head << 1;
+ uintptr_t state_bits = (uintptr_t)contents.metadata.state <<
+ RTREE_LEAF_STATE_SHIFT;
+ uintptr_t metadata_bits = szind_bits | state_bits | is_head_bits |
+ slab_bits;
+ assert((edata_bits & metadata_bits) == 0);
+
+ return edata_bits | metadata_bits;
+}
+
+JEMALLOC_ALWAYS_INLINE rtree_contents_t
+rtree_leaf_elm_bits_decode(uintptr_t bits) {
+ rtree_contents_t contents;
+ /* Do the easy things first. */
+ contents.metadata.szind = bits >> LG_VADDR;
+ contents.metadata.slab = (bool)(bits & 1);
+ contents.metadata.is_head = (bool)(bits & (1 << 1));
+
+ uintptr_t state_bits = (bits & RTREE_LEAF_STATE_MASK) >>
+ RTREE_LEAF_STATE_SHIFT;
+ assert(state_bits <= extent_state_max);
+ contents.metadata.state = (extent_state_t)state_bits;
+
+ uintptr_t low_bit_mask = ~((uintptr_t)EDATA_ALIGNMENT - 1);
+# ifdef __aarch64__
+ /*
+ * aarch64 doesn't sign extend the highest virtual address bit to set
+ * the higher ones. Instead, the high bits get zeroed.
+ */
+ uintptr_t high_bit_mask = ((uintptr_t)1 << LG_VADDR) - 1;
+ /* Mask off metadata. */
+ uintptr_t mask = high_bit_mask & low_bit_mask;
+ contents.edata = (edata_t *)(bits & mask);
+# else
+ /* Restore sign-extended high bits, mask metadata bits. */
+ contents.edata = (edata_t *)((uintptr_t)((intptr_t)(bits << RTREE_NHIB)
+ >> RTREE_NHIB) & low_bit_mask);
+# endif
+ assert((uintptr_t)contents.edata % (uintptr_t)EDATA_ALIGNMENT == 0);
+ return contents;
+}
+
+# endif /* RTREE_LEAF_COMPACT */
+
+JEMALLOC_ALWAYS_INLINE rtree_contents_t
+rtree_leaf_elm_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
+ bool dependent) {
+#ifdef RTREE_LEAF_COMPACT
+ uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, dependent);
+ rtree_contents_t contents = rtree_leaf_elm_bits_decode(bits);
+ return contents;
+#else
+ rtree_contents_t contents;
+ unsigned metadata_bits = atomic_load_u(&elm->le_metadata, dependent
+ ? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
+ contents.metadata.slab = (bool)(metadata_bits & 1);
+ contents.metadata.is_head = (bool)(metadata_bits & (1 << 1));
+
+ uintptr_t state_bits = (metadata_bits & RTREE_LEAF_STATE_MASK) >>
+ RTREE_LEAF_STATE_SHIFT;
+ assert(state_bits <= extent_state_max);
+ contents.metadata.state = (extent_state_t)state_bits;
+ contents.metadata.szind = metadata_bits >> (RTREE_LEAF_STATE_SHIFT +
+ RTREE_LEAF_STATE_WIDTH);
+
+ contents.edata = (edata_t *)atomic_load_p(&elm->le_edata, dependent
+ ? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
+
+ return contents;
+#endif
+}
+
+JEMALLOC_ALWAYS_INLINE void
+rtree_contents_encode(rtree_contents_t contents, void **bits,
+ unsigned *additional) {
+#ifdef RTREE_LEAF_COMPACT
+ *bits = (void *)rtree_leaf_elm_bits_encode(contents);
+#else
+ *additional = (unsigned)contents.metadata.slab
+ | ((unsigned)contents.metadata.is_head << 1)
+ | ((unsigned)contents.metadata.state << RTREE_LEAF_STATE_SHIFT)
+ | ((unsigned)contents.metadata.szind << (RTREE_LEAF_STATE_SHIFT +
+ RTREE_LEAF_STATE_WIDTH));
+ *bits = contents.edata;
+#endif
+}
+
+JEMALLOC_ALWAYS_INLINE void
+rtree_leaf_elm_write_commit(tsdn_t *tsdn, rtree_t *rtree,
+ rtree_leaf_elm_t *elm, void *bits, unsigned additional) {
+#ifdef RTREE_LEAF_COMPACT
+ atomic_store_p(&elm->le_bits, bits, ATOMIC_RELEASE);
+#else
+ atomic_store_u(&elm->le_metadata, additional, ATOMIC_RELEASE);
+ /*
+ * Write edata last, since the element is atomically considered valid
+ * as soon as the edata field is non-NULL.
+ */
+ atomic_store_p(&elm->le_edata, bits, ATOMIC_RELEASE);
+#endif
+}
+
+JEMALLOC_ALWAYS_INLINE void
+rtree_leaf_elm_write(tsdn_t *tsdn, rtree_t *rtree,
+ rtree_leaf_elm_t *elm, rtree_contents_t contents) {
+ assert((uintptr_t)contents.edata % EDATA_ALIGNMENT == 0);
+ void *bits;
+ unsigned additional;
+
+ rtree_contents_encode(contents, &bits, &additional);
+ rtree_leaf_elm_write_commit(tsdn, rtree, elm, bits, additional);
+}
+
+/* The state field can be updated independently (and more frequently). */
+JEMALLOC_ALWAYS_INLINE void
+rtree_leaf_elm_state_update(tsdn_t *tsdn, rtree_t *rtree,
+ rtree_leaf_elm_t *elm1, rtree_leaf_elm_t *elm2, extent_state_t state) {
+ assert(elm1 != NULL);
+#ifdef RTREE_LEAF_COMPACT
+ uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm1,
+ /* dependent */ true);
+ bits &= ~RTREE_LEAF_STATE_MASK;
+ bits |= state << RTREE_LEAF_STATE_SHIFT;
+ atomic_store_p(&elm1->le_bits, (void *)bits, ATOMIC_RELEASE);
+ if (elm2 != NULL) {
+ atomic_store_p(&elm2->le_bits, (void *)bits, ATOMIC_RELEASE);
+ }
+#else
+ unsigned bits = atomic_load_u(&elm1->le_metadata, ATOMIC_RELAXED);
+ bits &= ~RTREE_LEAF_STATE_MASK;
+ bits |= state << RTREE_LEAF_STATE_SHIFT;
+ atomic_store_u(&elm1->le_metadata, bits, ATOMIC_RELEASE);
+ if (elm2 != NULL) {
+ atomic_store_u(&elm2->le_metadata, bits, ATOMIC_RELEASE);
+ }
+#endif
+}
+
+/*
+ * Tries to look up the key in the L1 cache, returning false if there's a hit, or
+ * true if there's a miss.
+ * Key is allowed to be NULL; returns true in this case.
+ */
+JEMALLOC_ALWAYS_INLINE bool
+rtree_leaf_elm_lookup_fast(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key, rtree_leaf_elm_t **elm) {
+ size_t slot = rtree_cache_direct_map(key);
+ uintptr_t leafkey = rtree_leafkey(key);
+ assert(leafkey != RTREE_LEAFKEY_INVALID);
+
+ if (unlikely(rtree_ctx->cache[slot].leafkey != leafkey)) {
+ return true;
+ }
+
+ rtree_leaf_elm_t *leaf = rtree_ctx->cache[slot].leaf;
+ assert(leaf != NULL);
+ uintptr_t subkey = rtree_subkey(key, RTREE_HEIGHT-1);
+ *elm = &leaf[subkey];
+
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE rtree_leaf_elm_t *
+rtree_leaf_elm_lookup(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key, bool dependent, bool init_missing) {
+ assert(key != 0);
+ assert(!dependent || !init_missing);
+
+ size_t slot = rtree_cache_direct_map(key);
+ uintptr_t leafkey = rtree_leafkey(key);
+ assert(leafkey != RTREE_LEAFKEY_INVALID);
+
+ /* Fast path: L1 direct mapped cache. */
+ if (likely(rtree_ctx->cache[slot].leafkey == leafkey)) {
+ rtree_leaf_elm_t *leaf = rtree_ctx->cache[slot].leaf;
+ assert(leaf != NULL);
+ uintptr_t subkey = rtree_subkey(key, RTREE_HEIGHT-1);
+ return &leaf[subkey];
+ }
+ /*
+ * Search the L2 LRU cache. On hit, swap the matching element into the
+ * slot in L1 cache, and move the position in L2 up by 1.
+ */
+#define RTREE_CACHE_CHECK_L2(i) do { \
+ if (likely(rtree_ctx->l2_cache[i].leafkey == leafkey)) { \
+ rtree_leaf_elm_t *leaf = rtree_ctx->l2_cache[i].leaf; \
+ assert(leaf != NULL); \
+ if (i > 0) { \
+ /* Bubble up by one. */ \
+ rtree_ctx->l2_cache[i].leafkey = \
+ rtree_ctx->l2_cache[i - 1].leafkey; \
+ rtree_ctx->l2_cache[i].leaf = \
+ rtree_ctx->l2_cache[i - 1].leaf; \
+ rtree_ctx->l2_cache[i - 1].leafkey = \
+ rtree_ctx->cache[slot].leafkey; \
+ rtree_ctx->l2_cache[i - 1].leaf = \
+ rtree_ctx->cache[slot].leaf; \
+ } else { \
+ rtree_ctx->l2_cache[0].leafkey = \
+ rtree_ctx->cache[slot].leafkey; \
+ rtree_ctx->l2_cache[0].leaf = \
+ rtree_ctx->cache[slot].leaf; \
+ } \
+ rtree_ctx->cache[slot].leafkey = leafkey; \
+ rtree_ctx->cache[slot].leaf = leaf; \
+ uintptr_t subkey = rtree_subkey(key, RTREE_HEIGHT-1); \
+ return &leaf[subkey]; \
+ } \
+} while (0)
+ /* Check the first cache entry. */
+ RTREE_CACHE_CHECK_L2(0);
+ /* Search the remaining cache elements. */
+ for (unsigned i = 1; i < RTREE_CTX_NCACHE_L2; i++) {
+ RTREE_CACHE_CHECK_L2(i);
+ }
+#undef RTREE_CACHE_CHECK_L2
+
+ return rtree_leaf_elm_lookup_hard(tsdn, rtree, rtree_ctx, key,
+ dependent, init_missing);
+}
+
+/*
+ * Returns true on lookup failure.
+ */
+static inline bool
+rtree_read_independent(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key, rtree_contents_t *r_contents) {
+ rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
+ key, /* dependent */ false, /* init_missing */ false);
+ if (elm == NULL) {
+ return true;
+ }
+ *r_contents = rtree_leaf_elm_read(tsdn, rtree, elm,
+ /* dependent */ false);
+ return false;
+}
+
+static inline rtree_contents_t
+rtree_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key) {
+ rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
+ key, /* dependent */ true, /* init_missing */ false);
+ assert(elm != NULL);
+ return rtree_leaf_elm_read(tsdn, rtree, elm, /* dependent */ true);
+}
+
+static inline rtree_metadata_t
+rtree_metadata_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key) {
+ rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
+ key, /* dependent */ true, /* init_missing */ false);
+ assert(elm != NULL);
+ return rtree_leaf_elm_read(tsdn, rtree, elm,
+ /* dependent */ true).metadata;
+}
+
+/*
+ * Returns true when the request cannot be fulfilled by fastpath.
+ */
+static inline bool
+rtree_metadata_try_read_fast(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key, rtree_metadata_t *r_rtree_metadata) {
+ rtree_leaf_elm_t *elm;
+ /*
+ * Should check the bool return value (lookup success or not) instead of
+ * elm == NULL (which will result in an extra branch). This is because
+ * when the cache lookup succeeds, there will never be a NULL pointer
+ * returned (which is unknown to the compiler).
+ */
+ if (rtree_leaf_elm_lookup_fast(tsdn, rtree, rtree_ctx, key, &elm)) {
+ return true;
+ }
+ assert(elm != NULL);
+ *r_rtree_metadata = rtree_leaf_elm_read(tsdn, rtree, elm,
+ /* dependent */ true).metadata;
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+rtree_write_range_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t base, uintptr_t end, rtree_contents_t contents, bool clearing) {
+ assert((base & PAGE_MASK) == 0 && (end & PAGE_MASK) == 0);
+ /*
+ * Only used for emap_(de)register_interior, which implies the
+ * boundaries have been registered already. Therefore all the lookups
+ * are dependent w/o init_missing, assuming the range spans across at
+ * most 2 rtree leaf nodes (each covers 1 GiB of vaddr).
+ */
+ void *bits;
+ unsigned additional;
+ rtree_contents_encode(contents, &bits, &additional);
+
+ rtree_leaf_elm_t *elm = NULL; /* Dead store. */
+ for (uintptr_t addr = base; addr <= end; addr += PAGE) {
+ if (addr == base ||
+ (addr & ((ZU(1) << rtree_leaf_maskbits()) - 1)) == 0) {
+ elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx, addr,
+ /* dependent */ true, /* init_missing */ false);
+ assert(elm != NULL);
+ }
+ assert(elm == rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx, addr,
+ /* dependent */ true, /* init_missing */ false));
+ assert(!clearing || rtree_leaf_elm_read(tsdn, rtree, elm,
+ /* dependent */ true).edata != NULL);
+ rtree_leaf_elm_write_commit(tsdn, rtree, elm, bits, additional);
+ elm++;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+rtree_write_range(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t base, uintptr_t end, rtree_contents_t contents) {
+ rtree_write_range_impl(tsdn, rtree, rtree_ctx, base, end, contents,
+ /* clearing */ false);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+rtree_write(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, uintptr_t key,
+ rtree_contents_t contents) {
+ rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
+ key, /* dependent */ false, /* init_missing */ true);
+ if (elm == NULL) {
+ return true;
+ }
+
+ rtree_leaf_elm_write(tsdn, rtree, elm, contents);
+
+ return false;
+}
+
+static inline void
+rtree_clear(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t key) {
+ rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
+ key, /* dependent */ true, /* init_missing */ false);
+ assert(elm != NULL);
+ assert(rtree_leaf_elm_read(tsdn, rtree, elm,
+ /* dependent */ true).edata != NULL);
+ rtree_contents_t contents;
+ contents.edata = NULL;
+ contents.metadata.szind = SC_NSIZES;
+ contents.metadata.slab = false;
+ contents.metadata.is_head = false;
+ contents.metadata.state = (extent_state_t)0;
+ rtree_leaf_elm_write(tsdn, rtree, elm, contents);
+}
+
+static inline void
+rtree_clear_range(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
+ uintptr_t base, uintptr_t end) {
+ rtree_contents_t contents;
+ contents.edata = NULL;
+ contents.metadata.szind = SC_NSIZES;
+ contents.metadata.slab = false;
+ contents.metadata.is_head = false;
+ contents.metadata.state = (extent_state_t)0;
+ rtree_write_range_impl(tsdn, rtree, rtree_ctx, base, end, contents,
+ /* clearing */ true);
+}
+
+#endif /* JEMALLOC_INTERNAL_RTREE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/rtree_tsd.h b/deps/jemalloc/include/jemalloc/internal/rtree_tsd.h
new file mode 100644
index 0000000..e45525c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/rtree_tsd.h
@@ -0,0 +1,62 @@
+#ifndef JEMALLOC_INTERNAL_RTREE_CTX_H
+#define JEMALLOC_INTERNAL_RTREE_CTX_H
+
+/*
+ * Number of leafkey/leaf pairs to cache in L1 and L2 level respectively. Each
+ * entry supports an entire leaf, so the cache hit rate is typically high even
+ * with a small number of entries. In rare cases extent activity will straddle
+ * the boundary between two leaf nodes. Furthermore, an arena may use a
+ * combination of dss and mmap. Note that as memory usage grows past the amount
+ * that this cache can directly cover, the cache will become less effective if
+ * locality of reference is low, but the consequence is merely cache misses
+ * while traversing the tree nodes.
+ *
+ * The L1 direct mapped cache offers consistent and low cost on cache hit.
+ * However collision could affect hit rate negatively. This is resolved by
+ * combining with a L2 LRU cache, which requires linear search and re-ordering
+ * on access but suffers no collision. Note that, the cache will itself suffer
+ * cache misses if made overly large, plus the cost of linear search in the LRU
+ * cache.
+ */
+#define RTREE_CTX_NCACHE 16
+#define RTREE_CTX_NCACHE_L2 8
+
+/* Needed for initialization only. */
+#define RTREE_LEAFKEY_INVALID ((uintptr_t)1)
+#define RTREE_CTX_CACHE_ELM_INVALID {RTREE_LEAFKEY_INVALID, NULL}
+
+#define RTREE_CTX_INIT_ELM_1 RTREE_CTX_CACHE_ELM_INVALID
+#define RTREE_CTX_INIT_ELM_2 RTREE_CTX_INIT_ELM_1, RTREE_CTX_INIT_ELM_1
+#define RTREE_CTX_INIT_ELM_4 RTREE_CTX_INIT_ELM_2, RTREE_CTX_INIT_ELM_2
+#define RTREE_CTX_INIT_ELM_8 RTREE_CTX_INIT_ELM_4, RTREE_CTX_INIT_ELM_4
+#define RTREE_CTX_INIT_ELM_16 RTREE_CTX_INIT_ELM_8, RTREE_CTX_INIT_ELM_8
+
+#define _RTREE_CTX_INIT_ELM_DATA(n) RTREE_CTX_INIT_ELM_##n
+#define RTREE_CTX_INIT_ELM_DATA(n) _RTREE_CTX_INIT_ELM_DATA(n)
+
+/*
+ * Static initializer (to invalidate the cache entries) is required because the
+ * free fastpath may access the rtree cache before a full tsd initialization.
+ */
+#define RTREE_CTX_INITIALIZER {{RTREE_CTX_INIT_ELM_DATA(RTREE_CTX_NCACHE)}, \
+ {RTREE_CTX_INIT_ELM_DATA(RTREE_CTX_NCACHE_L2)}}
+
+typedef struct rtree_leaf_elm_s rtree_leaf_elm_t;
+
+typedef struct rtree_ctx_cache_elm_s rtree_ctx_cache_elm_t;
+struct rtree_ctx_cache_elm_s {
+ uintptr_t leafkey;
+ rtree_leaf_elm_t *leaf;
+};
+
+typedef struct rtree_ctx_s rtree_ctx_t;
+struct rtree_ctx_s {
+ /* Direct mapped cache. */
+ rtree_ctx_cache_elm_t cache[RTREE_CTX_NCACHE];
+ /* L2 LRU cache. */
+ rtree_ctx_cache_elm_t l2_cache[RTREE_CTX_NCACHE_L2];
+};
+
+void rtree_ctx_data_init(rtree_ctx_t *ctx);
+
+#endif /* JEMALLOC_INTERNAL_RTREE_CTX_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/safety_check.h b/deps/jemalloc/include/jemalloc/internal/safety_check.h
new file mode 100644
index 0000000..f1a74f1
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/safety_check.h
@@ -0,0 +1,31 @@
+#ifndef JEMALLOC_INTERNAL_SAFETY_CHECK_H
+#define JEMALLOC_INTERNAL_SAFETY_CHECK_H
+
+void safety_check_fail_sized_dealloc(bool current_dealloc, const void *ptr,
+ size_t true_size, size_t input_size);
+void safety_check_fail(const char *format, ...);
+
+typedef void (*safety_check_abort_hook_t)(const char *message);
+
+/* Can set to NULL for a default. */
+void safety_check_set_abort(safety_check_abort_hook_t abort_fn);
+
+JEMALLOC_ALWAYS_INLINE void
+safety_check_set_redzone(void *ptr, size_t usize, size_t bumped_usize) {
+ assert(usize < bumped_usize);
+ for (size_t i = usize; i < bumped_usize && i < usize + 32; ++i) {
+ *((unsigned char *)ptr + i) = 0xBC;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+safety_check_verify_redzone(const void *ptr, size_t usize, size_t bumped_usize)
+{
+ for (size_t i = usize; i < bumped_usize && i < usize + 32; ++i) {
+ if (unlikely(*((unsigned char *)ptr + i) != 0xBC)) {
+ safety_check_fail("Use after free error\n");
+ }
+ }
+}
+
+#endif /*JEMALLOC_INTERNAL_SAFETY_CHECK_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/san.h b/deps/jemalloc/include/jemalloc/internal/san.h
new file mode 100644
index 0000000..8813d6b
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/san.h
@@ -0,0 +1,191 @@
+#ifndef JEMALLOC_INTERNAL_GUARD_H
+#define JEMALLOC_INTERNAL_GUARD_H
+
+#include "jemalloc/internal/ehooks.h"
+#include "jemalloc/internal/emap.h"
+
+#define SAN_PAGE_GUARD PAGE
+#define SAN_PAGE_GUARDS_SIZE (SAN_PAGE_GUARD * 2)
+
+#define SAN_GUARD_LARGE_EVERY_N_EXTENTS_DEFAULT 0
+#define SAN_GUARD_SMALL_EVERY_N_EXTENTS_DEFAULT 0
+
+#define SAN_LG_UAF_ALIGN_DEFAULT (-1)
+#define SAN_CACHE_BIN_NONFAST_MASK_DEFAULT (uintptr_t)(-1)
+
+static const uintptr_t uaf_detect_junk = (uintptr_t)0x5b5b5b5b5b5b5b5bULL;
+
+/* 0 means disabled, i.e. never guarded. */
+extern size_t opt_san_guard_large;
+extern size_t opt_san_guard_small;
+/* -1 means disabled, i.e. never check for use-after-free. */
+extern ssize_t opt_lg_san_uaf_align;
+
+void san_guard_pages(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ emap_t *emap, bool left, bool right, bool remap);
+void san_unguard_pages(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ emap_t *emap, bool left, bool right);
+/*
+ * Unguard the extent, but don't modify emap boundaries. Must be called on an
+ * extent that has been erased from emap and shouldn't be placed back.
+ */
+void san_unguard_pages_pre_destroy(tsdn_t *tsdn, ehooks_t *ehooks,
+ edata_t *edata, emap_t *emap);
+void san_check_stashed_ptrs(void **ptrs, size_t nstashed, size_t usize);
+
+void tsd_san_init(tsd_t *tsd);
+void san_init(ssize_t lg_san_uaf_align);
+
+static inline void
+san_guard_pages_two_sided(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ emap_t *emap, bool remap) {
+ san_guard_pages(tsdn, ehooks, edata, emap, true, true, remap);
+}
+
+static inline void
+san_unguard_pages_two_sided(tsdn_t *tsdn, ehooks_t *ehooks, edata_t *edata,
+ emap_t *emap) {
+ san_unguard_pages(tsdn, ehooks, edata, emap, true, true);
+}
+
+static inline size_t
+san_two_side_unguarded_sz(size_t size) {
+ assert(size % PAGE == 0);
+ assert(size >= SAN_PAGE_GUARDS_SIZE);
+ return size - SAN_PAGE_GUARDS_SIZE;
+}
+
+static inline size_t
+san_two_side_guarded_sz(size_t size) {
+ assert(size % PAGE == 0);
+ return size + SAN_PAGE_GUARDS_SIZE;
+}
+
+static inline size_t
+san_one_side_unguarded_sz(size_t size) {
+ assert(size % PAGE == 0);
+ assert(size >= SAN_PAGE_GUARD);
+ return size - SAN_PAGE_GUARD;
+}
+
+static inline size_t
+san_one_side_guarded_sz(size_t size) {
+ assert(size % PAGE == 0);
+ return size + SAN_PAGE_GUARD;
+}
+
+static inline bool
+san_guard_enabled(void) {
+ return (opt_san_guard_large != 0 || opt_san_guard_small != 0);
+}
+
+static inline bool
+san_large_extent_decide_guard(tsdn_t *tsdn, ehooks_t *ehooks, size_t size,
+ size_t alignment) {
+ if (opt_san_guard_large == 0 || ehooks_guard_will_fail(ehooks) ||
+ tsdn_null(tsdn)) {
+ return false;
+ }
+
+ tsd_t *tsd = tsdn_tsd(tsdn);
+ uint64_t n = tsd_san_extents_until_guard_large_get(tsd);
+ assert(n >= 1);
+ if (n > 1) {
+ /*
+ * Subtract conditionally because the guard may not happen due
+ * to alignment or size restriction below.
+ */
+ *tsd_san_extents_until_guard_largep_get(tsd) = n - 1;
+ }
+
+ if (n == 1 && (alignment <= PAGE) &&
+ (san_two_side_guarded_sz(size) <= SC_LARGE_MAXCLASS)) {
+ *tsd_san_extents_until_guard_largep_get(tsd) =
+ opt_san_guard_large;
+ return true;
+ } else {
+ assert(tsd_san_extents_until_guard_large_get(tsd) >= 1);
+ return false;
+ }
+}
+
+static inline bool
+san_slab_extent_decide_guard(tsdn_t *tsdn, ehooks_t *ehooks) {
+ if (opt_san_guard_small == 0 || ehooks_guard_will_fail(ehooks) ||
+ tsdn_null(tsdn)) {
+ return false;
+ }
+
+ tsd_t *tsd = tsdn_tsd(tsdn);
+ uint64_t n = tsd_san_extents_until_guard_small_get(tsd);
+ assert(n >= 1);
+ if (n == 1) {
+ *tsd_san_extents_until_guard_smallp_get(tsd) =
+ opt_san_guard_small;
+ return true;
+ } else {
+ *tsd_san_extents_until_guard_smallp_get(tsd) = n - 1;
+ assert(tsd_san_extents_until_guard_small_get(tsd) >= 1);
+ return false;
+ }
+}
+
+static inline void
+san_junk_ptr_locations(void *ptr, size_t usize, void **first, void **mid,
+ void **last) {
+ size_t ptr_sz = sizeof(void *);
+
+ *first = ptr;
+
+ *mid = (void *)((uintptr_t)ptr + ((usize >> 1) & ~(ptr_sz - 1)));
+ assert(*first != *mid || usize == ptr_sz);
+ assert((uintptr_t)*first <= (uintptr_t)*mid);
+
+ /*
+ * When usize > 32K, the gap between requested_size and usize might be
+ * greater than 4K -- this means the last write may access an
+ * likely-untouched page (default settings w/ 4K pages). However by
+ * default the tcache only goes up to the 32K size class, and is usually
+ * tuned lower instead of higher, which makes it less of a concern.
+ */
+ *last = (void *)((uintptr_t)ptr + usize - sizeof(uaf_detect_junk));
+ assert(*first != *last || usize == ptr_sz);
+ assert(*mid != *last || usize <= ptr_sz * 2);
+ assert((uintptr_t)*mid <= (uintptr_t)*last);
+}
+
+static inline bool
+san_junk_ptr_should_slow(void) {
+ /*
+ * The latter condition (pointer size greater than the min size class)
+ * is not expected -- fall back to the slow path for simplicity.
+ */
+ return config_debug || (LG_SIZEOF_PTR > SC_LG_TINY_MIN);
+}
+
+static inline void
+san_junk_ptr(void *ptr, size_t usize) {
+ if (san_junk_ptr_should_slow()) {
+ memset(ptr, (char)uaf_detect_junk, usize);
+ return;
+ }
+
+ void *first, *mid, *last;
+ san_junk_ptr_locations(ptr, usize, &first, &mid, &last);
+ *(uintptr_t *)first = uaf_detect_junk;
+ *(uintptr_t *)mid = uaf_detect_junk;
+ *(uintptr_t *)last = uaf_detect_junk;
+}
+
+static inline bool
+san_uaf_detection_enabled(void) {
+ bool ret = config_uaf_detection && (opt_lg_san_uaf_align != -1);
+ if (config_uaf_detection && ret) {
+ assert(san_cache_bin_nonfast_mask == ((uintptr_t)1 <<
+ opt_lg_san_uaf_align) - 1);
+ }
+
+ return ret;
+}
+
+#endif /* JEMALLOC_INTERNAL_GUARD_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/san_bump.h b/deps/jemalloc/include/jemalloc/internal/san_bump.h
new file mode 100644
index 0000000..8ec4a71
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/san_bump.h
@@ -0,0 +1,52 @@
+#ifndef JEMALLOC_INTERNAL_SAN_BUMP_H
+#define JEMALLOC_INTERNAL_SAN_BUMP_H
+
+#include "jemalloc/internal/edata.h"
+#include "jemalloc/internal/exp_grow.h"
+#include "jemalloc/internal/mutex.h"
+
+#define SBA_RETAINED_ALLOC_SIZE ((size_t)4 << 20)
+
+extern bool opt_retain;
+
+typedef struct ehooks_s ehooks_t;
+typedef struct pac_s pac_t;
+
+typedef struct san_bump_alloc_s san_bump_alloc_t;
+struct san_bump_alloc_s {
+ malloc_mutex_t mtx;
+
+ edata_t *curr_reg;
+};
+
+static inline bool
+san_bump_enabled() {
+ /*
+ * We enable san_bump allocator only when it's possible to break up a
+ * mapping and unmap a part of it (maps_coalesce). This is needed to
+ * ensure the arena destruction process can destroy all retained guarded
+ * extents one by one and to unmap a trailing part of a retained guarded
+ * region when it's too small to fit a pending allocation.
+ * opt_retain is required, because this allocator retains a large
+ * virtual memory mapping and returns smaller parts of it.
+ */
+ return maps_coalesce && opt_retain;
+}
+
+static inline bool
+san_bump_alloc_init(san_bump_alloc_t* sba) {
+ bool err = malloc_mutex_init(&sba->mtx, "sanitizer_bump_allocator",
+ WITNESS_RANK_SAN_BUMP_ALLOC, malloc_mutex_rank_exclusive);
+ if (err) {
+ return true;
+ }
+ sba->curr_reg = NULL;
+
+ return false;
+}
+
+edata_t *
+san_bump_alloc(tsdn_t *tsdn, san_bump_alloc_t* sba, pac_t *pac, ehooks_t *ehooks,
+ size_t size, bool zero);
+
+#endif /* JEMALLOC_INTERNAL_SAN_BUMP_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/sc.h b/deps/jemalloc/include/jemalloc/internal/sc.h
new file mode 100644
index 0000000..9bab347
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/sc.h
@@ -0,0 +1,357 @@
+#ifndef JEMALLOC_INTERNAL_SC_H
+#define JEMALLOC_INTERNAL_SC_H
+
+#include "jemalloc/internal/jemalloc_internal_types.h"
+
+/*
+ * Size class computations:
+ *
+ * These are a little tricky; we'll first start by describing how things
+ * generally work, and then describe some of the details.
+ *
+ * Ignore the first few size classes for a moment. We can then split all the
+ * remaining size classes into groups. The size classes in a group are spaced
+ * such that they cover allocation request sizes in a power-of-2 range. The
+ * power of two is called the base of the group, and the size classes in it
+ * satisfy allocations in the half-open range (base, base * 2]. There are
+ * SC_NGROUP size classes in each group, equally spaced in the range, so that
+ * each one covers allocations for base / SC_NGROUP possible allocation sizes.
+ * We call that value (base / SC_NGROUP) the delta of the group. Each size class
+ * is delta larger than the one before it (including the initial size class in a
+ * group, which is delta larger than base, the largest size class in the
+ * previous group).
+ * To make the math all work out nicely, we require that SC_NGROUP is a power of
+ * two, and define it in terms of SC_LG_NGROUP. We'll often talk in terms of
+ * lg_base and lg_delta. For each of these groups then, we have that
+ * lg_delta == lg_base - SC_LG_NGROUP.
+ * The size classes in a group with a given lg_base and lg_delta (which, recall,
+ * can be computed from lg_base for these groups) are therefore:
+ * base + 1 * delta
+ * which covers allocations in (base, base + 1 * delta]
+ * base + 2 * delta
+ * which covers allocations in (base + 1 * delta, base + 2 * delta].
+ * base + 3 * delta
+ * which covers allocations in (base + 2 * delta, base + 3 * delta].
+ * ...
+ * base + SC_NGROUP * delta ( == 2 * base)
+ * which covers allocations in (base + (SC_NGROUP - 1) * delta, 2 * base].
+ * (Note that currently SC_NGROUP is always 4, so the "..." is empty in
+ * practice.)
+ * Note that the last size class in the group is the next power of two (after
+ * base), so that we've set up the induction correctly for the next group's
+ * selection of delta.
+ *
+ * Now, let's start considering the first few size classes. Two extra constants
+ * come into play here: LG_QUANTUM and SC_LG_TINY_MIN. LG_QUANTUM ensures
+ * correct platform alignment; all objects of size (1 << LG_QUANTUM) or larger
+ * are at least (1 << LG_QUANTUM) aligned; this can be used to ensure that we
+ * never return improperly aligned memory, by making (1 << LG_QUANTUM) equal the
+ * highest required alignment of a platform. For allocation sizes smaller than
+ * (1 << LG_QUANTUM) though, we can be more relaxed (since we don't support
+ * platforms with types with alignment larger than their size). To allow such
+ * allocations (without wasting space unnecessarily), we introduce tiny size
+ * classes; one per power of two, up until we hit the quantum size. There are
+ * therefore LG_QUANTUM - SC_LG_TINY_MIN such size classes.
+ *
+ * Next, we have a size class of size (1 << LG_QUANTUM). This can't be the
+ * start of a group in the sense we described above (covering a power of two
+ * range) since, if we divided into it to pick a value of delta, we'd get a
+ * delta smaller than (1 << LG_QUANTUM) for sizes >= (1 << LG_QUANTUM), which
+ * is against the rules.
+ *
+ * The first base we can divide by SC_NGROUP while still being at least
+ * (1 << LG_QUANTUM) is SC_NGROUP * (1 << LG_QUANTUM). We can get there by
+ * having SC_NGROUP size classes, spaced (1 << LG_QUANTUM) apart. These size
+ * classes are:
+ * 1 * (1 << LG_QUANTUM)
+ * 2 * (1 << LG_QUANTUM)
+ * 3 * (1 << LG_QUANTUM)
+ * ... (although, as above, this "..." is empty in practice)
+ * SC_NGROUP * (1 << LG_QUANTUM).
+ *
+ * There are SC_NGROUP of these size classes, so we can regard it as a sort of
+ * pseudo-group, even though it spans multiple powers of 2, is divided
+ * differently, and both starts and ends on a power of 2 (as opposed to just
+ * ending). SC_NGROUP is itself a power of two, so the first group after the
+ * pseudo-group has the power-of-two base SC_NGROUP * (1 << LG_QUANTUM), for a
+ * lg_base of LG_QUANTUM + SC_LG_NGROUP. We can divide this base into SC_NGROUP
+ * sizes without violating our LG_QUANTUM requirements, so we can safely set
+ * lg_delta = lg_base - SC_LG_GROUP (== LG_QUANTUM).
+ *
+ * So, in order, the size classes are:
+ *
+ * Tiny size classes:
+ * - Count: LG_QUANTUM - SC_LG_TINY_MIN.
+ * - Sizes:
+ * 1 << SC_LG_TINY_MIN
+ * 1 << (SC_LG_TINY_MIN + 1)
+ * 1 << (SC_LG_TINY_MIN + 2)
+ * ...
+ * 1 << (LG_QUANTUM - 1)
+ *
+ * Initial pseudo-group:
+ * - Count: SC_NGROUP
+ * - Sizes:
+ * 1 * (1 << LG_QUANTUM)
+ * 2 * (1 << LG_QUANTUM)
+ * 3 * (1 << LG_QUANTUM)
+ * ...
+ * SC_NGROUP * (1 << LG_QUANTUM)
+ *
+ * Regular group 0:
+ * - Count: SC_NGROUP
+ * - Sizes:
+ * (relative to lg_base of LG_QUANTUM + SC_LG_NGROUP and lg_delta of
+ * lg_base - SC_LG_NGROUP)
+ * (1 << lg_base) + 1 * (1 << lg_delta)
+ * (1 << lg_base) + 2 * (1 << lg_delta)
+ * (1 << lg_base) + 3 * (1 << lg_delta)
+ * ...
+ * (1 << lg_base) + SC_NGROUP * (1 << lg_delta) [ == (1 << (lg_base + 1)) ]
+ *
+ * Regular group 1:
+ * - Count: SC_NGROUP
+ * - Sizes:
+ * (relative to lg_base of LG_QUANTUM + SC_LG_NGROUP + 1 and lg_delta of
+ * lg_base - SC_LG_NGROUP)
+ * (1 << lg_base) + 1 * (1 << lg_delta)
+ * (1 << lg_base) + 2 * (1 << lg_delta)
+ * (1 << lg_base) + 3 * (1 << lg_delta)
+ * ...
+ * (1 << lg_base) + SC_NGROUP * (1 << lg_delta) [ == (1 << (lg_base + 1)) ]
+ *
+ * ...
+ *
+ * Regular group N:
+ * - Count: SC_NGROUP
+ * - Sizes:
+ * (relative to lg_base of LG_QUANTUM + SC_LG_NGROUP + N and lg_delta of
+ * lg_base - SC_LG_NGROUP)
+ * (1 << lg_base) + 1 * (1 << lg_delta)
+ * (1 << lg_base) + 2 * (1 << lg_delta)
+ * (1 << lg_base) + 3 * (1 << lg_delta)
+ * ...
+ * (1 << lg_base) + SC_NGROUP * (1 << lg_delta) [ == (1 << (lg_base + 1)) ]
+ *
+ *
+ * Representation of metadata:
+ * To make the math easy, we'll mostly work in lg quantities. We record lg_base,
+ * lg_delta, and ndelta (i.e. number of deltas above the base) on a
+ * per-size-class basis, and maintain the invariant that, across all size
+ * classes, size == (1 << lg_base) + ndelta * (1 << lg_delta).
+ *
+ * For regular groups (i.e. those with lg_base >= LG_QUANTUM + SC_LG_NGROUP),
+ * lg_delta is lg_base - SC_LG_NGROUP, and ndelta goes from 1 to SC_NGROUP.
+ *
+ * For the initial tiny size classes (if any), lg_base is lg(size class size).
+ * lg_delta is lg_base for the first size class, and lg_base - 1 for all
+ * subsequent ones. ndelta is always 0.
+ *
+ * For the pseudo-group, if there are no tiny size classes, then we set
+ * lg_base == LG_QUANTUM, lg_delta == LG_QUANTUM, and have ndelta range from 0
+ * to SC_NGROUP - 1. (Note that delta == base, so base + (SC_NGROUP - 1) * delta
+ * is just SC_NGROUP * base, or (1 << (SC_LG_NGROUP + LG_QUANTUM)), so we do
+ * indeed get a power of two that way). If there *are* tiny size classes, then
+ * the first size class needs to have lg_delta relative to the largest tiny size
+ * class. We therefore set lg_base == LG_QUANTUM - 1,
+ * lg_delta == LG_QUANTUM - 1, and ndelta == 1, keeping the rest of the
+ * pseudo-group the same.
+ *
+ *
+ * Other terminology:
+ * "Small" size classes mean those that are allocated out of bins, which is the
+ * same as those that are slab allocated.
+ * "Large" size classes are those that are not small. The cutoff for counting as
+ * large is page size * group size.
+ */
+
+/*
+ * Size class N + (1 << SC_LG_NGROUP) twice the size of size class N.
+ */
+#define SC_LG_NGROUP 2
+#define SC_LG_TINY_MIN 3
+
+#if SC_LG_TINY_MIN == 0
+/* The div module doesn't support division by 1, which this would require. */
+#error "Unsupported LG_TINY_MIN"
+#endif
+
+/*
+ * The definitions below are all determined by the above settings and system
+ * characteristics.
+ */
+#define SC_NGROUP (1ULL << SC_LG_NGROUP)
+#define SC_PTR_BITS ((1ULL << LG_SIZEOF_PTR) * 8)
+#define SC_NTINY (LG_QUANTUM - SC_LG_TINY_MIN)
+#define SC_LG_TINY_MAXCLASS (LG_QUANTUM > SC_LG_TINY_MIN ? LG_QUANTUM - 1 : -1)
+#define SC_NPSEUDO SC_NGROUP
+#define SC_LG_FIRST_REGULAR_BASE (LG_QUANTUM + SC_LG_NGROUP)
+/*
+ * We cap allocations to be less than 2 ** (ptr_bits - 1), so the highest base
+ * we need is 2 ** (ptr_bits - 2). (This also means that the last group is 1
+ * size class shorter than the others).
+ * We could probably save some space in arenas by capping this at LG_VADDR size.
+ */
+#define SC_LG_BASE_MAX (SC_PTR_BITS - 2)
+#define SC_NREGULAR (SC_NGROUP * \
+ (SC_LG_BASE_MAX - SC_LG_FIRST_REGULAR_BASE + 1) - 1)
+#define SC_NSIZES (SC_NTINY + SC_NPSEUDO + SC_NREGULAR)
+
+/*
+ * The number of size classes that are a multiple of the page size.
+ *
+ * Here are the first few bases that have a page-sized SC.
+ *
+ * lg(base) | base | highest SC | page-multiple SCs
+ * --------------|------------------------------------------
+ * LG_PAGE - 1 | PAGE / 2 | PAGE | 1
+ * LG_PAGE | PAGE | 2 * PAGE | 1
+ * LG_PAGE + 1 | 2 * PAGE | 4 * PAGE | 2
+ * LG_PAGE + 2 | 4 * PAGE | 8 * PAGE | 4
+ *
+ * The number of page-multiple SCs continues to grow in powers of two, up until
+ * lg_delta == lg_page, which corresponds to setting lg_base to lg_page +
+ * SC_LG_NGROUP. So, then, the number of size classes that are multiples of the
+ * page size whose lg_delta is less than the page size are
+ * is 1 + (2**0 + 2**1 + ... + 2**(lg_ngroup - 1) == 2**lg_ngroup.
+ *
+ * For each base with lg_base in [lg_page + lg_ngroup, lg_base_max), there are
+ * NGROUP page-sized size classes, and when lg_base == lg_base_max, there are
+ * NGROUP - 1.
+ *
+ * This gives us the quantity we seek.
+ */
+#define SC_NPSIZES ( \
+ SC_NGROUP \
+ + (SC_LG_BASE_MAX - (LG_PAGE + SC_LG_NGROUP)) * SC_NGROUP \
+ + SC_NGROUP - 1)
+
+/*
+ * We declare a size class is binnable if size < page size * group. Or, in other
+ * words, lg(size) < lg(page size) + lg(group size).
+ */
+#define SC_NBINS ( \
+ /* Sub-regular size classes. */ \
+ SC_NTINY + SC_NPSEUDO \
+ /* Groups with lg_regular_min_base <= lg_base <= lg_base_max */ \
+ + SC_NGROUP * (LG_PAGE + SC_LG_NGROUP - SC_LG_FIRST_REGULAR_BASE) \
+ /* Last SC of the last group hits the bound exactly; exclude it. */ \
+ - 1)
+
+/*
+ * The size2index_tab lookup table uses uint8_t to encode each bin index, so we
+ * cannot support more than 256 small size classes.
+ */
+#if (SC_NBINS > 256)
+# error "Too many small size classes"
+#endif
+
+/* The largest size class in the lookup table, and its binary log. */
+#define SC_LG_MAX_LOOKUP 12
+#define SC_LOOKUP_MAXCLASS (1 << SC_LG_MAX_LOOKUP)
+
+/* Internal, only used for the definition of SC_SMALL_MAXCLASS. */
+#define SC_SMALL_MAX_BASE (1 << (LG_PAGE + SC_LG_NGROUP - 1))
+#define SC_SMALL_MAX_DELTA (1 << (LG_PAGE - 1))
+
+/* The largest size class allocated out of a slab. */
+#define SC_SMALL_MAXCLASS (SC_SMALL_MAX_BASE \
+ + (SC_NGROUP - 1) * SC_SMALL_MAX_DELTA)
+
+/* The fastpath assumes all lookup-able sizes are small. */
+#if (SC_SMALL_MAXCLASS < SC_LOOKUP_MAXCLASS)
+# error "Lookup table sizes must be small"
+#endif
+
+/* The smallest size class not allocated out of a slab. */
+#define SC_LARGE_MINCLASS ((size_t)1ULL << (LG_PAGE + SC_LG_NGROUP))
+#define SC_LG_LARGE_MINCLASS (LG_PAGE + SC_LG_NGROUP)
+
+/* Internal; only used for the definition of SC_LARGE_MAXCLASS. */
+#define SC_MAX_BASE ((size_t)1 << (SC_PTR_BITS - 2))
+#define SC_MAX_DELTA ((size_t)1 << (SC_PTR_BITS - 2 - SC_LG_NGROUP))
+
+/* The largest size class supported. */
+#define SC_LARGE_MAXCLASS (SC_MAX_BASE + (SC_NGROUP - 1) * SC_MAX_DELTA)
+
+/* Maximum number of regions in one slab. */
+#ifndef CONFIG_LG_SLAB_MAXREGS
+# define SC_LG_SLAB_MAXREGS (LG_PAGE - SC_LG_TINY_MIN)
+#else
+# if CONFIG_LG_SLAB_MAXREGS < (LG_PAGE - SC_LG_TINY_MIN)
+# error "Unsupported SC_LG_SLAB_MAXREGS"
+# else
+# define SC_LG_SLAB_MAXREGS CONFIG_LG_SLAB_MAXREGS
+# endif
+#endif
+
+#define SC_SLAB_MAXREGS (1U << SC_LG_SLAB_MAXREGS)
+
+typedef struct sc_s sc_t;
+struct sc_s {
+ /* Size class index, or -1 if not a valid size class. */
+ int index;
+ /* Lg group base size (no deltas added). */
+ int lg_base;
+ /* Lg delta to previous size class. */
+ int lg_delta;
+ /* Delta multiplier. size == 1<<lg_base + ndelta<<lg_delta */
+ int ndelta;
+ /*
+ * True if the size class is a multiple of the page size, false
+ * otherwise.
+ */
+ bool psz;
+ /*
+ * True if the size class is a small, bin, size class. False otherwise.
+ */
+ bool bin;
+ /* The slab page count if a small bin size class, 0 otherwise. */
+ int pgs;
+ /* Same as lg_delta if a lookup table size class, 0 otherwise. */
+ int lg_delta_lookup;
+};
+
+typedef struct sc_data_s sc_data_t;
+struct sc_data_s {
+ /* Number of tiny size classes. */
+ unsigned ntiny;
+ /* Number of bins supported by the lookup table. */
+ int nlbins;
+ /* Number of small size class bins. */
+ int nbins;
+ /* Number of size classes. */
+ int nsizes;
+ /* Number of bits required to store NSIZES. */
+ int lg_ceil_nsizes;
+ /* Number of size classes that are a multiple of (1U << LG_PAGE). */
+ unsigned npsizes;
+ /* Lg of maximum tiny size class (or -1, if none). */
+ int lg_tiny_maxclass;
+ /* Maximum size class included in lookup table. */
+ size_t lookup_maxclass;
+ /* Maximum small size class. */
+ size_t small_maxclass;
+ /* Lg of minimum large size class. */
+ int lg_large_minclass;
+ /* The minimum large size class. */
+ size_t large_minclass;
+ /* Maximum (large) size class. */
+ size_t large_maxclass;
+ /* True if the sc_data_t has been initialized (for debugging only). */
+ bool initialized;
+
+ sc_t sc[SC_NSIZES];
+};
+
+size_t reg_size_compute(int lg_base, int lg_delta, int ndelta);
+void sc_data_init(sc_data_t *data);
+/*
+ * Updates slab sizes in [begin, end] to be pgs pages in length, if possible.
+ * Otherwise, does its best to accommodate the request.
+ */
+void sc_data_update_slab_size(sc_data_t *data, size_t begin, size_t end,
+ int pgs);
+void sc_boot(sc_data_t *data);
+
+#endif /* JEMALLOC_INTERNAL_SC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/sec.h b/deps/jemalloc/include/jemalloc/internal/sec.h
new file mode 100644
index 0000000..fa86338
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/sec.h
@@ -0,0 +1,120 @@
+#ifndef JEMALLOC_INTERNAL_SEC_H
+#define JEMALLOC_INTERNAL_SEC_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/pai.h"
+
+/*
+ * Small extent cache.
+ *
+ * This includes some utilities to cache small extents. We have a per-pszind
+ * bin with its own list of extents of that size. We don't try to do any
+ * coalescing of extents (since it would in general require cross-shard locks or
+ * knowledge of the underlying PAI implementation).
+ */
+
+/*
+ * For now, this is just one field; eventually, we'll probably want to get more
+ * fine-grained data out (like per-size class statistics).
+ */
+typedef struct sec_stats_s sec_stats_t;
+struct sec_stats_s {
+ /* Sum of bytes_cur across all shards. */
+ size_t bytes;
+};
+
+static inline void
+sec_stats_accum(sec_stats_t *dst, sec_stats_t *src) {
+ dst->bytes += src->bytes;
+}
+
+/* A collections of free extents, all of the same size. */
+typedef struct sec_bin_s sec_bin_t;
+struct sec_bin_s {
+ /*
+ * When we fail to fulfill an allocation, we do a batch-alloc on the
+ * underlying allocator to fill extra items, as well. We drop the SEC
+ * lock while doing so, to allow operations on other bins to succeed.
+ * That introduces the possibility of other threads also trying to
+ * allocate out of this bin, failing, and also going to the backing
+ * allocator. To avoid a thundering herd problem in which lots of
+ * threads do batch allocs and overfill this bin as a result, we only
+ * allow one batch allocation at a time for a bin. This bool tracks
+ * whether or not some thread is already batch allocating.
+ *
+ * Eventually, the right answer may be a smarter sharding policy for the
+ * bins (e.g. a mutex per bin, which would also be more scalable
+ * generally; the batch-allocating thread could hold it while
+ * batch-allocating).
+ */
+ bool being_batch_filled;
+
+ /*
+ * Number of bytes in this particular bin (as opposed to the
+ * sec_shard_t's bytes_cur. This isn't user visible or reported in
+ * stats; rather, it allows us to quickly determine the change in the
+ * centralized counter when flushing.
+ */
+ size_t bytes_cur;
+ edata_list_active_t freelist;
+};
+
+typedef struct sec_shard_s sec_shard_t;
+struct sec_shard_s {
+ /*
+ * We don't keep per-bin mutexes, even though that would allow more
+ * sharding; this allows global cache-eviction, which in turn allows for
+ * better balancing across free lists.
+ */
+ malloc_mutex_t mtx;
+ /*
+ * A SEC may need to be shut down (i.e. flushed of its contents and
+ * prevented from further caching). To avoid tricky synchronization
+ * issues, we just track enabled-status in each shard, guarded by a
+ * mutex. In practice, this is only ever checked during brief races,
+ * since the arena-level atomic boolean tracking HPA enabled-ness means
+ * that we won't go down these pathways very often after custom extent
+ * hooks are installed.
+ */
+ bool enabled;
+ sec_bin_t *bins;
+ /* Number of bytes in all bins in the shard. */
+ size_t bytes_cur;
+ /* The next pszind to flush in the flush-some pathways. */
+ pszind_t to_flush_next;
+};
+
+typedef struct sec_s sec_t;
+struct sec_s {
+ pai_t pai;
+ pai_t *fallback;
+
+ sec_opts_t opts;
+ sec_shard_t *shards;
+ pszind_t npsizes;
+};
+
+bool sec_init(tsdn_t *tsdn, sec_t *sec, base_t *base, pai_t *fallback,
+ const sec_opts_t *opts);
+void sec_flush(tsdn_t *tsdn, sec_t *sec);
+void sec_disable(tsdn_t *tsdn, sec_t *sec);
+
+/*
+ * Morally, these two stats methods probably ought to be a single one (and the
+ * mutex_prof_data ought to live in the sec_stats_t. But splitting them apart
+ * lets them fit easily into the pa_shard stats framework (which also has this
+ * split), which simplifies the stats management.
+ */
+void sec_stats_merge(tsdn_t *tsdn, sec_t *sec, sec_stats_t *stats);
+void sec_mutex_stats_read(tsdn_t *tsdn, sec_t *sec,
+ mutex_prof_data_t *mutex_prof_data);
+
+/*
+ * We use the arena lock ordering; these are acquired in phase 2 of forking, but
+ * should be acquired before the underlying allocator mutexes.
+ */
+void sec_prefork2(tsdn_t *tsdn, sec_t *sec);
+void sec_postfork_parent(tsdn_t *tsdn, sec_t *sec);
+void sec_postfork_child(tsdn_t *tsdn, sec_t *sec);
+
+#endif /* JEMALLOC_INTERNAL_SEC_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/sec_opts.h b/deps/jemalloc/include/jemalloc/internal/sec_opts.h
new file mode 100644
index 0000000..a3ad72f
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/sec_opts.h
@@ -0,0 +1,59 @@
+#ifndef JEMALLOC_INTERNAL_SEC_OPTS_H
+#define JEMALLOC_INTERNAL_SEC_OPTS_H
+
+/*
+ * The configuration settings used by an sec_t. Morally, this is part of the
+ * SEC interface, but we put it here for header-ordering reasons.
+ */
+
+typedef struct sec_opts_s sec_opts_t;
+struct sec_opts_s {
+ /*
+ * We don't necessarily always use all the shards; requests are
+ * distributed across shards [0, nshards - 1).
+ */
+ size_t nshards;
+ /*
+ * We'll automatically refuse to cache any objects in this sec if
+ * they're larger than max_alloc bytes, instead forwarding such objects
+ * directly to the fallback.
+ */
+ size_t max_alloc;
+ /*
+ * Exceeding this amount of cached extents in a shard causes us to start
+ * flushing bins in that shard until we fall below bytes_after_flush.
+ */
+ size_t max_bytes;
+ /*
+ * The number of bytes (in all bins) we flush down to when we exceed
+ * bytes_cur. We want this to be less than bytes_cur, because
+ * otherwise we could get into situations where a shard undergoing
+ * net-deallocation keeps bytes_cur very near to max_bytes, so that
+ * most deallocations get immediately forwarded to the underlying PAI
+ * implementation, defeating the point of the SEC.
+ */
+ size_t bytes_after_flush;
+ /*
+ * When we can't satisfy an allocation out of the SEC because there are
+ * no available ones cached, we allocate multiple of that size out of
+ * the fallback allocator. Eventually we might want to do something
+ * cleverer, but for now we just grab a fixed number.
+ */
+ size_t batch_fill_extra;
+};
+
+#define SEC_OPTS_DEFAULT { \
+ /* nshards */ \
+ 4, \
+ /* max_alloc */ \
+ (32 * 1024) < PAGE ? PAGE : (32 * 1024), \
+ /* max_bytes */ \
+ 256 * 1024, \
+ /* bytes_after_flush */ \
+ 128 * 1024, \
+ /* batch_fill_extra */ \
+ 0 \
+}
+
+
+#endif /* JEMALLOC_INTERNAL_SEC_OPTS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/seq.h b/deps/jemalloc/include/jemalloc/internal/seq.h
new file mode 100644
index 0000000..ef2df4c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/seq.h
@@ -0,0 +1,55 @@
+#ifndef JEMALLOC_INTERNAL_SEQ_H
+#define JEMALLOC_INTERNAL_SEQ_H
+
+#include "jemalloc/internal/atomic.h"
+
+/*
+ * A simple seqlock implementation.
+ */
+
+#define seq_define(type, short_type) \
+typedef struct { \
+ atomic_zu_t seq; \
+ atomic_zu_t data[ \
+ (sizeof(type) + sizeof(size_t) - 1) / sizeof(size_t)]; \
+} seq_##short_type##_t; \
+ \
+/* \
+ * No internal synchronization -- the caller must ensure that there's \
+ * only a single writer at a time. \
+ */ \
+static inline void \
+seq_store_##short_type(seq_##short_type##_t *dst, type *src) { \
+ size_t buf[sizeof(dst->data) / sizeof(size_t)]; \
+ buf[sizeof(buf) / sizeof(size_t) - 1] = 0; \
+ memcpy(buf, src, sizeof(type)); \
+ size_t old_seq = atomic_load_zu(&dst->seq, ATOMIC_RELAXED); \
+ atomic_store_zu(&dst->seq, old_seq + 1, ATOMIC_RELAXED); \
+ atomic_fence(ATOMIC_RELEASE); \
+ for (size_t i = 0; i < sizeof(buf) / sizeof(size_t); i++) { \
+ atomic_store_zu(&dst->data[i], buf[i], ATOMIC_RELAXED); \
+ } \
+ atomic_store_zu(&dst->seq, old_seq + 2, ATOMIC_RELEASE); \
+} \
+ \
+/* Returns whether or not the read was consistent. */ \
+static inline bool \
+seq_try_load_##short_type(type *dst, seq_##short_type##_t *src) { \
+ size_t buf[sizeof(src->data) / sizeof(size_t)]; \
+ size_t seq1 = atomic_load_zu(&src->seq, ATOMIC_ACQUIRE); \
+ if (seq1 % 2 != 0) { \
+ return false; \
+ } \
+ for (size_t i = 0; i < sizeof(buf) / sizeof(size_t); i++) { \
+ buf[i] = atomic_load_zu(&src->data[i], ATOMIC_RELAXED); \
+ } \
+ atomic_fence(ATOMIC_ACQUIRE); \
+ size_t seq2 = atomic_load_zu(&src->seq, ATOMIC_RELAXED); \
+ if (seq1 != seq2) { \
+ return false; \
+ } \
+ memcpy(dst, buf, sizeof(type)); \
+ return true; \
+}
+
+#endif /* JEMALLOC_INTERNAL_SEQ_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/slab_data.h b/deps/jemalloc/include/jemalloc/internal/slab_data.h
new file mode 100644
index 0000000..e821863
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/slab_data.h
@@ -0,0 +1,12 @@
+#ifndef JEMALLOC_INTERNAL_SLAB_DATA_H
+#define JEMALLOC_INTERNAL_SLAB_DATA_H
+
+#include "jemalloc/internal/bitmap.h"
+
+typedef struct slab_data_s slab_data_t;
+struct slab_data_s {
+ /* Per region allocated/deallocated bitmap. */
+ bitmap_t bitmap[BITMAP_GROUPS_MAX];
+};
+
+#endif /* JEMALLOC_INTERNAL_SLAB_DATA_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/smoothstep.h b/deps/jemalloc/include/jemalloc/internal/smoothstep.h
new file mode 100644
index 0000000..2e14430
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/smoothstep.h
@@ -0,0 +1,232 @@
+#ifndef JEMALLOC_INTERNAL_SMOOTHSTEP_H
+#define JEMALLOC_INTERNAL_SMOOTHSTEP_H
+
+/*
+ * This file was generated by the following command:
+ * sh smoothstep.sh smoother 200 24 3 15
+ */
+/******************************************************************************/
+
+/*
+ * This header defines a precomputed table based on the smoothstep family of
+ * sigmoidal curves (https://en.wikipedia.org/wiki/Smoothstep) that grow from 0
+ * to 1 in 0 <= x <= 1. The table is stored as integer fixed point values so
+ * that floating point math can be avoided.
+ *
+ * 3 2
+ * smoothstep(x) = -2x + 3x
+ *
+ * 5 4 3
+ * smootherstep(x) = 6x - 15x + 10x
+ *
+ * 7 6 5 4
+ * smootheststep(x) = -20x + 70x - 84x + 35x
+ */
+
+#define SMOOTHSTEP_VARIANT "smoother"
+#define SMOOTHSTEP_NSTEPS 200
+#define SMOOTHSTEP_BFP 24
+#define SMOOTHSTEP \
+ /* STEP(step, h, x, y) */ \
+ STEP( 1, UINT64_C(0x0000000000000014), 0.005, 0.000001240643750) \
+ STEP( 2, UINT64_C(0x00000000000000a5), 0.010, 0.000009850600000) \
+ STEP( 3, UINT64_C(0x0000000000000229), 0.015, 0.000032995181250) \
+ STEP( 4, UINT64_C(0x0000000000000516), 0.020, 0.000077619200000) \
+ STEP( 5, UINT64_C(0x00000000000009dc), 0.025, 0.000150449218750) \
+ STEP( 6, UINT64_C(0x00000000000010e8), 0.030, 0.000257995800000) \
+ STEP( 7, UINT64_C(0x0000000000001aa4), 0.035, 0.000406555756250) \
+ STEP( 8, UINT64_C(0x0000000000002777), 0.040, 0.000602214400000) \
+ STEP( 9, UINT64_C(0x00000000000037c2), 0.045, 0.000850847793750) \
+ STEP( 10, UINT64_C(0x0000000000004be6), 0.050, 0.001158125000000) \
+ STEP( 11, UINT64_C(0x000000000000643c), 0.055, 0.001529510331250) \
+ STEP( 12, UINT64_C(0x000000000000811f), 0.060, 0.001970265600000) \
+ STEP( 13, UINT64_C(0x000000000000a2e2), 0.065, 0.002485452368750) \
+ STEP( 14, UINT64_C(0x000000000000c9d8), 0.070, 0.003079934200000) \
+ STEP( 15, UINT64_C(0x000000000000f64f), 0.075, 0.003758378906250) \
+ STEP( 16, UINT64_C(0x0000000000012891), 0.080, 0.004525260800000) \
+ STEP( 17, UINT64_C(0x00000000000160e7), 0.085, 0.005384862943750) \
+ STEP( 18, UINT64_C(0x0000000000019f95), 0.090, 0.006341279400000) \
+ STEP( 19, UINT64_C(0x000000000001e4dc), 0.095, 0.007398417481250) \
+ STEP( 20, UINT64_C(0x00000000000230fc), 0.100, 0.008560000000000) \
+ STEP( 21, UINT64_C(0x0000000000028430), 0.105, 0.009829567518750) \
+ STEP( 22, UINT64_C(0x000000000002deb0), 0.110, 0.011210480600000) \
+ STEP( 23, UINT64_C(0x00000000000340b1), 0.115, 0.012705922056250) \
+ STEP( 24, UINT64_C(0x000000000003aa67), 0.120, 0.014318899200000) \
+ STEP( 25, UINT64_C(0x0000000000041c00), 0.125, 0.016052246093750) \
+ STEP( 26, UINT64_C(0x00000000000495a8), 0.130, 0.017908625800000) \
+ STEP( 27, UINT64_C(0x000000000005178b), 0.135, 0.019890532631250) \
+ STEP( 28, UINT64_C(0x000000000005a1cf), 0.140, 0.022000294400000) \
+ STEP( 29, UINT64_C(0x0000000000063498), 0.145, 0.024240074668750) \
+ STEP( 30, UINT64_C(0x000000000006d009), 0.150, 0.026611875000000) \
+ STEP( 31, UINT64_C(0x000000000007743f), 0.155, 0.029117537206250) \
+ STEP( 32, UINT64_C(0x0000000000082157), 0.160, 0.031758745600000) \
+ STEP( 33, UINT64_C(0x000000000008d76b), 0.165, 0.034537029243750) \
+ STEP( 34, UINT64_C(0x0000000000099691), 0.170, 0.037453764200000) \
+ STEP( 35, UINT64_C(0x00000000000a5edf), 0.175, 0.040510175781250) \
+ STEP( 36, UINT64_C(0x00000000000b3067), 0.180, 0.043707340800000) \
+ STEP( 37, UINT64_C(0x00000000000c0b38), 0.185, 0.047046189818750) \
+ STEP( 38, UINT64_C(0x00000000000cef5e), 0.190, 0.050527509400000) \
+ STEP( 39, UINT64_C(0x00000000000ddce6), 0.195, 0.054151944356250) \
+ STEP( 40, UINT64_C(0x00000000000ed3d8), 0.200, 0.057920000000000) \
+ STEP( 41, UINT64_C(0x00000000000fd439), 0.205, 0.061832044393750) \
+ STEP( 42, UINT64_C(0x000000000010de0e), 0.210, 0.065888310600000) \
+ STEP( 43, UINT64_C(0x000000000011f158), 0.215, 0.070088898931250) \
+ STEP( 44, UINT64_C(0x0000000000130e17), 0.220, 0.074433779200000) \
+ STEP( 45, UINT64_C(0x0000000000143448), 0.225, 0.078922792968750) \
+ STEP( 46, UINT64_C(0x00000000001563e7), 0.230, 0.083555655800000) \
+ STEP( 47, UINT64_C(0x0000000000169cec), 0.235, 0.088331959506250) \
+ STEP( 48, UINT64_C(0x000000000017df4f), 0.240, 0.093251174400000) \
+ STEP( 49, UINT64_C(0x0000000000192b04), 0.245, 0.098312651543750) \
+ STEP( 50, UINT64_C(0x00000000001a8000), 0.250, 0.103515625000000) \
+ STEP( 51, UINT64_C(0x00000000001bde32), 0.255, 0.108859214081250) \
+ STEP( 52, UINT64_C(0x00000000001d458b), 0.260, 0.114342425600000) \
+ STEP( 53, UINT64_C(0x00000000001eb5f8), 0.265, 0.119964156118750) \
+ STEP( 54, UINT64_C(0x0000000000202f65), 0.270, 0.125723194200000) \
+ STEP( 55, UINT64_C(0x000000000021b1bb), 0.275, 0.131618222656250) \
+ STEP( 56, UINT64_C(0x0000000000233ce3), 0.280, 0.137647820800000) \
+ STEP( 57, UINT64_C(0x000000000024d0c3), 0.285, 0.143810466693750) \
+ STEP( 58, UINT64_C(0x0000000000266d40), 0.290, 0.150104539400000) \
+ STEP( 59, UINT64_C(0x000000000028123d), 0.295, 0.156528321231250) \
+ STEP( 60, UINT64_C(0x000000000029bf9c), 0.300, 0.163080000000000) \
+ STEP( 61, UINT64_C(0x00000000002b753d), 0.305, 0.169757671268750) \
+ STEP( 62, UINT64_C(0x00000000002d32fe), 0.310, 0.176559340600000) \
+ STEP( 63, UINT64_C(0x00000000002ef8bc), 0.315, 0.183482925806250) \
+ STEP( 64, UINT64_C(0x000000000030c654), 0.320, 0.190526259200000) \
+ STEP( 65, UINT64_C(0x0000000000329b9f), 0.325, 0.197687089843750) \
+ STEP( 66, UINT64_C(0x0000000000347875), 0.330, 0.204963085800000) \
+ STEP( 67, UINT64_C(0x0000000000365cb0), 0.335, 0.212351836381250) \
+ STEP( 68, UINT64_C(0x0000000000384825), 0.340, 0.219850854400000) \
+ STEP( 69, UINT64_C(0x00000000003a3aa8), 0.345, 0.227457578418750) \
+ STEP( 70, UINT64_C(0x00000000003c340f), 0.350, 0.235169375000000) \
+ STEP( 71, UINT64_C(0x00000000003e342b), 0.355, 0.242983540956250) \
+ STEP( 72, UINT64_C(0x0000000000403ace), 0.360, 0.250897305600000) \
+ STEP( 73, UINT64_C(0x00000000004247c8), 0.365, 0.258907832993750) \
+ STEP( 74, UINT64_C(0x0000000000445ae9), 0.370, 0.267012224200000) \
+ STEP( 75, UINT64_C(0x0000000000467400), 0.375, 0.275207519531250) \
+ STEP( 76, UINT64_C(0x00000000004892d8), 0.380, 0.283490700800000) \
+ STEP( 77, UINT64_C(0x00000000004ab740), 0.385, 0.291858693568750) \
+ STEP( 78, UINT64_C(0x00000000004ce102), 0.390, 0.300308369400000) \
+ STEP( 79, UINT64_C(0x00000000004f0fe9), 0.395, 0.308836548106250) \
+ STEP( 80, UINT64_C(0x00000000005143bf), 0.400, 0.317440000000000) \
+ STEP( 81, UINT64_C(0x0000000000537c4d), 0.405, 0.326115448143750) \
+ STEP( 82, UINT64_C(0x000000000055b95b), 0.410, 0.334859570600000) \
+ STEP( 83, UINT64_C(0x000000000057fab1), 0.415, 0.343669002681250) \
+ STEP( 84, UINT64_C(0x00000000005a4015), 0.420, 0.352540339200000) \
+ STEP( 85, UINT64_C(0x00000000005c894e), 0.425, 0.361470136718750) \
+ STEP( 86, UINT64_C(0x00000000005ed622), 0.430, 0.370454915800000) \
+ STEP( 87, UINT64_C(0x0000000000612655), 0.435, 0.379491163256250) \
+ STEP( 88, UINT64_C(0x00000000006379ac), 0.440, 0.388575334400000) \
+ STEP( 89, UINT64_C(0x000000000065cfeb), 0.445, 0.397703855293750) \
+ STEP( 90, UINT64_C(0x00000000006828d6), 0.450, 0.406873125000000) \
+ STEP( 91, UINT64_C(0x00000000006a842f), 0.455, 0.416079517831250) \
+ STEP( 92, UINT64_C(0x00000000006ce1bb), 0.460, 0.425319385600000) \
+ STEP( 93, UINT64_C(0x00000000006f413a), 0.465, 0.434589059868750) \
+ STEP( 94, UINT64_C(0x000000000071a270), 0.470, 0.443884854200000) \
+ STEP( 95, UINT64_C(0x000000000074051d), 0.475, 0.453203066406250) \
+ STEP( 96, UINT64_C(0x0000000000766905), 0.480, 0.462539980800000) \
+ STEP( 97, UINT64_C(0x000000000078cde7), 0.485, 0.471891870443750) \
+ STEP( 98, UINT64_C(0x00000000007b3387), 0.490, 0.481254999400000) \
+ STEP( 99, UINT64_C(0x00000000007d99a4), 0.495, 0.490625624981250) \
+ STEP( 100, UINT64_C(0x0000000000800000), 0.500, 0.500000000000000) \
+ STEP( 101, UINT64_C(0x000000000082665b), 0.505, 0.509374375018750) \
+ STEP( 102, UINT64_C(0x000000000084cc78), 0.510, 0.518745000600000) \
+ STEP( 103, UINT64_C(0x0000000000873218), 0.515, 0.528108129556250) \
+ STEP( 104, UINT64_C(0x00000000008996fa), 0.520, 0.537460019200000) \
+ STEP( 105, UINT64_C(0x00000000008bfae2), 0.525, 0.546796933593750) \
+ STEP( 106, UINT64_C(0x00000000008e5d8f), 0.530, 0.556115145800000) \
+ STEP( 107, UINT64_C(0x000000000090bec5), 0.535, 0.565410940131250) \
+ STEP( 108, UINT64_C(0x0000000000931e44), 0.540, 0.574680614400000) \
+ STEP( 109, UINT64_C(0x0000000000957bd0), 0.545, 0.583920482168750) \
+ STEP( 110, UINT64_C(0x000000000097d729), 0.550, 0.593126875000000) \
+ STEP( 111, UINT64_C(0x00000000009a3014), 0.555, 0.602296144706250) \
+ STEP( 112, UINT64_C(0x00000000009c8653), 0.560, 0.611424665600000) \
+ STEP( 113, UINT64_C(0x00000000009ed9aa), 0.565, 0.620508836743750) \
+ STEP( 114, UINT64_C(0x0000000000a129dd), 0.570, 0.629545084200000) \
+ STEP( 115, UINT64_C(0x0000000000a376b1), 0.575, 0.638529863281250) \
+ STEP( 116, UINT64_C(0x0000000000a5bfea), 0.580, 0.647459660800000) \
+ STEP( 117, UINT64_C(0x0000000000a8054e), 0.585, 0.656330997318750) \
+ STEP( 118, UINT64_C(0x0000000000aa46a4), 0.590, 0.665140429400000) \
+ STEP( 119, UINT64_C(0x0000000000ac83b2), 0.595, 0.673884551856250) \
+ STEP( 120, UINT64_C(0x0000000000aebc40), 0.600, 0.682560000000000) \
+ STEP( 121, UINT64_C(0x0000000000b0f016), 0.605, 0.691163451893750) \
+ STEP( 122, UINT64_C(0x0000000000b31efd), 0.610, 0.699691630600000) \
+ STEP( 123, UINT64_C(0x0000000000b548bf), 0.615, 0.708141306431250) \
+ STEP( 124, UINT64_C(0x0000000000b76d27), 0.620, 0.716509299200000) \
+ STEP( 125, UINT64_C(0x0000000000b98c00), 0.625, 0.724792480468750) \
+ STEP( 126, UINT64_C(0x0000000000bba516), 0.630, 0.732987775800000) \
+ STEP( 127, UINT64_C(0x0000000000bdb837), 0.635, 0.741092167006250) \
+ STEP( 128, UINT64_C(0x0000000000bfc531), 0.640, 0.749102694400000) \
+ STEP( 129, UINT64_C(0x0000000000c1cbd4), 0.645, 0.757016459043750) \
+ STEP( 130, UINT64_C(0x0000000000c3cbf0), 0.650, 0.764830625000000) \
+ STEP( 131, UINT64_C(0x0000000000c5c557), 0.655, 0.772542421581250) \
+ STEP( 132, UINT64_C(0x0000000000c7b7da), 0.660, 0.780149145600000) \
+ STEP( 133, UINT64_C(0x0000000000c9a34f), 0.665, 0.787648163618750) \
+ STEP( 134, UINT64_C(0x0000000000cb878a), 0.670, 0.795036914200000) \
+ STEP( 135, UINT64_C(0x0000000000cd6460), 0.675, 0.802312910156250) \
+ STEP( 136, UINT64_C(0x0000000000cf39ab), 0.680, 0.809473740800000) \
+ STEP( 137, UINT64_C(0x0000000000d10743), 0.685, 0.816517074193750) \
+ STEP( 138, UINT64_C(0x0000000000d2cd01), 0.690, 0.823440659400000) \
+ STEP( 139, UINT64_C(0x0000000000d48ac2), 0.695, 0.830242328731250) \
+ STEP( 140, UINT64_C(0x0000000000d64063), 0.700, 0.836920000000000) \
+ STEP( 141, UINT64_C(0x0000000000d7edc2), 0.705, 0.843471678768750) \
+ STEP( 142, UINT64_C(0x0000000000d992bf), 0.710, 0.849895460600000) \
+ STEP( 143, UINT64_C(0x0000000000db2f3c), 0.715, 0.856189533306250) \
+ STEP( 144, UINT64_C(0x0000000000dcc31c), 0.720, 0.862352179200000) \
+ STEP( 145, UINT64_C(0x0000000000de4e44), 0.725, 0.868381777343750) \
+ STEP( 146, UINT64_C(0x0000000000dfd09a), 0.730, 0.874276805800000) \
+ STEP( 147, UINT64_C(0x0000000000e14a07), 0.735, 0.880035843881250) \
+ STEP( 148, UINT64_C(0x0000000000e2ba74), 0.740, 0.885657574400000) \
+ STEP( 149, UINT64_C(0x0000000000e421cd), 0.745, 0.891140785918750) \
+ STEP( 150, UINT64_C(0x0000000000e58000), 0.750, 0.896484375000000) \
+ STEP( 151, UINT64_C(0x0000000000e6d4fb), 0.755, 0.901687348456250) \
+ STEP( 152, UINT64_C(0x0000000000e820b0), 0.760, 0.906748825600000) \
+ STEP( 153, UINT64_C(0x0000000000e96313), 0.765, 0.911668040493750) \
+ STEP( 154, UINT64_C(0x0000000000ea9c18), 0.770, 0.916444344200000) \
+ STEP( 155, UINT64_C(0x0000000000ebcbb7), 0.775, 0.921077207031250) \
+ STEP( 156, UINT64_C(0x0000000000ecf1e8), 0.780, 0.925566220800000) \
+ STEP( 157, UINT64_C(0x0000000000ee0ea7), 0.785, 0.929911101068750) \
+ STEP( 158, UINT64_C(0x0000000000ef21f1), 0.790, 0.934111689400000) \
+ STEP( 159, UINT64_C(0x0000000000f02bc6), 0.795, 0.938167955606250) \
+ STEP( 160, UINT64_C(0x0000000000f12c27), 0.800, 0.942080000000000) \
+ STEP( 161, UINT64_C(0x0000000000f22319), 0.805, 0.945848055643750) \
+ STEP( 162, UINT64_C(0x0000000000f310a1), 0.810, 0.949472490600000) \
+ STEP( 163, UINT64_C(0x0000000000f3f4c7), 0.815, 0.952953810181250) \
+ STEP( 164, UINT64_C(0x0000000000f4cf98), 0.820, 0.956292659200000) \
+ STEP( 165, UINT64_C(0x0000000000f5a120), 0.825, 0.959489824218750) \
+ STEP( 166, UINT64_C(0x0000000000f6696e), 0.830, 0.962546235800000) \
+ STEP( 167, UINT64_C(0x0000000000f72894), 0.835, 0.965462970756250) \
+ STEP( 168, UINT64_C(0x0000000000f7dea8), 0.840, 0.968241254400000) \
+ STEP( 169, UINT64_C(0x0000000000f88bc0), 0.845, 0.970882462793750) \
+ STEP( 170, UINT64_C(0x0000000000f92ff6), 0.850, 0.973388125000000) \
+ STEP( 171, UINT64_C(0x0000000000f9cb67), 0.855, 0.975759925331250) \
+ STEP( 172, UINT64_C(0x0000000000fa5e30), 0.860, 0.977999705600000) \
+ STEP( 173, UINT64_C(0x0000000000fae874), 0.865, 0.980109467368750) \
+ STEP( 174, UINT64_C(0x0000000000fb6a57), 0.870, 0.982091374200000) \
+ STEP( 175, UINT64_C(0x0000000000fbe400), 0.875, 0.983947753906250) \
+ STEP( 176, UINT64_C(0x0000000000fc5598), 0.880, 0.985681100800000) \
+ STEP( 177, UINT64_C(0x0000000000fcbf4e), 0.885, 0.987294077943750) \
+ STEP( 178, UINT64_C(0x0000000000fd214f), 0.890, 0.988789519400000) \
+ STEP( 179, UINT64_C(0x0000000000fd7bcf), 0.895, 0.990170432481250) \
+ STEP( 180, UINT64_C(0x0000000000fdcf03), 0.900, 0.991440000000000) \
+ STEP( 181, UINT64_C(0x0000000000fe1b23), 0.905, 0.992601582518750) \
+ STEP( 182, UINT64_C(0x0000000000fe606a), 0.910, 0.993658720600000) \
+ STEP( 183, UINT64_C(0x0000000000fe9f18), 0.915, 0.994615137056250) \
+ STEP( 184, UINT64_C(0x0000000000fed76e), 0.920, 0.995474739200000) \
+ STEP( 185, UINT64_C(0x0000000000ff09b0), 0.925, 0.996241621093750) \
+ STEP( 186, UINT64_C(0x0000000000ff3627), 0.930, 0.996920065800000) \
+ STEP( 187, UINT64_C(0x0000000000ff5d1d), 0.935, 0.997514547631250) \
+ STEP( 188, UINT64_C(0x0000000000ff7ee0), 0.940, 0.998029734400000) \
+ STEP( 189, UINT64_C(0x0000000000ff9bc3), 0.945, 0.998470489668750) \
+ STEP( 190, UINT64_C(0x0000000000ffb419), 0.950, 0.998841875000000) \
+ STEP( 191, UINT64_C(0x0000000000ffc83d), 0.955, 0.999149152206250) \
+ STEP( 192, UINT64_C(0x0000000000ffd888), 0.960, 0.999397785600000) \
+ STEP( 193, UINT64_C(0x0000000000ffe55b), 0.965, 0.999593444243750) \
+ STEP( 194, UINT64_C(0x0000000000ffef17), 0.970, 0.999742004200000) \
+ STEP( 195, UINT64_C(0x0000000000fff623), 0.975, 0.999849550781250) \
+ STEP( 196, UINT64_C(0x0000000000fffae9), 0.980, 0.999922380800000) \
+ STEP( 197, UINT64_C(0x0000000000fffdd6), 0.985, 0.999967004818750) \
+ STEP( 198, UINT64_C(0x0000000000ffff5a), 0.990, 0.999990149400000) \
+ STEP( 199, UINT64_C(0x0000000000ffffeb), 0.995, 0.999998759356250) \
+ STEP( 200, UINT64_C(0x0000000001000000), 1.000, 1.000000000000000) \
+
+#endif /* JEMALLOC_INTERNAL_SMOOTHSTEP_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/smoothstep.sh b/deps/jemalloc/include/jemalloc/internal/smoothstep.sh
new file mode 100755
index 0000000..65de97b
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/smoothstep.sh
@@ -0,0 +1,101 @@
+#!/bin/sh
+#
+# Generate a discrete lookup table for a sigmoid function in the smoothstep
+# family (https://en.wikipedia.org/wiki/Smoothstep), where the lookup table
+# entries correspond to x in [1/nsteps, 2/nsteps, ..., nsteps/nsteps]. Encode
+# the entries using a binary fixed point representation.
+#
+# Usage: smoothstep.sh <variant> <nsteps> <bfp> <xprec> <yprec>
+#
+# <variant> is in {smooth, smoother, smoothest}.
+# <nsteps> must be greater than zero.
+# <bfp> must be in [0..62]; reasonable values are roughly [10..30].
+# <xprec> is x decimal precision.
+# <yprec> is y decimal precision.
+
+#set -x
+
+cmd="sh smoothstep.sh $*"
+variant=$1
+nsteps=$2
+bfp=$3
+xprec=$4
+yprec=$5
+
+case "${variant}" in
+ smooth)
+ ;;
+ smoother)
+ ;;
+ smoothest)
+ ;;
+ *)
+ echo "Unsupported variant"
+ exit 1
+ ;;
+esac
+
+smooth() {
+ step=$1
+ y=`echo ${yprec} k ${step} ${nsteps} / sx _2 lx 3 ^ '*' 3 lx 2 ^ '*' + p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g'`
+ h=`echo ${yprec} k 2 ${bfp} ^ ${y} '*' p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g' | tr '.' ' ' | awk '{print $1}' `
+}
+
+smoother() {
+ step=$1
+ y=`echo ${yprec} k ${step} ${nsteps} / sx 6 lx 5 ^ '*' _15 lx 4 ^ '*' + 10 lx 3 ^ '*' + p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g'`
+ h=`echo ${yprec} k 2 ${bfp} ^ ${y} '*' p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g' | tr '.' ' ' | awk '{print $1}' `
+}
+
+smoothest() {
+ step=$1
+ y=`echo ${yprec} k ${step} ${nsteps} / sx _20 lx 7 ^ '*' 70 lx 6 ^ '*' + _84 lx 5 ^ '*' + 35 lx 4 ^ '*' + p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g'`
+ h=`echo ${yprec} k 2 ${bfp} ^ ${y} '*' p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g' | tr '.' ' ' | awk '{print $1}' `
+}
+
+cat <<EOF
+#ifndef JEMALLOC_INTERNAL_SMOOTHSTEP_H
+#define JEMALLOC_INTERNAL_SMOOTHSTEP_H
+
+/*
+ * This file was generated by the following command:
+ * $cmd
+ */
+/******************************************************************************/
+
+/*
+ * This header defines a precomputed table based on the smoothstep family of
+ * sigmoidal curves (https://en.wikipedia.org/wiki/Smoothstep) that grow from 0
+ * to 1 in 0 <= x <= 1. The table is stored as integer fixed point values so
+ * that floating point math can be avoided.
+ *
+ * 3 2
+ * smoothstep(x) = -2x + 3x
+ *
+ * 5 4 3
+ * smootherstep(x) = 6x - 15x + 10x
+ *
+ * 7 6 5 4
+ * smootheststep(x) = -20x + 70x - 84x + 35x
+ */
+
+#define SMOOTHSTEP_VARIANT "${variant}"
+#define SMOOTHSTEP_NSTEPS ${nsteps}
+#define SMOOTHSTEP_BFP ${bfp}
+#define SMOOTHSTEP \\
+ /* STEP(step, h, x, y) */ \\
+EOF
+
+s=1
+while [ $s -le $nsteps ] ; do
+ $variant ${s}
+ x=`echo ${xprec} k ${s} ${nsteps} / p | dc | tr -d '\\\\\n' | sed -e 's#^\.#0.#g'`
+ printf ' STEP(%4d, UINT64_C(0x%016x), %s, %s) \\\n' ${s} ${h} ${x} ${y}
+
+ s=$((s+1))
+done
+echo
+
+cat <<EOF
+#endif /* JEMALLOC_INTERNAL_SMOOTHSTEP_H */
+EOF
diff --git a/deps/jemalloc/include/jemalloc/internal/spin.h b/deps/jemalloc/include/jemalloc/internal/spin.h
new file mode 100644
index 0000000..22804c6
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/spin.h
@@ -0,0 +1,40 @@
+#ifndef JEMALLOC_INTERNAL_SPIN_H
+#define JEMALLOC_INTERNAL_SPIN_H
+
+#define SPIN_INITIALIZER {0U}
+
+typedef struct {
+ unsigned iteration;
+} spin_t;
+
+static inline void
+spin_cpu_spinwait() {
+# if HAVE_CPU_SPINWAIT
+ CPU_SPINWAIT;
+# else
+ volatile int x = 0;
+ x = x;
+# endif
+}
+
+static inline void
+spin_adaptive(spin_t *spin) {
+ volatile uint32_t i;
+
+ if (spin->iteration < 5) {
+ for (i = 0; i < (1U << spin->iteration); i++) {
+ spin_cpu_spinwait();
+ }
+ spin->iteration++;
+ } else {
+#ifdef _WIN32
+ SwitchToThread();
+#else
+ sched_yield();
+#endif
+ }
+}
+
+#undef SPIN_INLINE
+
+#endif /* JEMALLOC_INTERNAL_SPIN_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/stats.h b/deps/jemalloc/include/jemalloc/internal/stats.h
new file mode 100644
index 0000000..727f7dc
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/stats.h
@@ -0,0 +1,54 @@
+#ifndef JEMALLOC_INTERNAL_STATS_H
+#define JEMALLOC_INTERNAL_STATS_H
+
+/* OPTION(opt, var_name, default, set_value_to) */
+#define STATS_PRINT_OPTIONS \
+ OPTION('J', json, false, true) \
+ OPTION('g', general, true, false) \
+ OPTION('m', merged, config_stats, false) \
+ OPTION('d', destroyed, config_stats, false) \
+ OPTION('a', unmerged, config_stats, false) \
+ OPTION('b', bins, true, false) \
+ OPTION('l', large, true, false) \
+ OPTION('x', mutex, true, false) \
+ OPTION('e', extents, true, false) \
+ OPTION('h', hpa, config_stats, false)
+
+enum {
+#define OPTION(o, v, d, s) stats_print_option_num_##v,
+ STATS_PRINT_OPTIONS
+#undef OPTION
+ stats_print_tot_num_options
+};
+
+/* Options for stats_print. */
+extern bool opt_stats_print;
+extern char opt_stats_print_opts[stats_print_tot_num_options+1];
+
+/* Utilities for stats_interval. */
+extern int64_t opt_stats_interval;
+extern char opt_stats_interval_opts[stats_print_tot_num_options+1];
+
+#define STATS_INTERVAL_DEFAULT -1
+/*
+ * Batch-increment the counter to reduce synchronization overhead. Each thread
+ * merges after (interval >> LG_BATCH_SIZE) bytes of allocations; also limit the
+ * BATCH_MAX for accuracy when the interval is huge (which is expected).
+ */
+#define STATS_INTERVAL_ACCUM_LG_BATCH_SIZE 6
+#define STATS_INTERVAL_ACCUM_BATCH_MAX (4 << 20)
+
+/* Only accessed by thread event. */
+uint64_t stats_interval_new_event_wait(tsd_t *tsd);
+uint64_t stats_interval_postponed_event_wait(tsd_t *tsd);
+void stats_interval_event_handler(tsd_t *tsd, uint64_t elapsed);
+
+/* Implements je_malloc_stats_print. */
+void stats_print(write_cb_t *write_cb, void *cbopaque, const char *opts);
+
+bool stats_boot(void);
+void stats_prefork(tsdn_t *tsdn);
+void stats_postfork_parent(tsdn_t *tsdn);
+void stats_postfork_child(tsdn_t *tsdn);
+
+#endif /* JEMALLOC_INTERNAL_STATS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/sz.h b/deps/jemalloc/include/jemalloc/internal/sz.h
new file mode 100644
index 0000000..3c0fc1d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/sz.h
@@ -0,0 +1,371 @@
+#ifndef JEMALLOC_INTERNAL_SIZE_H
+#define JEMALLOC_INTERNAL_SIZE_H
+
+#include "jemalloc/internal/bit_util.h"
+#include "jemalloc/internal/pages.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/util.h"
+
+/*
+ * sz module: Size computations.
+ *
+ * Some abbreviations used here:
+ * p: Page
+ * ind: Index
+ * s, sz: Size
+ * u: Usable size
+ * a: Aligned
+ *
+ * These are not always used completely consistently, but should be enough to
+ * interpret function names. E.g. sz_psz2ind converts page size to page size
+ * index; sz_sa2u converts a (size, alignment) allocation request to the usable
+ * size that would result from such an allocation.
+ */
+
+/* Page size index type. */
+typedef unsigned pszind_t;
+
+/* Size class index type. */
+typedef unsigned szind_t;
+
+/*
+ * sz_pind2sz_tab encodes the same information as could be computed by
+ * sz_pind2sz_compute().
+ */
+extern size_t sz_pind2sz_tab[SC_NPSIZES + 1];
+/*
+ * sz_index2size_tab encodes the same information as could be computed (at
+ * unacceptable cost in some code paths) by sz_index2size_compute().
+ */
+extern size_t sz_index2size_tab[SC_NSIZES];
+/*
+ * sz_size2index_tab is a compact lookup table that rounds request sizes up to
+ * size classes. In order to reduce cache footprint, the table is compressed,
+ * and all accesses are via sz_size2index().
+ */
+extern uint8_t sz_size2index_tab[];
+
+/*
+ * Padding for large allocations: PAGE when opt_cache_oblivious == true (to
+ * enable cache index randomization); 0 otherwise.
+ */
+extern size_t sz_large_pad;
+
+extern void sz_boot(const sc_data_t *sc_data, bool cache_oblivious);
+
+JEMALLOC_ALWAYS_INLINE pszind_t
+sz_psz2ind(size_t psz) {
+ assert(psz > 0);
+ if (unlikely(psz > SC_LARGE_MAXCLASS)) {
+ return SC_NPSIZES;
+ }
+ /* x is the lg of the first base >= psz. */
+ pszind_t x = lg_ceil(psz);
+ /*
+ * sc.h introduces a lot of size classes. These size classes are divided
+ * into different size class groups. There is a very special size class
+ * group, each size class in or after it is an integer multiple of PAGE.
+ * We call it first_ps_rg. It means first page size regular group. The
+ * range of first_ps_rg is (base, base * 2], and base == PAGE *
+ * SC_NGROUP. off_to_first_ps_rg begins from 1, instead of 0. e.g.
+ * off_to_first_ps_rg is 1 when psz is (PAGE * SC_NGROUP + 1).
+ */
+ pszind_t off_to_first_ps_rg = (x < SC_LG_NGROUP + LG_PAGE) ?
+ 0 : x - (SC_LG_NGROUP + LG_PAGE);
+
+ /*
+ * Same as sc_s::lg_delta.
+ * Delta for off_to_first_ps_rg == 1 is PAGE,
+ * for each increase in offset, it's multiplied by two.
+ * Therefore, lg_delta = LG_PAGE + (off_to_first_ps_rg - 1).
+ */
+ pszind_t lg_delta = (off_to_first_ps_rg == 0) ?
+ LG_PAGE : LG_PAGE + (off_to_first_ps_rg - 1);
+
+ /*
+ * Let's write psz in binary, e.g. 0011 for 0x3, 0111 for 0x7.
+ * The leftmost bits whose len is lg_base decide the base of psz.
+ * The rightmost bits whose len is lg_delta decide (pgz % PAGE).
+ * The middle bits whose len is SC_LG_NGROUP decide ndelta.
+ * ndelta is offset to the first size class in the size class group,
+ * starts from 1.
+ * If you don't know lg_base, ndelta or lg_delta, see sc.h.
+ * |xxxxxxxxxxxxxxxxxxxx|------------------------|yyyyyyyyyyyyyyyyyyyyy|
+ * |<-- len: lg_base -->|<-- len: SC_LG_NGROUP-->|<-- len: lg_delta -->|
+ * |<-- ndelta -->|
+ * rg_inner_off = ndelta - 1
+ * Why use (psz - 1)?
+ * To handle case: psz % (1 << lg_delta) == 0.
+ */
+ pszind_t rg_inner_off = (((psz - 1)) >> lg_delta) & (SC_NGROUP - 1);
+
+ pszind_t base_ind = off_to_first_ps_rg << SC_LG_NGROUP;
+ pszind_t ind = base_ind + rg_inner_off;
+ return ind;
+}
+
+static inline size_t
+sz_pind2sz_compute(pszind_t pind) {
+ if (unlikely(pind == SC_NPSIZES)) {
+ return SC_LARGE_MAXCLASS + PAGE;
+ }
+ size_t grp = pind >> SC_LG_NGROUP;
+ size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1);
+
+ size_t grp_size_mask = ~((!!grp)-1);
+ size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp)
+ & grp_size_mask;
+
+ size_t shift = (grp == 0) ? 1 : grp;
+ size_t lg_delta = shift + (LG_PAGE-1);
+ size_t mod_size = (mod+1) << lg_delta;
+
+ size_t sz = grp_size + mod_size;
+ return sz;
+}
+
+static inline size_t
+sz_pind2sz_lookup(pszind_t pind) {
+ size_t ret = (size_t)sz_pind2sz_tab[pind];
+ assert(ret == sz_pind2sz_compute(pind));
+ return ret;
+}
+
+static inline size_t
+sz_pind2sz(pszind_t pind) {
+ assert(pind < SC_NPSIZES + 1);
+ return sz_pind2sz_lookup(pind);
+}
+
+static inline size_t
+sz_psz2u(size_t psz) {
+ if (unlikely(psz > SC_LARGE_MAXCLASS)) {
+ return SC_LARGE_MAXCLASS + PAGE;
+ }
+ size_t x = lg_floor((psz<<1)-1);
+ size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ?
+ LG_PAGE : x - SC_LG_NGROUP - 1;
+ size_t delta = ZU(1) << lg_delta;
+ size_t delta_mask = delta - 1;
+ size_t usize = (psz + delta_mask) & ~delta_mask;
+ return usize;
+}
+
+static inline szind_t
+sz_size2index_compute(size_t size) {
+ if (unlikely(size > SC_LARGE_MAXCLASS)) {
+ return SC_NSIZES;
+ }
+
+ if (size == 0) {
+ return 0;
+ }
+#if (SC_NTINY != 0)
+ if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
+ szind_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
+ szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
+ return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
+ }
+#endif
+ {
+ szind_t x = lg_floor((size<<1)-1);
+ szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 :
+ x - (SC_LG_NGROUP + LG_QUANTUM);
+ szind_t grp = shift << SC_LG_NGROUP;
+
+ szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
+ ? LG_QUANTUM : x - SC_LG_NGROUP - 1;
+
+ size_t delta_inverse_mask = ZU(-1) << lg_delta;
+ szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
+ ((ZU(1) << SC_LG_NGROUP) - 1);
+
+ szind_t index = SC_NTINY + grp + mod;
+ return index;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE szind_t
+sz_size2index_lookup_impl(size_t size) {
+ assert(size <= SC_LOOKUP_MAXCLASS);
+ return sz_size2index_tab[(size + (ZU(1) << SC_LG_TINY_MIN) - 1)
+ >> SC_LG_TINY_MIN];
+}
+
+JEMALLOC_ALWAYS_INLINE szind_t
+sz_size2index_lookup(size_t size) {
+ szind_t ret = sz_size2index_lookup_impl(size);
+ assert(ret == sz_size2index_compute(size));
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE szind_t
+sz_size2index(size_t size) {
+ if (likely(size <= SC_LOOKUP_MAXCLASS)) {
+ return sz_size2index_lookup(size);
+ }
+ return sz_size2index_compute(size);
+}
+
+static inline size_t
+sz_index2size_compute(szind_t index) {
+#if (SC_NTINY > 0)
+ if (index < SC_NTINY) {
+ return (ZU(1) << (SC_LG_TINY_MAXCLASS - SC_NTINY + 1 + index));
+ }
+#endif
+ {
+ size_t reduced_index = index - SC_NTINY;
+ size_t grp = reduced_index >> SC_LG_NGROUP;
+ size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) -
+ 1);
+
+ size_t grp_size_mask = ~((!!grp)-1);
+ size_t grp_size = ((ZU(1) << (LG_QUANTUM +
+ (SC_LG_NGROUP-1))) << grp) & grp_size_mask;
+
+ size_t shift = (grp == 0) ? 1 : grp;
+ size_t lg_delta = shift + (LG_QUANTUM-1);
+ size_t mod_size = (mod+1) << lg_delta;
+
+ size_t usize = grp_size + mod_size;
+ return usize;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+sz_index2size_lookup_impl(szind_t index) {
+ return sz_index2size_tab[index];
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+sz_index2size_lookup(szind_t index) {
+ size_t ret = sz_index2size_lookup_impl(index);
+ assert(ret == sz_index2size_compute(index));
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+sz_index2size(szind_t index) {
+ assert(index < SC_NSIZES);
+ return sz_index2size_lookup(index);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+sz_size2index_usize_fastpath(size_t size, szind_t *ind, size_t *usize) {
+ *ind = sz_size2index_lookup_impl(size);
+ *usize = sz_index2size_lookup_impl(*ind);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+sz_s2u_compute(size_t size) {
+ if (unlikely(size > SC_LARGE_MAXCLASS)) {
+ return 0;
+ }
+
+ if (size == 0) {
+ size++;
+ }
+#if (SC_NTINY > 0)
+ if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
+ size_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
+ size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
+ return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
+ (ZU(1) << lg_ceil));
+ }
+#endif
+ {
+ size_t x = lg_floor((size<<1)-1);
+ size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
+ ? LG_QUANTUM : x - SC_LG_NGROUP - 1;
+ size_t delta = ZU(1) << lg_delta;
+ size_t delta_mask = delta - 1;
+ size_t usize = (size + delta_mask) & ~delta_mask;
+ return usize;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+sz_s2u_lookup(size_t size) {
+ size_t ret = sz_index2size_lookup(sz_size2index_lookup(size));
+
+ assert(ret == sz_s2u_compute(size));
+ return ret;
+}
+
+/*
+ * Compute usable size that would result from allocating an object with the
+ * specified size.
+ */
+JEMALLOC_ALWAYS_INLINE size_t
+sz_s2u(size_t size) {
+ if (likely(size <= SC_LOOKUP_MAXCLASS)) {
+ return sz_s2u_lookup(size);
+ }
+ return sz_s2u_compute(size);
+}
+
+/*
+ * Compute usable size that would result from allocating an object with the
+ * specified size and alignment.
+ */
+JEMALLOC_ALWAYS_INLINE size_t
+sz_sa2u(size_t size, size_t alignment) {
+ size_t usize;
+
+ assert(alignment != 0 && ((alignment - 1) & alignment) == 0);
+
+ /* Try for a small size class. */
+ if (size <= SC_SMALL_MAXCLASS && alignment <= PAGE) {
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each
+ * small size class, every object is aligned at the smallest
+ * power of two that is non-zero in the base two representation
+ * of the size. For example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ */
+ usize = sz_s2u(ALIGNMENT_CEILING(size, alignment));
+ if (usize < SC_LARGE_MINCLASS) {
+ return usize;
+ }
+ }
+
+ /* Large size class. Beware of overflow. */
+
+ if (unlikely(alignment > SC_LARGE_MAXCLASS)) {
+ return 0;
+ }
+
+ /* Make sure result is a large size class. */
+ if (size <= SC_LARGE_MINCLASS) {
+ usize = SC_LARGE_MINCLASS;
+ } else {
+ usize = sz_s2u(size);
+ if (usize < size) {
+ /* size_t overflow. */
+ return 0;
+ }
+ }
+
+ /*
+ * Calculate the multi-page mapping that large_palloc() would need in
+ * order to guarantee the alignment.
+ */
+ if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
+ /* size_t overflow. */
+ return 0;
+ }
+ return usize;
+}
+
+size_t sz_psz_quantize_floor(size_t size);
+size_t sz_psz_quantize_ceil(size_t size);
+
+#endif /* JEMALLOC_INTERNAL_SIZE_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tcache_externs.h b/deps/jemalloc/include/jemalloc/internal/tcache_externs.h
new file mode 100644
index 0000000..a2ab710
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tcache_externs.h
@@ -0,0 +1,75 @@
+#ifndef JEMALLOC_INTERNAL_TCACHE_EXTERNS_H
+#define JEMALLOC_INTERNAL_TCACHE_EXTERNS_H
+
+extern bool opt_tcache;
+extern size_t opt_tcache_max;
+extern ssize_t opt_lg_tcache_nslots_mul;
+extern unsigned opt_tcache_nslots_small_min;
+extern unsigned opt_tcache_nslots_small_max;
+extern unsigned opt_tcache_nslots_large;
+extern ssize_t opt_lg_tcache_shift;
+extern size_t opt_tcache_gc_incr_bytes;
+extern size_t opt_tcache_gc_delay_bytes;
+extern unsigned opt_lg_tcache_flush_small_div;
+extern unsigned opt_lg_tcache_flush_large_div;
+
+/*
+ * Number of tcache bins. There are SC_NBINS small-object bins, plus 0 or more
+ * large-object bins.
+ */
+extern unsigned nhbins;
+
+/* Maximum cached size class. */
+extern size_t tcache_maxclass;
+
+extern cache_bin_info_t *tcache_bin_info;
+
+/*
+ * Explicit tcaches, managed via the tcache.{create,flush,destroy} mallctls and
+ * usable via the MALLOCX_TCACHE() flag. The automatic per thread tcaches are
+ * completely disjoint from this data structure. tcaches starts off as a sparse
+ * array, so it has no physical memory footprint until individual pages are
+ * touched. This allows the entire array to be allocated the first time an
+ * explicit tcache is created without a disproportionate impact on memory usage.
+ */
+extern tcaches_t *tcaches;
+
+size_t tcache_salloc(tsdn_t *tsdn, const void *ptr);
+void *tcache_alloc_small_hard(tsdn_t *tsdn, arena_t *arena, tcache_t *tcache,
+ cache_bin_t *tbin, szind_t binind, bool *tcache_success);
+
+void tcache_bin_flush_small(tsd_t *tsd, tcache_t *tcache, cache_bin_t *tbin,
+ szind_t binind, unsigned rem);
+void tcache_bin_flush_large(tsd_t *tsd, tcache_t *tcache, cache_bin_t *tbin,
+ szind_t binind, unsigned rem);
+void tcache_bin_flush_stashed(tsd_t *tsd, tcache_t *tcache, cache_bin_t *bin,
+ szind_t binind, bool is_small);
+void tcache_arena_reassociate(tsdn_t *tsdn, tcache_slow_t *tcache_slow,
+ tcache_t *tcache, arena_t *arena);
+tcache_t *tcache_create_explicit(tsd_t *tsd);
+void tcache_cleanup(tsd_t *tsd);
+void tcache_stats_merge(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena);
+bool tcaches_create(tsd_t *tsd, base_t *base, unsigned *r_ind);
+void tcaches_flush(tsd_t *tsd, unsigned ind);
+void tcaches_destroy(tsd_t *tsd, unsigned ind);
+bool tcache_boot(tsdn_t *tsdn, base_t *base);
+void tcache_arena_associate(tsdn_t *tsdn, tcache_slow_t *tcache_slow,
+ tcache_t *tcache, arena_t *arena);
+void tcache_prefork(tsdn_t *tsdn);
+void tcache_postfork_parent(tsdn_t *tsdn);
+void tcache_postfork_child(tsdn_t *tsdn);
+void tcache_flush(tsd_t *tsd);
+bool tsd_tcache_data_init(tsd_t *tsd);
+bool tsd_tcache_enabled_data_init(tsd_t *tsd);
+
+void tcache_assert_initialized(tcache_t *tcache);
+
+/* Only accessed by thread event. */
+uint64_t tcache_gc_new_event_wait(tsd_t *tsd);
+uint64_t tcache_gc_postponed_event_wait(tsd_t *tsd);
+void tcache_gc_event_handler(tsd_t *tsd, uint64_t elapsed);
+uint64_t tcache_gc_dalloc_new_event_wait(tsd_t *tsd);
+uint64_t tcache_gc_dalloc_postponed_event_wait(tsd_t *tsd);
+void tcache_gc_dalloc_event_handler(tsd_t *tsd, uint64_t elapsed);
+
+#endif /* JEMALLOC_INTERNAL_TCACHE_EXTERNS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tcache_inlines.h b/deps/jemalloc/include/jemalloc/internal/tcache_inlines.h
new file mode 100644
index 0000000..2634f14
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tcache_inlines.h
@@ -0,0 +1,193 @@
+#ifndef JEMALLOC_INTERNAL_TCACHE_INLINES_H
+#define JEMALLOC_INTERNAL_TCACHE_INLINES_H
+
+#include "jemalloc/internal/bin.h"
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/san.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/sz.h"
+#include "jemalloc/internal/util.h"
+
+static inline bool
+tcache_enabled_get(tsd_t *tsd) {
+ return tsd_tcache_enabled_get(tsd);
+}
+
+static inline void
+tcache_enabled_set(tsd_t *tsd, bool enabled) {
+ bool was_enabled = tsd_tcache_enabled_get(tsd);
+
+ if (!was_enabled && enabled) {
+ tsd_tcache_data_init(tsd);
+ } else if (was_enabled && !enabled) {
+ tcache_cleanup(tsd);
+ }
+ /* Commit the state last. Above calls check current state. */
+ tsd_tcache_enabled_set(tsd, enabled);
+ tsd_slow_update(tsd);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tcache_small_bin_disabled(szind_t ind, cache_bin_t *bin) {
+ assert(ind < SC_NBINS);
+ bool ret = (cache_bin_info_ncached_max(&tcache_bin_info[ind]) == 0);
+ if (ret && bin != NULL) {
+ /* small size class but cache bin disabled. */
+ assert(ind >= nhbins);
+ assert((uintptr_t)(*bin->stack_head) ==
+ cache_bin_preceding_junk);
+ }
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+tcache_alloc_small(tsd_t *tsd, arena_t *arena, tcache_t *tcache,
+ size_t size, szind_t binind, bool zero, bool slow_path) {
+ void *ret;
+ bool tcache_success;
+
+ assert(binind < SC_NBINS);
+ cache_bin_t *bin = &tcache->bins[binind];
+ ret = cache_bin_alloc(bin, &tcache_success);
+ assert(tcache_success == (ret != NULL));
+ if (unlikely(!tcache_success)) {
+ bool tcache_hard_success;
+ arena = arena_choose(tsd, arena);
+ if (unlikely(arena == NULL)) {
+ return NULL;
+ }
+ if (unlikely(tcache_small_bin_disabled(binind, bin))) {
+ /* stats and zero are handled directly by the arena. */
+ return arena_malloc_hard(tsd_tsdn(tsd), arena, size,
+ binind, zero);
+ }
+ tcache_bin_flush_stashed(tsd, tcache, bin, binind,
+ /* is_small */ true);
+
+ ret = tcache_alloc_small_hard(tsd_tsdn(tsd), arena, tcache,
+ bin, binind, &tcache_hard_success);
+ if (tcache_hard_success == false) {
+ return NULL;
+ }
+ }
+
+ assert(ret);
+ if (unlikely(zero)) {
+ size_t usize = sz_index2size(binind);
+ assert(tcache_salloc(tsd_tsdn(tsd), ret) == usize);
+ memset(ret, 0, usize);
+ }
+ if (config_stats) {
+ bin->tstats.nrequests++;
+ }
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+tcache_alloc_large(tsd_t *tsd, arena_t *arena, tcache_t *tcache, size_t size,
+ szind_t binind, bool zero, bool slow_path) {
+ void *ret;
+ bool tcache_success;
+
+ assert(binind >= SC_NBINS && binind < nhbins);
+ cache_bin_t *bin = &tcache->bins[binind];
+ ret = cache_bin_alloc(bin, &tcache_success);
+ assert(tcache_success == (ret != NULL));
+ if (unlikely(!tcache_success)) {
+ /*
+ * Only allocate one large object at a time, because it's quite
+ * expensive to create one and not use it.
+ */
+ arena = arena_choose(tsd, arena);
+ if (unlikely(arena == NULL)) {
+ return NULL;
+ }
+ tcache_bin_flush_stashed(tsd, tcache, bin, binind,
+ /* is_small */ false);
+
+ ret = large_malloc(tsd_tsdn(tsd), arena, sz_s2u(size), zero);
+ if (ret == NULL) {
+ return NULL;
+ }
+ } else {
+ if (unlikely(zero)) {
+ size_t usize = sz_index2size(binind);
+ assert(usize <= tcache_maxclass);
+ memset(ret, 0, usize);
+ }
+
+ if (config_stats) {
+ bin->tstats.nrequests++;
+ }
+ }
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tcache_dalloc_small(tsd_t *tsd, tcache_t *tcache, void *ptr, szind_t binind,
+ bool slow_path) {
+ assert(tcache_salloc(tsd_tsdn(tsd), ptr) <= SC_SMALL_MAXCLASS);
+
+ cache_bin_t *bin = &tcache->bins[binind];
+ /*
+ * Not marking the branch unlikely because this is past free_fastpath()
+ * (which handles the most common cases), i.e. at this point it's often
+ * uncommon cases.
+ */
+ if (cache_bin_nonfast_aligned(ptr)) {
+ /* Junk unconditionally, even if bin is full. */
+ san_junk_ptr(ptr, sz_index2size(binind));
+ if (cache_bin_stash(bin, ptr)) {
+ return;
+ }
+ assert(cache_bin_full(bin));
+ /* Bin full; fall through into the flush branch. */
+ }
+
+ if (unlikely(!cache_bin_dalloc_easy(bin, ptr))) {
+ if (unlikely(tcache_small_bin_disabled(binind, bin))) {
+ arena_dalloc_small(tsd_tsdn(tsd), ptr);
+ return;
+ }
+ cache_bin_sz_t max = cache_bin_info_ncached_max(
+ &tcache_bin_info[binind]);
+ unsigned remain = max >> opt_lg_tcache_flush_small_div;
+ tcache_bin_flush_small(tsd, tcache, bin, binind, remain);
+ bool ret = cache_bin_dalloc_easy(bin, ptr);
+ assert(ret);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tcache_dalloc_large(tsd_t *tsd, tcache_t *tcache, void *ptr, szind_t binind,
+ bool slow_path) {
+
+ assert(tcache_salloc(tsd_tsdn(tsd), ptr)
+ > SC_SMALL_MAXCLASS);
+ assert(tcache_salloc(tsd_tsdn(tsd), ptr) <= tcache_maxclass);
+
+ cache_bin_t *bin = &tcache->bins[binind];
+ if (unlikely(!cache_bin_dalloc_easy(bin, ptr))) {
+ unsigned remain = cache_bin_info_ncached_max(
+ &tcache_bin_info[binind]) >> opt_lg_tcache_flush_large_div;
+ tcache_bin_flush_large(tsd, tcache, bin, binind, remain);
+ bool ret = cache_bin_dalloc_easy(bin, ptr);
+ assert(ret);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE tcache_t *
+tcaches_get(tsd_t *tsd, unsigned ind) {
+ tcaches_t *elm = &tcaches[ind];
+ if (unlikely(elm->tcache == NULL)) {
+ malloc_printf("<jemalloc>: invalid tcache id (%u).\n", ind);
+ abort();
+ } else if (unlikely(elm->tcache == TCACHES_ELM_NEED_REINIT)) {
+ elm->tcache = tcache_create_explicit(tsd);
+ }
+ return elm->tcache;
+}
+
+#endif /* JEMALLOC_INTERNAL_TCACHE_INLINES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tcache_structs.h b/deps/jemalloc/include/jemalloc/internal/tcache_structs.h
new file mode 100644
index 0000000..176d73d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tcache_structs.h
@@ -0,0 +1,68 @@
+#ifndef JEMALLOC_INTERNAL_TCACHE_STRUCTS_H
+#define JEMALLOC_INTERNAL_TCACHE_STRUCTS_H
+
+#include "jemalloc/internal/cache_bin.h"
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/ticker.h"
+#include "jemalloc/internal/tsd_types.h"
+
+/*
+ * The tcache state is split into the slow and hot path data. Each has a
+ * pointer to the other, and the data always comes in pairs. The layout of each
+ * of them varies in practice; tcache_slow lives in the TSD for the automatic
+ * tcache, and as part of a dynamic allocation for manual allocations. Keeping
+ * a pointer to tcache_slow lets us treat these cases uniformly, rather than
+ * splitting up the tcache [de]allocation code into those paths called with the
+ * TSD tcache and those called with a manual tcache.
+ */
+
+struct tcache_slow_s {
+ /* Lets us track all the tcaches in an arena. */
+ ql_elm(tcache_slow_t) link;
+
+ /*
+ * The descriptor lets the arena find our cache bins without seeing the
+ * tcache definition. This enables arenas to aggregate stats across
+ * tcaches without having a tcache dependency.
+ */
+ cache_bin_array_descriptor_t cache_bin_array_descriptor;
+
+ /* The arena this tcache is associated with. */
+ arena_t *arena;
+ /* Next bin to GC. */
+ szind_t next_gc_bin;
+ /* For small bins, fill (ncached_max >> lg_fill_div). */
+ uint8_t lg_fill_div[SC_NBINS];
+ /* For small bins, whether has been refilled since last GC. */
+ bool bin_refilled[SC_NBINS];
+ /*
+ * For small bins, the number of items we can pretend to flush before
+ * actually flushing.
+ */
+ uint8_t bin_flush_delay_items[SC_NBINS];
+ /*
+ * The start of the allocation containing the dynamic allocation for
+ * either the cache bins alone, or the cache bin memory as well as this
+ * tcache_slow_t and its associated tcache_t.
+ */
+ void *dyn_alloc;
+
+ /* The associated bins. */
+ tcache_t *tcache;
+};
+
+struct tcache_s {
+ tcache_slow_t *tcache_slow;
+ cache_bin_t bins[TCACHE_NBINS_MAX];
+};
+
+/* Linkage for list of available (previously used) explicit tcache IDs. */
+struct tcaches_s {
+ union {
+ tcache_t *tcache;
+ tcaches_t *next;
+ };
+};
+
+#endif /* JEMALLOC_INTERNAL_TCACHE_STRUCTS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tcache_types.h b/deps/jemalloc/include/jemalloc/internal/tcache_types.h
new file mode 100644
index 0000000..583677e
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tcache_types.h
@@ -0,0 +1,35 @@
+#ifndef JEMALLOC_INTERNAL_TCACHE_TYPES_H
+#define JEMALLOC_INTERNAL_TCACHE_TYPES_H
+
+#include "jemalloc/internal/sc.h"
+
+typedef struct tcache_slow_s tcache_slow_t;
+typedef struct tcache_s tcache_t;
+typedef struct tcaches_s tcaches_t;
+
+/*
+ * tcache pointers close to NULL are used to encode state information that is
+ * used for two purposes: preventing thread caching on a per thread basis and
+ * cleaning up during thread shutdown.
+ */
+#define TCACHE_STATE_DISABLED ((tcache_t *)(uintptr_t)1)
+#define TCACHE_STATE_REINCARNATED ((tcache_t *)(uintptr_t)2)
+#define TCACHE_STATE_PURGATORY ((tcache_t *)(uintptr_t)3)
+#define TCACHE_STATE_MAX TCACHE_STATE_PURGATORY
+
+/* Used in TSD static initializer only. Real init in tsd_tcache_data_init(). */
+#define TCACHE_ZERO_INITIALIZER {0}
+#define TCACHE_SLOW_ZERO_INITIALIZER {0}
+
+/* Used in TSD static initializer only. Will be initialized to opt_tcache. */
+#define TCACHE_ENABLED_ZERO_INITIALIZER false
+
+/* Used for explicit tcache only. Means flushed but not destroyed. */
+#define TCACHES_ELM_NEED_REINIT ((tcache_t *)(uintptr_t)1)
+
+#define TCACHE_LG_MAXCLASS_LIMIT 23 /* tcache_maxclass = 8M */
+#define TCACHE_MAXCLASS_LIMIT ((size_t)1 << TCACHE_LG_MAXCLASS_LIMIT)
+#define TCACHE_NBINS_MAX (SC_NBINS + SC_NGROUP * \
+ (TCACHE_LG_MAXCLASS_LIMIT - SC_LG_LARGE_MINCLASS) + 1)
+
+#endif /* JEMALLOC_INTERNAL_TCACHE_TYPES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/test_hooks.h b/deps/jemalloc/include/jemalloc/internal/test_hooks.h
new file mode 100644
index 0000000..3d530b5
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/test_hooks.h
@@ -0,0 +1,24 @@
+#ifndef JEMALLOC_INTERNAL_TEST_HOOKS_H
+#define JEMALLOC_INTERNAL_TEST_HOOKS_H
+
+extern JEMALLOC_EXPORT void (*test_hooks_arena_new_hook)();
+extern JEMALLOC_EXPORT void (*test_hooks_libc_hook)();
+
+#if defined(JEMALLOC_JET) || defined(JEMALLOC_UNIT_TEST)
+# define JEMALLOC_TEST_HOOK(fn, hook) ((void)(hook != NULL && (hook(), 0)), fn)
+
+# define open JEMALLOC_TEST_HOOK(open, test_hooks_libc_hook)
+# define read JEMALLOC_TEST_HOOK(read, test_hooks_libc_hook)
+# define write JEMALLOC_TEST_HOOK(write, test_hooks_libc_hook)
+# define readlink JEMALLOC_TEST_HOOK(readlink, test_hooks_libc_hook)
+# define close JEMALLOC_TEST_HOOK(close, test_hooks_libc_hook)
+# define creat JEMALLOC_TEST_HOOK(creat, test_hooks_libc_hook)
+# define secure_getenv JEMALLOC_TEST_HOOK(secure_getenv, test_hooks_libc_hook)
+/* Note that this is undef'd and re-define'd in src/prof.c. */
+# define _Unwind_Backtrace JEMALLOC_TEST_HOOK(_Unwind_Backtrace, test_hooks_libc_hook)
+#else
+# define JEMALLOC_TEST_HOOK(fn, hook) fn
+#endif
+
+
+#endif /* JEMALLOC_INTERNAL_TEST_HOOKS_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/thread_event.h b/deps/jemalloc/include/jemalloc/internal/thread_event.h
new file mode 100644
index 0000000..2f4e1b3
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/thread_event.h
@@ -0,0 +1,301 @@
+#ifndef JEMALLOC_INTERNAL_THREAD_EVENT_H
+#define JEMALLOC_INTERNAL_THREAD_EVENT_H
+
+#include "jemalloc/internal/tsd.h"
+
+/* "te" is short for "thread_event" */
+
+/*
+ * TE_MIN_START_WAIT should not exceed the minimal allocation usize.
+ */
+#define TE_MIN_START_WAIT ((uint64_t)1U)
+#define TE_MAX_START_WAIT UINT64_MAX
+
+/*
+ * Maximum threshold on thread_(de)allocated_next_event_fast, so that there is
+ * no need to check overflow in malloc fast path. (The allocation size in malloc
+ * fast path never exceeds SC_LOOKUP_MAXCLASS.)
+ */
+#define TE_NEXT_EVENT_FAST_MAX (UINT64_MAX - SC_LOOKUP_MAXCLASS + 1U)
+
+/*
+ * The max interval helps make sure that malloc stays on the fast path in the
+ * common case, i.e. thread_allocated < thread_allocated_next_event_fast. When
+ * thread_allocated is within an event's distance to TE_NEXT_EVENT_FAST_MAX
+ * above, thread_allocated_next_event_fast is wrapped around and we fall back to
+ * the medium-fast path. The max interval makes sure that we're not staying on
+ * the fallback case for too long, even if there's no active event or if all
+ * active events have long wait times.
+ */
+#define TE_MAX_INTERVAL ((uint64_t)(4U << 20))
+
+/*
+ * Invalid elapsed time, for situations where elapsed time is not needed. See
+ * comments in thread_event.c for more info.
+ */
+#define TE_INVALID_ELAPSED UINT64_MAX
+
+typedef struct te_ctx_s {
+ bool is_alloc;
+ uint64_t *current;
+ uint64_t *last_event;
+ uint64_t *next_event;
+ uint64_t *next_event_fast;
+} te_ctx_t;
+
+void te_assert_invariants_debug(tsd_t *tsd);
+void te_event_trigger(tsd_t *tsd, te_ctx_t *ctx);
+void te_recompute_fast_threshold(tsd_t *tsd);
+void tsd_te_init(tsd_t *tsd);
+
+/*
+ * List of all events, in the following format:
+ * E(event, (condition), is_alloc_event)
+ */
+#define ITERATE_OVER_ALL_EVENTS \
+ E(tcache_gc, (opt_tcache_gc_incr_bytes > 0), true) \
+ E(prof_sample, (config_prof && opt_prof), true) \
+ E(stats_interval, (opt_stats_interval >= 0), true) \
+ E(tcache_gc_dalloc, (opt_tcache_gc_incr_bytes > 0), false) \
+ E(peak_alloc, config_stats, true) \
+ E(peak_dalloc, config_stats, false)
+
+#define E(event, condition_unused, is_alloc_event_unused) \
+ C(event##_event_wait)
+
+/* List of all thread event counters. */
+#define ITERATE_OVER_ALL_COUNTERS \
+ C(thread_allocated) \
+ C(thread_allocated_last_event) \
+ ITERATE_OVER_ALL_EVENTS \
+ C(prof_sample_last_event) \
+ C(stats_interval_last_event)
+
+/* Getters directly wrap TSD getters. */
+#define C(counter) \
+JEMALLOC_ALWAYS_INLINE uint64_t \
+counter##_get(tsd_t *tsd) { \
+ return tsd_##counter##_get(tsd); \
+}
+
+ITERATE_OVER_ALL_COUNTERS
+#undef C
+
+/*
+ * Setters call the TSD pointer getters rather than the TSD setters, so that
+ * the counters can be modified even when TSD state is reincarnated or
+ * minimal_initialized: if an event is triggered in such cases, we will
+ * temporarily delay the event and let it be immediately triggered at the next
+ * allocation call.
+ */
+#define C(counter) \
+JEMALLOC_ALWAYS_INLINE void \
+counter##_set(tsd_t *tsd, uint64_t v) { \
+ *tsd_##counter##p_get(tsd) = v; \
+}
+
+ITERATE_OVER_ALL_COUNTERS
+#undef C
+
+/*
+ * For generating _event_wait getter / setter functions for each individual
+ * event.
+ */
+#undef E
+
+/*
+ * The malloc and free fastpath getters -- use the unsafe getters since tsd may
+ * be non-nominal, in which case the fast_threshold will be set to 0. This
+ * allows checking for events and tsd non-nominal in a single branch.
+ *
+ * Note that these can only be used on the fastpath.
+ */
+JEMALLOC_ALWAYS_INLINE void
+te_malloc_fastpath_ctx(tsd_t *tsd, uint64_t *allocated, uint64_t *threshold) {
+ *allocated = *tsd_thread_allocatedp_get_unsafe(tsd);
+ *threshold = *tsd_thread_allocated_next_event_fastp_get_unsafe(tsd);
+ assert(*threshold <= TE_NEXT_EVENT_FAST_MAX);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_free_fastpath_ctx(tsd_t *tsd, uint64_t *deallocated, uint64_t *threshold) {
+ /* Unsafe getters since this may happen before tsd_init. */
+ *deallocated = *tsd_thread_deallocatedp_get_unsafe(tsd);
+ *threshold = *tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd);
+ assert(*threshold <= TE_NEXT_EVENT_FAST_MAX);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+te_ctx_is_alloc(te_ctx_t *ctx) {
+ return ctx->is_alloc;
+}
+
+JEMALLOC_ALWAYS_INLINE uint64_t
+te_ctx_current_bytes_get(te_ctx_t *ctx) {
+ return *ctx->current;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_ctx_current_bytes_set(te_ctx_t *ctx, uint64_t v) {
+ *ctx->current = v;
+}
+
+JEMALLOC_ALWAYS_INLINE uint64_t
+te_ctx_last_event_get(te_ctx_t *ctx) {
+ return *ctx->last_event;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_ctx_last_event_set(te_ctx_t *ctx, uint64_t v) {
+ *ctx->last_event = v;
+}
+
+/* Below 3 for next_event_fast. */
+JEMALLOC_ALWAYS_INLINE uint64_t
+te_ctx_next_event_fast_get(te_ctx_t *ctx) {
+ uint64_t v = *ctx->next_event_fast;
+ assert(v <= TE_NEXT_EVENT_FAST_MAX);
+ return v;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_ctx_next_event_fast_set(te_ctx_t *ctx, uint64_t v) {
+ assert(v <= TE_NEXT_EVENT_FAST_MAX);
+ *ctx->next_event_fast = v;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_next_event_fast_set_non_nominal(tsd_t *tsd) {
+ /*
+ * Set the fast thresholds to zero when tsd is non-nominal. Use the
+ * unsafe getter as this may get called during tsd init and clean up.
+ */
+ *tsd_thread_allocated_next_event_fastp_get_unsafe(tsd) = 0;
+ *tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd) = 0;
+}
+
+/* For next_event. Setter also updates the fast threshold. */
+JEMALLOC_ALWAYS_INLINE uint64_t
+te_ctx_next_event_get(te_ctx_t *ctx) {
+ return *ctx->next_event;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_ctx_next_event_set(tsd_t *tsd, te_ctx_t *ctx, uint64_t v) {
+ *ctx->next_event = v;
+ te_recompute_fast_threshold(tsd);
+}
+
+/*
+ * The function checks in debug mode whether the thread event counters are in
+ * a consistent state, which forms the invariants before and after each round
+ * of thread event handling that we can rely on and need to promise.
+ * The invariants are only temporarily violated in the middle of
+ * te_event_advance() if an event is triggered (the te_event_trigger() call at
+ * the end will restore the invariants).
+ */
+JEMALLOC_ALWAYS_INLINE void
+te_assert_invariants(tsd_t *tsd) {
+ if (config_debug) {
+ te_assert_invariants_debug(tsd);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_ctx_get(tsd_t *tsd, te_ctx_t *ctx, bool is_alloc) {
+ ctx->is_alloc = is_alloc;
+ if (is_alloc) {
+ ctx->current = tsd_thread_allocatedp_get(tsd);
+ ctx->last_event = tsd_thread_allocated_last_eventp_get(tsd);
+ ctx->next_event = tsd_thread_allocated_next_eventp_get(tsd);
+ ctx->next_event_fast =
+ tsd_thread_allocated_next_event_fastp_get(tsd);
+ } else {
+ ctx->current = tsd_thread_deallocatedp_get(tsd);
+ ctx->last_event = tsd_thread_deallocated_last_eventp_get(tsd);
+ ctx->next_event = tsd_thread_deallocated_next_eventp_get(tsd);
+ ctx->next_event_fast =
+ tsd_thread_deallocated_next_event_fastp_get(tsd);
+ }
+}
+
+/*
+ * The lookahead functionality facilitates events to be able to lookahead, i.e.
+ * without touching the event counters, to determine whether an event would be
+ * triggered. The event counters are not advanced until the end of the
+ * allocation / deallocation calls, so the lookahead can be useful if some
+ * preparation work for some event must be done early in the allocation /
+ * deallocation calls.
+ *
+ * Currently only the profiling sampling event needs the lookahead
+ * functionality, so we don't yet define general purpose lookahead functions.
+ *
+ * Surplus is a terminology referring to the amount of bytes beyond what's
+ * needed for triggering an event, which can be a useful quantity to have in
+ * general when lookahead is being called.
+ */
+
+JEMALLOC_ALWAYS_INLINE bool
+te_prof_sample_event_lookahead_surplus(tsd_t *tsd, size_t usize,
+ size_t *surplus) {
+ if (surplus != NULL) {
+ /*
+ * This is a dead store: the surplus will be overwritten before
+ * any read. The initialization suppresses compiler warnings.
+ * Meanwhile, using SIZE_MAX to initialize is good for
+ * debugging purpose, because a valid surplus value is strictly
+ * less than usize, which is at most SIZE_MAX.
+ */
+ *surplus = SIZE_MAX;
+ }
+ if (unlikely(!tsd_nominal(tsd) || tsd_reentrancy_level_get(tsd) > 0)) {
+ return false;
+ }
+ /* The subtraction is intentionally susceptible to underflow. */
+ uint64_t accumbytes = tsd_thread_allocated_get(tsd) + usize -
+ tsd_thread_allocated_last_event_get(tsd);
+ uint64_t sample_wait = tsd_prof_sample_event_wait_get(tsd);
+ if (accumbytes < sample_wait) {
+ return false;
+ }
+ assert(accumbytes - sample_wait < (uint64_t)usize);
+ if (surplus != NULL) {
+ *surplus = (size_t)(accumbytes - sample_wait);
+ }
+ return true;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+te_prof_sample_event_lookahead(tsd_t *tsd, size_t usize) {
+ return te_prof_sample_event_lookahead_surplus(tsd, usize, NULL);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+te_event_advance(tsd_t *tsd, size_t usize, bool is_alloc) {
+ te_assert_invariants(tsd);
+
+ te_ctx_t ctx;
+ te_ctx_get(tsd, &ctx, is_alloc);
+
+ uint64_t bytes_before = te_ctx_current_bytes_get(&ctx);
+ te_ctx_current_bytes_set(&ctx, bytes_before + usize);
+
+ /* The subtraction is intentionally susceptible to underflow. */
+ if (likely(usize < te_ctx_next_event_get(&ctx) - bytes_before)) {
+ te_assert_invariants(tsd);
+ } else {
+ te_event_trigger(tsd, &ctx);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+thread_dalloc_event(tsd_t *tsd, size_t usize) {
+ te_event_advance(tsd, usize, false);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+thread_alloc_event(tsd_t *tsd, size_t usize) {
+ te_event_advance(tsd, usize, true);
+}
+
+#endif /* JEMALLOC_INTERNAL_THREAD_EVENT_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/ticker.h b/deps/jemalloc/include/jemalloc/internal/ticker.h
new file mode 100644
index 0000000..6b51dde
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/ticker.h
@@ -0,0 +1,175 @@
+#ifndef JEMALLOC_INTERNAL_TICKER_H
+#define JEMALLOC_INTERNAL_TICKER_H
+
+#include "jemalloc/internal/prng.h"
+#include "jemalloc/internal/util.h"
+
+/**
+ * A ticker makes it easy to count-down events until some limit. You
+ * ticker_init the ticker to trigger every nticks events. You then notify it
+ * that an event has occurred with calls to ticker_tick (or that nticks events
+ * have occurred with a call to ticker_ticks), which will return true (and reset
+ * the counter) if the countdown hit zero.
+ */
+typedef struct ticker_s ticker_t;
+struct ticker_s {
+ int32_t tick;
+ int32_t nticks;
+};
+
+static inline void
+ticker_init(ticker_t *ticker, int32_t nticks) {
+ ticker->tick = nticks;
+ ticker->nticks = nticks;
+}
+
+static inline void
+ticker_copy(ticker_t *ticker, const ticker_t *other) {
+ *ticker = *other;
+}
+
+static inline int32_t
+ticker_read(const ticker_t *ticker) {
+ return ticker->tick;
+}
+
+/*
+ * Not intended to be a public API. Unfortunately, on x86, neither gcc nor
+ * clang seems smart enough to turn
+ * ticker->tick -= nticks;
+ * if (unlikely(ticker->tick < 0)) {
+ * fixup ticker
+ * return true;
+ * }
+ * return false;
+ * into
+ * subq %nticks_reg, (%ticker_reg)
+ * js fixup ticker
+ *
+ * unless we force "fixup ticker" out of line. In that case, gcc gets it right,
+ * but clang now does worse than before. So, on x86 with gcc, we force it out
+ * of line, but otherwise let the inlining occur. Ordinarily this wouldn't be
+ * worth the hassle, but this is on the fast path of both malloc and free (via
+ * tcache_event).
+ */
+#if defined(__GNUC__) && !defined(__clang__) \
+ && (defined(__x86_64__) || defined(__i386__))
+JEMALLOC_NOINLINE
+#endif
+static bool
+ticker_fixup(ticker_t *ticker) {
+ ticker->tick = ticker->nticks;
+ return true;
+}
+
+static inline bool
+ticker_ticks(ticker_t *ticker, int32_t nticks) {
+ ticker->tick -= nticks;
+ if (unlikely(ticker->tick < 0)) {
+ return ticker_fixup(ticker);
+ }
+ return false;
+}
+
+static inline bool
+ticker_tick(ticker_t *ticker) {
+ return ticker_ticks(ticker, 1);
+}
+
+/*
+ * Try to tick. If ticker would fire, return true, but rely on
+ * slowpath to reset ticker.
+ */
+static inline bool
+ticker_trytick(ticker_t *ticker) {
+ --ticker->tick;
+ if (unlikely(ticker->tick < 0)) {
+ return true;
+ }
+ return false;
+}
+
+/*
+ * The ticker_geom_t is much like the ticker_t, except that instead of ticker
+ * having a constant countdown, it has an approximate one; each tick has
+ * approximately a 1/nticks chance of triggering the count.
+ *
+ * The motivation is in triggering arena decay. With a naive strategy, each
+ * thread would maintain a ticker per arena, and check if decay is necessary
+ * each time that the arena's ticker fires. This has two costs:
+ * - Since under reasonable assumptions both threads and arenas can scale
+ * linearly with the number of CPUs, maintaining per-arena data in each thread
+ * scales quadratically with the number of CPUs.
+ * - These tickers are often a cache miss down tcache flush pathways.
+ *
+ * By giving each tick a 1/nticks chance of firing, we still maintain the same
+ * average number of ticks-until-firing per arena, with only a single ticker's
+ * worth of metadata.
+ */
+
+/* See ticker.c for an explanation of these constants. */
+#define TICKER_GEOM_NBITS 6
+#define TICKER_GEOM_MUL 61
+extern const uint8_t ticker_geom_table[1 << TICKER_GEOM_NBITS];
+
+/* Not actually any different from ticker_t; just for type safety. */
+typedef struct ticker_geom_s ticker_geom_t;
+struct ticker_geom_s {
+ int32_t tick;
+ int32_t nticks;
+};
+
+/*
+ * Just pick the average delay for the first counter. We're more concerned with
+ * the behavior over long periods of time rather than the exact timing of the
+ * initial ticks.
+ */
+#define TICKER_GEOM_INIT(nticks) {nticks, nticks}
+
+static inline void
+ticker_geom_init(ticker_geom_t *ticker, int32_t nticks) {
+ /*
+ * Make sure there's no overflow possible. This shouldn't really be a
+ * problem for reasonable nticks choices, which are all static and
+ * relatively small.
+ */
+ assert((uint64_t)nticks * (uint64_t)255 / (uint64_t)TICKER_GEOM_MUL
+ <= (uint64_t)INT32_MAX);
+ ticker->tick = nticks;
+ ticker->nticks = nticks;
+}
+
+static inline int32_t
+ticker_geom_read(const ticker_geom_t *ticker) {
+ return ticker->tick;
+}
+
+/* Same deal as above. */
+#if defined(__GNUC__) && !defined(__clang__) \
+ && (defined(__x86_64__) || defined(__i386__))
+JEMALLOC_NOINLINE
+#endif
+static bool
+ticker_geom_fixup(ticker_geom_t *ticker, uint64_t *prng_state) {
+ uint64_t idx = prng_lg_range_u64(prng_state, TICKER_GEOM_NBITS);
+ ticker->tick = (uint32_t)(
+ (uint64_t)ticker->nticks * (uint64_t)ticker_geom_table[idx]
+ / (uint64_t)TICKER_GEOM_MUL);
+ return true;
+}
+
+static inline bool
+ticker_geom_ticks(ticker_geom_t *ticker, uint64_t *prng_state, int32_t nticks) {
+ ticker->tick -= nticks;
+ if (unlikely(ticker->tick < 0)) {
+ return ticker_geom_fixup(ticker, prng_state);
+ }
+ return false;
+}
+
+static inline bool
+ticker_geom_tick(ticker_geom_t *ticker, uint64_t *prng_state) {
+ return ticker_geom_ticks(ticker, prng_state, 1);
+}
+
+#endif /* JEMALLOC_INTERNAL_TICKER_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tsd.h b/deps/jemalloc/include/jemalloc/internal/tsd.h
new file mode 100644
index 0000000..66d6882
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tsd.h
@@ -0,0 +1,518 @@
+#ifndef JEMALLOC_INTERNAL_TSD_H
+#define JEMALLOC_INTERNAL_TSD_H
+
+#include "jemalloc/internal/activity_callback.h"
+#include "jemalloc/internal/arena_types.h"
+#include "jemalloc/internal/assert.h"
+#include "jemalloc/internal/bin_types.h"
+#include "jemalloc/internal/jemalloc_internal_externs.h"
+#include "jemalloc/internal/peak.h"
+#include "jemalloc/internal/prof_types.h"
+#include "jemalloc/internal/ql.h"
+#include "jemalloc/internal/rtree_tsd.h"
+#include "jemalloc/internal/tcache_types.h"
+#include "jemalloc/internal/tcache_structs.h"
+#include "jemalloc/internal/util.h"
+#include "jemalloc/internal/witness.h"
+
+/*
+ * Thread-Specific-Data layout
+ *
+ * At least some thread-local data gets touched on the fast-path of almost all
+ * malloc operations. But much of it is only necessary down slow-paths, or
+ * testing. We want to colocate the fast-path data so that it can live on the
+ * same cacheline if possible. So we define three tiers of hotness:
+ * TSD_DATA_FAST: Touched on the alloc/dalloc fast paths.
+ * TSD_DATA_SLOW: Touched down slow paths. "Slow" here is sort of general;
+ * there are "semi-slow" paths like "not a sized deallocation, but can still
+ * live in the tcache". We'll want to keep these closer to the fast-path
+ * data.
+ * TSD_DATA_SLOWER: Only touched in test or debug modes, or not touched at all.
+ *
+ * An additional concern is that the larger tcache bins won't be used (we have a
+ * bin per size class, but by default only cache relatively small objects). So
+ * the earlier bins are in the TSD_DATA_FAST tier, but the later ones are in the
+ * TSD_DATA_SLOWER tier.
+ *
+ * As a result of all this, we put the slow data first, then the fast data, then
+ * the slower data, while keeping the tcache as the last element of the fast
+ * data (so that the fast -> slower transition happens midway through the
+ * tcache). While we don't yet play alignment tricks to guarantee it, this
+ * increases our odds of getting some cache/page locality on fast paths.
+ */
+
+#ifdef JEMALLOC_JET
+typedef void (*test_callback_t)(int *);
+# define MALLOC_TSD_TEST_DATA_INIT 0x72b65c10
+# define MALLOC_TEST_TSD \
+ O(test_data, int, int) \
+ O(test_callback, test_callback_t, int)
+# define MALLOC_TEST_TSD_INITIALIZER , MALLOC_TSD_TEST_DATA_INIT, NULL
+#else
+# define MALLOC_TEST_TSD
+# define MALLOC_TEST_TSD_INITIALIZER
+#endif
+
+typedef ql_elm(tsd_t) tsd_link_t;
+
+/* O(name, type, nullable type) */
+#define TSD_DATA_SLOW \
+ O(tcache_enabled, bool, bool) \
+ O(reentrancy_level, int8_t, int8_t) \
+ O(thread_allocated_last_event, uint64_t, uint64_t) \
+ O(thread_allocated_next_event, uint64_t, uint64_t) \
+ O(thread_deallocated_last_event, uint64_t, uint64_t) \
+ O(thread_deallocated_next_event, uint64_t, uint64_t) \
+ O(tcache_gc_event_wait, uint64_t, uint64_t) \
+ O(tcache_gc_dalloc_event_wait, uint64_t, uint64_t) \
+ O(prof_sample_event_wait, uint64_t, uint64_t) \
+ O(prof_sample_last_event, uint64_t, uint64_t) \
+ O(stats_interval_event_wait, uint64_t, uint64_t) \
+ O(stats_interval_last_event, uint64_t, uint64_t) \
+ O(peak_alloc_event_wait, uint64_t, uint64_t) \
+ O(peak_dalloc_event_wait, uint64_t, uint64_t) \
+ O(prof_tdata, prof_tdata_t *, prof_tdata_t *) \
+ O(prng_state, uint64_t, uint64_t) \
+ O(san_extents_until_guard_small, uint64_t, uint64_t) \
+ O(san_extents_until_guard_large, uint64_t, uint64_t) \
+ O(iarena, arena_t *, arena_t *) \
+ O(arena, arena_t *, arena_t *) \
+ O(arena_decay_ticker, ticker_geom_t, ticker_geom_t) \
+ O(sec_shard, uint8_t, uint8_t) \
+ O(binshards, tsd_binshards_t, tsd_binshards_t)\
+ O(tsd_link, tsd_link_t, tsd_link_t) \
+ O(in_hook, bool, bool) \
+ O(peak, peak_t, peak_t) \
+ O(activity_callback_thunk, activity_callback_thunk_t, \
+ activity_callback_thunk_t) \
+ O(tcache_slow, tcache_slow_t, tcache_slow_t) \
+ O(rtree_ctx, rtree_ctx_t, rtree_ctx_t)
+
+#define TSD_DATA_SLOW_INITIALIZER \
+ /* tcache_enabled */ TCACHE_ENABLED_ZERO_INITIALIZER, \
+ /* reentrancy_level */ 0, \
+ /* thread_allocated_last_event */ 0, \
+ /* thread_allocated_next_event */ 0, \
+ /* thread_deallocated_last_event */ 0, \
+ /* thread_deallocated_next_event */ 0, \
+ /* tcache_gc_event_wait */ 0, \
+ /* tcache_gc_dalloc_event_wait */ 0, \
+ /* prof_sample_event_wait */ 0, \
+ /* prof_sample_last_event */ 0, \
+ /* stats_interval_event_wait */ 0, \
+ /* stats_interval_last_event */ 0, \
+ /* peak_alloc_event_wait */ 0, \
+ /* peak_dalloc_event_wait */ 0, \
+ /* prof_tdata */ NULL, \
+ /* prng_state */ 0, \
+ /* san_extents_until_guard_small */ 0, \
+ /* san_extents_until_guard_large */ 0, \
+ /* iarena */ NULL, \
+ /* arena */ NULL, \
+ /* arena_decay_ticker */ \
+ TICKER_GEOM_INIT(ARENA_DECAY_NTICKS_PER_UPDATE), \
+ /* sec_shard */ (uint8_t)-1, \
+ /* binshards */ TSD_BINSHARDS_ZERO_INITIALIZER, \
+ /* tsd_link */ {NULL}, \
+ /* in_hook */ false, \
+ /* peak */ PEAK_INITIALIZER, \
+ /* activity_callback_thunk */ \
+ ACTIVITY_CALLBACK_THUNK_INITIALIZER, \
+ /* tcache_slow */ TCACHE_SLOW_ZERO_INITIALIZER, \
+ /* rtree_ctx */ RTREE_CTX_INITIALIZER,
+
+/* O(name, type, nullable type) */
+#define TSD_DATA_FAST \
+ O(thread_allocated, uint64_t, uint64_t) \
+ O(thread_allocated_next_event_fast, uint64_t, uint64_t) \
+ O(thread_deallocated, uint64_t, uint64_t) \
+ O(thread_deallocated_next_event_fast, uint64_t, uint64_t) \
+ O(tcache, tcache_t, tcache_t)
+
+#define TSD_DATA_FAST_INITIALIZER \
+ /* thread_allocated */ 0, \
+ /* thread_allocated_next_event_fast */ 0, \
+ /* thread_deallocated */ 0, \
+ /* thread_deallocated_next_event_fast */ 0, \
+ /* tcache */ TCACHE_ZERO_INITIALIZER,
+
+/* O(name, type, nullable type) */
+#define TSD_DATA_SLOWER \
+ O(witness_tsd, witness_tsd_t, witness_tsdn_t) \
+ MALLOC_TEST_TSD
+
+#define TSD_DATA_SLOWER_INITIALIZER \
+ /* witness */ WITNESS_TSD_INITIALIZER \
+ /* test data */ MALLOC_TEST_TSD_INITIALIZER
+
+
+#define TSD_INITIALIZER { \
+ TSD_DATA_SLOW_INITIALIZER \
+ /* state */ ATOMIC_INIT(tsd_state_uninitialized), \
+ TSD_DATA_FAST_INITIALIZER \
+ TSD_DATA_SLOWER_INITIALIZER \
+}
+
+#if defined(JEMALLOC_MALLOC_THREAD_CLEANUP) || defined(_WIN32)
+void _malloc_tsd_cleanup_register(bool (*f)(void));
+#endif
+
+void *malloc_tsd_malloc(size_t size);
+void malloc_tsd_dalloc(void *wrapper);
+tsd_t *malloc_tsd_boot0(void);
+void malloc_tsd_boot1(void);
+void tsd_cleanup(void *arg);
+tsd_t *tsd_fetch_slow(tsd_t *tsd, bool internal);
+void tsd_state_set(tsd_t *tsd, uint8_t new_state);
+void tsd_slow_update(tsd_t *tsd);
+void tsd_prefork(tsd_t *tsd);
+void tsd_postfork_parent(tsd_t *tsd);
+void tsd_postfork_child(tsd_t *tsd);
+
+/*
+ * Call ..._inc when your module wants to take all threads down the slow paths,
+ * and ..._dec when it no longer needs to.
+ */
+void tsd_global_slow_inc(tsdn_t *tsdn);
+void tsd_global_slow_dec(tsdn_t *tsdn);
+bool tsd_global_slow();
+
+enum {
+ /* Common case --> jnz. */
+ tsd_state_nominal = 0,
+ /* Initialized but on slow path. */
+ tsd_state_nominal_slow = 1,
+ /*
+ * Some thread has changed global state in such a way that all nominal
+ * threads need to recompute their fast / slow status the next time they
+ * get a chance.
+ *
+ * Any thread can change another thread's status *to* recompute, but
+ * threads are the only ones who can change their status *from*
+ * recompute.
+ */
+ tsd_state_nominal_recompute = 2,
+ /*
+ * The above nominal states should be lower values. We use
+ * tsd_nominal_max to separate nominal states from threads in the
+ * process of being born / dying.
+ */
+ tsd_state_nominal_max = 2,
+
+ /*
+ * A thread might free() during its death as its only allocator action;
+ * in such scenarios, we need tsd, but set up in such a way that no
+ * cleanup is necessary.
+ */
+ tsd_state_minimal_initialized = 3,
+ /* States during which we know we're in thread death. */
+ tsd_state_purgatory = 4,
+ tsd_state_reincarnated = 5,
+ /*
+ * What it says on the tin; tsd that hasn't been initialized. Note
+ * that even when the tsd struct lives in TLS, when need to keep track
+ * of stuff like whether or not our pthread destructors have been
+ * scheduled, so this really truly is different than the nominal state.
+ */
+ tsd_state_uninitialized = 6
+};
+
+/*
+ * Some TSD accesses can only be done in a nominal state. To enforce this, we
+ * wrap TSD member access in a function that asserts on TSD state, and mangle
+ * field names to prevent touching them accidentally.
+ */
+#define TSD_MANGLE(n) cant_access_tsd_items_directly_use_a_getter_or_setter_##n
+
+#ifdef JEMALLOC_U8_ATOMICS
+# define tsd_state_t atomic_u8_t
+# define tsd_atomic_load atomic_load_u8
+# define tsd_atomic_store atomic_store_u8
+# define tsd_atomic_exchange atomic_exchange_u8
+#else
+# define tsd_state_t atomic_u32_t
+# define tsd_atomic_load atomic_load_u32
+# define tsd_atomic_store atomic_store_u32
+# define tsd_atomic_exchange atomic_exchange_u32
+#endif
+
+/* The actual tsd. */
+struct tsd_s {
+ /*
+ * The contents should be treated as totally opaque outside the tsd
+ * module. Access any thread-local state through the getters and
+ * setters below.
+ */
+
+#define O(n, t, nt) \
+ t TSD_MANGLE(n);
+
+ TSD_DATA_SLOW
+ /*
+ * We manually limit the state to just a single byte. Unless the 8-bit
+ * atomics are unavailable (which is rare).
+ */
+ tsd_state_t state;
+ TSD_DATA_FAST
+ TSD_DATA_SLOWER
+#undef O
+};
+
+JEMALLOC_ALWAYS_INLINE uint8_t
+tsd_state_get(tsd_t *tsd) {
+ /*
+ * This should be atomic. Unfortunately, compilers right now can't tell
+ * that this can be done as a memory comparison, and forces a load into
+ * a register that hurts fast-path performance.
+ */
+ /* return atomic_load_u8(&tsd->state, ATOMIC_RELAXED); */
+ return *(uint8_t *)&tsd->state;
+}
+
+/*
+ * Wrapper around tsd_t that makes it possible to avoid implicit conversion
+ * between tsd_t and tsdn_t, where tsdn_t is "nullable" and has to be
+ * explicitly converted to tsd_t, which is non-nullable.
+ */
+struct tsdn_s {
+ tsd_t tsd;
+};
+#define TSDN_NULL ((tsdn_t *)0)
+JEMALLOC_ALWAYS_INLINE tsdn_t *
+tsd_tsdn(tsd_t *tsd) {
+ return (tsdn_t *)tsd;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsdn_null(const tsdn_t *tsdn) {
+ return tsdn == NULL;
+}
+
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsdn_tsd(tsdn_t *tsdn) {
+ assert(!tsdn_null(tsdn));
+
+ return &tsdn->tsd;
+}
+
+/*
+ * We put the platform-specific data declarations and inlines into their own
+ * header files to avoid cluttering this file. They define tsd_boot0,
+ * tsd_boot1, tsd_boot, tsd_booted_get, tsd_get_allocates, tsd_get, and tsd_set.
+ */
+#ifdef JEMALLOC_MALLOC_THREAD_CLEANUP
+#include "jemalloc/internal/tsd_malloc_thread_cleanup.h"
+#elif (defined(JEMALLOC_TLS))
+#include "jemalloc/internal/tsd_tls.h"
+#elif (defined(_WIN32))
+#include "jemalloc/internal/tsd_win.h"
+#else
+#include "jemalloc/internal/tsd_generic.h"
+#endif
+
+/*
+ * tsd_foop_get_unsafe(tsd) returns a pointer to the thread-local instance of
+ * foo. This omits some safety checks, and so can be used during tsd
+ * initialization and cleanup.
+ */
+#define O(n, t, nt) \
+JEMALLOC_ALWAYS_INLINE t * \
+tsd_##n##p_get_unsafe(tsd_t *tsd) { \
+ return &tsd->TSD_MANGLE(n); \
+}
+TSD_DATA_SLOW
+TSD_DATA_FAST
+TSD_DATA_SLOWER
+#undef O
+
+/* tsd_foop_get(tsd) returns a pointer to the thread-local instance of foo. */
+#define O(n, t, nt) \
+JEMALLOC_ALWAYS_INLINE t * \
+tsd_##n##p_get(tsd_t *tsd) { \
+ /* \
+ * Because the state might change asynchronously if it's \
+ * nominal, we need to make sure that we only read it once. \
+ */ \
+ uint8_t state = tsd_state_get(tsd); \
+ assert(state == tsd_state_nominal || \
+ state == tsd_state_nominal_slow || \
+ state == tsd_state_nominal_recompute || \
+ state == tsd_state_reincarnated || \
+ state == tsd_state_minimal_initialized); \
+ return tsd_##n##p_get_unsafe(tsd); \
+}
+TSD_DATA_SLOW
+TSD_DATA_FAST
+TSD_DATA_SLOWER
+#undef O
+
+/*
+ * tsdn_foop_get(tsdn) returns either the thread-local instance of foo (if tsdn
+ * isn't NULL), or NULL (if tsdn is NULL), cast to the nullable pointer type.
+ */
+#define O(n, t, nt) \
+JEMALLOC_ALWAYS_INLINE nt * \
+tsdn_##n##p_get(tsdn_t *tsdn) { \
+ if (tsdn_null(tsdn)) { \
+ return NULL; \
+ } \
+ tsd_t *tsd = tsdn_tsd(tsdn); \
+ return (nt *)tsd_##n##p_get(tsd); \
+}
+TSD_DATA_SLOW
+TSD_DATA_FAST
+TSD_DATA_SLOWER
+#undef O
+
+/* tsd_foo_get(tsd) returns the value of the thread-local instance of foo. */
+#define O(n, t, nt) \
+JEMALLOC_ALWAYS_INLINE t \
+tsd_##n##_get(tsd_t *tsd) { \
+ return *tsd_##n##p_get(tsd); \
+}
+TSD_DATA_SLOW
+TSD_DATA_FAST
+TSD_DATA_SLOWER
+#undef O
+
+/* tsd_foo_set(tsd, val) updates the thread-local instance of foo to be val. */
+#define O(n, t, nt) \
+JEMALLOC_ALWAYS_INLINE void \
+tsd_##n##_set(tsd_t *tsd, t val) { \
+ assert(tsd_state_get(tsd) != tsd_state_reincarnated && \
+ tsd_state_get(tsd) != tsd_state_minimal_initialized); \
+ *tsd_##n##p_get(tsd) = val; \
+}
+TSD_DATA_SLOW
+TSD_DATA_FAST
+TSD_DATA_SLOWER
+#undef O
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_assert_fast(tsd_t *tsd) {
+ /*
+ * Note that our fastness assertion does *not* include global slowness
+ * counters; it's not in general possible to ensure that they won't
+ * change asynchronously from underneath us.
+ */
+ assert(!malloc_slow && tsd_tcache_enabled_get(tsd) &&
+ tsd_reentrancy_level_get(tsd) == 0);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_fast(tsd_t *tsd) {
+ bool fast = (tsd_state_get(tsd) == tsd_state_nominal);
+ if (fast) {
+ tsd_assert_fast(tsd);
+ }
+
+ return fast;
+}
+
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_fetch_impl(bool init, bool minimal) {
+ tsd_t *tsd = tsd_get(init);
+
+ if (!init && tsd_get_allocates() && tsd == NULL) {
+ return NULL;
+ }
+ assert(tsd != NULL);
+
+ if (unlikely(tsd_state_get(tsd) != tsd_state_nominal)) {
+ return tsd_fetch_slow(tsd, minimal);
+ }
+ assert(tsd_fast(tsd));
+ tsd_assert_fast(tsd);
+
+ return tsd;
+}
+
+/* Get a minimal TSD that requires no cleanup. See comments in free(). */
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_fetch_min(void) {
+ return tsd_fetch_impl(true, true);
+}
+
+/* For internal background threads use only. */
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_internal_fetch(void) {
+ tsd_t *tsd = tsd_fetch_min();
+ /* Use reincarnated state to prevent full initialization. */
+ tsd_state_set(tsd, tsd_state_reincarnated);
+
+ return tsd;
+}
+
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_fetch(void) {
+ return tsd_fetch_impl(true, false);
+}
+
+static inline bool
+tsd_nominal(tsd_t *tsd) {
+ bool nominal = tsd_state_get(tsd) <= tsd_state_nominal_max;
+ assert(nominal || tsd_reentrancy_level_get(tsd) > 0);
+
+ return nominal;
+}
+
+JEMALLOC_ALWAYS_INLINE tsdn_t *
+tsdn_fetch(void) {
+ if (!tsd_booted_get()) {
+ return NULL;
+ }
+
+ return tsd_tsdn(tsd_fetch_impl(false, false));
+}
+
+JEMALLOC_ALWAYS_INLINE rtree_ctx_t *
+tsd_rtree_ctx(tsd_t *tsd) {
+ return tsd_rtree_ctxp_get(tsd);
+}
+
+JEMALLOC_ALWAYS_INLINE rtree_ctx_t *
+tsdn_rtree_ctx(tsdn_t *tsdn, rtree_ctx_t *fallback) {
+ /*
+ * If tsd cannot be accessed, initialize the fallback rtree_ctx and
+ * return a pointer to it.
+ */
+ if (unlikely(tsdn_null(tsdn))) {
+ rtree_ctx_data_init(fallback);
+ return fallback;
+ }
+ return tsd_rtree_ctx(tsdn_tsd(tsdn));
+}
+
+static inline bool
+tsd_state_nocleanup(tsd_t *tsd) {
+ return tsd_state_get(tsd) == tsd_state_reincarnated ||
+ tsd_state_get(tsd) == tsd_state_minimal_initialized;
+}
+
+/*
+ * These "raw" tsd reentrancy functions don't have any debug checking to make
+ * sure that we're not touching arena 0. Better is to call pre_reentrancy and
+ * post_reentrancy if this is possible.
+ */
+static inline void
+tsd_pre_reentrancy_raw(tsd_t *tsd) {
+ bool fast = tsd_fast(tsd);
+ assert(tsd_reentrancy_level_get(tsd) < INT8_MAX);
+ ++*tsd_reentrancy_levelp_get(tsd);
+ if (fast) {
+ /* Prepare slow path for reentrancy. */
+ tsd_slow_update(tsd);
+ assert(tsd_state_get(tsd) == tsd_state_nominal_slow);
+ }
+}
+
+static inline void
+tsd_post_reentrancy_raw(tsd_t *tsd) {
+ int8_t *reentrancy_level = tsd_reentrancy_levelp_get(tsd);
+ assert(*reentrancy_level > 0);
+ if (--*reentrancy_level == 0) {
+ tsd_slow_update(tsd);
+ }
+}
+
+#endif /* JEMALLOC_INTERNAL_TSD_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tsd_generic.h b/deps/jemalloc/include/jemalloc/internal/tsd_generic.h
new file mode 100644
index 0000000..a718472
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tsd_generic.h
@@ -0,0 +1,182 @@
+#ifdef JEMALLOC_INTERNAL_TSD_GENERIC_H
+#error This file should be included only once, by tsd.h.
+#endif
+#define JEMALLOC_INTERNAL_TSD_GENERIC_H
+
+typedef struct tsd_init_block_s tsd_init_block_t;
+struct tsd_init_block_s {
+ ql_elm(tsd_init_block_t) link;
+ pthread_t thread;
+ void *data;
+};
+
+/* Defined in tsd.c, to allow the mutex headers to have tsd dependencies. */
+typedef struct tsd_init_head_s tsd_init_head_t;
+
+typedef struct {
+ bool initialized;
+ tsd_t val;
+} tsd_wrapper_t;
+
+void *tsd_init_check_recursion(tsd_init_head_t *head,
+ tsd_init_block_t *block);
+void tsd_init_finish(tsd_init_head_t *head, tsd_init_block_t *block);
+
+extern pthread_key_t tsd_tsd;
+extern tsd_init_head_t tsd_init_head;
+extern tsd_wrapper_t tsd_boot_wrapper;
+extern bool tsd_booted;
+
+/* Initialization/cleanup. */
+JEMALLOC_ALWAYS_INLINE void
+tsd_cleanup_wrapper(void *arg) {
+ tsd_wrapper_t *wrapper = (tsd_wrapper_t *)arg;
+
+ if (wrapper->initialized) {
+ wrapper->initialized = false;
+ tsd_cleanup(&wrapper->val);
+ if (wrapper->initialized) {
+ /* Trigger another cleanup round. */
+ if (pthread_setspecific(tsd_tsd, (void *)wrapper) != 0)
+ {
+ malloc_write("<jemalloc>: Error setting TSD\n");
+ if (opt_abort) {
+ abort();
+ }
+ }
+ return;
+ }
+ }
+ malloc_tsd_dalloc(wrapper);
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_wrapper_set(tsd_wrapper_t *wrapper) {
+ if (unlikely(!tsd_booted)) {
+ return;
+ }
+ if (pthread_setspecific(tsd_tsd, (void *)wrapper) != 0) {
+ malloc_write("<jemalloc>: Error setting TSD\n");
+ abort();
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE tsd_wrapper_t *
+tsd_wrapper_get(bool init) {
+ tsd_wrapper_t *wrapper;
+
+ if (unlikely(!tsd_booted)) {
+ return &tsd_boot_wrapper;
+ }
+
+ wrapper = (tsd_wrapper_t *)pthread_getspecific(tsd_tsd);
+
+ if (init && unlikely(wrapper == NULL)) {
+ tsd_init_block_t block;
+ wrapper = (tsd_wrapper_t *)
+ tsd_init_check_recursion(&tsd_init_head, &block);
+ if (wrapper) {
+ return wrapper;
+ }
+ wrapper = (tsd_wrapper_t *)
+ malloc_tsd_malloc(sizeof(tsd_wrapper_t));
+ block.data = (void *)wrapper;
+ if (wrapper == NULL) {
+ malloc_write("<jemalloc>: Error allocating TSD\n");
+ abort();
+ } else {
+ wrapper->initialized = false;
+ JEMALLOC_DIAGNOSTIC_PUSH
+ JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
+ tsd_t initializer = TSD_INITIALIZER;
+ JEMALLOC_DIAGNOSTIC_POP
+ wrapper->val = initializer;
+ }
+ tsd_wrapper_set(wrapper);
+ tsd_init_finish(&tsd_init_head, &block);
+ }
+ return wrapper;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot0(void) {
+ tsd_wrapper_t *wrapper;
+ tsd_init_block_t block;
+
+ wrapper = (tsd_wrapper_t *)
+ tsd_init_check_recursion(&tsd_init_head, &block);
+ if (wrapper) {
+ return false;
+ }
+ block.data = &tsd_boot_wrapper;
+ if (pthread_key_create(&tsd_tsd, tsd_cleanup_wrapper) != 0) {
+ return true;
+ }
+ tsd_booted = true;
+ tsd_wrapper_set(&tsd_boot_wrapper);
+ tsd_init_finish(&tsd_init_head, &block);
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_boot1(void) {
+ tsd_wrapper_t *wrapper;
+ wrapper = (tsd_wrapper_t *)malloc_tsd_malloc(sizeof(tsd_wrapper_t));
+ if (wrapper == NULL) {
+ malloc_write("<jemalloc>: Error allocating TSD\n");
+ abort();
+ }
+ tsd_boot_wrapper.initialized = false;
+ tsd_cleanup(&tsd_boot_wrapper.val);
+ wrapper->initialized = false;
+ JEMALLOC_DIAGNOSTIC_PUSH
+ JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
+ tsd_t initializer = TSD_INITIALIZER;
+ JEMALLOC_DIAGNOSTIC_POP
+ wrapper->val = initializer;
+ tsd_wrapper_set(wrapper);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot(void) {
+ if (tsd_boot0()) {
+ return true;
+ }
+ tsd_boot1();
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_booted_get(void) {
+ return tsd_booted;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_get_allocates(void) {
+ return true;
+}
+
+/* Get/set. */
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_get(bool init) {
+ tsd_wrapper_t *wrapper;
+
+ assert(tsd_booted);
+ wrapper = tsd_wrapper_get(init);
+ if (tsd_get_allocates() && !init && wrapper == NULL) {
+ return NULL;
+ }
+ return &wrapper->val;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_set(tsd_t *val) {
+ tsd_wrapper_t *wrapper;
+
+ assert(tsd_booted);
+ wrapper = tsd_wrapper_get(true);
+ if (likely(&wrapper->val != val)) {
+ wrapper->val = *(val);
+ }
+ wrapper->initialized = true;
+}
diff --git a/deps/jemalloc/include/jemalloc/internal/tsd_malloc_thread_cleanup.h b/deps/jemalloc/include/jemalloc/internal/tsd_malloc_thread_cleanup.h
new file mode 100644
index 0000000..d8f3ef1
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tsd_malloc_thread_cleanup.h
@@ -0,0 +1,61 @@
+#ifdef JEMALLOC_INTERNAL_TSD_MALLOC_THREAD_CLEANUP_H
+#error This file should be included only once, by tsd.h.
+#endif
+#define JEMALLOC_INTERNAL_TSD_MALLOC_THREAD_CLEANUP_H
+
+#define JEMALLOC_TSD_TYPE_ATTR(type) __thread type JEMALLOC_TLS_MODEL
+
+extern JEMALLOC_TSD_TYPE_ATTR(tsd_t) tsd_tls;
+extern JEMALLOC_TSD_TYPE_ATTR(bool) tsd_initialized;
+extern bool tsd_booted;
+
+/* Initialization/cleanup. */
+JEMALLOC_ALWAYS_INLINE bool
+tsd_cleanup_wrapper(void) {
+ if (tsd_initialized) {
+ tsd_initialized = false;
+ tsd_cleanup(&tsd_tls);
+ }
+ return tsd_initialized;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot0(void) {
+ _malloc_tsd_cleanup_register(&tsd_cleanup_wrapper);
+ tsd_booted = true;
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_boot1(void) {
+ /* Do nothing. */
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot(void) {
+ return tsd_boot0();
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_booted_get(void) {
+ return tsd_booted;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_get_allocates(void) {
+ return false;
+}
+
+/* Get/set. */
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_get(bool init) {
+ return &tsd_tls;
+}
+JEMALLOC_ALWAYS_INLINE void
+tsd_set(tsd_t *val) {
+ assert(tsd_booted);
+ if (likely(&tsd_tls != val)) {
+ tsd_tls = (*val);
+ }
+ tsd_initialized = true;
+}
diff --git a/deps/jemalloc/include/jemalloc/internal/tsd_tls.h b/deps/jemalloc/include/jemalloc/internal/tsd_tls.h
new file mode 100644
index 0000000..7d6c805
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tsd_tls.h
@@ -0,0 +1,60 @@
+#ifdef JEMALLOC_INTERNAL_TSD_TLS_H
+#error This file should be included only once, by tsd.h.
+#endif
+#define JEMALLOC_INTERNAL_TSD_TLS_H
+
+#define JEMALLOC_TSD_TYPE_ATTR(type) __thread type JEMALLOC_TLS_MODEL
+
+extern JEMALLOC_TSD_TYPE_ATTR(tsd_t) tsd_tls;
+extern pthread_key_t tsd_tsd;
+extern bool tsd_booted;
+
+/* Initialization/cleanup. */
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot0(void) {
+ if (pthread_key_create(&tsd_tsd, &tsd_cleanup) != 0) {
+ return true;
+ }
+ tsd_booted = true;
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_boot1(void) {
+ /* Do nothing. */
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot(void) {
+ return tsd_boot0();
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_booted_get(void) {
+ return tsd_booted;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_get_allocates(void) {
+ return false;
+}
+
+/* Get/set. */
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_get(bool init) {
+ return &tsd_tls;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_set(tsd_t *val) {
+ assert(tsd_booted);
+ if (likely(&tsd_tls != val)) {
+ tsd_tls = (*val);
+ }
+ if (pthread_setspecific(tsd_tsd, (void *)(&tsd_tls)) != 0) {
+ malloc_write("<jemalloc>: Error setting tsd.\n");
+ if (opt_abort) {
+ abort();
+ }
+ }
+}
diff --git a/deps/jemalloc/include/jemalloc/internal/tsd_types.h b/deps/jemalloc/include/jemalloc/internal/tsd_types.h
new file mode 100644
index 0000000..a6ae37d
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tsd_types.h
@@ -0,0 +1,10 @@
+#ifndef JEMALLOC_INTERNAL_TSD_TYPES_H
+#define JEMALLOC_INTERNAL_TSD_TYPES_H
+
+#define MALLOC_TSD_CLEANUPS_MAX 4
+
+typedef struct tsd_s tsd_t;
+typedef struct tsdn_s tsdn_t;
+typedef bool (*malloc_tsd_cleanup_t)(void);
+
+#endif /* JEMALLOC_INTERNAL_TSD_TYPES_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/tsd_win.h b/deps/jemalloc/include/jemalloc/internal/tsd_win.h
new file mode 100644
index 0000000..a91dac8
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/tsd_win.h
@@ -0,0 +1,139 @@
+#ifdef JEMALLOC_INTERNAL_TSD_WIN_H
+#error This file should be included only once, by tsd.h.
+#endif
+#define JEMALLOC_INTERNAL_TSD_WIN_H
+
+typedef struct {
+ bool initialized;
+ tsd_t val;
+} tsd_wrapper_t;
+
+extern DWORD tsd_tsd;
+extern tsd_wrapper_t tsd_boot_wrapper;
+extern bool tsd_booted;
+
+/* Initialization/cleanup. */
+JEMALLOC_ALWAYS_INLINE bool
+tsd_cleanup_wrapper(void) {
+ DWORD error = GetLastError();
+ tsd_wrapper_t *wrapper = (tsd_wrapper_t *)TlsGetValue(tsd_tsd);
+ SetLastError(error);
+
+ if (wrapper == NULL) {
+ return false;
+ }
+
+ if (wrapper->initialized) {
+ wrapper->initialized = false;
+ tsd_cleanup(&wrapper->val);
+ if (wrapper->initialized) {
+ /* Trigger another cleanup round. */
+ return true;
+ }
+ }
+ malloc_tsd_dalloc(wrapper);
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_wrapper_set(tsd_wrapper_t *wrapper) {
+ if (!TlsSetValue(tsd_tsd, (void *)wrapper)) {
+ malloc_write("<jemalloc>: Error setting TSD\n");
+ abort();
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE tsd_wrapper_t *
+tsd_wrapper_get(bool init) {
+ DWORD error = GetLastError();
+ tsd_wrapper_t *wrapper = (tsd_wrapper_t *) TlsGetValue(tsd_tsd);
+ SetLastError(error);
+
+ if (init && unlikely(wrapper == NULL)) {
+ wrapper = (tsd_wrapper_t *)
+ malloc_tsd_malloc(sizeof(tsd_wrapper_t));
+ if (wrapper == NULL) {
+ malloc_write("<jemalloc>: Error allocating TSD\n");
+ abort();
+ } else {
+ wrapper->initialized = false;
+ /* MSVC is finicky about aggregate initialization. */
+ tsd_t tsd_initializer = TSD_INITIALIZER;
+ wrapper->val = tsd_initializer;
+ }
+ tsd_wrapper_set(wrapper);
+ }
+ return wrapper;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot0(void) {
+ tsd_tsd = TlsAlloc();
+ if (tsd_tsd == TLS_OUT_OF_INDEXES) {
+ return true;
+ }
+ _malloc_tsd_cleanup_register(&tsd_cleanup_wrapper);
+ tsd_wrapper_set(&tsd_boot_wrapper);
+ tsd_booted = true;
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_boot1(void) {
+ tsd_wrapper_t *wrapper;
+ wrapper = (tsd_wrapper_t *)
+ malloc_tsd_malloc(sizeof(tsd_wrapper_t));
+ if (wrapper == NULL) {
+ malloc_write("<jemalloc>: Error allocating TSD\n");
+ abort();
+ }
+ tsd_boot_wrapper.initialized = false;
+ tsd_cleanup(&tsd_boot_wrapper.val);
+ wrapper->initialized = false;
+ tsd_t initializer = TSD_INITIALIZER;
+ wrapper->val = initializer;
+ tsd_wrapper_set(wrapper);
+}
+JEMALLOC_ALWAYS_INLINE bool
+tsd_boot(void) {
+ if (tsd_boot0()) {
+ return true;
+ }
+ tsd_boot1();
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_booted_get(void) {
+ return tsd_booted;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+tsd_get_allocates(void) {
+ return true;
+}
+
+/* Get/set. */
+JEMALLOC_ALWAYS_INLINE tsd_t *
+tsd_get(bool init) {
+ tsd_wrapper_t *wrapper;
+
+ assert(tsd_booted);
+ wrapper = tsd_wrapper_get(init);
+ if (tsd_get_allocates() && !init && wrapper == NULL) {
+ return NULL;
+ }
+ return &wrapper->val;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+tsd_set(tsd_t *val) {
+ tsd_wrapper_t *wrapper;
+
+ assert(tsd_booted);
+ wrapper = tsd_wrapper_get(true);
+ if (likely(&wrapper->val != val)) {
+ wrapper->val = *(val);
+ }
+ wrapper->initialized = true;
+}
diff --git a/deps/jemalloc/include/jemalloc/internal/typed_list.h b/deps/jemalloc/include/jemalloc/internal/typed_list.h
new file mode 100644
index 0000000..6535055
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/typed_list.h
@@ -0,0 +1,55 @@
+#ifndef JEMALLOC_INTERNAL_TYPED_LIST_H
+#define JEMALLOC_INTERNAL_TYPED_LIST_H
+
+/*
+ * This wraps the ql module to implement a list class in a way that's a little
+ * bit easier to use; it handles ql_elm_new calls and provides type safety.
+ */
+
+#define TYPED_LIST(list_type, el_type, linkage) \
+typedef struct { \
+ ql_head(el_type) head; \
+} list_type##_t; \
+static inline void \
+list_type##_init(list_type##_t *list) { \
+ ql_new(&list->head); \
+} \
+static inline el_type * \
+list_type##_first(const list_type##_t *list) { \
+ return ql_first(&list->head); \
+} \
+static inline el_type * \
+list_type##_last(const list_type##_t *list) { \
+ return ql_last(&list->head, linkage); \
+} \
+static inline void \
+list_type##_append(list_type##_t *list, el_type *item) { \
+ ql_elm_new(item, linkage); \
+ ql_tail_insert(&list->head, item, linkage); \
+} \
+static inline void \
+list_type##_prepend(list_type##_t *list, el_type *item) { \
+ ql_elm_new(item, linkage); \
+ ql_head_insert(&list->head, item, linkage); \
+} \
+static inline void \
+list_type##_replace(list_type##_t *list, el_type *to_remove, \
+ el_type *to_insert) { \
+ ql_elm_new(to_insert, linkage); \
+ ql_after_insert(to_remove, to_insert, linkage); \
+ ql_remove(&list->head, to_remove, linkage); \
+} \
+static inline void \
+list_type##_remove(list_type##_t *list, el_type *item) { \
+ ql_remove(&list->head, item, linkage); \
+} \
+static inline bool \
+list_type##_empty(list_type##_t *list) { \
+ return ql_empty(&list->head); \
+} \
+static inline void \
+list_type##_concat(list_type##_t *list_a, list_type##_t *list_b) { \
+ ql_concat(&list_a->head, &list_b->head, linkage); \
+}
+
+#endif /* JEMALLOC_INTERNAL_TYPED_LIST_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/util.h b/deps/jemalloc/include/jemalloc/internal/util.h
new file mode 100644
index 0000000..dcb1c0a
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/util.h
@@ -0,0 +1,123 @@
+#ifndef JEMALLOC_INTERNAL_UTIL_H
+#define JEMALLOC_INTERNAL_UTIL_H
+
+#define UTIL_INLINE static inline
+
+/* Junk fill patterns. */
+#ifndef JEMALLOC_ALLOC_JUNK
+# define JEMALLOC_ALLOC_JUNK ((uint8_t)0xa5)
+#endif
+#ifndef JEMALLOC_FREE_JUNK
+# define JEMALLOC_FREE_JUNK ((uint8_t)0x5a)
+#endif
+
+/*
+ * Wrap a cpp argument that contains commas such that it isn't broken up into
+ * multiple arguments.
+ */
+#define JEMALLOC_ARG_CONCAT(...) __VA_ARGS__
+
+/* cpp macro definition stringification. */
+#define STRINGIFY_HELPER(x) #x
+#define STRINGIFY(x) STRINGIFY_HELPER(x)
+
+/*
+ * Silence compiler warnings due to uninitialized values. This is used
+ * wherever the compiler fails to recognize that the variable is never used
+ * uninitialized.
+ */
+#define JEMALLOC_CC_SILENCE_INIT(v) = v
+
+#ifdef __GNUC__
+# define likely(x) __builtin_expect(!!(x), 1)
+# define unlikely(x) __builtin_expect(!!(x), 0)
+#else
+# define likely(x) !!(x)
+# define unlikely(x) !!(x)
+#endif
+
+#if !defined(JEMALLOC_INTERNAL_UNREACHABLE)
+# error JEMALLOC_INTERNAL_UNREACHABLE should have been defined by configure
+#endif
+
+#define unreachable() JEMALLOC_INTERNAL_UNREACHABLE()
+
+/* Set error code. */
+UTIL_INLINE void
+set_errno(int errnum) {
+#ifdef _WIN32
+ SetLastError(errnum);
+#else
+ errno = errnum;
+#endif
+}
+
+/* Get last error code. */
+UTIL_INLINE int
+get_errno(void) {
+#ifdef _WIN32
+ return GetLastError();
+#else
+ return errno;
+#endif
+}
+
+JEMALLOC_ALWAYS_INLINE void
+util_assume(bool b) {
+ if (!b) {
+ unreachable();
+ }
+}
+
+/* ptr should be valid. */
+JEMALLOC_ALWAYS_INLINE void
+util_prefetch_read(void *ptr) {
+ /*
+ * This should arguably be a config check; but any version of GCC so old
+ * that it doesn't support __builtin_prefetch is also too old to build
+ * jemalloc.
+ */
+#ifdef __GNUC__
+ if (config_debug) {
+ /* Enforce the "valid ptr" requirement. */
+ *(volatile char *)ptr;
+ }
+ __builtin_prefetch(ptr, /* read or write */ 0, /* locality hint */ 3);
+#else
+ *(volatile char *)ptr;
+#endif
+}
+
+JEMALLOC_ALWAYS_INLINE void
+util_prefetch_write(void *ptr) {
+#ifdef __GNUC__
+ if (config_debug) {
+ *(volatile char *)ptr;
+ }
+ /*
+ * The only difference from the read variant is that this has a 1 as the
+ * second argument (the write hint).
+ */
+ __builtin_prefetch(ptr, 1, 3);
+#else
+ *(volatile char *)ptr;
+#endif
+}
+
+JEMALLOC_ALWAYS_INLINE void
+util_prefetch_read_range(void *ptr, size_t sz) {
+ for (size_t i = 0; i < sz; i += CACHELINE) {
+ util_prefetch_read((void *)((uintptr_t)ptr + i));
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE void
+util_prefetch_write_range(void *ptr, size_t sz) {
+ for (size_t i = 0; i < sz; i += CACHELINE) {
+ util_prefetch_write((void *)((uintptr_t)ptr + i));
+ }
+}
+
+#undef UTIL_INLINE
+
+#endif /* JEMALLOC_INTERNAL_UTIL_H */
diff --git a/deps/jemalloc/include/jemalloc/internal/witness.h b/deps/jemalloc/include/jemalloc/internal/witness.h
new file mode 100644
index 0000000..e81b9a0
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/witness.h
@@ -0,0 +1,378 @@
+#ifndef JEMALLOC_INTERNAL_WITNESS_H
+#define JEMALLOC_INTERNAL_WITNESS_H
+
+#include "jemalloc/internal/ql.h"
+
+/******************************************************************************/
+/* LOCK RANKS */
+/******************************************************************************/
+
+enum witness_rank_e {
+ /*
+ * Order matters within this enum listing -- higher valued locks can
+ * only be acquired after lower-valued ones. We use the
+ * auto-incrementing-ness of enum values to enforce this.
+ */
+
+ /*
+ * Witnesses with rank WITNESS_RANK_OMIT are completely ignored by the
+ * witness machinery.
+ */
+ WITNESS_RANK_OMIT,
+ WITNESS_RANK_MIN,
+ WITNESS_RANK_INIT = WITNESS_RANK_MIN,
+ WITNESS_RANK_CTL,
+ WITNESS_RANK_TCACHES,
+ WITNESS_RANK_ARENAS,
+ WITNESS_RANK_BACKGROUND_THREAD_GLOBAL,
+ WITNESS_RANK_PROF_DUMP,
+ WITNESS_RANK_PROF_BT2GCTX,
+ WITNESS_RANK_PROF_TDATAS,
+ WITNESS_RANK_PROF_TDATA,
+ WITNESS_RANK_PROF_LOG,
+ WITNESS_RANK_PROF_GCTX,
+ WITNESS_RANK_PROF_RECENT_DUMP,
+ WITNESS_RANK_BACKGROUND_THREAD,
+ /*
+ * Used as an argument to witness_assert_depth_to_rank() in order to
+ * validate depth excluding non-core locks with lower ranks. Since the
+ * rank argument to witness_assert_depth_to_rank() is inclusive rather
+ * than exclusive, this definition can have the same value as the
+ * minimally ranked core lock.
+ */
+ WITNESS_RANK_CORE,
+ WITNESS_RANK_DECAY = WITNESS_RANK_CORE,
+ WITNESS_RANK_TCACHE_QL,
+
+ WITNESS_RANK_SEC_SHARD,
+
+ WITNESS_RANK_EXTENT_GROW,
+ WITNESS_RANK_HPA_SHARD_GROW = WITNESS_RANK_EXTENT_GROW,
+ WITNESS_RANK_SAN_BUMP_ALLOC = WITNESS_RANK_EXTENT_GROW,
+
+ WITNESS_RANK_EXTENTS,
+ WITNESS_RANK_HPA_SHARD = WITNESS_RANK_EXTENTS,
+
+ WITNESS_RANK_HPA_CENTRAL_GROW,
+ WITNESS_RANK_HPA_CENTRAL,
+
+ WITNESS_RANK_EDATA_CACHE,
+
+ WITNESS_RANK_RTREE,
+ WITNESS_RANK_BASE,
+ WITNESS_RANK_ARENA_LARGE,
+ WITNESS_RANK_HOOK,
+
+ WITNESS_RANK_LEAF=0x1000,
+ WITNESS_RANK_BIN = WITNESS_RANK_LEAF,
+ WITNESS_RANK_ARENA_STATS = WITNESS_RANK_LEAF,
+ WITNESS_RANK_COUNTER_ACCUM = WITNESS_RANK_LEAF,
+ WITNESS_RANK_DSS = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_ACTIVE = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_DUMP_FILENAME = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_GDUMP = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_NEXT_THR_UID = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_RECENT_ALLOC = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_STATS = WITNESS_RANK_LEAF,
+ WITNESS_RANK_PROF_THREAD_ACTIVE_INIT = WITNESS_RANK_LEAF,
+};
+typedef enum witness_rank_e witness_rank_t;
+
+/******************************************************************************/
+/* PER-WITNESS DATA */
+/******************************************************************************/
+#if defined(JEMALLOC_DEBUG)
+# define WITNESS_INITIALIZER(name, rank) {name, rank, NULL, NULL, {NULL, NULL}}
+#else
+# define WITNESS_INITIALIZER(name, rank)
+#endif
+
+typedef struct witness_s witness_t;
+typedef ql_head(witness_t) witness_list_t;
+typedef int witness_comp_t (const witness_t *, void *, const witness_t *,
+ void *);
+
+struct witness_s {
+ /* Name, used for printing lock order reversal messages. */
+ const char *name;
+
+ /*
+ * Witness rank, where 0 is lowest and WITNESS_RANK_LEAF is highest.
+ * Witnesses must be acquired in order of increasing rank.
+ */
+ witness_rank_t rank;
+
+ /*
+ * If two witnesses are of equal rank and they have the samp comp
+ * function pointer, it is called as a last attempt to differentiate
+ * between witnesses of equal rank.
+ */
+ witness_comp_t *comp;
+
+ /* Opaque data, passed to comp(). */
+ void *opaque;
+
+ /* Linkage for thread's currently owned locks. */
+ ql_elm(witness_t) link;
+};
+
+/******************************************************************************/
+/* PER-THREAD DATA */
+/******************************************************************************/
+typedef struct witness_tsd_s witness_tsd_t;
+struct witness_tsd_s {
+ witness_list_t witnesses;
+ bool forking;
+};
+
+#define WITNESS_TSD_INITIALIZER { ql_head_initializer(witnesses), false }
+#define WITNESS_TSDN_NULL ((witness_tsdn_t *)0)
+
+/******************************************************************************/
+/* (PER-THREAD) NULLABILITY HELPERS */
+/******************************************************************************/
+typedef struct witness_tsdn_s witness_tsdn_t;
+struct witness_tsdn_s {
+ witness_tsd_t witness_tsd;
+};
+
+JEMALLOC_ALWAYS_INLINE witness_tsdn_t *
+witness_tsd_tsdn(witness_tsd_t *witness_tsd) {
+ return (witness_tsdn_t *)witness_tsd;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+witness_tsdn_null(witness_tsdn_t *witness_tsdn) {
+ return witness_tsdn == NULL;
+}
+
+JEMALLOC_ALWAYS_INLINE witness_tsd_t *
+witness_tsdn_tsd(witness_tsdn_t *witness_tsdn) {
+ assert(!witness_tsdn_null(witness_tsdn));
+ return &witness_tsdn->witness_tsd;
+}
+
+/******************************************************************************/
+/* API */
+/******************************************************************************/
+void witness_init(witness_t *witness, const char *name, witness_rank_t rank,
+ witness_comp_t *comp, void *opaque);
+
+typedef void (witness_lock_error_t)(const witness_list_t *, const witness_t *);
+extern witness_lock_error_t *JET_MUTABLE witness_lock_error;
+
+typedef void (witness_owner_error_t)(const witness_t *);
+extern witness_owner_error_t *JET_MUTABLE witness_owner_error;
+
+typedef void (witness_not_owner_error_t)(const witness_t *);
+extern witness_not_owner_error_t *JET_MUTABLE witness_not_owner_error;
+
+typedef void (witness_depth_error_t)(const witness_list_t *,
+ witness_rank_t rank_inclusive, unsigned depth);
+extern witness_depth_error_t *JET_MUTABLE witness_depth_error;
+
+void witnesses_cleanup(witness_tsd_t *witness_tsd);
+void witness_prefork(witness_tsd_t *witness_tsd);
+void witness_postfork_parent(witness_tsd_t *witness_tsd);
+void witness_postfork_child(witness_tsd_t *witness_tsd);
+
+/* Helper, not intended for direct use. */
+static inline bool
+witness_owner(witness_tsd_t *witness_tsd, const witness_t *witness) {
+ witness_list_t *witnesses;
+ witness_t *w;
+
+ cassert(config_debug);
+
+ witnesses = &witness_tsd->witnesses;
+ ql_foreach(w, witnesses, link) {
+ if (w == witness) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static inline void
+witness_assert_owner(witness_tsdn_t *witness_tsdn, const witness_t *witness) {
+ witness_tsd_t *witness_tsd;
+
+ if (!config_debug) {
+ return;
+ }
+
+ if (witness_tsdn_null(witness_tsdn)) {
+ return;
+ }
+ witness_tsd = witness_tsdn_tsd(witness_tsdn);
+ if (witness->rank == WITNESS_RANK_OMIT) {
+ return;
+ }
+
+ if (witness_owner(witness_tsd, witness)) {
+ return;
+ }
+ witness_owner_error(witness);
+}
+
+static inline void
+witness_assert_not_owner(witness_tsdn_t *witness_tsdn,
+ const witness_t *witness) {
+ witness_tsd_t *witness_tsd;
+ witness_list_t *witnesses;
+ witness_t *w;
+
+ if (!config_debug) {
+ return;
+ }
+
+ if (witness_tsdn_null(witness_tsdn)) {
+ return;
+ }
+ witness_tsd = witness_tsdn_tsd(witness_tsdn);
+ if (witness->rank == WITNESS_RANK_OMIT) {
+ return;
+ }
+
+ witnesses = &witness_tsd->witnesses;
+ ql_foreach(w, witnesses, link) {
+ if (w == witness) {
+ witness_not_owner_error(witness);
+ }
+ }
+}
+
+/* Returns depth. Not intended for direct use. */
+static inline unsigned
+witness_depth_to_rank(witness_list_t *witnesses, witness_rank_t rank_inclusive)
+{
+ unsigned d = 0;
+ witness_t *w = ql_last(witnesses, link);
+
+ if (w != NULL) {
+ ql_reverse_foreach(w, witnesses, link) {
+ if (w->rank < rank_inclusive) {
+ break;
+ }
+ d++;
+ }
+ }
+
+ return d;
+}
+
+static inline void
+witness_assert_depth_to_rank(witness_tsdn_t *witness_tsdn,
+ witness_rank_t rank_inclusive, unsigned depth) {
+ if (!config_debug || witness_tsdn_null(witness_tsdn)) {
+ return;
+ }
+
+ witness_list_t *witnesses = &witness_tsdn_tsd(witness_tsdn)->witnesses;
+ unsigned d = witness_depth_to_rank(witnesses, rank_inclusive);
+
+ if (d != depth) {
+ witness_depth_error(witnesses, rank_inclusive, depth);
+ }
+}
+
+static inline void
+witness_assert_depth(witness_tsdn_t *witness_tsdn, unsigned depth) {
+ witness_assert_depth_to_rank(witness_tsdn, WITNESS_RANK_MIN, depth);
+}
+
+static inline void
+witness_assert_lockless(witness_tsdn_t *witness_tsdn) {
+ witness_assert_depth(witness_tsdn, 0);
+}
+
+static inline void
+witness_assert_positive_depth_to_rank(witness_tsdn_t *witness_tsdn,
+ witness_rank_t rank_inclusive) {
+ if (!config_debug || witness_tsdn_null(witness_tsdn)) {
+ return;
+ }
+
+ witness_list_t *witnesses = &witness_tsdn_tsd(witness_tsdn)->witnesses;
+ unsigned d = witness_depth_to_rank(witnesses, rank_inclusive);
+
+ if (d == 0) {
+ witness_depth_error(witnesses, rank_inclusive, 1);
+ }
+}
+
+static inline void
+witness_lock(witness_tsdn_t *witness_tsdn, witness_t *witness) {
+ witness_tsd_t *witness_tsd;
+ witness_list_t *witnesses;
+ witness_t *w;
+
+ if (!config_debug) {
+ return;
+ }
+
+ if (witness_tsdn_null(witness_tsdn)) {
+ return;
+ }
+ witness_tsd = witness_tsdn_tsd(witness_tsdn);
+ if (witness->rank == WITNESS_RANK_OMIT) {
+ return;
+ }
+
+ witness_assert_not_owner(witness_tsdn, witness);
+
+ witnesses = &witness_tsd->witnesses;
+ w = ql_last(witnesses, link);
+ if (w == NULL) {
+ /* No other locks; do nothing. */
+ } else if (witness_tsd->forking && w->rank <= witness->rank) {
+ /* Forking, and relaxed ranking satisfied. */
+ } else if (w->rank > witness->rank) {
+ /* Not forking, rank order reversal. */
+ witness_lock_error(witnesses, witness);
+ } else if (w->rank == witness->rank && (w->comp == NULL || w->comp !=
+ witness->comp || w->comp(w, w->opaque, witness, witness->opaque) >
+ 0)) {
+ /*
+ * Missing/incompatible comparison function, or comparison
+ * function indicates rank order reversal.
+ */
+ witness_lock_error(witnesses, witness);
+ }
+
+ ql_elm_new(witness, link);
+ ql_tail_insert(witnesses, witness, link);
+}
+
+static inline void
+witness_unlock(witness_tsdn_t *witness_tsdn, witness_t *witness) {
+ witness_tsd_t *witness_tsd;
+ witness_list_t *witnesses;
+
+ if (!config_debug) {
+ return;
+ }
+
+ if (witness_tsdn_null(witness_tsdn)) {
+ return;
+ }
+ witness_tsd = witness_tsdn_tsd(witness_tsdn);
+ if (witness->rank == WITNESS_RANK_OMIT) {
+ return;
+ }
+
+ /*
+ * Check whether owner before removal, rather than relying on
+ * witness_assert_owner() to abort, so that unit tests can test this
+ * function's failure mode without causing undefined behavior.
+ */
+ if (witness_owner(witness_tsd, witness)) {
+ witnesses = &witness_tsd->witnesses;
+ ql_remove(witnesses, witness, link);
+ } else {
+ witness_assert_owner(witness_tsdn, witness);
+ }
+}
+
+#endif /* JEMALLOC_INTERNAL_WITNESS_H */
diff --git a/deps/jemalloc/include/jemalloc/jemalloc.sh b/deps/jemalloc/include/jemalloc/jemalloc.sh
new file mode 100755
index 0000000..b19b154
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc.sh
@@ -0,0 +1,27 @@
+#!/bin/sh
+
+objroot=$1
+
+cat <<EOF
+#ifndef JEMALLOC_H_
+#define JEMALLOC_H_
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+EOF
+
+for hdr in jemalloc_defs.h jemalloc_rename.h jemalloc_macros.h \
+ jemalloc_protos.h jemalloc_typedefs.h jemalloc_mangle.h ; do
+ cat "${objroot}include/jemalloc/${hdr}" \
+ | grep -v 'Generated from .* by configure\.' \
+ | sed -e 's/ $//g'
+ echo
+done
+
+cat <<EOF
+#ifdef __cplusplus
+}
+#endif
+#endif /* JEMALLOC_H_ */
+EOF
diff --git a/deps/jemalloc/include/jemalloc/jemalloc_defs.h.in b/deps/jemalloc/include/jemalloc/jemalloc_defs.h.in
new file mode 100644
index 0000000..cbe2fca
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc_defs.h.in
@@ -0,0 +1,54 @@
+/* Defined if __attribute__((...)) syntax is supported. */
+#undef JEMALLOC_HAVE_ATTR
+
+/* Defined if alloc_size attribute is supported. */
+#undef JEMALLOC_HAVE_ATTR_ALLOC_SIZE
+
+/* Defined if format_arg(...) attribute is supported. */
+#undef JEMALLOC_HAVE_ATTR_FORMAT_ARG
+
+/* Defined if format(gnu_printf, ...) attribute is supported. */
+#undef JEMALLOC_HAVE_ATTR_FORMAT_GNU_PRINTF
+
+/* Defined if format(printf, ...) attribute is supported. */
+#undef JEMALLOC_HAVE_ATTR_FORMAT_PRINTF
+
+/* Defined if fallthrough attribute is supported. */
+#undef JEMALLOC_HAVE_ATTR_FALLTHROUGH
+
+/* Defined if cold attribute is supported. */
+#undef JEMALLOC_HAVE_ATTR_COLD
+
+/*
+ * Define overrides for non-standard allocator-related functions if they are
+ * present on the system.
+ */
+#undef JEMALLOC_OVERRIDE_MEMALIGN
+#undef JEMALLOC_OVERRIDE_VALLOC
+
+/*
+ * At least Linux omits the "const" in:
+ *
+ * size_t malloc_usable_size(const void *ptr);
+ *
+ * Match the operating system's prototype.
+ */
+#undef JEMALLOC_USABLE_SIZE_CONST
+
+/*
+ * If defined, specify throw() for the public function prototypes when compiling
+ * with C++. The only justification for this is to match the prototypes that
+ * glibc defines.
+ */
+#undef JEMALLOC_USE_CXX_THROW
+
+#ifdef _MSC_VER
+# ifdef _WIN64
+# define LG_SIZEOF_PTR_WIN 3
+# else
+# define LG_SIZEOF_PTR_WIN 2
+# endif
+#endif
+
+/* sizeof(void *) == 2^LG_SIZEOF_PTR. */
+#undef LG_SIZEOF_PTR
diff --git a/deps/jemalloc/include/jemalloc/jemalloc_macros.h.in b/deps/jemalloc/include/jemalloc/jemalloc_macros.h.in
new file mode 100644
index 0000000..d04af34
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc_macros.h.in
@@ -0,0 +1,153 @@
+#include <stdlib.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <limits.h>
+#include <strings.h>
+
+#define JEMALLOC_VERSION "@jemalloc_version@"
+#define JEMALLOC_VERSION_MAJOR @jemalloc_version_major@
+#define JEMALLOC_VERSION_MINOR @jemalloc_version_minor@
+#define JEMALLOC_VERSION_BUGFIX @jemalloc_version_bugfix@
+#define JEMALLOC_VERSION_NREV @jemalloc_version_nrev@
+#define JEMALLOC_VERSION_GID "@jemalloc_version_gid@"
+#define JEMALLOC_VERSION_GID_IDENT @jemalloc_version_gid@
+
+#define MALLOCX_LG_ALIGN(la) ((int)(la))
+#if LG_SIZEOF_PTR == 2
+# define MALLOCX_ALIGN(a) ((int)(ffs((int)(a))-1))
+#else
+# define MALLOCX_ALIGN(a) \
+ ((int)(((size_t)(a) < (size_t)INT_MAX) ? ffs((int)(a))-1 : \
+ ffs((int)(((size_t)(a))>>32))+31))
+#endif
+#define MALLOCX_ZERO ((int)0x40)
+/*
+ * Bias tcache index bits so that 0 encodes "automatic tcache management", and 1
+ * encodes MALLOCX_TCACHE_NONE.
+ */
+#define MALLOCX_TCACHE(tc) ((int)(((tc)+2) << 8))
+#define MALLOCX_TCACHE_NONE MALLOCX_TCACHE(-1)
+/*
+ * Bias arena index bits so that 0 encodes "use an automatically chosen arena".
+ */
+#define MALLOCX_ARENA(a) ((((int)(a))+1) << 20)
+
+/*
+ * Use as arena index in "arena.<i>.{purge,decay,dss}" and
+ * "stats.arenas.<i>.*" mallctl interfaces to select all arenas. This
+ * definition is intentionally specified in raw decimal format to support
+ * cpp-based string concatenation, e.g.
+ *
+ * #define STRINGIFY_HELPER(x) #x
+ * #define STRINGIFY(x) STRINGIFY_HELPER(x)
+ *
+ * mallctl("arena." STRINGIFY(MALLCTL_ARENAS_ALL) ".purge", NULL, NULL, NULL,
+ * 0);
+ */
+#define MALLCTL_ARENAS_ALL 4096
+/*
+ * Use as arena index in "stats.arenas.<i>.*" mallctl interfaces to select
+ * destroyed arenas.
+ */
+#define MALLCTL_ARENAS_DESTROYED 4097
+
+#if defined(__cplusplus) && defined(JEMALLOC_USE_CXX_THROW)
+# define JEMALLOC_CXX_THROW throw()
+#else
+# define JEMALLOC_CXX_THROW
+#endif
+
+#if defined(_MSC_VER)
+# define JEMALLOC_ATTR(s)
+# define JEMALLOC_ALIGNED(s) __declspec(align(s))
+# define JEMALLOC_ALLOC_SIZE(s)
+# define JEMALLOC_ALLOC_SIZE2(s1, s2)
+# ifndef JEMALLOC_EXPORT
+# ifdef DLLEXPORT
+# define JEMALLOC_EXPORT __declspec(dllexport)
+# else
+# define JEMALLOC_EXPORT __declspec(dllimport)
+# endif
+# endif
+# define JEMALLOC_FORMAT_ARG(i)
+# define JEMALLOC_FORMAT_PRINTF(s, i)
+# define JEMALLOC_FALLTHROUGH
+# define JEMALLOC_NOINLINE __declspec(noinline)
+# ifdef __cplusplus
+# define JEMALLOC_NOTHROW __declspec(nothrow)
+# else
+# define JEMALLOC_NOTHROW
+# endif
+# define JEMALLOC_SECTION(s) __declspec(allocate(s))
+# define JEMALLOC_RESTRICT_RETURN __declspec(restrict)
+# if _MSC_VER >= 1900 && !defined(__EDG__)
+# define JEMALLOC_ALLOCATOR __declspec(allocator)
+# else
+# define JEMALLOC_ALLOCATOR
+# endif
+# define JEMALLOC_COLD
+#elif defined(JEMALLOC_HAVE_ATTR)
+# define JEMALLOC_ATTR(s) __attribute__((s))
+# define JEMALLOC_ALIGNED(s) JEMALLOC_ATTR(aligned(s))
+# ifdef JEMALLOC_HAVE_ATTR_ALLOC_SIZE
+# define JEMALLOC_ALLOC_SIZE(s) JEMALLOC_ATTR(alloc_size(s))
+# define JEMALLOC_ALLOC_SIZE2(s1, s2) JEMALLOC_ATTR(alloc_size(s1, s2))
+# else
+# define JEMALLOC_ALLOC_SIZE(s)
+# define JEMALLOC_ALLOC_SIZE2(s1, s2)
+# endif
+# ifndef JEMALLOC_EXPORT
+# define JEMALLOC_EXPORT JEMALLOC_ATTR(visibility("default"))
+# endif
+# ifdef JEMALLOC_HAVE_ATTR_FORMAT_ARG
+# define JEMALLOC_FORMAT_ARG(i) JEMALLOC_ATTR(__format_arg__(3))
+# else
+# define JEMALLOC_FORMAT_ARG(i)
+# endif
+# ifdef JEMALLOC_HAVE_ATTR_FORMAT_GNU_PRINTF
+# define JEMALLOC_FORMAT_PRINTF(s, i) JEMALLOC_ATTR(format(gnu_printf, s, i))
+# elif defined(JEMALLOC_HAVE_ATTR_FORMAT_PRINTF)
+# define JEMALLOC_FORMAT_PRINTF(s, i) JEMALLOC_ATTR(format(printf, s, i))
+# else
+# define JEMALLOC_FORMAT_PRINTF(s, i)
+# endif
+# ifdef JEMALLOC_HAVE_ATTR_FALLTHROUGH
+# define JEMALLOC_FALLTHROUGH JEMALLOC_ATTR(fallthrough)
+# else
+# define JEMALLOC_FALLTHROUGH
+# endif
+# define JEMALLOC_NOINLINE JEMALLOC_ATTR(noinline)
+# define JEMALLOC_NOTHROW JEMALLOC_ATTR(nothrow)
+# define JEMALLOC_SECTION(s) JEMALLOC_ATTR(section(s))
+# define JEMALLOC_RESTRICT_RETURN
+# define JEMALLOC_ALLOCATOR
+# ifdef JEMALLOC_HAVE_ATTR_COLD
+# define JEMALLOC_COLD JEMALLOC_ATTR(__cold__)
+# else
+# define JEMALLOC_COLD
+# endif
+#else
+# define JEMALLOC_ATTR(s)
+# define JEMALLOC_ALIGNED(s)
+# define JEMALLOC_ALLOC_SIZE(s)
+# define JEMALLOC_ALLOC_SIZE2(s1, s2)
+# define JEMALLOC_EXPORT
+# define JEMALLOC_FORMAT_PRINTF(s, i)
+# define JEMALLOC_FALLTHROUGH
+# define JEMALLOC_NOINLINE
+# define JEMALLOC_NOTHROW
+# define JEMALLOC_SECTION(s)
+# define JEMALLOC_RESTRICT_RETURN
+# define JEMALLOC_ALLOCATOR
+# define JEMALLOC_COLD
+#endif
+
+#if (defined(__APPLE__) || defined(__FreeBSD__)) && !defined(JEMALLOC_NO_RENAME)
+# define JEMALLOC_SYS_NOTHROW
+#else
+# define JEMALLOC_SYS_NOTHROW JEMALLOC_NOTHROW
+#endif
+
+/* This version of Jemalloc, modified for Redis, has the je_get_defrag_hint()
+ * function. */
+#define JEMALLOC_FRAG_HINT
diff --git a/deps/jemalloc/include/jemalloc/jemalloc_mangle.sh b/deps/jemalloc/include/jemalloc/jemalloc_mangle.sh
new file mode 100755
index 0000000..c675bb4
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc_mangle.sh
@@ -0,0 +1,45 @@
+#!/bin/sh -eu
+
+public_symbols_txt=$1
+symbol_prefix=$2
+
+cat <<EOF
+/*
+ * By default application code must explicitly refer to mangled symbol names,
+ * so that it is possible to use jemalloc in conjunction with another allocator
+ * in the same application. Define JEMALLOC_MANGLE in order to cause automatic
+ * name mangling that matches the API prefixing that happened as a result of
+ * --with-mangling and/or --with-jemalloc-prefix configuration settings.
+ */
+#ifdef JEMALLOC_MANGLE
+# ifndef JEMALLOC_NO_DEMANGLE
+# define JEMALLOC_NO_DEMANGLE
+# endif
+EOF
+
+for nm in `cat ${public_symbols_txt}` ; do
+ n=`echo ${nm} |tr ':' ' ' |awk '{print $1}'`
+ echo "# define ${n} ${symbol_prefix}${n}"
+done
+
+cat <<EOF
+#endif
+
+/*
+ * The ${symbol_prefix}* macros can be used as stable alternative names for the
+ * public jemalloc API if JEMALLOC_NO_DEMANGLE is defined. This is primarily
+ * meant for use in jemalloc itself, but it can be used by application code to
+ * provide isolation from the name mangling specified via --with-mangling
+ * and/or --with-jemalloc-prefix.
+ */
+#ifndef JEMALLOC_NO_DEMANGLE
+EOF
+
+for nm in `cat ${public_symbols_txt}` ; do
+ n=`echo ${nm} |tr ':' ' ' |awk '{print $1}'`
+ echo "# undef ${symbol_prefix}${n}"
+done
+
+cat <<EOF
+#endif
+EOF
diff --git a/deps/jemalloc/include/jemalloc/jemalloc_protos.h.in b/deps/jemalloc/include/jemalloc/jemalloc_protos.h.in
new file mode 100644
index 0000000..356221c
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc_protos.h.in
@@ -0,0 +1,71 @@
+/*
+ * The @je_@ prefix on the following public symbol declarations is an artifact
+ * of namespace management, and should be omitted in application code unless
+ * JEMALLOC_NO_DEMANGLE is defined (see jemalloc_mangle@install_suffix@.h).
+ */
+extern JEMALLOC_EXPORT const char *@je_@malloc_conf;
+extern JEMALLOC_EXPORT void (*@je_@malloc_message)(void *cbopaque,
+ const char *s);
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_SYS_NOTHROW *@je_@malloc(size_t size)
+ JEMALLOC_CXX_THROW JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1);
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_SYS_NOTHROW *@je_@calloc(size_t num, size_t size)
+ JEMALLOC_CXX_THROW JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2);
+JEMALLOC_EXPORT int JEMALLOC_SYS_NOTHROW @je_@posix_memalign(
+ void **memptr, size_t alignment, size_t size) JEMALLOC_CXX_THROW
+ JEMALLOC_ATTR(nonnull(1));
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_SYS_NOTHROW *@je_@aligned_alloc(size_t alignment,
+ size_t size) JEMALLOC_CXX_THROW JEMALLOC_ATTR(malloc)
+ JEMALLOC_ALLOC_SIZE(2);
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_SYS_NOTHROW *@je_@realloc(void *ptr, size_t size)
+ JEMALLOC_CXX_THROW JEMALLOC_ALLOC_SIZE(2);
+JEMALLOC_EXPORT void JEMALLOC_SYS_NOTHROW @je_@free(void *ptr)
+ JEMALLOC_CXX_THROW;
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_NOTHROW *@je_@mallocx(size_t size, int flags)
+ JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1);
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_NOTHROW *@je_@rallocx(void *ptr, size_t size,
+ int flags) JEMALLOC_ALLOC_SIZE(2);
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW @je_@xallocx(void *ptr, size_t size,
+ size_t extra, int flags);
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW @je_@sallocx(const void *ptr,
+ int flags) JEMALLOC_ATTR(pure);
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW @je_@dallocx(void *ptr, int flags);
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW @je_@sdallocx(void *ptr, size_t size,
+ int flags);
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW @je_@nallocx(size_t size, int flags)
+ JEMALLOC_ATTR(pure);
+
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW @je_@mallctl(const char *name,
+ void *oldp, size_t *oldlenp, void *newp, size_t newlen);
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW @je_@mallctlnametomib(const char *name,
+ size_t *mibp, size_t *miblenp);
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW @je_@mallctlbymib(const size_t *mib,
+ size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW @je_@malloc_stats_print(
+ void (*write_cb)(void *, const char *), void *@je_@cbopaque,
+ const char *opts);
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW @je_@malloc_usable_size(
+ JEMALLOC_USABLE_SIZE_CONST void *ptr) JEMALLOC_CXX_THROW;
+#ifdef JEMALLOC_HAVE_MALLOC_SIZE
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW @je_@malloc_size(
+ const void *ptr);
+#endif
+
+#ifdef JEMALLOC_OVERRIDE_MEMALIGN
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_SYS_NOTHROW *@je_@memalign(size_t alignment, size_t size)
+ JEMALLOC_CXX_THROW JEMALLOC_ATTR(malloc);
+#endif
+
+#ifdef JEMALLOC_OVERRIDE_VALLOC
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+ void JEMALLOC_SYS_NOTHROW *@je_@valloc(size_t size) JEMALLOC_CXX_THROW
+ JEMALLOC_ATTR(malloc);
+#endif
diff --git a/deps/jemalloc/include/jemalloc/jemalloc_rename.sh b/deps/jemalloc/include/jemalloc/jemalloc_rename.sh
new file mode 100755
index 0000000..f943891
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc_rename.sh
@@ -0,0 +1,22 @@
+#!/bin/sh
+
+public_symbols_txt=$1
+
+cat <<EOF
+/*
+ * Name mangling for public symbols is controlled by --with-mangling and
+ * --with-jemalloc-prefix. With default settings the je_ prefix is stripped by
+ * these macro definitions.
+ */
+#ifndef JEMALLOC_NO_RENAME
+EOF
+
+for nm in `cat ${public_symbols_txt}` ; do
+ n=`echo ${nm} |tr ':' ' ' |awk '{print $1}'`
+ m=`echo ${nm} |tr ':' ' ' |awk '{print $2}'`
+ echo "# define je_${n} ${m}"
+done
+
+cat <<EOF
+#endif
+EOF
diff --git a/deps/jemalloc/include/jemalloc/jemalloc_typedefs.h.in b/deps/jemalloc/include/jemalloc/jemalloc_typedefs.h.in
new file mode 100644
index 0000000..1a58874
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/jemalloc_typedefs.h.in
@@ -0,0 +1,77 @@
+typedef struct extent_hooks_s extent_hooks_t;
+
+/*
+ * void *
+ * extent_alloc(extent_hooks_t *extent_hooks, void *new_addr, size_t size,
+ * size_t alignment, bool *zero, bool *commit, unsigned arena_ind);
+ */
+typedef void *(extent_alloc_t)(extent_hooks_t *, void *, size_t, size_t, bool *,
+ bool *, unsigned);
+
+/*
+ * bool
+ * extent_dalloc(extent_hooks_t *extent_hooks, void *addr, size_t size,
+ * bool committed, unsigned arena_ind);
+ */
+typedef bool (extent_dalloc_t)(extent_hooks_t *, void *, size_t, bool,
+ unsigned);
+
+/*
+ * void
+ * extent_destroy(extent_hooks_t *extent_hooks, void *addr, size_t size,
+ * bool committed, unsigned arena_ind);
+ */
+typedef void (extent_destroy_t)(extent_hooks_t *, void *, size_t, bool,
+ unsigned);
+
+/*
+ * bool
+ * extent_commit(extent_hooks_t *extent_hooks, void *addr, size_t size,
+ * size_t offset, size_t length, unsigned arena_ind);
+ */
+typedef bool (extent_commit_t)(extent_hooks_t *, void *, size_t, size_t, size_t,
+ unsigned);
+
+/*
+ * bool
+ * extent_decommit(extent_hooks_t *extent_hooks, void *addr, size_t size,
+ * size_t offset, size_t length, unsigned arena_ind);
+ */
+typedef bool (extent_decommit_t)(extent_hooks_t *, void *, size_t, size_t,
+ size_t, unsigned);
+
+/*
+ * bool
+ * extent_purge(extent_hooks_t *extent_hooks, void *addr, size_t size,
+ * size_t offset, size_t length, unsigned arena_ind);
+ */
+typedef bool (extent_purge_t)(extent_hooks_t *, void *, size_t, size_t, size_t,
+ unsigned);
+
+/*
+ * bool
+ * extent_split(extent_hooks_t *extent_hooks, void *addr, size_t size,
+ * size_t size_a, size_t size_b, bool committed, unsigned arena_ind);
+ */
+typedef bool (extent_split_t)(extent_hooks_t *, void *, size_t, size_t, size_t,
+ bool, unsigned);
+
+/*
+ * bool
+ * extent_merge(extent_hooks_t *extent_hooks, void *addr_a, size_t size_a,
+ * void *addr_b, size_t size_b, bool committed, unsigned arena_ind);
+ */
+typedef bool (extent_merge_t)(extent_hooks_t *, void *, size_t, void *, size_t,
+ bool, unsigned);
+
+struct extent_hooks_s {
+ extent_alloc_t *alloc;
+ extent_dalloc_t *dalloc;
+ extent_destroy_t *destroy;
+ extent_commit_t *commit;
+ extent_decommit_t *decommit;
+ extent_purge_t *purge_lazy;
+ extent_purge_t *purge_forced;
+ extent_split_t *split;
+ extent_merge_t *merge;
+};
diff --git a/deps/jemalloc/include/msvc_compat/C99/stdbool.h b/deps/jemalloc/include/msvc_compat/C99/stdbool.h
new file mode 100644
index 0000000..d92160e
--- /dev/null
+++ b/deps/jemalloc/include/msvc_compat/C99/stdbool.h
@@ -0,0 +1,20 @@
+#ifndef stdbool_h
+#define stdbool_h
+
+#include <wtypes.h>
+
+/* MSVC doesn't define _Bool or bool in C, but does have BOOL */
+/* Note this doesn't pass autoconf's test because (bool) 0.5 != true */
+/* Clang-cl uses MSVC headers, so needs msvc_compat, but has _Bool as
+ * a built-in type. */
+#ifndef __clang__
+typedef BOOL _Bool;
+#endif
+
+#define bool _Bool
+#define true 1
+#define false 0
+
+#define __bool_true_false_are_defined 1
+
+#endif /* stdbool_h */
diff --git a/deps/jemalloc/include/msvc_compat/C99/stdint.h b/deps/jemalloc/include/msvc_compat/C99/stdint.h
new file mode 100644
index 0000000..d02608a
--- /dev/null
+++ b/deps/jemalloc/include/msvc_compat/C99/stdint.h
@@ -0,0 +1,247 @@
+// ISO C9x compliant stdint.h for Microsoft Visual Studio
+// Based on ISO/IEC 9899:TC2 Committee draft (May 6, 2005) WG14/N1124
+//
+// Copyright (c) 2006-2008 Alexander Chemeris
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// 1. Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// 2. Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// 3. The name of the author may be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
+// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef _MSC_VER // [
+#error "Use this header only with Microsoft Visual C++ compilers!"
+#endif // _MSC_VER ]
+
+#ifndef _MSC_STDINT_H_ // [
+#define _MSC_STDINT_H_
+
+#if _MSC_VER > 1000
+#pragma once
+#endif
+
+#include <limits.h>
+
+// For Visual Studio 6 in C++ mode and for many Visual Studio versions when
+// compiling for ARM we should wrap <wchar.h> include with 'extern "C++" {}'
+// or compiler give many errors like this:
+// error C2733: second C linkage of overloaded function 'wmemchr' not allowed
+#ifdef __cplusplus
+extern "C" {
+#endif
+# include <wchar.h>
+#ifdef __cplusplus
+}
+#endif
+
+// Define _W64 macros to mark types changing their size, like intptr_t.
+#ifndef _W64
+# if !defined(__midl) && (defined(_X86_) || defined(_M_IX86)) && _MSC_VER >= 1300
+# define _W64 __w64
+# else
+# define _W64
+# endif
+#endif
+
+
+// 7.18.1 Integer types
+
+// 7.18.1.1 Exact-width integer types
+
+// Visual Studio 6 and Embedded Visual C++ 4 doesn't
+// realize that, e.g. char has the same size as __int8
+// so we give up on __intX for them.
+#if (_MSC_VER < 1300)
+ typedef signed char int8_t;
+ typedef signed short int16_t;
+ typedef signed int int32_t;
+ typedef unsigned char uint8_t;
+ typedef unsigned short uint16_t;
+ typedef unsigned int uint32_t;
+#else
+ typedef signed __int8 int8_t;
+ typedef signed __int16 int16_t;
+ typedef signed __int32 int32_t;
+ typedef unsigned __int8 uint8_t;
+ typedef unsigned __int16 uint16_t;
+ typedef unsigned __int32 uint32_t;
+#endif
+typedef signed __int64 int64_t;
+typedef unsigned __int64 uint64_t;
+
+
+// 7.18.1.2 Minimum-width integer types
+typedef int8_t int_least8_t;
+typedef int16_t int_least16_t;
+typedef int32_t int_least32_t;
+typedef int64_t int_least64_t;
+typedef uint8_t uint_least8_t;
+typedef uint16_t uint_least16_t;
+typedef uint32_t uint_least32_t;
+typedef uint64_t uint_least64_t;
+
+// 7.18.1.3 Fastest minimum-width integer types
+typedef int8_t int_fast8_t;
+typedef int16_t int_fast16_t;
+typedef int32_t int_fast32_t;
+typedef int64_t int_fast64_t;
+typedef uint8_t uint_fast8_t;
+typedef uint16_t uint_fast16_t;
+typedef uint32_t uint_fast32_t;
+typedef uint64_t uint_fast64_t;
+
+// 7.18.1.4 Integer types capable of holding object pointers
+#ifdef _WIN64 // [
+ typedef signed __int64 intptr_t;
+ typedef unsigned __int64 uintptr_t;
+#else // _WIN64 ][
+ typedef _W64 signed int intptr_t;
+ typedef _W64 unsigned int uintptr_t;
+#endif // _WIN64 ]
+
+// 7.18.1.5 Greatest-width integer types
+typedef int64_t intmax_t;
+typedef uint64_t uintmax_t;
+
+
+// 7.18.2 Limits of specified-width integer types
+
+#if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS) // [ See footnote 220 at page 257 and footnote 221 at page 259
+
+// 7.18.2.1 Limits of exact-width integer types
+#define INT8_MIN ((int8_t)_I8_MIN)
+#define INT8_MAX _I8_MAX
+#define INT16_MIN ((int16_t)_I16_MIN)
+#define INT16_MAX _I16_MAX
+#define INT32_MIN ((int32_t)_I32_MIN)
+#define INT32_MAX _I32_MAX
+#define INT64_MIN ((int64_t)_I64_MIN)
+#define INT64_MAX _I64_MAX
+#define UINT8_MAX _UI8_MAX
+#define UINT16_MAX _UI16_MAX
+#define UINT32_MAX _UI32_MAX
+#define UINT64_MAX _UI64_MAX
+
+// 7.18.2.2 Limits of minimum-width integer types
+#define INT_LEAST8_MIN INT8_MIN
+#define INT_LEAST8_MAX INT8_MAX
+#define INT_LEAST16_MIN INT16_MIN
+#define INT_LEAST16_MAX INT16_MAX
+#define INT_LEAST32_MIN INT32_MIN
+#define INT_LEAST32_MAX INT32_MAX
+#define INT_LEAST64_MIN INT64_MIN
+#define INT_LEAST64_MAX INT64_MAX
+#define UINT_LEAST8_MAX UINT8_MAX
+#define UINT_LEAST16_MAX UINT16_MAX
+#define UINT_LEAST32_MAX UINT32_MAX
+#define UINT_LEAST64_MAX UINT64_MAX
+
+// 7.18.2.3 Limits of fastest minimum-width integer types
+#define INT_FAST8_MIN INT8_MIN
+#define INT_FAST8_MAX INT8_MAX
+#define INT_FAST16_MIN INT16_MIN
+#define INT_FAST16_MAX INT16_MAX
+#define INT_FAST32_MIN INT32_MIN
+#define INT_FAST32_MAX INT32_MAX
+#define INT_FAST64_MIN INT64_MIN
+#define INT_FAST64_MAX INT64_MAX
+#define UINT_FAST8_MAX UINT8_MAX
+#define UINT_FAST16_MAX UINT16_MAX
+#define UINT_FAST32_MAX UINT32_MAX
+#define UINT_FAST64_MAX UINT64_MAX
+
+// 7.18.2.4 Limits of integer types capable of holding object pointers
+#ifdef _WIN64 // [
+# define INTPTR_MIN INT64_MIN
+# define INTPTR_MAX INT64_MAX
+# define UINTPTR_MAX UINT64_MAX
+#else // _WIN64 ][
+# define INTPTR_MIN INT32_MIN
+# define INTPTR_MAX INT32_MAX
+# define UINTPTR_MAX UINT32_MAX
+#endif // _WIN64 ]
+
+// 7.18.2.5 Limits of greatest-width integer types
+#define INTMAX_MIN INT64_MIN
+#define INTMAX_MAX INT64_MAX
+#define UINTMAX_MAX UINT64_MAX
+
+// 7.18.3 Limits of other integer types
+
+#ifdef _WIN64 // [
+# define PTRDIFF_MIN _I64_MIN
+# define PTRDIFF_MAX _I64_MAX
+#else // _WIN64 ][
+# define PTRDIFF_MIN _I32_MIN
+# define PTRDIFF_MAX _I32_MAX
+#endif // _WIN64 ]
+
+#define SIG_ATOMIC_MIN INT_MIN
+#define SIG_ATOMIC_MAX INT_MAX
+
+#ifndef SIZE_MAX // [
+# ifdef _WIN64 // [
+# define SIZE_MAX _UI64_MAX
+# else // _WIN64 ][
+# define SIZE_MAX _UI32_MAX
+# endif // _WIN64 ]
+#endif // SIZE_MAX ]
+
+// WCHAR_MIN and WCHAR_MAX are also defined in <wchar.h>
+#ifndef WCHAR_MIN // [
+# define WCHAR_MIN 0
+#endif // WCHAR_MIN ]
+#ifndef WCHAR_MAX // [
+# define WCHAR_MAX _UI16_MAX
+#endif // WCHAR_MAX ]
+
+#define WINT_MIN 0
+#define WINT_MAX _UI16_MAX
+
+#endif // __STDC_LIMIT_MACROS ]
+
+
+// 7.18.4 Limits of other integer types
+
+#if !defined(__cplusplus) || defined(__STDC_CONSTANT_MACROS) // [ See footnote 224 at page 260
+
+// 7.18.4.1 Macros for minimum-width integer constants
+
+#define INT8_C(val) val##i8
+#define INT16_C(val) val##i16
+#define INT32_C(val) val##i32
+#define INT64_C(val) val##i64
+
+#define UINT8_C(val) val##ui8
+#define UINT16_C(val) val##ui16
+#define UINT32_C(val) val##ui32
+#define UINT64_C(val) val##ui64
+
+// 7.18.4.2 Macros for greatest-width integer constants
+#define INTMAX_C INT64_C
+#define UINTMAX_C UINT64_C
+
+#endif // __STDC_CONSTANT_MACROS ]
+
+
+#endif // _MSC_STDINT_H_ ]
diff --git a/deps/jemalloc/include/msvc_compat/strings.h b/deps/jemalloc/include/msvc_compat/strings.h
new file mode 100644
index 0000000..996f256
--- /dev/null
+++ b/deps/jemalloc/include/msvc_compat/strings.h
@@ -0,0 +1,58 @@
+#ifndef strings_h
+#define strings_h
+
+/* MSVC doesn't define ffs/ffsl. This dummy strings.h header is provided
+ * for both */
+#ifdef _MSC_VER
+# include <intrin.h>
+# pragma intrinsic(_BitScanForward)
+static __forceinline int ffsl(long x) {
+ unsigned long i;
+
+ if (_BitScanForward(&i, x)) {
+ return i + 1;
+ }
+ return 0;
+}
+
+static __forceinline int ffs(int x) {
+ return ffsl(x);
+}
+
+# ifdef _M_X64
+# pragma intrinsic(_BitScanForward64)
+# endif
+
+static __forceinline int ffsll(unsigned __int64 x) {
+ unsigned long i;
+#ifdef _M_X64
+ if (_BitScanForward64(&i, x)) {
+ return i + 1;
+ }
+ return 0;
+#else
+// Fallback for 32-bit build where 64-bit version not available
+// assuming little endian
+ union {
+ unsigned __int64 ll;
+ unsigned long l[2];
+ } s;
+
+ s.ll = x;
+
+ if (_BitScanForward(&i, s.l[0])) {
+ return i + 1;
+ } else if(_BitScanForward(&i, s.l[1])) {
+ return i + 33;
+ }
+ return 0;
+#endif
+}
+
+#else
+# define ffsll(x) __builtin_ffsll(x)
+# define ffsl(x) __builtin_ffsl(x)
+# define ffs(x) __builtin_ffs(x)
+#endif
+
+#endif /* strings_h */
diff --git a/deps/jemalloc/include/msvc_compat/windows_extra.h b/deps/jemalloc/include/msvc_compat/windows_extra.h
new file mode 100644
index 0000000..a6ebb93
--- /dev/null
+++ b/deps/jemalloc/include/msvc_compat/windows_extra.h
@@ -0,0 +1,6 @@
+#ifndef MSVC_COMPAT_WINDOWS_EXTRA_H
+#define MSVC_COMPAT_WINDOWS_EXTRA_H
+
+#include <errno.h>
+
+#endif /* MSVC_COMPAT_WINDOWS_EXTRA_H */