summaryrefslogtreecommitdiffstats
path: root/tests/unit/bitops.tcl
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-14 13:40:54 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-14 13:40:54 +0000
commit317c0644ccf108aa23ef3fd8358bd66c2840bfc0 (patch)
treec417b3d25c86b775989cb5ac042f37611b626c8a /tests/unit/bitops.tcl
parentInitial commit. (diff)
downloadredis-317c0644ccf108aa23ef3fd8358bd66c2840bfc0.tar.xz
redis-317c0644ccf108aa23ef3fd8358bd66c2840bfc0.zip
Adding upstream version 5:7.2.4.upstream/5%7.2.4
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tests/unit/bitops.tcl')
-rw-r--r--tests/unit/bitops.tcl593
1 files changed, 593 insertions, 0 deletions
diff --git a/tests/unit/bitops.tcl b/tests/unit/bitops.tcl
new file mode 100644
index 0000000..1b7db40
--- /dev/null
+++ b/tests/unit/bitops.tcl
@@ -0,0 +1,593 @@
+# Compare Redis commands against Tcl implementations of the same commands.
+proc count_bits s {
+ binary scan $s b* bits
+ string length [regsub -all {0} $bits {}]
+}
+
+# start end are bit index
+proc count_bits_start_end {s start end} {
+ binary scan $s B* bits
+ string length [regsub -all {0} [string range $bits $start $end] {}]
+}
+
+proc simulate_bit_op {op args} {
+ set maxlen 0
+ set j 0
+ set count [llength $args]
+ foreach a $args {
+ binary scan $a b* bits
+ set b($j) $bits
+ if {[string length $bits] > $maxlen} {
+ set maxlen [string length $bits]
+ }
+ incr j
+ }
+ for {set j 0} {$j < $count} {incr j} {
+ if {[string length $b($j)] < $maxlen} {
+ append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
+ }
+ }
+ set out {}
+ for {set x 0} {$x < $maxlen} {incr x} {
+ set bit [string range $b(0) $x $x]
+ if {$op eq {not}} {set bit [expr {!$bit}]}
+ for {set j 1} {$j < $count} {incr j} {
+ set bit2 [string range $b($j) $x $x]
+ switch $op {
+ and {set bit [expr {$bit & $bit2}]}
+ or {set bit [expr {$bit | $bit2}]}
+ xor {set bit [expr {$bit ^ $bit2}]}
+ }
+ }
+ append out $bit
+ }
+ binary format b* $out
+}
+
+start_server {tags {"bitops"}} {
+ test {BITCOUNT returns 0 against non existing key} {
+ assert {[r bitcount no-key] == 0}
+ assert {[r bitcount no-key 0 1000 bit] == 0}
+ }
+
+ test {BITCOUNT returns 0 with out of range indexes} {
+ r set str "xxxx"
+ assert {[r bitcount str 4 10] == 0}
+ assert {[r bitcount str 32 87 bit] == 0}
+ }
+
+ test {BITCOUNT returns 0 with negative indexes where start > end} {
+ r set str "xxxx"
+ assert {[r bitcount str -6 -7] == 0}
+ assert {[r bitcount str -6 -15 bit] == 0}
+ }
+
+ catch {unset num}
+ foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
+ incr num
+ test "BITCOUNT against test vector #$num" {
+ r set str $vec
+ set count [count_bits $vec]
+ assert {[r bitcount str] == $count}
+ assert {[r bitcount str 0 -1 bit] == $count}
+ }
+ }
+
+ test {BITCOUNT fuzzing without start/end} {
+ for {set j 0} {$j < 100} {incr j} {
+ set str [randstring 0 3000]
+ r set str $str
+ set count [count_bits $str]
+ assert {[r bitcount str] == $count}
+ assert {[r bitcount str 0 -1 bit] == $count}
+ }
+ }
+
+ test {BITCOUNT fuzzing with start/end} {
+ for {set j 0} {$j < 100} {incr j} {
+ set str [randstring 0 3000]
+ r set str $str
+ set l [string length $str]
+ set start [randomInt $l]
+ set end [randomInt $l]
+ if {$start > $end} {
+ # Swap start and end
+ lassign [list $end $start] start end
+ }
+ assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
+ }
+
+ for {set j 0} {$j < 100} {incr j} {
+ set str [randstring 0 3000]
+ r set str $str
+ set l [expr [string length $str] * 8]
+ set start [randomInt $l]
+ set end [randomInt $l]
+ if {$start > $end} {
+ # Swap start and end
+ lassign [list $end $start] start end
+ }
+ assert {[r bitcount str $start $end bit] == [count_bits_start_end $str $start $end]}
+ }
+ }
+
+ test {BITCOUNT with start, end} {
+ set s "foobar"
+ r set s $s
+ assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
+ assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
+ assert_equal [r bitcount s -2 1] [count_bits ""]
+ assert_equal [r bitcount s 0 1000] [count_bits "foobar"]
+
+ assert_equal [r bitcount s 0 -1 bit] [count_bits $s]
+ assert_equal [r bitcount s 10 14 bit] [count_bits_start_end $s 10 14]
+ assert_equal [r bitcount s 3 14 bit] [count_bits_start_end $s 3 14]
+ assert_equal [r bitcount s 3 29 bit] [count_bits_start_end $s 3 29]
+ assert_equal [r bitcount s 10 -34 bit] [count_bits_start_end $s 10 14]
+ assert_equal [r bitcount s 3 -34 bit] [count_bits_start_end $s 3 14]
+ assert_equal [r bitcount s 3 -19 bit] [count_bits_start_end $s 3 29]
+ assert_equal [r bitcount s -2 1 bit] 0
+ assert_equal [r bitcount s 0 1000 bit] [count_bits $s]
+ }
+
+ test {BITCOUNT syntax error #1} {
+ catch {r bitcount s 0} e
+ set e
+ } {ERR *syntax*}
+
+ test {BITCOUNT syntax error #2} {
+ catch {r bitcount s 0 1 hello} e
+ set e
+ } {ERR *syntax*}
+
+ test {BITCOUNT regression test for github issue #582} {
+ r del foo
+ r setbit foo 0 1
+ if {[catch {r bitcount foo 0 4294967296} e]} {
+ assert_match {*ERR*out of range*} $e
+ set _ 1
+ } else {
+ set e
+ }
+ } {1}
+
+ test {BITCOUNT misaligned prefix} {
+ r del str
+ r set str ab
+ r bitcount str 1 -1
+ } {3}
+
+ test {BITCOUNT misaligned prefix + full words + remainder} {
+ r del str
+ r set str __PPxxxxxxxxxxxxxxxxRR__
+ r bitcount str 2 -3
+ } {74}
+
+ test {BITOP NOT (empty string)} {
+ r set s{t} ""
+ r bitop not dest{t} s{t}
+ r get dest{t}
+ } {}
+
+ test {BITOP NOT (known string)} {
+ r set s{t} "\xaa\x00\xff\x55"
+ r bitop not dest{t} s{t}
+ r get dest{t}
+ } "\x55\xff\x00\xaa"
+
+ test {BITOP where dest and target are the same key} {
+ r set s "\xaa\x00\xff\x55"
+ r bitop not s s
+ r get s
+ } "\x55\xff\x00\xaa"
+
+ test {BITOP AND|OR|XOR don't change the string with single input key} {
+ r set a{t} "\x01\x02\xff"
+ r bitop and res1{t} a{t}
+ r bitop or res2{t} a{t}
+ r bitop xor res3{t} a{t}
+ list [r get res1{t}] [r get res2{t}] [r get res3{t}]
+ } [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]
+
+ test {BITOP missing key is considered a stream of zero} {
+ r set a{t} "\x01\x02\xff"
+ r bitop and res1{t} no-suck-key{t} a{t}
+ r bitop or res2{t} no-suck-key{t} a{t} no-such-key{t}
+ r bitop xor res3{t} no-such-key{t} a{t}
+ list [r get res1{t}] [r get res2{t}] [r get res3{t}]
+ } [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]
+
+ test {BITOP shorter keys are zero-padded to the key with max length} {
+ r set a{t} "\x01\x02\xff\xff"
+ r set b{t} "\x01\x02\xff"
+ r bitop and res1{t} a{t} b{t}
+ r bitop or res2{t} a{t} b{t}
+ r bitop xor res3{t} a{t} b{t}
+ list [r get res1{t}] [r get res2{t}] [r get res3{t}]
+ } [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]
+
+ foreach op {and or xor} {
+ test "BITOP $op fuzzing" {
+ for {set i 0} {$i < 10} {incr i} {
+ r flushall
+ set vec {}
+ set veckeys {}
+ set numvec [expr {[randomInt 10]+1}]
+ for {set j 0} {$j < $numvec} {incr j} {
+ set str [randstring 0 1000]
+ lappend vec $str
+ lappend veckeys vector_$j{t}
+ r set vector_$j{t} $str
+ }
+ r bitop $op target{t} {*}$veckeys
+ assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec]
+ }
+ }
+ }
+
+ test {BITOP NOT fuzzing} {
+ for {set i 0} {$i < 10} {incr i} {
+ r flushall
+ set str [randstring 0 1000]
+ r set str{t} $str
+ r bitop not target{t} str{t}
+ assert_equal [r get target{t}] [simulate_bit_op not $str]
+ }
+ }
+
+ test {BITOP with integer encoded source objects} {
+ r set a{t} 1
+ r set b{t} 2
+ r bitop xor dest{t} a{t} b{t} a{t}
+ r get dest{t}
+ } {2}
+
+ test {BITOP with non string source key} {
+ r del c{t}
+ r set a{t} 1
+ r set b{t} 2
+ r lpush c{t} foo
+ catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e
+ set e
+ } {WRONGTYPE*}
+
+ test {BITOP with empty string after non empty string (issue #529)} {
+ r flushdb
+ r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
+ r bitop or x{t} a{t} b{t}
+ } {32}
+
+ test {BITPOS bit=0 with empty key returns 0} {
+ r del str
+ assert {[r bitpos str 0] == 0}
+ assert {[r bitpos str 0 0 -1 bit] == 0}
+ }
+
+ test {BITPOS bit=1 with empty key returns -1} {
+ r del str
+ assert {[r bitpos str 1] == -1}
+ assert {[r bitpos str 1 0 -1] == -1}
+ }
+
+ test {BITPOS bit=0 with string less than 1 word works} {
+ r set str "\xff\xf0\x00"
+ assert {[r bitpos str 0] == 12}
+ assert {[r bitpos str 0 0 -1 bit] == 12}
+ }
+
+ test {BITPOS bit=1 with string less than 1 word works} {
+ r set str "\x00\x0f\x00"
+ assert {[r bitpos str 1] == 12}
+ assert {[r bitpos str 1 0 -1 bit] == 12}
+ }
+
+ test {BITPOS bit=0 starting at unaligned address} {
+ r set str "\xff\xf0\x00"
+ assert {[r bitpos str 0 1] == 12}
+ assert {[r bitpos str 0 1 -1 bit] == 12}
+ }
+
+ test {BITPOS bit=1 starting at unaligned address} {
+ r set str "\x00\x0f\xff"
+ assert {[r bitpos str 1 1] == 12}
+ assert {[r bitpos str 1 1 -1 bit] == 12}
+ }
+
+ test {BITPOS bit=0 unaligned+full word+reminder} {
+ r del str
+ r set str "\xff\xff\xff" ; # Prefix
+ # Followed by two (or four in 32 bit systems) full words
+ r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
+ r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
+ r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
+ # First zero bit.
+ r append str "\x0f"
+ assert {[r bitpos str 0] == 216}
+ assert {[r bitpos str 0 1] == 216}
+ assert {[r bitpos str 0 2] == 216}
+ assert {[r bitpos str 0 3] == 216}
+ assert {[r bitpos str 0 4] == 216}
+ assert {[r bitpos str 0 5] == 216}
+ assert {[r bitpos str 0 6] == 216}
+ assert {[r bitpos str 0 7] == 216}
+ assert {[r bitpos str 0 8] == 216}
+
+ assert {[r bitpos str 0 1 -1 bit] == 216}
+ assert {[r bitpos str 0 9 -1 bit] == 216}
+ assert {[r bitpos str 0 17 -1 bit] == 216}
+ assert {[r bitpos str 0 25 -1 bit] == 216}
+ assert {[r bitpos str 0 33 -1 bit] == 216}
+ assert {[r bitpos str 0 41 -1 bit] == 216}
+ assert {[r bitpos str 0 49 -1 bit] == 216}
+ assert {[r bitpos str 0 57 -1 bit] == 216}
+ assert {[r bitpos str 0 65 -1 bit] == 216}
+ }
+
+ test {BITPOS bit=1 unaligned+full word+reminder} {
+ r del str
+ r set str "\x00\x00\x00" ; # Prefix
+ # Followed by two (or four in 32 bit systems) full words
+ r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
+ r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
+ r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
+ # First zero bit.
+ r append str "\xf0"
+ assert {[r bitpos str 1] == 216}
+ assert {[r bitpos str 1 1] == 216}
+ assert {[r bitpos str 1 2] == 216}
+ assert {[r bitpos str 1 3] == 216}
+ assert {[r bitpos str 1 4] == 216}
+ assert {[r bitpos str 1 5] == 216}
+ assert {[r bitpos str 1 6] == 216}
+ assert {[r bitpos str 1 7] == 216}
+ assert {[r bitpos str 1 8] == 216}
+
+ assert {[r bitpos str 1 1 -1 bit] == 216}
+ assert {[r bitpos str 1 9 -1 bit] == 216}
+ assert {[r bitpos str 1 17 -1 bit] == 216}
+ assert {[r bitpos str 1 25 -1 bit] == 216}
+ assert {[r bitpos str 1 33 -1 bit] == 216}
+ assert {[r bitpos str 1 41 -1 bit] == 216}
+ assert {[r bitpos str 1 49 -1 bit] == 216}
+ assert {[r bitpos str 1 57 -1 bit] == 216}
+ assert {[r bitpos str 1 65 -1 bit] == 216}
+ }
+
+ test {BITPOS bit=1 returns -1 if string is all 0 bits} {
+ r set str ""
+ for {set j 0} {$j < 20} {incr j} {
+ assert {[r bitpos str 1] == -1}
+ assert {[r bitpos str 1 0 -1 bit] == -1}
+ r append str "\x00"
+ }
+ }
+
+ test {BITPOS bit=0 works with intervals} {
+ r set str "\x00\xff\x00"
+ assert {[r bitpos str 0 0 -1] == 0}
+ assert {[r bitpos str 0 1 -1] == 16}
+ assert {[r bitpos str 0 2 -1] == 16}
+ assert {[r bitpos str 0 2 200] == 16}
+ assert {[r bitpos str 0 1 1] == -1}
+
+ assert {[r bitpos str 0 0 -1 bit] == 0}
+ assert {[r bitpos str 0 8 -1 bit] == 16}
+ assert {[r bitpos str 0 16 -1 bit] == 16}
+ assert {[r bitpos str 0 16 200 bit] == 16}
+ assert {[r bitpos str 0 8 8 bit] == -1}
+ }
+
+ test {BITPOS bit=1 works with intervals} {
+ r set str "\x00\xff\x00"
+ assert {[r bitpos str 1 0 -1] == 8}
+ assert {[r bitpos str 1 1 -1] == 8}
+ assert {[r bitpos str 1 2 -1] == -1}
+ assert {[r bitpos str 1 2 200] == -1}
+ assert {[r bitpos str 1 1 1] == 8}
+
+ assert {[r bitpos str 1 0 -1 bit] == 8}
+ assert {[r bitpos str 1 8 -1 bit] == 8}
+ assert {[r bitpos str 1 16 -1 bit] == -1}
+ assert {[r bitpos str 1 16 200 bit] == -1}
+ assert {[r bitpos str 1 8 8 bit] == 8}
+ }
+
+ test {BITPOS bit=0 changes behavior if end is given} {
+ r set str "\xff\xff\xff"
+ assert {[r bitpos str 0] == 24}
+ assert {[r bitpos str 0 0] == 24}
+ assert {[r bitpos str 0 0 -1] == -1}
+ assert {[r bitpos str 0 0 -1 bit] == -1}
+ }
+
+ test {SETBIT/BITFIELD only increase dirty when the value changed} {
+ r del foo{t} foo2{t} foo3{t}
+ set dirty [s rdb_changes_since_last_save]
+
+ # Create a new key, always increase the dirty.
+ r setbit foo{t} 0 0
+ r bitfield foo2{t} set i5 0 0
+ set dirty2 [s rdb_changes_since_last_save]
+ assert {$dirty2 == $dirty + 2}
+
+ # No change.
+ r setbit foo{t} 0 0
+ r bitfield foo2{t} set i5 0 0
+ set dirty3 [s rdb_changes_since_last_save]
+ assert {$dirty3 == $dirty2}
+
+ # Do a change and a no change.
+ r setbit foo{t} 0 1
+ r setbit foo{t} 0 1
+ r setbit foo{t} 0 0
+ r setbit foo{t} 0 0
+ r bitfield foo2{t} set i5 0 1
+ r bitfield foo2{t} set i5 0 1
+ r bitfield foo2{t} set i5 0 0
+ r bitfield foo2{t} set i5 0 0
+ set dirty4 [s rdb_changes_since_last_save]
+ assert {$dirty4 == $dirty3 + 4}
+
+ # BITFIELD INCRBY always increase dirty.
+ r bitfield foo3{t} incrby i5 0 1
+ r bitfield foo3{t} incrby i5 0 1
+ set dirty5 [s rdb_changes_since_last_save]
+ assert {$dirty5 == $dirty4 + 2}
+
+ # Change length only
+ r setbit foo{t} 90 0
+ r bitfield foo2{t} set i5 90 0
+ set dirty6 [s rdb_changes_since_last_save]
+ assert {$dirty6 == $dirty5 + 2}
+ }
+
+ test {BITPOS bit=1 fuzzy testing using SETBIT} {
+ r del str
+ set max 524288; # 64k
+ set first_one_pos -1
+ for {set j 0} {$j < 1000} {incr j} {
+ assert {[r bitpos str 1] == $first_one_pos}
+ assert {[r bitpos str 1 0 -1 bit] == $first_one_pos}
+ set pos [randomInt $max]
+ r setbit str $pos 1
+ if {$first_one_pos == -1 || $first_one_pos > $pos} {
+ # Update the position of the first 1 bit in the array
+ # if the bit we set is on the left of the previous one.
+ set first_one_pos $pos
+ }
+ }
+ }
+
+ test {BITPOS bit=0 fuzzy testing using SETBIT} {
+ set max 524288; # 64k
+ set first_zero_pos $max
+ r set str [string repeat "\xff" [expr $max/8]]
+ for {set j 0} {$j < 1000} {incr j} {
+ assert {[r bitpos str 0] == $first_zero_pos}
+ if {$first_zero_pos == $max} {
+ assert {[r bitpos str 0 0 -1 bit] == -1}
+ } else {
+ assert {[r bitpos str 0 0 -1 bit] == $first_zero_pos}
+ }
+ set pos [randomInt $max]
+ r setbit str $pos 0
+ if {$first_zero_pos > $pos} {
+ # Update the position of the first 0 bit in the array
+ # if the bit we clear is on the left of the previous one.
+ set first_zero_pos $pos
+ }
+ }
+ }
+
+ # This test creates a string of 10 bytes. It has two iterations. One clears
+ # all the bits and sets just one bit and another set all the bits and clears
+ # just one bit. Each iteration loops from bit offset 0 to 79 and uses SETBIT
+ # to set the bit to 0 or 1, and then use BITPOS and BITCOUNT on a few mutations.
+ test {BITPOS/BITCOUNT fuzzy testing using SETBIT} {
+ # We have two start and end ranges, each range used to select a random
+ # position, one for start position and one for end position.
+ proc test_one {start1 end1 start2 end2 pos bit pos_type} {
+ set start [randomRange $start1 $end1]
+ set end [randomRange $start2 $end2]
+ if {$start > $end} {
+ # Swap start and end
+ lassign [list $end $start] start end
+ }
+ set startbit $start
+ set endbit $end
+ # For byte index, we need to generate the real bit index
+ if {[string equal $pos_type byte]} {
+ set startbit [expr $start << 3]
+ set endbit [expr ($end << 3) + 7]
+ }
+ # This means whether the test bit index is in the range.
+ set inrange [expr ($pos >= $startbit && $pos <= $endbit) ? 1: 0]
+ # For bitcount, there are four different results.
+ # $inrange == 0 && $bit == 0, all bits in the range are set, so $endbit - $startbit + 1
+ # $inrange == 0 && $bit == 1, all bits in the range are clear, so 0
+ # $inrange == 1 && $bit == 0, all bits in the range are set but one, so $endbit - $startbit
+ # $inrange == 1 && $bit == 1, all bits in the range are clear but one, so 1
+ set res_count [expr ($endbit - $startbit + 1) * (1 - $bit) + $inrange * [expr $bit ? 1 : -1]]
+ assert {[r bitpos str $bit $start $end $pos_type] == [expr $inrange ? $pos : -1]}
+ assert {[r bitcount str $start $end $pos_type] == $res_count}
+ }
+
+ r del str
+ set max 80;
+ r setbit str [expr $max - 1] 0
+ set bytes [expr $max >> 3]
+ # First iteration sets all bits to 1, then set bit to 0 from 0 to max - 1
+ # Second iteration sets all bits to 0, then set bit to 1 from 0 to max - 1
+ for {set bit 0} {$bit < 2} {incr bit} {
+ r bitop not str str
+ for {set j 0} {$j < $max} {incr j} {
+ r setbit str $j $bit
+
+ # First iteration tests byte index and second iteration tests bit index.
+ foreach {curr end pos_type} [list [expr $j >> 3] $bytes byte $j $max bit] {
+ # start==end set to bit position
+ test_one $curr $curr $curr $curr $j $bit $pos_type
+ # Both start and end are before bit position
+ if {$curr > 0} {
+ test_one 0 $curr 0 $curr $j $bit $pos_type
+ }
+ # Both start and end are after bit position
+ if {$curr < [expr $end - 1]} {
+ test_one [expr $curr + 1] $end [expr $curr + 1] $end $j $bit $pos_type
+ }
+ # start is before and end is after bit position
+ if {$curr > 0 && $curr < [expr $end - 1]} {
+ test_one 0 $curr [expr $curr +1] $end $j $bit $pos_type
+ }
+ }
+
+ # restore bit
+ r setbit str $j [expr 1 - $bit]
+ }
+ }
+ }
+}
+
+run_solo {bitops-large-memory} {
+start_server {tags {"bitops"}} {
+ test "BIT pos larger than UINT_MAX" {
+ set bytes [expr (1 << 29) + 1]
+ set bitpos [expr (1 << 32)]
+ set oldval [lindex [r config get proto-max-bulk-len] 1]
+ r config set proto-max-bulk-len $bytes
+ r setbit mykey $bitpos 1
+ assert_equal $bytes [r strlen mykey]
+ assert_equal 1 [r getbit mykey $bitpos]
+ assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos]
+ assert_equal $bitpos [r bitpos mykey 1]
+ assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]]
+ if {$::accurate} {
+ # set all bits to 1
+ set mega [expr (1 << 23)]
+ set part [string repeat "\xFF" $mega]
+ for {set i 0} {$i < 64} {incr i} {
+ r setrange mykey [expr $i * $mega] $part
+ }
+ r setrange mykey [expr $bytes - 1] "\xFF"
+ assert_equal [expr $bitpos + 8] [r bitcount mykey]
+ assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]]
+ }
+ r config set proto-max-bulk-len $oldval
+ r del mykey
+ } {1} {large-memory}
+
+ test "SETBIT values larger than UINT32_MAX and lzf_compress/lzf_decompress correctly" {
+ set bytes [expr (1 << 32) + 1]
+ set bitpos [expr (1 << 35)]
+ set oldval [lindex [r config get proto-max-bulk-len] 1]
+ r config set proto-max-bulk-len $bytes
+ r setbit mykey $bitpos 1
+ assert_equal $bytes [r strlen mykey]
+ assert_equal 1 [r getbit mykey $bitpos]
+ r debug reload ;# lzf_compress/lzf_decompress when RDB saving/loading.
+ assert_equal 1 [r getbit mykey $bitpos]
+ r config set proto-max-bulk-len $oldval
+ r del mykey
+ } {1} {large-memory needs:debug}
+}
+} ;#run_solo