summaryrefslogtreecommitdiffstats
path: root/tests/unit/type/zset.tcl
diff options
context:
space:
mode:
Diffstat (limited to 'tests/unit/type/zset.tcl')
-rw-r--r--tests/unit/type/zset.tcl2654
1 files changed, 2654 insertions, 0 deletions
diff --git a/tests/unit/type/zset.tcl b/tests/unit/type/zset.tcl
new file mode 100644
index 0000000..33427d8
--- /dev/null
+++ b/tests/unit/type/zset.tcl
@@ -0,0 +1,2654 @@
+start_server {tags {"zset"}} {
+ proc create_zset {key items} {
+ r del $key
+ foreach {score entry} $items {
+ r zadd $key $score $entry
+ }
+ }
+
+ # A helper function to verify either ZPOP* or ZMPOP* response.
+ proc verify_pop_response {pop res zpop_expected_response zmpop_expected_response} {
+ if {[string match "*ZM*" $pop]} {
+ assert_equal $res $zmpop_expected_response
+ } else {
+ assert_equal $res $zpop_expected_response
+ }
+ }
+
+ # A helper function to verify either ZPOP* or ZMPOP* response when given one input key.
+ proc verify_zpop_response {rd pop key count zpop_expected_response zmpop_expected_response} {
+ if {[string match "ZM*" $pop]} {
+ lassign [split $pop "_"] pop where
+
+ if {$count == 0} {
+ set res [$rd $pop 1 $key $where]
+ } else {
+ set res [$rd $pop 1 $key $where COUNT $count]
+ }
+ } else {
+ if {$count == 0} {
+ set res [$rd $pop $key]
+ } else {
+ set res [$rd $pop $key $count]
+ }
+ }
+ verify_pop_response $pop $res $zpop_expected_response $zmpop_expected_response
+ }
+
+ # A helper function to verify either BZPOP* or BZMPOP* response when given one input key.
+ proc verify_bzpop_response {rd pop key timeout count bzpop_expected_response bzmpop_expected_response} {
+ if {[string match "BZM*" $pop]} {
+ lassign [split $pop "_"] pop where
+
+ if {$count == 0} {
+ $rd $pop $timeout 1 $key $where
+ } else {
+ $rd $pop $timeout 1 $key $where COUNT $count
+ }
+ } else {
+ $rd $pop $key $timeout
+ }
+ verify_pop_response $pop [$rd read] $bzpop_expected_response $bzmpop_expected_response
+ }
+
+ # A helper function to verify either ZPOP* or ZMPOP* response when given two input keys.
+ proc verify_bzpop_two_key_response {rd pop key key2 timeout count bzpop_expected_response bzmpop_expected_response} {
+ if {[string match "BZM*" $pop]} {
+ lassign [split $pop "_"] pop where
+
+ if {$count == 0} {
+ $rd $pop $timeout 2 $key $key2 $where
+ } else {
+ $rd $pop $timeout 2 $key $key2 $where COUNT $count
+ }
+ } else {
+ $rd $pop $key $key2 $timeout
+ }
+ verify_pop_response $pop [$rd read] $bzpop_expected_response $bzmpop_expected_response
+ }
+
+ # A helper function to execute either BZPOP* or BZMPOP* with one input key.
+ proc bzpop_command {rd pop key timeout} {
+ if {[string match "BZM*" $pop]} {
+ lassign [split $pop "_"] pop where
+ $rd $pop $timeout 1 $key $where COUNT 1
+ } else {
+ $rd $pop $key $timeout
+ }
+ }
+
+ # A helper function to verify nil response in readraw base on RESP version.
+ proc verify_nil_response {resp nil_response} {
+ if {$resp == 2} {
+ assert_equal $nil_response {*-1}
+ } elseif {$resp == 3} {
+ assert_equal $nil_response {_}
+ }
+ }
+
+ # A helper function to verify zset score response in readraw base on RESP version.
+ proc verify_score_response {rd resp score} {
+ if {$resp == 2} {
+ assert_equal [$rd read] {$1}
+ assert_equal [$rd read] $score
+ } elseif {$resp == 3} {
+ assert_equal [$rd read] ",$score"
+ }
+ }
+
+ proc basics {encoding} {
+ set original_max_entries [lindex [r config get zset-max-ziplist-entries] 1]
+ set original_max_value [lindex [r config get zset-max-ziplist-value] 1]
+ if {$encoding == "listpack"} {
+ r config set zset-max-ziplist-entries 128
+ r config set zset-max-ziplist-value 64
+ } elseif {$encoding == "skiplist"} {
+ r config set zset-max-ziplist-entries 0
+ r config set zset-max-ziplist-value 0
+ } else {
+ puts "Unknown sorted set encoding"
+ exit
+ }
+
+ test "Check encoding - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x
+ assert_encoding $encoding ztmp
+ }
+
+ test "ZSET basic ZADD and score update - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x
+ r zadd ztmp 20 y
+ r zadd ztmp 30 z
+ assert_equal {x y z} [r zrange ztmp 0 -1]
+
+ r zadd ztmp 1 y
+ assert_equal {y x z} [r zrange ztmp 0 -1]
+ }
+
+ test "ZSET element can't be set to NaN with ZADD - $encoding" {
+ assert_error "*not*float*" {r zadd myzset nan abc}
+ }
+
+ test "ZSET element can't be set to NaN with ZINCRBY - $encoding" {
+ assert_error "*not*float*" {r zincrby myzset nan abc}
+ }
+
+ test "ZADD with options syntax error with incomplete pair - $encoding" {
+ r del ztmp
+ catch {r zadd ztmp xx 10 x 20} err
+ set err
+ } {ERR*}
+
+ test "ZADD XX option without key - $encoding" {
+ r del ztmp
+ assert {[r zadd ztmp xx 10 x] == 0}
+ assert {[r type ztmp] eq {none}}
+ }
+
+ test "ZADD XX existing key - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x
+ assert {[r zadd ztmp xx 20 y] == 0}
+ assert {[r zcard ztmp] == 1}
+ }
+
+ test "ZADD XX returns the number of elements actually added - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x
+ set retval [r zadd ztmp 10 x 20 y 30 z]
+ assert {$retval == 2}
+ }
+
+ test "ZADD XX updates existing elements score - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ r zadd ztmp xx 5 foo 11 x 21 y 40 zap
+ assert {[r zcard ztmp] == 3}
+ assert {[r zscore ztmp x] == 11}
+ assert {[r zscore ztmp y] == 21}
+ }
+
+ test "ZADD GT updates existing elements when new scores are greater - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ assert {[r zadd ztmp gt ch 5 foo 11 x 21 y 29 z] == 3}
+ assert {[r zcard ztmp] == 4}
+ assert {[r zscore ztmp x] == 11}
+ assert {[r zscore ztmp y] == 21}
+ assert {[r zscore ztmp z] == 30}
+ }
+
+ test "ZADD LT updates existing elements when new scores are lower - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ assert {[r zadd ztmp lt ch 5 foo 11 x 21 y 29 z] == 2}
+ assert {[r zcard ztmp] == 4}
+ assert {[r zscore ztmp x] == 10}
+ assert {[r zscore ztmp y] == 20}
+ assert {[r zscore ztmp z] == 29}
+ }
+
+ test "ZADD GT XX updates existing elements when new scores are greater and skips new elements - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ assert {[r zadd ztmp gt xx ch 5 foo 11 x 21 y 29 z] == 2}
+ assert {[r zcard ztmp] == 3}
+ assert {[r zscore ztmp x] == 11}
+ assert {[r zscore ztmp y] == 21}
+ assert {[r zscore ztmp z] == 30}
+ }
+
+ test "ZADD LT XX updates existing elements when new scores are lower and skips new elements - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ assert {[r zadd ztmp lt xx ch 5 foo 11 x 21 y 29 z] == 1}
+ assert {[r zcard ztmp] == 3}
+ assert {[r zscore ztmp x] == 10}
+ assert {[r zscore ztmp y] == 20}
+ assert {[r zscore ztmp z] == 29}
+ }
+
+ test "ZADD XX and NX are not compatible - $encoding" {
+ r del ztmp
+ catch {r zadd ztmp xx nx 10 x} err
+ set err
+ } {ERR*}
+
+ test "ZADD NX with non existing key - $encoding" {
+ r del ztmp
+ r zadd ztmp nx 10 x 20 y 30 z
+ assert {[r zcard ztmp] == 3}
+ }
+
+ test "ZADD NX only add new elements without updating old ones - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ assert {[r zadd ztmp nx 11 x 21 y 100 a 200 b] == 2}
+ assert {[r zscore ztmp x] == 10}
+ assert {[r zscore ztmp y] == 20}
+ assert {[r zscore ztmp a] == 100}
+ assert {[r zscore ztmp b] == 200}
+ }
+
+ test "ZADD GT and NX are not compatible - $encoding" {
+ r del ztmp
+ catch {r zadd ztmp gt nx 10 x} err
+ set err
+ } {ERR*}
+
+ test "ZADD LT and NX are not compatible - $encoding" {
+ r del ztmp
+ catch {r zadd ztmp lt nx 10 x} err
+ set err
+ } {ERR*}
+
+ test "ZADD LT and GT are not compatible - $encoding" {
+ r del ztmp
+ catch {r zadd ztmp lt gt 10 x} err
+ set err
+ } {ERR*}
+
+ test "ZADD INCR LT/GT replies with nill if score not updated - $encoding" {
+ r del ztmp
+ r zadd ztmp 28 x
+ assert {[r zadd ztmp lt incr 1 x] eq {}}
+ assert {[r zscore ztmp x] == 28}
+ assert {[r zadd ztmp gt incr -1 x] eq {}}
+ assert {[r zscore ztmp x] == 28}
+ }
+
+ test "ZADD INCR LT/GT with inf - $encoding" {
+ r del ztmp
+ r zadd ztmp +inf x -inf y
+
+ assert {[r zadd ztmp lt incr 1 x] eq {}}
+ assert {[r zscore ztmp x] == inf}
+ assert {[r zadd ztmp gt incr -1 x] eq {}}
+ assert {[r zscore ztmp x] == inf}
+ assert {[r zadd ztmp lt incr -1 x] eq {}}
+ assert {[r zscore ztmp x] == inf}
+ assert {[r zadd ztmp gt incr 1 x] eq {}}
+ assert {[r zscore ztmp x] == inf}
+
+ assert {[r zadd ztmp lt incr 1 y] eq {}}
+ assert {[r zscore ztmp y] == -inf}
+ assert {[r zadd ztmp gt incr -1 y] eq {}}
+ assert {[r zscore ztmp y] == -inf}
+ assert {[r zadd ztmp lt incr -1 y] eq {}}
+ assert {[r zscore ztmp y] == -inf}
+ assert {[r zadd ztmp gt incr 1 y] eq {}}
+ assert {[r zscore ztmp y] == -inf}
+ }
+
+ test "ZADD INCR works like ZINCRBY - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ r zadd ztmp INCR 15 x
+ assert {[r zscore ztmp x] == 25}
+ }
+
+ test "ZADD INCR works with a single score-elemenet pair - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ catch {r zadd ztmp INCR 15 x 10 y} err
+ set err
+ } {ERR*}
+
+ test "ZADD CH option changes return value to all changed elements - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x 20 y 30 z
+ assert {[r zadd ztmp 11 x 21 y 30 z] == 0}
+ assert {[r zadd ztmp ch 12 x 22 y 30 z] == 2}
+ }
+
+ test "ZINCRBY calls leading to NaN result in error - $encoding" {
+ r zincrby myzset +inf abc
+ assert_error "*NaN*" {r zincrby myzset -inf abc}
+ }
+
+ test "ZADD - Variadic version base case - $encoding" {
+ r del myzset
+ list [r zadd myzset 10 a 20 b 30 c] [r zrange myzset 0 -1 withscores]
+ } {3 {a 10 b 20 c 30}}
+
+ test "ZADD - Return value is the number of actually added items - $encoding" {
+ list [r zadd myzset 5 x 20 b 30 c] [r zrange myzset 0 -1 withscores]
+ } {1 {x 5 a 10 b 20 c 30}}
+
+ test "ZADD - Variadic version does not add nothing on single parsing err - $encoding" {
+ r del myzset
+ catch {r zadd myzset 10 a 20 b 30.badscore c} e
+ assert_match {*ERR*not*float*} $e
+ r exists myzset
+ } {0}
+
+ test "ZADD - Variadic version will raise error on missing arg - $encoding" {
+ r del myzset
+ catch {r zadd myzset 10 a 20 b 30 c 40} e
+ assert_match {*ERR*syntax*} $e
+ }
+
+ test "ZINCRBY does not work variadic even if shares ZADD implementation - $encoding" {
+ r del myzset
+ catch {r zincrby myzset 10 a 20 b 30 c} e
+ assert_match {*ERR*wrong*number*arg*} $e
+ }
+
+ test "ZCARD basics - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 a 20 b 30 c
+ assert_equal 3 [r zcard ztmp]
+ assert_equal 0 [r zcard zdoesntexist]
+ }
+
+ test "ZREM removes key after last element is removed - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 x
+ r zadd ztmp 20 y
+
+ assert_equal 1 [r exists ztmp]
+ assert_equal 0 [r zrem ztmp z]
+ assert_equal 1 [r zrem ztmp y]
+ assert_equal 1 [r zrem ztmp x]
+ assert_equal 0 [r exists ztmp]
+ }
+
+ test "ZREM variadic version - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 a 20 b 30 c
+ assert_equal 2 [r zrem ztmp x y a b k]
+ assert_equal 0 [r zrem ztmp foo bar]
+ assert_equal 1 [r zrem ztmp c]
+ r exists ztmp
+ } {0}
+
+ test "ZREM variadic version -- remove elements after key deletion - $encoding" {
+ r del ztmp
+ r zadd ztmp 10 a 20 b 30 c
+ r zrem ztmp a b c d e f g
+ } {3}
+
+ test "ZRANGE basics - $encoding" {
+ r del ztmp
+ r zadd ztmp 1 a
+ r zadd ztmp 2 b
+ r zadd ztmp 3 c
+ r zadd ztmp 4 d
+
+ assert_equal {a b c d} [r zrange ztmp 0 -1]
+ assert_equal {a b c} [r zrange ztmp 0 -2]
+ assert_equal {b c d} [r zrange ztmp 1 -1]
+ assert_equal {b c} [r zrange ztmp 1 -2]
+ assert_equal {c d} [r zrange ztmp -2 -1]
+ assert_equal {c} [r zrange ztmp -2 -2]
+
+ # out of range start index
+ assert_equal {a b c} [r zrange ztmp -5 2]
+ assert_equal {a b} [r zrange ztmp -5 1]
+ assert_equal {} [r zrange ztmp 5 -1]
+ assert_equal {} [r zrange ztmp 5 -2]
+
+ # out of range end index
+ assert_equal {a b c d} [r zrange ztmp 0 5]
+ assert_equal {b c d} [r zrange ztmp 1 5]
+ assert_equal {} [r zrange ztmp 0 -5]
+ assert_equal {} [r zrange ztmp 1 -5]
+
+ # withscores
+ assert_equal {a 1 b 2 c 3 d 4} [r zrange ztmp 0 -1 withscores]
+ }
+
+ test "ZREVRANGE basics - $encoding" {
+ r del ztmp
+ r zadd ztmp 1 a
+ r zadd ztmp 2 b
+ r zadd ztmp 3 c
+ r zadd ztmp 4 d
+
+ assert_equal {d c b a} [r zrevrange ztmp 0 -1]
+ assert_equal {d c b} [r zrevrange ztmp 0 -2]
+ assert_equal {c b a} [r zrevrange ztmp 1 -1]
+ assert_equal {c b} [r zrevrange ztmp 1 -2]
+ assert_equal {b a} [r zrevrange ztmp -2 -1]
+ assert_equal {b} [r zrevrange ztmp -2 -2]
+
+ # out of range start index
+ assert_equal {d c b} [r zrevrange ztmp -5 2]
+ assert_equal {d c} [r zrevrange ztmp -5 1]
+ assert_equal {} [r zrevrange ztmp 5 -1]
+ assert_equal {} [r zrevrange ztmp 5 -2]
+
+ # out of range end index
+ assert_equal {d c b a} [r zrevrange ztmp 0 5]
+ assert_equal {c b a} [r zrevrange ztmp 1 5]
+ assert_equal {} [r zrevrange ztmp 0 -5]
+ assert_equal {} [r zrevrange ztmp 1 -5]
+
+ # withscores
+ assert_equal {d 4 c 3 b 2 a 1} [r zrevrange ztmp 0 -1 withscores]
+ }
+
+ test "ZRANK/ZREVRANK basics - $encoding" {
+ set nullres {$-1}
+ if {$::force_resp3} {
+ set nullres {_}
+ }
+ r del zranktmp
+ r zadd zranktmp 10 x
+ r zadd zranktmp 20 y
+ r zadd zranktmp 30 z
+ assert_equal 0 [r zrank zranktmp x]
+ assert_equal 1 [r zrank zranktmp y]
+ assert_equal 2 [r zrank zranktmp z]
+ assert_equal 2 [r zrevrank zranktmp x]
+ assert_equal 1 [r zrevrank zranktmp y]
+ assert_equal 0 [r zrevrank zranktmp z]
+ r readraw 1
+ assert_equal $nullres [r zrank zranktmp foo]
+ assert_equal $nullres [r zrevrank zranktmp foo]
+ r readraw 0
+
+ # withscore
+ set nullres {*-1}
+ if {$::force_resp3} {
+ set nullres {_}
+ }
+ assert_equal {0 10} [r zrank zranktmp x withscore]
+ assert_equal {1 20} [r zrank zranktmp y withscore]
+ assert_equal {2 30} [r zrank zranktmp z withscore]
+ assert_equal {2 10} [r zrevrank zranktmp x withscore]
+ assert_equal {1 20} [r zrevrank zranktmp y withscore]
+ assert_equal {0 30} [r zrevrank zranktmp z withscore]
+ r readraw 1
+ assert_equal $nullres [r zrank zranktmp foo withscore]
+ assert_equal $nullres [r zrevrank zranktmp foo withscore]
+ r readraw 0
+ }
+
+ test "ZRANK - after deletion - $encoding" {
+ r zrem zranktmp y
+ assert_equal 0 [r zrank zranktmp x]
+ assert_equal 1 [r zrank zranktmp z]
+ assert_equal {0 10} [r zrank zranktmp x withscore]
+ assert_equal {1 30} [r zrank zranktmp z withscore]
+ }
+
+ test "ZINCRBY - can create a new sorted set - $encoding" {
+ r del zset
+ r zincrby zset 1 foo
+ assert_equal {foo} [r zrange zset 0 -1]
+ assert_equal 1 [r zscore zset foo]
+ }
+
+ test "ZINCRBY - increment and decrement - $encoding" {
+ r zincrby zset 2 foo
+ r zincrby zset 1 bar
+ assert_equal {bar foo} [r zrange zset 0 -1]
+
+ r zincrby zset 10 bar
+ r zincrby zset -5 foo
+ r zincrby zset -5 bar
+ assert_equal {foo bar} [r zrange zset 0 -1]
+
+ assert_equal -2 [r zscore zset foo]
+ assert_equal 6 [r zscore zset bar]
+ }
+
+ test "ZINCRBY return value - $encoding" {
+ r del ztmp
+ set retval [r zincrby ztmp 1.0 x]
+ assert {$retval == 1.0}
+ }
+
+ proc create_default_zset {} {
+ create_zset zset {-inf a 1 b 2 c 3 d 4 e 5 f +inf g}
+ }
+
+ test "ZRANGEBYSCORE/ZREVRANGEBYSCORE/ZCOUNT basics - $encoding" {
+ create_default_zset
+
+ # inclusive range
+ assert_equal {a b c} [r zrangebyscore zset -inf 2]
+ assert_equal {b c d} [r zrangebyscore zset 0 3]
+ assert_equal {d e f} [r zrangebyscore zset 3 6]
+ assert_equal {e f g} [r zrangebyscore zset 4 +inf]
+ assert_equal {c b a} [r zrevrangebyscore zset 2 -inf]
+ assert_equal {d c b} [r zrevrangebyscore zset 3 0]
+ assert_equal {f e d} [r zrevrangebyscore zset 6 3]
+ assert_equal {g f e} [r zrevrangebyscore zset +inf 4]
+ assert_equal 3 [r zcount zset 0 3]
+
+ # exclusive range
+ assert_equal {b} [r zrangebyscore zset (-inf (2]
+ assert_equal {b c} [r zrangebyscore zset (0 (3]
+ assert_equal {e f} [r zrangebyscore zset (3 (6]
+ assert_equal {f} [r zrangebyscore zset (4 (+inf]
+ assert_equal {b} [r zrevrangebyscore zset (2 (-inf]
+ assert_equal {c b} [r zrevrangebyscore zset (3 (0]
+ assert_equal {f e} [r zrevrangebyscore zset (6 (3]
+ assert_equal {f} [r zrevrangebyscore zset (+inf (4]
+ assert_equal 2 [r zcount zset (0 (3]
+
+ # test empty ranges
+ r zrem zset a
+ r zrem zset g
+
+ # inclusive
+ assert_equal {} [r zrangebyscore zset 4 2]
+ assert_equal {} [r zrangebyscore zset 6 +inf]
+ assert_equal {} [r zrangebyscore zset -inf -6]
+ assert_equal {} [r zrevrangebyscore zset +inf 6]
+ assert_equal {} [r zrevrangebyscore zset -6 -inf]
+
+ # exclusive
+ assert_equal {} [r zrangebyscore zset (4 (2]
+ assert_equal {} [r zrangebyscore zset 2 (2]
+ assert_equal {} [r zrangebyscore zset (2 2]
+ assert_equal {} [r zrangebyscore zset (6 (+inf]
+ assert_equal {} [r zrangebyscore zset (-inf (-6]
+ assert_equal {} [r zrevrangebyscore zset (+inf (6]
+ assert_equal {} [r zrevrangebyscore zset (-6 (-inf]
+
+ # empty inner range
+ assert_equal {} [r zrangebyscore zset 2.4 2.6]
+ assert_equal {} [r zrangebyscore zset (2.4 2.6]
+ assert_equal {} [r zrangebyscore zset 2.4 (2.6]
+ assert_equal {} [r zrangebyscore zset (2.4 (2.6]
+ }
+
+ test "ZRANGEBYSCORE with WITHSCORES - $encoding" {
+ create_default_zset
+ assert_equal {b 1 c 2 d 3} [r zrangebyscore zset 0 3 withscores]
+ assert_equal {d 3 c 2 b 1} [r zrevrangebyscore zset 3 0 withscores]
+ }
+
+ test "ZRANGEBYSCORE with LIMIT - $encoding" {
+ create_default_zset
+ assert_equal {b c} [r zrangebyscore zset 0 10 LIMIT 0 2]
+ assert_equal {d e f} [r zrangebyscore zset 0 10 LIMIT 2 3]
+ assert_equal {d e f} [r zrangebyscore zset 0 10 LIMIT 2 10]
+ assert_equal {} [r zrangebyscore zset 0 10 LIMIT 20 10]
+ assert_equal {f e} [r zrevrangebyscore zset 10 0 LIMIT 0 2]
+ assert_equal {d c b} [r zrevrangebyscore zset 10 0 LIMIT 2 3]
+ assert_equal {d c b} [r zrevrangebyscore zset 10 0 LIMIT 2 10]
+ assert_equal {} [r zrevrangebyscore zset 10 0 LIMIT 20 10]
+ }
+
+ test "ZRANGEBYSCORE with LIMIT and WITHSCORES - $encoding" {
+ create_default_zset
+ assert_equal {e 4 f 5} [r zrangebyscore zset 2 5 LIMIT 2 3 WITHSCORES]
+ assert_equal {d 3 c 2} [r zrevrangebyscore zset 5 2 LIMIT 2 3 WITHSCORES]
+ assert_equal {} [r zrangebyscore zset 2 5 LIMIT 12 13 WITHSCORES]
+ }
+
+ test "ZRANGEBYSCORE with non-value min or max - $encoding" {
+ assert_error "*not*float*" {r zrangebyscore fooz str 1}
+ assert_error "*not*float*" {r zrangebyscore fooz 1 str}
+ assert_error "*not*float*" {r zrangebyscore fooz 1 NaN}
+ }
+
+ proc create_default_lex_zset {} {
+ create_zset zset {0 alpha 0 bar 0 cool 0 down
+ 0 elephant 0 foo 0 great 0 hill
+ 0 omega}
+ }
+
+ test "ZRANGEBYLEX/ZREVRANGEBYLEX/ZLEXCOUNT basics - $encoding" {
+ create_default_lex_zset
+
+ # inclusive range
+ assert_equal {alpha bar cool} [r zrangebylex zset - \[cool]
+ assert_equal {bar cool down} [r zrangebylex zset \[bar \[down]
+ assert_equal {great hill omega} [r zrangebylex zset \[g +]
+ assert_equal {cool bar alpha} [r zrevrangebylex zset \[cool -]
+ assert_equal {down cool bar} [r zrevrangebylex zset \[down \[bar]
+ assert_equal {omega hill great foo elephant down} [r zrevrangebylex zset + \[d]
+ assert_equal 3 [r zlexcount zset \[ele \[h]
+
+ # exclusive range
+ assert_equal {alpha bar} [r zrangebylex zset - (cool]
+ assert_equal {cool} [r zrangebylex zset (bar (down]
+ assert_equal {hill omega} [r zrangebylex zset (great +]
+ assert_equal {bar alpha} [r zrevrangebylex zset (cool -]
+ assert_equal {cool} [r zrevrangebylex zset (down (bar]
+ assert_equal {omega hill} [r zrevrangebylex zset + (great]
+ assert_equal 2 [r zlexcount zset (ele (great]
+
+ # inclusive and exclusive
+ assert_equal {} [r zrangebylex zset (az (b]
+ assert_equal {} [r zrangebylex zset (z +]
+ assert_equal {} [r zrangebylex zset - \[aaaa]
+ assert_equal {} [r zrevrangebylex zset \[elez \[elex]
+ assert_equal {} [r zrevrangebylex zset (hill (omega]
+ }
+
+ test "ZLEXCOUNT advanced - $encoding" {
+ create_default_lex_zset
+
+ assert_equal 9 [r zlexcount zset - +]
+ assert_equal 0 [r zlexcount zset + -]
+ assert_equal 0 [r zlexcount zset + \[c]
+ assert_equal 0 [r zlexcount zset \[c -]
+ assert_equal 8 [r zlexcount zset \[bar +]
+ assert_equal 5 [r zlexcount zset \[bar \[foo]
+ assert_equal 4 [r zlexcount zset \[bar (foo]
+ assert_equal 4 [r zlexcount zset (bar \[foo]
+ assert_equal 3 [r zlexcount zset (bar (foo]
+ assert_equal 5 [r zlexcount zset - (foo]
+ assert_equal 1 [r zlexcount zset (maxstring +]
+ }
+
+ test "ZRANGEBYSLEX with LIMIT - $encoding" {
+ create_default_lex_zset
+ assert_equal {alpha bar} [r zrangebylex zset - \[cool LIMIT 0 2]
+ assert_equal {bar cool} [r zrangebylex zset - \[cool LIMIT 1 2]
+ assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 0 0]
+ assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 2 0]
+ assert_equal {bar} [r zrangebylex zset \[bar \[down LIMIT 0 1]
+ assert_equal {cool} [r zrangebylex zset \[bar \[down LIMIT 1 1]
+ assert_equal {bar cool down} [r zrangebylex zset \[bar \[down LIMIT 0 100]
+ assert_equal {omega hill great foo elephant} [r zrevrangebylex zset + \[d LIMIT 0 5]
+ assert_equal {omega hill great foo} [r zrevrangebylex zset + \[d LIMIT 0 4]
+ }
+
+ test "ZRANGEBYLEX with invalid lex range specifiers - $encoding" {
+ assert_error "*not*string*" {r zrangebylex fooz foo bar}
+ assert_error "*not*string*" {r zrangebylex fooz \[foo bar}
+ assert_error "*not*string*" {r zrangebylex fooz foo \[bar}
+ assert_error "*not*string*" {r zrangebylex fooz +x \[bar}
+ assert_error "*not*string*" {r zrangebylex fooz -x \[bar}
+ }
+
+ test "ZREMRANGEBYSCORE basics - $encoding" {
+ proc remrangebyscore {min max} {
+ create_zset zset {1 a 2 b 3 c 4 d 5 e}
+ assert_equal 1 [r exists zset]
+ r zremrangebyscore zset $min $max
+ }
+
+ # inner range
+ assert_equal 3 [remrangebyscore 2 4]
+ assert_equal {a e} [r zrange zset 0 -1]
+
+ # start underflow
+ assert_equal 1 [remrangebyscore -10 1]
+ assert_equal {b c d e} [r zrange zset 0 -1]
+
+ # end overflow
+ assert_equal 1 [remrangebyscore 5 10]
+ assert_equal {a b c d} [r zrange zset 0 -1]
+
+ # switch min and max
+ assert_equal 0 [remrangebyscore 4 2]
+ assert_equal {a b c d e} [r zrange zset 0 -1]
+
+ # -inf to mid
+ assert_equal 3 [remrangebyscore -inf 3]
+ assert_equal {d e} [r zrange zset 0 -1]
+
+ # mid to +inf
+ assert_equal 3 [remrangebyscore 3 +inf]
+ assert_equal {a b} [r zrange zset 0 -1]
+
+ # -inf to +inf
+ assert_equal 5 [remrangebyscore -inf +inf]
+ assert_equal {} [r zrange zset 0 -1]
+
+ # exclusive min
+ assert_equal 4 [remrangebyscore (1 5]
+ assert_equal {a} [r zrange zset 0 -1]
+ assert_equal 3 [remrangebyscore (2 5]
+ assert_equal {a b} [r zrange zset 0 -1]
+
+ # exclusive max
+ assert_equal 4 [remrangebyscore 1 (5]
+ assert_equal {e} [r zrange zset 0 -1]
+ assert_equal 3 [remrangebyscore 1 (4]
+ assert_equal {d e} [r zrange zset 0 -1]
+
+ # exclusive min and max
+ assert_equal 3 [remrangebyscore (1 (5]
+ assert_equal {a e} [r zrange zset 0 -1]
+
+ # destroy when empty
+ assert_equal 5 [remrangebyscore 1 5]
+ assert_equal 0 [r exists zset]
+ }
+
+ test "ZREMRANGEBYSCORE with non-value min or max - $encoding" {
+ assert_error "*not*float*" {r zremrangebyscore fooz str 1}
+ assert_error "*not*float*" {r zremrangebyscore fooz 1 str}
+ assert_error "*not*float*" {r zremrangebyscore fooz 1 NaN}
+ }
+
+ test "ZREMRANGEBYRANK basics - $encoding" {
+ proc remrangebyrank {min max} {
+ create_zset zset {1 a 2 b 3 c 4 d 5 e}
+ assert_equal 1 [r exists zset]
+ r zremrangebyrank zset $min $max
+ }
+
+ # inner range
+ assert_equal 3 [remrangebyrank 1 3]
+ assert_equal {a e} [r zrange zset 0 -1]
+
+ # start underflow
+ assert_equal 1 [remrangebyrank -10 0]
+ assert_equal {b c d e} [r zrange zset 0 -1]
+
+ # start overflow
+ assert_equal 0 [remrangebyrank 10 -1]
+ assert_equal {a b c d e} [r zrange zset 0 -1]
+
+ # end underflow
+ assert_equal 0 [remrangebyrank 0 -10]
+ assert_equal {a b c d e} [r zrange zset 0 -1]
+
+ # end overflow
+ assert_equal 5 [remrangebyrank 0 10]
+ assert_equal {} [r zrange zset 0 -1]
+
+ # destroy when empty
+ assert_equal 5 [remrangebyrank 0 4]
+ assert_equal 0 [r exists zset]
+ }
+
+ test "ZREMRANGEBYLEX basics - $encoding" {
+ proc remrangebylex {min max} {
+ create_default_lex_zset
+ assert_equal 1 [r exists zset]
+ r zremrangebylex zset $min $max
+ }
+
+ # inclusive range
+ assert_equal 3 [remrangebylex - \[cool]
+ assert_equal {down elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 3 [remrangebylex \[bar \[down]
+ assert_equal {alpha elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 3 [remrangebylex \[g +]
+ assert_equal {alpha bar cool down elephant foo} [r zrange zset 0 -1]
+ assert_equal 6 [r zcard zset]
+
+ # exclusive range
+ assert_equal 2 [remrangebylex - (cool]
+ assert_equal {cool down elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 1 [remrangebylex (bar (down]
+ assert_equal {alpha bar down elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 2 [remrangebylex (great +]
+ assert_equal {alpha bar cool down elephant foo great} [r zrange zset 0 -1]
+ assert_equal 7 [r zcard zset]
+
+ # inclusive and exclusive
+ assert_equal 0 [remrangebylex (az (b]
+ assert_equal {alpha bar cool down elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 0 [remrangebylex (z +]
+ assert_equal {alpha bar cool down elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 0 [remrangebylex - \[aaaa]
+ assert_equal {alpha bar cool down elephant foo great hill omega} [r zrange zset 0 -1]
+ assert_equal 9 [r zcard zset]
+
+ # destroy when empty
+ assert_equal 9 [remrangebylex - +]
+ assert_equal 0 [r zcard zset]
+ assert_equal 0 [r exists zset]
+ }
+
+ test "ZUNIONSTORE against non-existing key doesn't set destination - $encoding" {
+ r del zseta{t}
+ assert_equal 0 [r zunionstore dst_key{t} 1 zseta{t}]
+ assert_equal 0 [r exists dst_key{t}]
+ }
+
+ test "ZUNION/ZINTER/ZINTERCARD/ZDIFF against non-existing key - $encoding" {
+ r del zseta
+ assert_equal {} [r zunion 1 zseta]
+ assert_equal {} [r zinter 1 zseta]
+ assert_equal 0 [r zintercard 1 zseta]
+ assert_equal 0 [r zintercard 1 zseta limit 0]
+ assert_equal {} [r zdiff 1 zseta]
+ }
+
+ test "ZUNIONSTORE with empty set - $encoding" {
+ r del zseta{t} zsetb{t}
+ r zadd zseta{t} 1 a
+ r zadd zseta{t} 2 b
+ r zunionstore zsetc{t} 2 zseta{t} zsetb{t}
+ r zrange zsetc{t} 0 -1 withscores
+ } {a 1 b 2}
+
+ test "ZUNION/ZINTER/ZINTERCARD/ZDIFF with empty set - $encoding" {
+ r del zseta{t} zsetb{t}
+ r zadd zseta{t} 1 a
+ r zadd zseta{t} 2 b
+ assert_equal {a 1 b 2} [r zunion 2 zseta{t} zsetb{t} withscores]
+ assert_equal {} [r zinter 2 zseta{t} zsetb{t} withscores]
+ assert_equal 0 [r zintercard 2 zseta{t} zsetb{t}]
+ assert_equal 0 [r zintercard 2 zseta{t} zsetb{t} limit 0]
+ assert_equal {a 1 b 2} [r zdiff 2 zseta{t} zsetb{t} withscores]
+ }
+
+ test "ZUNIONSTORE basics - $encoding" {
+ r del zseta{t} zsetb{t} zsetc{t}
+ r zadd zseta{t} 1 a
+ r zadd zseta{t} 2 b
+ r zadd zseta{t} 3 c
+ r zadd zsetb{t} 1 b
+ r zadd zsetb{t} 2 c
+ r zadd zsetb{t} 3 d
+
+ assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t}]
+ assert_equal {a 1 b 3 d 3 c 5} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZUNION/ZINTER/ZINTERCARD/ZDIFF with integer members - $encoding" {
+ r del zsetd{t} zsetf{t}
+ r zadd zsetd{t} 1 1
+ r zadd zsetd{t} 2 2
+ r zadd zsetd{t} 3 3
+ r zadd zsetf{t} 1 1
+ r zadd zsetf{t} 3 3
+ r zadd zsetf{t} 4 4
+
+ assert_equal {1 2 2 2 4 4 3 6} [r zunion 2 zsetd{t} zsetf{t} withscores]
+ assert_equal {1 2 3 6} [r zinter 2 zsetd{t} zsetf{t} withscores]
+ assert_equal 2 [r zintercard 2 zsetd{t} zsetf{t}]
+ assert_equal 2 [r zintercard 2 zsetd{t} zsetf{t} limit 0]
+ assert_equal {2 2} [r zdiff 2 zsetd{t} zsetf{t} withscores]
+ }
+
+ test "ZUNIONSTORE with weights - $encoding" {
+ assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t} weights 2 3]
+ assert_equal {a 2 b 7 d 9 c 12} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZUNION with weights - $encoding" {
+ assert_equal {a 2 b 7 d 9 c 12} [r zunion 2 zseta{t} zsetb{t} weights 2 3 withscores]
+ assert_equal {b 7 c 12} [r zinter 2 zseta{t} zsetb{t} weights 2 3 withscores]
+ }
+
+ test "ZUNIONSTORE with a regular set and weights - $encoding" {
+ r del seta{t}
+ r sadd seta{t} a
+ r sadd seta{t} b
+ r sadd seta{t} c
+
+ assert_equal 4 [r zunionstore zsetc{t} 2 seta{t} zsetb{t} weights 2 3]
+ assert_equal {a 2 b 5 c 8 d 9} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZUNIONSTORE with AGGREGATE MIN - $encoding" {
+ assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t} aggregate min]
+ assert_equal {a 1 b 1 c 2 d 3} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZUNION/ZINTER with AGGREGATE MIN - $encoding" {
+ assert_equal {a 1 b 1 c 2 d 3} [r zunion 2 zseta{t} zsetb{t} aggregate min withscores]
+ assert_equal {b 1 c 2} [r zinter 2 zseta{t} zsetb{t} aggregate min withscores]
+ }
+
+ test "ZUNIONSTORE with AGGREGATE MAX - $encoding" {
+ assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t} aggregate max]
+ assert_equal {a 1 b 2 c 3 d 3} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZUNION/ZINTER with AGGREGATE MAX - $encoding" {
+ assert_equal {a 1 b 2 c 3 d 3} [r zunion 2 zseta{t} zsetb{t} aggregate max withscores]
+ assert_equal {b 2 c 3} [r zinter 2 zseta{t} zsetb{t} aggregate max withscores]
+ }
+
+ test "ZINTERSTORE basics - $encoding" {
+ assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t}]
+ assert_equal {b 3 c 5} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZINTER basics - $encoding" {
+ assert_equal {b 3 c 5} [r zinter 2 zseta{t} zsetb{t} withscores]
+ }
+
+ test "ZINTERCARD with illegal arguments" {
+ assert_error "ERR syntax error*" {r zintercard 1 zseta{t} zseta{t}}
+ assert_error "ERR syntax error*" {r zintercard 1 zseta{t} bar_arg}
+ assert_error "ERR syntax error*" {r zintercard 1 zseta{t} LIMIT}
+
+ assert_error "ERR LIMIT*" {r zintercard 1 myset{t} LIMIT -1}
+ assert_error "ERR LIMIT*" {r zintercard 1 myset{t} LIMIT a}
+ }
+
+ test "ZINTERCARD basics - $encoding" {
+ assert_equal 2 [r zintercard 2 zseta{t} zsetb{t}]
+ assert_equal 2 [r zintercard 2 zseta{t} zsetb{t} limit 0]
+ assert_equal 1 [r zintercard 2 zseta{t} zsetb{t} limit 1]
+ assert_equal 2 [r zintercard 2 zseta{t} zsetb{t} limit 10]
+ }
+
+ test "ZINTER RESP3 - $encoding" {
+ r hello 3
+ assert_equal {{b 3.0} {c 5.0}} [r zinter 2 zseta{t} zsetb{t} withscores]
+ r hello 2
+ }
+
+ test "ZINTERSTORE with weights - $encoding" {
+ assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t} weights 2 3]
+ assert_equal {b 7 c 12} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZINTER with weights - $encoding" {
+ assert_equal {b 7 c 12} [r zinter 2 zseta{t} zsetb{t} weights 2 3 withscores]
+ }
+
+ test "ZINTERSTORE with a regular set and weights - $encoding" {
+ r del seta{t}
+ r sadd seta{t} a
+ r sadd seta{t} b
+ r sadd seta{t} c
+ assert_equal 2 [r zinterstore zsetc{t} 2 seta{t} zsetb{t} weights 2 3]
+ assert_equal {b 5 c 8} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZINTERSTORE with AGGREGATE MIN - $encoding" {
+ assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t} aggregate min]
+ assert_equal {b 1 c 2} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZINTERSTORE with AGGREGATE MAX - $encoding" {
+ assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t} aggregate max]
+ assert_equal {b 2 c 3} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ foreach cmd {ZUNIONSTORE ZINTERSTORE} {
+ test "$cmd with +inf/-inf scores - $encoding" {
+ r del zsetinf1{t} zsetinf2{t}
+
+ r zadd zsetinf1{t} +inf key
+ r zadd zsetinf2{t} +inf key
+ r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t}
+ assert_equal inf [r zscore zsetinf3{t} key]
+
+ r zadd zsetinf1{t} -inf key
+ r zadd zsetinf2{t} +inf key
+ r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t}
+ assert_equal 0 [r zscore zsetinf3{t} key]
+
+ r zadd zsetinf1{t} +inf key
+ r zadd zsetinf2{t} -inf key
+ r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t}
+ assert_equal 0 [r zscore zsetinf3{t} key]
+
+ r zadd zsetinf1{t} -inf key
+ r zadd zsetinf2{t} -inf key
+ r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t}
+ assert_equal -inf [r zscore zsetinf3{t} key]
+ }
+
+ test "$cmd with NaN weights - $encoding" {
+ r del zsetinf1{t} zsetinf2{t}
+
+ r zadd zsetinf1{t} 1.0 key
+ r zadd zsetinf2{t} 1.0 key
+ assert_error "*weight*not*float*" {
+ r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t} weights nan nan
+ }
+ }
+ }
+
+ test "ZDIFFSTORE basics - $encoding" {
+ assert_equal 1 [r zdiffstore zsetc{t} 2 zseta{t} zsetb{t}]
+ assert_equal {a 1} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZDIFF basics - $encoding" {
+ assert_equal {a 1} [r zdiff 2 zseta{t} zsetb{t} withscores]
+ }
+
+ test "ZDIFFSTORE with a regular set - $encoding" {
+ r del seta{t}
+ r sadd seta{t} a
+ r sadd seta{t} b
+ r sadd seta{t} c
+ assert_equal 1 [r zdiffstore zsetc{t} 2 seta{t} zsetb{t}]
+ assert_equal {a 1} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZDIFF subtracting set from itself - $encoding" {
+ assert_equal 0 [r zdiffstore zsetc{t} 2 zseta{t} zseta{t}]
+ assert_equal {} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZDIFF algorithm 1 - $encoding" {
+ r del zseta{t} zsetb{t} zsetc{t}
+ r zadd zseta{t} 1 a
+ r zadd zseta{t} 2 b
+ r zadd zseta{t} 3 c
+ r zadd zsetb{t} 1 b
+ r zadd zsetb{t} 2 c
+ r zadd zsetb{t} 3 d
+ assert_equal 1 [r zdiffstore zsetc{t} 2 zseta{t} zsetb{t}]
+ assert_equal {a 1} [r zrange zsetc{t} 0 -1 withscores]
+ }
+
+ test "ZDIFF algorithm 2 - $encoding" {
+ r del zseta{t} zsetb{t} zsetc{t} zsetd{t} zsete{t}
+ r zadd zseta{t} 1 a
+ r zadd zseta{t} 2 b
+ r zadd zseta{t} 3 c
+ r zadd zseta{t} 5 e
+ r zadd zsetb{t} 1 b
+ r zadd zsetc{t} 1 c
+ r zadd zsetd{t} 1 d
+ assert_equal 2 [r zdiffstore zsete{t} 4 zseta{t} zsetb{t} zsetc{t} zsetd{t}]
+ assert_equal {a 1 e 5} [r zrange zsete{t} 0 -1 withscores]
+ }
+
+ test "ZDIFF fuzzing - $encoding" {
+ for {set j 0} {$j < 100} {incr j} {
+ unset -nocomplain s
+ array set s {}
+ set args {}
+ set num_sets [expr {[randomInt 10]+1}]
+ for {set i 0} {$i < $num_sets} {incr i} {
+ set num_elements [randomInt 100]
+ r del zset_$i{t}
+ lappend args zset_$i{t}
+ while {$num_elements} {
+ set ele [randomValue]
+ r zadd zset_$i{t} [randomInt 100] $ele
+ if {$i == 0} {
+ set s($ele) x
+ } else {
+ unset -nocomplain s($ele)
+ }
+ incr num_elements -1
+ }
+ }
+ set result [lsort [r zdiff [llength $args] {*}$args]]
+ assert_equal $result [lsort [array names s]]
+ }
+ }
+
+ foreach {pop} {ZPOPMIN ZPOPMAX} {
+ test "$pop with the count 0 returns an empty array" {
+ r del zset
+ r zadd zset 1 a 2 b 3 c
+ assert_equal {} [r $pop zset 0]
+
+ # Make sure we can distinguish between an empty array and a null response
+ r readraw 1
+ assert_equal {*0} [r $pop zset 0]
+ r readraw 0
+
+ assert_equal 3 [r zcard zset]
+ }
+
+ test "$pop with negative count" {
+ r set zset foo
+ assert_error "ERR *must be positive" {r $pop zset -1}
+
+ r del zset
+ assert_error "ERR *must be positive" {r $pop zset -2}
+
+ r zadd zset 1 a 2 b 3 c
+ assert_error "ERR *must be positive" {r $pop zset -3}
+ }
+ }
+
+ foreach {popmin popmax} {ZPOPMIN ZPOPMAX ZMPOP_MIN ZMPOP_MAX} {
+ test "Basic $popmin/$popmax with a single key - $encoding" {
+ r del zset
+ verify_zpop_response r $popmin zset 0 {} {}
+
+ create_zset zset {-1 a 1 b 2 c 3 d 4 e}
+ verify_zpop_response r $popmin zset 0 {a -1} {zset {{a -1}}}
+ verify_zpop_response r $popmin zset 0 {b 1} {zset {{b 1}}}
+ verify_zpop_response r $popmax zset 0 {e 4} {zset {{e 4}}}
+ verify_zpop_response r $popmax zset 0 {d 3} {zset {{d 3}}}
+ verify_zpop_response r $popmin zset 0 {c 2} {zset {{c 2}}}
+ assert_equal 0 [r exists zset]
+ }
+
+ test "$popmin/$popmax with count - $encoding" {
+ r del z1
+ verify_zpop_response r $popmin z1 2 {} {}
+
+ create_zset z1 {0 a 1 b 2 c 3 d}
+ verify_zpop_response r $popmin z1 2 {a 0 b 1} {z1 {{a 0} {b 1}}}
+ verify_zpop_response r $popmax z1 2 {d 3 c 2} {z1 {{d 3} {c 2}}}
+ }
+ }
+
+ foreach {popmin popmax} {BZPOPMIN BZPOPMAX BZMPOP_MIN BZMPOP_MAX} {
+ test "$popmin/$popmax with a single existing sorted set - $encoding" {
+ set rd [redis_deferring_client]
+ create_zset zset {0 a 1 b 2 c 3 d}
+
+ verify_bzpop_response $rd $popmin zset 5 0 {zset a 0} {zset {{a 0}}}
+ verify_bzpop_response $rd $popmax zset 5 0 {zset d 3} {zset {{d 3}}}
+ verify_bzpop_response $rd $popmin zset 5 0 {zset b 1} {zset {{b 1}}}
+ verify_bzpop_response $rd $popmax zset 5 0 {zset c 2} {zset {{c 2}}}
+ assert_equal 0 [r exists zset]
+ $rd close
+ }
+
+ test "$popmin/$popmax with multiple existing sorted sets - $encoding" {
+ set rd [redis_deferring_client]
+ create_zset z1{t} {0 a 1 b 2 c}
+ create_zset z2{t} {3 d 4 e 5 f}
+
+ verify_bzpop_two_key_response $rd $popmin z1{t} z2{t} 5 0 {z1{t} a 0} {z1{t} {{a 0}}}
+ verify_bzpop_two_key_response $rd $popmax z1{t} z2{t} 5 0 {z1{t} c 2} {z1{t} {{c 2}}}
+ assert_equal 1 [r zcard z1{t}]
+ assert_equal 3 [r zcard z2{t}]
+
+ verify_bzpop_two_key_response $rd $popmax z2{t} z1{t} 5 0 {z2{t} f 5} {z2{t} {{f 5}}}
+ verify_bzpop_two_key_response $rd $popmin z2{t} z1{t} 5 0 {z2{t} d 3} {z2{t} {{d 3}}}
+ assert_equal 1 [r zcard z1{t}]
+ assert_equal 1 [r zcard z2{t}]
+ $rd close
+ }
+
+ test "$popmin/$popmax second sorted set has members - $encoding" {
+ set rd [redis_deferring_client]
+ r del z1{t}
+ create_zset z2{t} {3 d 4 e 5 f}
+
+ verify_bzpop_two_key_response $rd $popmax z1{t} z2{t} 5 0 {z2{t} f 5} {z2{t} {{f 5}}}
+ verify_bzpop_two_key_response $rd $popmin z1{t} z2{t} 5 0 {z2{t} d 3} {z2{t} {{d 3}}}
+ assert_equal 0 [r zcard z1{t}]
+ assert_equal 1 [r zcard z2{t}]
+ $rd close
+ }
+ }
+
+ foreach {popmin popmax} {ZPOPMIN ZPOPMAX ZMPOP_MIN ZMPOP_MAX} {
+ test "Basic $popmin/$popmax - $encoding RESP3" {
+ r hello 3
+ create_zset z1 {0 a 1 b 2 c 3 d}
+ verify_zpop_response r $popmin z1 0 {a 0.0} {z1 {{a 0.0}}}
+ verify_zpop_response r $popmax z1 0 {d 3.0} {z1 {{d 3.0}}}
+ r hello 2
+ }
+
+ test "$popmin/$popmax with count - $encoding RESP3" {
+ r hello 3
+ create_zset z1 {0 a 1 b 2 c 3 d}
+ verify_zpop_response r $popmin z1 2 {{a 0.0} {b 1.0}} {z1 {{a 0.0} {b 1.0}}}
+ verify_zpop_response r $popmax z1 2 {{d 3.0} {c 2.0}} {z1 {{d 3.0} {c 2.0}}}
+ r hello 2
+ }
+ }
+
+ foreach {popmin popmax} {BZPOPMIN BZPOPMAX BZMPOP_MIN BZMPOP_MAX} {
+ test "$popmin/$popmax - $encoding RESP3" {
+ r hello 3
+ set rd [redis_deferring_client]
+ create_zset zset {0 a 1 b 2 c 3 d}
+
+ verify_bzpop_response $rd $popmin zset 5 0 {zset a 0} {zset {{a 0}}}
+ verify_bzpop_response $rd $popmax zset 5 0 {zset d 3} {zset {{d 3}}}
+ verify_bzpop_response $rd $popmin zset 5 0 {zset b 1} {zset {{b 1}}}
+ verify_bzpop_response $rd $popmax zset 5 0 {zset c 2} {zset {{c 2}}}
+
+ assert_equal 0 [r exists zset]
+ r hello 2
+ $rd close
+ }
+ }
+
+ r config set zset-max-ziplist-entries $original_max_entries
+ r config set zset-max-ziplist-value $original_max_value
+ }
+
+ basics listpack
+ basics skiplist
+
+ test "ZPOP/ZMPOP against wrong type" {
+ r set foo{t} bar
+ assert_error "*WRONGTYPE*" {r zpopmin foo{t}}
+ assert_error "*WRONGTYPE*" {r zpopmin foo{t} 0}
+ assert_error "*WRONGTYPE*" {r zpopmax foo{t}}
+ assert_error "*WRONGTYPE*" {r zpopmax foo{t} 0}
+ assert_error "*WRONGTYPE*" {r zpopmin foo{t} 2}
+
+ assert_error "*WRONGTYPE*" {r zmpop 1 foo{t} min}
+ assert_error "*WRONGTYPE*" {r zmpop 1 foo{t} max}
+ assert_error "*WRONGTYPE*" {r zmpop 1 foo{t} max count 200}
+
+ r del foo{t}
+ r set foo2{t} bar
+ assert_error "*WRONGTYPE*" {r zmpop 2 foo{t} foo2{t} min}
+ assert_error "*WRONGTYPE*" {r zmpop 2 foo2{t} foo1{t} max count 1}
+ }
+
+ test "ZMPOP with illegal argument" {
+ assert_error "ERR wrong number of arguments for 'zmpop' command" {r zmpop}
+ assert_error "ERR wrong number of arguments for 'zmpop' command" {r zmpop 1}
+ assert_error "ERR wrong number of arguments for 'zmpop' command" {r zmpop 1 myzset{t}}
+
+ assert_error "ERR numkeys*" {r zmpop 0 myzset{t} MIN}
+ assert_error "ERR numkeys*" {r zmpop a myzset{t} MIN}
+ assert_error "ERR numkeys*" {r zmpop -1 myzset{t} MAX}
+
+ assert_error "ERR syntax error*" {r zmpop 1 myzset{t} bad_where}
+ assert_error "ERR syntax error*" {r zmpop 1 myzset{t} MIN bar_arg}
+ assert_error "ERR syntax error*" {r zmpop 1 myzset{t} MAX MIN}
+ assert_error "ERR syntax error*" {r zmpop 1 myzset{t} COUNT}
+ assert_error "ERR syntax error*" {r zmpop 1 myzset{t} MAX COUNT 1 COUNT 2}
+ assert_error "ERR syntax error*" {r zmpop 2 myzset{t} myzset2{t} bad_arg}
+
+ assert_error "ERR count*" {r zmpop 1 myzset{t} MIN COUNT 0}
+ assert_error "ERR count*" {r zmpop 1 myzset{t} MAX COUNT a}
+ assert_error "ERR count*" {r zmpop 1 myzset{t} MIN COUNT -1}
+ assert_error "ERR count*" {r zmpop 2 myzset{t} myzset2{t} MAX COUNT -1}
+ }
+
+ test "ZMPOP propagate as pop with count command to replica" {
+ set repl [attach_to_replication_stream]
+
+ # ZMPOP min/max propagate as ZPOPMIN/ZPOPMAX with count
+ r zadd myzset{t} 1 one 2 two 3 three
+
+ # Pop elements from one zset.
+ r zmpop 1 myzset{t} min
+ r zmpop 1 myzset{t} max count 1
+
+ # Now the zset have only one element
+ r zmpop 2 myzset{t} myzset2{t} min count 10
+
+ # No elements so we don't propagate.
+ r zmpop 2 myzset{t} myzset2{t} max count 10
+
+ # Pop elements from the second zset.
+ r zadd myzset2{t} 1 one 2 two 3 three
+ r zmpop 2 myzset{t} myzset2{t} min count 2
+ r zmpop 2 myzset{t} myzset2{t} max count 1
+
+ # Pop all elements.
+ r zadd myzset{t} 1 one 2 two 3 three
+ r zadd myzset2{t} 4 four 5 five 6 six
+ r zmpop 2 myzset{t} myzset2{t} min count 10
+ r zmpop 2 myzset{t} myzset2{t} max count 10
+
+ assert_replication_stream $repl {
+ {select *}
+ {zadd myzset{t} 1 one 2 two 3 three}
+ {zpopmin myzset{t} 1}
+ {zpopmax myzset{t} 1}
+ {zpopmin myzset{t} 1}
+ {zadd myzset2{t} 1 one 2 two 3 three}
+ {zpopmin myzset2{t} 2}
+ {zpopmax myzset2{t} 1}
+ {zadd myzset{t} 1 one 2 two 3 three}
+ {zadd myzset2{t} 4 four 5 five 6 six}
+ {zpopmin myzset{t} 3}
+ {zpopmax myzset2{t} 3}
+ }
+ close_replication_stream $repl
+ } {} {needs:repl}
+
+ foreach resp {3 2} {
+ set rd [redis_deferring_client]
+
+ if {[lsearch $::denytags "resp3"] >= 0} {
+ if {$resp == 3} {continue}
+ } elseif {$::force_resp3} {
+ if {$resp == 2} {continue}
+ }
+ r hello $resp
+ $rd hello $resp
+ $rd read
+
+ test "ZPOPMIN/ZPOPMAX readraw in RESP$resp" {
+ r del zset{t}
+ create_zset zset2{t} {1 a 2 b 3 c 4 d 5 e}
+
+ r readraw 1
+
+ # ZPOP against non existing key.
+ assert_equal {*0} [r zpopmin zset{t}]
+ assert_equal {*0} [r zpopmin zset{t} 1]
+
+ # ZPOP without COUNT option.
+ assert_equal {*2} [r zpopmin zset2{t}]
+ assert_equal [r read] {$1}
+ assert_equal [r read] {a}
+ verify_score_response r $resp 1
+
+ # ZPOP with COUNT option.
+ if {$resp == 2} {
+ assert_equal {*2} [r zpopmax zset2{t} 1]
+ assert_equal [r read] {$1}
+ assert_equal [r read] {e}
+ } elseif {$resp == 3} {
+ assert_equal {*1} [r zpopmax zset2{t} 1]
+ assert_equal [r read] {*2}
+ assert_equal [r read] {$1}
+ assert_equal [r read] {e}
+ }
+ verify_score_response r $resp 5
+
+ r readraw 0
+ }
+
+ test "BZPOPMIN/BZPOPMAX readraw in RESP$resp" {
+ r del zset{t}
+ create_zset zset2{t} {1 a 2 b 3 c 4 d 5 e}
+
+ $rd readraw 1
+
+ # BZPOP released on timeout.
+ $rd bzpopmin zset{t} 0.01
+ verify_nil_response $resp [$rd read]
+ $rd bzpopmax zset{t} 0.01
+ verify_nil_response $resp [$rd read]
+
+ # BZPOP non-blocking path.
+ $rd bzpopmin zset1{t} zset2{t} 0.1
+ assert_equal [$rd read] {*3}
+ assert_equal [$rd read] {$8}
+ assert_equal [$rd read] {zset2{t}}
+ assert_equal [$rd read] {$1}
+ assert_equal [$rd read] {a}
+ verify_score_response $rd $resp 1
+
+ # BZPOP blocking path.
+ $rd bzpopmin zset{t} 5
+ wait_for_blocked_client
+ r zadd zset{t} 1 a
+ assert_equal [$rd read] {*3}
+ assert_equal [$rd read] {$7}
+ assert_equal [$rd read] {zset{t}}
+ assert_equal [$rd read] {$1}
+ assert_equal [$rd read] {a}
+ verify_score_response $rd $resp 1
+
+ $rd readraw 0
+ }
+
+ test "ZMPOP readraw in RESP$resp" {
+ r del zset{t} zset2{t}
+ create_zset zset3{t} {1 a}
+ create_zset zset4{t} {1 a 2 b 3 c 4 d 5 e}
+
+ r readraw 1
+
+ # ZMPOP against non existing key.
+ verify_nil_response $resp [r zmpop 1 zset{t} min]
+ verify_nil_response $resp [r zmpop 1 zset{t} max count 1]
+ verify_nil_response $resp [r zmpop 2 zset{t} zset2{t} min]
+ verify_nil_response $resp [r zmpop 2 zset{t} zset2{t} max count 1]
+
+ # ZMPOP with one input key.
+ assert_equal {*2} [r zmpop 1 zset3{t} max]
+ assert_equal [r read] {$8}
+ assert_equal [r read] {zset3{t}}
+ assert_equal [r read] {*1}
+ assert_equal [r read] {*2}
+ assert_equal [r read] {$1}
+ assert_equal [r read] {a}
+ verify_score_response r $resp 1
+
+ # ZMPOP with COUNT option.
+ assert_equal {*2} [r zmpop 2 zset3{t} zset4{t} min count 2]
+ assert_equal [r read] {$8}
+ assert_equal [r read] {zset4{t}}
+ assert_equal [r read] {*2}
+ assert_equal [r read] {*2}
+ assert_equal [r read] {$1}
+ assert_equal [r read] {a}
+ verify_score_response r $resp 1
+ assert_equal [r read] {*2}
+ assert_equal [r read] {$1}
+ assert_equal [r read] {b}
+ verify_score_response r $resp 2
+
+ r readraw 0
+ }
+
+ test "BZMPOP readraw in RESP$resp" {
+ r del zset{t} zset2{t}
+ create_zset zset3{t} {1 a 2 b 3 c 4 d 5 e}
+
+ $rd readraw 1
+
+ # BZMPOP released on timeout.
+ $rd bzmpop 0.01 1 zset{t} min
+ verify_nil_response $resp [$rd read]
+ $rd bzmpop 0.01 2 zset{t} zset2{t} max
+ verify_nil_response $resp [$rd read]
+
+ # BZMPOP non-blocking path.
+ $rd bzmpop 0.1 2 zset3{t} zset4{t} min
+
+ assert_equal [$rd read] {*2}
+ assert_equal [$rd read] {$8}
+ assert_equal [$rd read] {zset3{t}}
+ assert_equal [$rd read] {*1}
+ assert_equal [$rd read] {*2}
+ assert_equal [$rd read] {$1}
+ assert_equal [$rd read] {a}
+ verify_score_response $rd $resp 1
+
+ # BZMPOP blocking path with COUNT option.
+ $rd bzmpop 5 2 zset{t} zset2{t} max count 2
+ wait_for_blocked_client
+ r zadd zset2{t} 1 a 2 b 3 c
+
+ assert_equal [$rd read] {*2}
+ assert_equal [$rd read] {$8}
+ assert_equal [$rd read] {zset2{t}}
+ assert_equal [$rd read] {*2}
+ assert_equal [$rd read] {*2}
+ assert_equal [$rd read] {$1}
+ assert_equal [$rd read] {c}
+ verify_score_response $rd $resp 3
+ assert_equal [$rd read] {*2}
+ assert_equal [$rd read] {$1}
+ assert_equal [$rd read] {b}
+ verify_score_response $rd $resp 2
+
+ }
+
+ $rd close
+ r hello 2
+ }
+
+ test {ZINTERSTORE regression with two sets, intset+hashtable} {
+ r del seta{t} setb{t} setc{t}
+ r sadd set1{t} a
+ r sadd set2{t} 10
+ r zinterstore set3{t} 2 set1{t} set2{t}
+ } {0}
+
+ test {ZUNIONSTORE regression, should not create NaN in scores} {
+ r zadd z{t} -inf neginf
+ r zunionstore out{t} 1 z{t} weights 0
+ r zrange out{t} 0 -1 withscores
+ } {neginf 0}
+
+ test {ZINTERSTORE #516 regression, mixed sets and ziplist zsets} {
+ r sadd one{t} 100 101 102 103
+ r sadd two{t} 100 200 201 202
+ r zadd three{t} 1 500 1 501 1 502 1 503 1 100
+ r zinterstore to_here{t} 3 one{t} two{t} three{t} WEIGHTS 0 0 1
+ r zrange to_here{t} 0 -1
+ } {100}
+
+ test {ZUNIONSTORE result is sorted} {
+ # Create two sets with common and not common elements, perform
+ # the UNION, check that elements are still sorted.
+ r del one{t} two{t} dest{t}
+ set cmd1 [list r zadd one{t}]
+ set cmd2 [list r zadd two{t}]
+ for {set j 0} {$j < 1000} {incr j} {
+ lappend cmd1 [expr rand()] [randomInt 1000]
+ lappend cmd2 [expr rand()] [randomInt 1000]
+ }
+ {*}$cmd1
+ {*}$cmd2
+ assert {[r zcard one{t}] > 100}
+ assert {[r zcard two{t}] > 100}
+ r zunionstore dest{t} 2 one{t} two{t}
+ set oldscore 0
+ foreach {ele score} [r zrange dest{t} 0 -1 withscores] {
+ assert {$score >= $oldscore}
+ set oldscore $score
+ }
+ }
+
+ test "ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE error if using WITHSCORES " {
+ assert_error "*ERR*syntax*" {r zunionstore foo{t} 2 zsetd{t} zsetf{t} withscores}
+ assert_error "*ERR*syntax*" {r zinterstore foo{t} 2 zsetd{t} zsetf{t} withscores}
+ assert_error "*ERR*syntax*" {r zdiffstore foo{t} 2 zsetd{t} zsetf{t} withscores}
+ }
+
+ test {ZMSCORE retrieve} {
+ r del zmscoretest
+ r zadd zmscoretest 10 x
+ r zadd zmscoretest 20 y
+
+ r zmscore zmscoretest x y
+ } {10 20}
+
+ test {ZMSCORE retrieve from empty set} {
+ r del zmscoretest
+
+ r zmscore zmscoretest x y
+ } {{} {}}
+
+ test {ZMSCORE retrieve with missing member} {
+ r del zmscoretest
+ r zadd zmscoretest 10 x
+
+ r zmscore zmscoretest x y
+ } {10 {}}
+
+ test {ZMSCORE retrieve single member} {
+ r del zmscoretest
+ r zadd zmscoretest 10 x
+ r zadd zmscoretest 20 y
+
+ r zmscore zmscoretest x
+ } {10}
+
+ test {ZMSCORE retrieve requires one or more members} {
+ r del zmscoretest
+ r zadd zmscoretest 10 x
+ r zadd zmscoretest 20 y
+
+ catch {r zmscore zmscoretest} e
+ assert_match {*ERR*wrong*number*arg*} $e
+ }
+
+ test "ZSET commands don't accept the empty strings as valid score" {
+ assert_error "*not*float*" {r zadd myzset "" abc}
+ }
+
+ test "zunionInterDiffGenericCommand at least 1 input key" {
+ assert_error {*at least 1 input key * 'zunion' command} {r zunion 0 key{t}}
+ assert_error {*at least 1 input key * 'zunionstore' command} {r zunionstore dst_key{t} 0 key{t}}
+ assert_error {*at least 1 input key * 'zinter' command} {r zinter 0 key{t}}
+ assert_error {*at least 1 input key * 'zinterstore' command} {r zinterstore dst_key{t} 0 key{t}}
+ assert_error {*at least 1 input key * 'zdiff' command} {r zdiff 0 key{t}}
+ assert_error {*at least 1 input key * 'zdiffstore' command} {r zdiffstore dst_key{t} 0 key{t}}
+ assert_error {*at least 1 input key * 'zintercard' command} {r zintercard 0 key{t}}
+ }
+
+ proc stressers {encoding} {
+ set original_max_entries [lindex [r config get zset-max-ziplist-entries] 1]
+ set original_max_value [lindex [r config get zset-max-ziplist-value] 1]
+ if {$encoding == "listpack"} {
+ # Little extra to allow proper fuzzing in the sorting stresser
+ r config set zset-max-ziplist-entries 256
+ r config set zset-max-ziplist-value 64
+ set elements 128
+ } elseif {$encoding == "skiplist"} {
+ r config set zset-max-ziplist-entries 0
+ r config set zset-max-ziplist-value 0
+ if {$::accurate} {set elements 1000} else {set elements 100}
+ } else {
+ puts "Unknown sorted set encoding"
+ exit
+ }
+
+ test "ZSCORE - $encoding" {
+ r del zscoretest
+ set aux {}
+ for {set i 0} {$i < $elements} {incr i} {
+ set score [expr rand()]
+ lappend aux $score
+ r zadd zscoretest $score $i
+ }
+
+ assert_encoding $encoding zscoretest
+ for {set i 0} {$i < $elements} {incr i} {
+ # If an IEEE 754 double-precision number is converted to a decimal string with at
+ # least 17 significant digits (reply of zscore), and then converted back to double-precision representation,
+ # the final result replied via zscore command must match the original number present on the $aux list.
+ # Given Tcl is mostly very relaxed about types (everything is a string) we need to use expr to convert a string to float.
+ assert_equal [expr [lindex $aux $i]] [expr [r zscore zscoretest $i]]
+ }
+ }
+
+ test "ZMSCORE - $encoding" {
+ r del zscoretest
+ set aux {}
+ for {set i 0} {$i < $elements} {incr i} {
+ set score [expr rand()]
+ lappend aux $score
+ r zadd zscoretest $score $i
+ }
+
+ assert_encoding $encoding zscoretest
+ for {set i 0} {$i < $elements} {incr i} {
+ # Check above notes on IEEE 754 double-precision comparison
+ assert_equal [expr [lindex $aux $i]] [expr [r zscore zscoretest $i]]
+ }
+ }
+
+ test "ZSCORE after a DEBUG RELOAD - $encoding" {
+ r del zscoretest
+ set aux {}
+ for {set i 0} {$i < $elements} {incr i} {
+ set score [expr rand()]
+ lappend aux $score
+ r zadd zscoretest $score $i
+ }
+
+ r debug reload
+ assert_encoding $encoding zscoretest
+ for {set i 0} {$i < $elements} {incr i} {
+ # Check above notes on IEEE 754 double-precision comparison
+ assert_equal [expr [lindex $aux $i]] [expr [r zscore zscoretest $i]]
+ }
+ } {} {needs:debug}
+
+ test "ZSET sorting stresser - $encoding" {
+ set delta 0
+ for {set test 0} {$test < 2} {incr test} {
+ unset -nocomplain auxarray
+ array set auxarray {}
+ set auxlist {}
+ r del myzset
+ for {set i 0} {$i < $elements} {incr i} {
+ if {$test == 0} {
+ set score [expr rand()]
+ } else {
+ set score [expr int(rand()*10)]
+ }
+ set auxarray($i) $score
+ r zadd myzset $score $i
+ # Random update
+ if {[expr rand()] < .2} {
+ set j [expr int(rand()*1000)]
+ if {$test == 0} {
+ set score [expr rand()]
+ } else {
+ set score [expr int(rand()*10)]
+ }
+ set auxarray($j) $score
+ r zadd myzset $score $j
+ }
+ }
+ foreach {item score} [array get auxarray] {
+ lappend auxlist [list $score $item]
+ }
+ set sorted [lsort -command zlistAlikeSort $auxlist]
+ set auxlist {}
+ foreach x $sorted {
+ lappend auxlist [lindex $x 1]
+ }
+
+ assert_encoding $encoding myzset
+ set fromredis [r zrange myzset 0 -1]
+ set delta 0
+ for {set i 0} {$i < [llength $fromredis]} {incr i} {
+ if {[lindex $fromredis $i] != [lindex $auxlist $i]} {
+ incr delta
+ }
+ }
+ }
+ assert_equal 0 $delta
+ }
+
+ test "ZRANGEBYSCORE fuzzy test, 100 ranges in $elements element sorted set - $encoding" {
+ set err {}
+ r del zset
+ for {set i 0} {$i < $elements} {incr i} {
+ r zadd zset [expr rand()] $i
+ }
+
+ assert_encoding $encoding zset
+ for {set i 0} {$i < 100} {incr i} {
+ set min [expr rand()]
+ set max [expr rand()]
+ if {$min > $max} {
+ set aux $min
+ set min $max
+ set max $aux
+ }
+ set low [r zrangebyscore zset -inf $min]
+ set ok [r zrangebyscore zset $min $max]
+ set high [r zrangebyscore zset $max +inf]
+ set lowx [r zrangebyscore zset -inf ($min]
+ set okx [r zrangebyscore zset ($min ($max]
+ set highx [r zrangebyscore zset ($max +inf]
+
+ if {[r zcount zset -inf $min] != [llength $low]} {
+ append err "Error, len does not match zcount\n"
+ }
+ if {[r zcount zset $min $max] != [llength $ok]} {
+ append err "Error, len does not match zcount\n"
+ }
+ if {[r zcount zset $max +inf] != [llength $high]} {
+ append err "Error, len does not match zcount\n"
+ }
+ if {[r zcount zset -inf ($min] != [llength $lowx]} {
+ append err "Error, len does not match zcount\n"
+ }
+ if {[r zcount zset ($min ($max] != [llength $okx]} {
+ append err "Error, len does not match zcount\n"
+ }
+ if {[r zcount zset ($max +inf] != [llength $highx]} {
+ append err "Error, len does not match zcount\n"
+ }
+
+ foreach x $low {
+ set score [r zscore zset $x]
+ if {$score > $min} {
+ append err "Error, score for $x is $score > $min\n"
+ }
+ }
+ foreach x $lowx {
+ set score [r zscore zset $x]
+ if {$score >= $min} {
+ append err "Error, score for $x is $score >= $min\n"
+ }
+ }
+ foreach x $ok {
+ set score [r zscore zset $x]
+ if {$score < $min || $score > $max} {
+ append err "Error, score for $x is $score outside $min-$max range\n"
+ }
+ }
+ foreach x $okx {
+ set score [r zscore zset $x]
+ if {$score <= $min || $score >= $max} {
+ append err "Error, score for $x is $score outside $min-$max open range\n"
+ }
+ }
+ foreach x $high {
+ set score [r zscore zset $x]
+ if {$score < $max} {
+ append err "Error, score for $x is $score < $max\n"
+ }
+ }
+ foreach x $highx {
+ set score [r zscore zset $x]
+ if {$score <= $max} {
+ append err "Error, score for $x is $score <= $max\n"
+ }
+ }
+ }
+ assert_equal {} $err
+ }
+
+ test "ZRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" {
+ set lexset {}
+ r del zset
+ for {set j 0} {$j < $elements} {incr j} {
+ set e [randstring 0 30 alpha]
+ lappend lexset $e
+ r zadd zset 0 $e
+ }
+ set lexset [lsort -unique $lexset]
+ for {set j 0} {$j < 100} {incr j} {
+ set min [randstring 0 30 alpha]
+ set max [randstring 0 30 alpha]
+ set mininc [randomInt 2]
+ set maxinc [randomInt 2]
+ if {$mininc} {set cmin "\[$min"} else {set cmin "($min"}
+ if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"}
+ set rev [randomInt 2]
+ if {$rev} {
+ set cmd zrevrangebylex
+ } else {
+ set cmd zrangebylex
+ }
+
+ # Make sure data is the same in both sides
+ assert {[r zrange zset 0 -1] eq $lexset}
+
+ # Get the Redis output
+ set output [r $cmd zset $cmin $cmax]
+ if {$rev} {
+ set outlen [r zlexcount zset $cmax $cmin]
+ } else {
+ set outlen [r zlexcount zset $cmin $cmax]
+ }
+
+ # Compute the same output via Tcl
+ set o {}
+ set copy $lexset
+ if {(!$rev && [string compare $min $max] > 0) ||
+ ($rev && [string compare $max $min] > 0)} {
+ # Empty output when ranges are inverted.
+ } else {
+ if {$rev} {
+ # Invert the Tcl array using Redis itself.
+ set copy [r zrevrange zset 0 -1]
+ # Invert min / max as well
+ lassign [list $min $max $mininc $maxinc] \
+ max min maxinc mininc
+ }
+ foreach e $copy {
+ set mincmp [string compare $e $min]
+ set maxcmp [string compare $e $max]
+ if {
+ ($mininc && $mincmp >= 0 || !$mininc && $mincmp > 0)
+ &&
+ ($maxinc && $maxcmp <= 0 || !$maxinc && $maxcmp < 0)
+ } {
+ lappend o $e
+ }
+ }
+ }
+ assert {$o eq $output}
+ assert {$outlen eq [llength $output]}
+ }
+ }
+
+ test "ZREMRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" {
+ set lexset {}
+ r del zset{t} zsetcopy{t}
+ for {set j 0} {$j < $elements} {incr j} {
+ set e [randstring 0 30 alpha]
+ lappend lexset $e
+ r zadd zset{t} 0 $e
+ }
+ set lexset [lsort -unique $lexset]
+ for {set j 0} {$j < 100} {incr j} {
+ # Copy...
+ r zunionstore zsetcopy{t} 1 zset{t}
+ set lexsetcopy $lexset
+
+ set min [randstring 0 30 alpha]
+ set max [randstring 0 30 alpha]
+ set mininc [randomInt 2]
+ set maxinc [randomInt 2]
+ if {$mininc} {set cmin "\[$min"} else {set cmin "($min"}
+ if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"}
+
+ # Make sure data is the same in both sides
+ assert {[r zrange zset{t} 0 -1] eq $lexset}
+
+ # Get the range we are going to remove
+ set torem [r zrangebylex zset{t} $cmin $cmax]
+ set toremlen [r zlexcount zset{t} $cmin $cmax]
+ r zremrangebylex zsetcopy{t} $cmin $cmax
+ set output [r zrange zsetcopy{t} 0 -1]
+
+ # Remove the range with Tcl from the original list
+ if {$toremlen} {
+ set first [lsearch -exact $lexsetcopy [lindex $torem 0]]
+ set last [expr {$first+$toremlen-1}]
+ set lexsetcopy [lreplace $lexsetcopy $first $last]
+ }
+ assert {$lexsetcopy eq $output}
+ }
+ }
+
+ test "ZSETs skiplist implementation backlink consistency test - $encoding" {
+ set diff 0
+ for {set j 0} {$j < $elements} {incr j} {
+ r zadd myzset [expr rand()] "Element-$j"
+ r zrem myzset "Element-[expr int(rand()*$elements)]"
+ }
+
+ assert_encoding $encoding myzset
+ set l1 [r zrange myzset 0 -1]
+ set l2 [r zrevrange myzset 0 -1]
+ for {set j 0} {$j < [llength $l1]} {incr j} {
+ if {[lindex $l1 $j] ne [lindex $l2 end-$j]} {
+ incr diff
+ }
+ }
+ assert_equal 0 $diff
+ }
+
+ test "ZSETs ZRANK augmented skip list stress testing - $encoding" {
+ set err {}
+ r del myzset
+ for {set k 0} {$k < 2000} {incr k} {
+ set i [expr {$k % $elements}]
+ if {[expr rand()] < .2} {
+ r zrem myzset $i
+ } else {
+ set score [expr rand()]
+ r zadd myzset $score $i
+ assert_encoding $encoding myzset
+ }
+
+ set card [r zcard myzset]
+ if {$card > 0} {
+ set index [randomInt $card]
+ set ele [lindex [r zrange myzset $index $index] 0]
+ set rank [r zrank myzset $ele]
+ if {$rank != $index} {
+ set err "$ele RANK is wrong! ($rank != $index)"
+ break
+ }
+ }
+ }
+ assert_equal {} $err
+ }
+
+ foreach {pop} {BZPOPMIN BZMPOP_MIN} {
+ test "$pop, ZADD + DEL should not awake blocked client" {
+ set rd [redis_deferring_client]
+ r del zset
+
+ bzpop_command $rd $pop zset 0
+ wait_for_blocked_client
+
+ r multi
+ r zadd zset 0 foo
+ r del zset
+ r exec
+ r del zset
+ r zadd zset 1 bar
+
+ verify_pop_response $pop [$rd read] {zset bar 1} {zset {{bar 1}}}
+ $rd close
+ }
+
+ test "$pop, ZADD + DEL + SET should not awake blocked client" {
+ set rd [redis_deferring_client]
+ r del zset
+
+ bzpop_command $rd $pop zset 0
+ wait_for_blocked_client
+
+ r multi
+ r zadd zset 0 foo
+ r del zset
+ r set zset foo
+ r exec
+ r del zset
+ r zadd zset 1 bar
+
+ verify_pop_response $pop [$rd read] {zset bar 1} {zset {{bar 1}}}
+ $rd close
+ }
+ }
+
+ test "BZPOPMIN with same key multiple times should work" {
+ set rd [redis_deferring_client]
+ r del z1{t} z2{t}
+
+ # Data arriving after the BZPOPMIN.
+ $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0
+ wait_for_blocked_client
+ r zadd z1{t} 0 a
+ assert_equal [$rd read] {z1{t} a 0}
+ $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0
+ wait_for_blocked_client
+ r zadd z2{t} 1 b
+ assert_equal [$rd read] {z2{t} b 1}
+
+ # Data already there.
+ r zadd z1{t} 0 a
+ r zadd z2{t} 1 b
+ $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0
+ assert_equal [$rd read] {z1{t} a 0}
+ $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0
+ assert_equal [$rd read] {z2{t} b 1}
+ $rd close
+ }
+
+ foreach {pop} {BZPOPMIN BZMPOP_MIN} {
+ test "MULTI/EXEC is isolated from the point of view of $pop" {
+ set rd [redis_deferring_client]
+ r del zset
+
+ bzpop_command $rd $pop zset 0
+ wait_for_blocked_client
+
+ r multi
+ r zadd zset 0 a
+ r zadd zset 1 b
+ r zadd zset 2 c
+ r exec
+
+ verify_pop_response $pop [$rd read] {zset a 0} {zset {{a 0}}}
+ $rd close
+ }
+
+ test "$pop with variadic ZADD" {
+ set rd [redis_deferring_client]
+ r del zset
+ if {$::valgrind} {after 100}
+ bzpop_command $rd $pop zset 0
+ wait_for_blocked_client
+ if {$::valgrind} {after 100}
+ assert_equal 2 [r zadd zset -1 foo 1 bar]
+ if {$::valgrind} {after 100}
+ verify_pop_response $pop [$rd read] {zset foo -1} {zset {{foo -1}}}
+ assert_equal {bar} [r zrange zset 0 -1]
+ $rd close
+ }
+
+ test "$pop with zero timeout should block indefinitely" {
+ set rd [redis_deferring_client]
+ r del zset
+ bzpop_command $rd $pop zset 0
+ wait_for_blocked_client
+ after 1000
+ r zadd zset 0 foo
+ verify_pop_response $pop [$rd read] {zset foo 0} {zset {{foo 0}}}
+ $rd close
+ }
+ }
+
+ r config set zset-max-ziplist-entries $original_max_entries
+ r config set zset-max-ziplist-value $original_max_value
+ }
+
+ tags {"slow"} {
+ stressers listpack
+ stressers skiplist
+ }
+
+ test "BZPOP/BZMPOP against wrong type" {
+ r set foo{t} bar
+ assert_error "*WRONGTYPE*" {r bzpopmin foo{t} 1}
+ assert_error "*WRONGTYPE*" {r bzpopmax foo{t} 1}
+
+ assert_error "*WRONGTYPE*" {r bzmpop 1 1 foo{t} min}
+ assert_error "*WRONGTYPE*" {r bzmpop 1 1 foo{t} max}
+ assert_error "*WRONGTYPE*" {r bzmpop 1 1 foo{t} min count 10}
+
+ r del foo{t}
+ r set foo2{t} bar
+ assert_error "*WRONGTYPE*" {r bzmpop 1 2 foo{t} foo2{t} min}
+ assert_error "*WRONGTYPE*" {r bzmpop 1 2 foo2{t} foo{t} max count 1}
+ }
+
+ test "BZMPOP with illegal argument" {
+ assert_error "ERR wrong number of arguments for 'bzmpop' command" {r bzmpop}
+ assert_error "ERR wrong number of arguments for 'bzmpop' command" {r bzmpop 0 1}
+ assert_error "ERR wrong number of arguments for 'bzmpop' command" {r bzmpop 0 1 myzset{t}}
+
+ assert_error "ERR numkeys*" {r bzmpop 1 0 myzset{t} MIN}
+ assert_error "ERR numkeys*" {r bzmpop 1 a myzset{t} MIN}
+ assert_error "ERR numkeys*" {r bzmpop 1 -1 myzset{t} MAX}
+
+ assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} bad_where}
+ assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} MIN bar_arg}
+ assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} MAX MIN}
+ assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} COUNT}
+ assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} MIN COUNT 1 COUNT 2}
+ assert_error "ERR syntax error*" {r bzmpop 1 2 myzset{t} myzset2{t} bad_arg}
+
+ assert_error "ERR count*" {r bzmpop 1 1 myzset{t} MIN COUNT 0}
+ assert_error "ERR count*" {r bzmpop 1 1 myzset{t} MAX COUNT a}
+ assert_error "ERR count*" {r bzmpop 1 1 myzset{t} MIN COUNT -1}
+ assert_error "ERR count*" {r bzmpop 1 2 myzset{t} myzset2{t} MAX COUNT -1}
+ }
+
+ test "BZMPOP with multiple blocked clients" {
+ set rd1 [redis_deferring_client]
+ set rd2 [redis_deferring_client]
+ set rd3 [redis_deferring_client]
+ set rd4 [redis_deferring_client]
+ r del myzset{t} myzset2{t}
+
+ $rd1 bzmpop 0 2 myzset{t} myzset2{t} min count 1
+ wait_for_blocked_clients_count 1
+ $rd2 bzmpop 0 2 myzset{t} myzset2{t} max count 10
+ wait_for_blocked_clients_count 2
+ $rd3 bzmpop 0 2 myzset{t} myzset2{t} min count 10
+ wait_for_blocked_clients_count 3
+ $rd4 bzmpop 0 2 myzset{t} myzset2{t} max count 1
+ wait_for_blocked_clients_count 4
+
+ r multi
+ r zadd myzset{t} 1 a 2 b 3 c 4 d 5 e
+ r zadd myzset2{t} 1 a 2 b 3 c 4 d 5 e
+ r exec
+
+ assert_equal {myzset{t} {{a 1}}} [$rd1 read]
+ assert_equal {myzset{t} {{e 5} {d 4} {c 3} {b 2}}} [$rd2 read]
+ assert_equal {myzset2{t} {{a 1} {b 2} {c 3} {d 4} {e 5}}} [$rd3 read]
+
+ r zadd myzset2{t} 1 a 2 b 3 c
+ assert_equal {myzset2{t} {{c 3}}} [$rd4 read]
+
+ r del myzset{t} myzset2{t}
+ $rd1 close
+ $rd2 close
+ $rd3 close
+ $rd4 close
+ }
+
+ test "BZMPOP propagate as pop with count command to replica" {
+ set rd [redis_deferring_client]
+ set repl [attach_to_replication_stream]
+
+ # BZMPOP without being blocked.
+ r zadd myzset{t} 1 one 2 two 3 three
+ r zadd myzset2{t} 4 four 5 five 6 six
+ r bzmpop 0 1 myzset{t} min
+ r bzmpop 0 2 myzset{t} myzset2{t} max count 10
+ r bzmpop 0 2 myzset{t} myzset2{t} max count 10
+
+ # BZMPOP that gets blocked.
+ $rd bzmpop 0 1 myzset{t} min count 1
+ wait_for_blocked_client
+ r zadd myzset{t} 1 one
+ $rd bzmpop 0 2 myzset{t} myzset2{t} min count 5
+ wait_for_blocked_client
+ r zadd myzset{t} 1 one 2 two 3 three
+ $rd bzmpop 0 2 myzset{t} myzset2{t} max count 10
+ wait_for_blocked_client
+ r zadd myzset2{t} 4 four 5 five 6 six
+
+ # Released on timeout.
+ assert_equal {} [r bzmpop 0.01 1 myzset{t} max count 10]
+ r set foo{t} bar ;# something else to propagate after, so we can make sure the above pop didn't.
+
+ $rd close
+
+ assert_replication_stream $repl {
+ {select *}
+ {zadd myzset{t} 1 one 2 two 3 three}
+ {zadd myzset2{t} 4 four 5 five 6 six}
+ {zpopmin myzset{t} 1}
+ {zpopmax myzset{t} 2}
+ {zpopmax myzset2{t} 3}
+ {zadd myzset{t} 1 one}
+ {zpopmin myzset{t} 1}
+ {zadd myzset{t} 1 one 2 two 3 three}
+ {zpopmin myzset{t} 3}
+ {zadd myzset2{t} 4 four 5 five 6 six}
+ {zpopmax myzset2{t} 3}
+ {set foo{t} bar}
+ }
+ close_replication_stream $repl
+ } {} {needs:repl}
+
+ test "BZMPOP should not blocks on non key arguments - #10762" {
+ set rd1 [redis_deferring_client]
+ set rd2 [redis_deferring_client]
+ r del myzset myzset2 myzset3
+
+ $rd1 bzmpop 0 1 myzset min count 10
+ wait_for_blocked_clients_count 1
+ $rd2 bzmpop 0 2 myzset2 myzset3 max count 10
+ wait_for_blocked_clients_count 2
+
+ # These non-key keys will not unblock the clients.
+ r zadd 0 100 timeout_value
+ r zadd 1 200 numkeys_value
+ r zadd min 300 min_token
+ r zadd max 400 max_token
+ r zadd count 500 count_token
+ r zadd 10 600 count_value
+
+ r zadd myzset 1 zset
+ r zadd myzset3 1 zset3
+ assert_equal {myzset {{zset 1}}} [$rd1 read]
+ assert_equal {myzset3 {{zset3 1}}} [$rd2 read]
+
+ $rd1 close
+ $rd2 close
+ } {0} {cluster:skip}
+
+ test {ZSET skiplist order consistency when elements are moved} {
+ set original_max [lindex [r config get zset-max-ziplist-entries] 1]
+ r config set zset-max-ziplist-entries 0
+ for {set times 0} {$times < 10} {incr times} {
+ r del zset
+ for {set j 0} {$j < 1000} {incr j} {
+ r zadd zset [randomInt 50] ele-[randomInt 10]
+ }
+
+ # Make sure that element ordering is correct
+ set prev_element {}
+ set prev_score -1
+ foreach {element score} [r zrange zset 0 -1 WITHSCORES] {
+ # Assert that elements are in increasing ordering
+ assert {
+ $prev_score < $score ||
+ ($prev_score == $score &&
+ [string compare $prev_element $element] == -1)
+ }
+ set prev_element $element
+ set prev_score $score
+ }
+ }
+ r config set zset-max-ziplist-entries $original_max
+ }
+
+ test {ZRANGESTORE basic} {
+ r flushall
+ r zadd z1{t} 1 a 2 b 3 c 4 d
+ set res [r zrangestore z2{t} z1{t} 0 -1]
+ assert_equal $res 4
+ r zrange z2{t} 0 -1 withscores
+ } {a 1 b 2 c 3 d 4}
+
+ test {ZRANGESTORE RESP3} {
+ r hello 3
+ assert_equal [r zrange z2{t} 0 -1 withscores] {{a 1.0} {b 2.0} {c 3.0} {d 4.0}}
+ r hello 2
+ }
+
+ test {ZRANGESTORE range} {
+ set res [r zrangestore z2{t} z1{t} 1 2]
+ assert_equal $res 2
+ r zrange z2{t} 0 -1 withscores
+ } {b 2 c 3}
+
+ test {ZRANGESTORE BYLEX} {
+ set res [r zrangestore z2{t} z1{t} \[b \[c BYLEX]
+ assert_equal $res 2
+ r zrange z2{t} 0 -1 withscores
+ } {b 2 c 3}
+
+ test {ZRANGESTORE BYSCORE} {
+ set res [r zrangestore z2{t} z1{t} 1 2 BYSCORE]
+ assert_equal $res 2
+ r zrange z2{t} 0 -1 withscores
+ } {a 1 b 2}
+
+ test {ZRANGESTORE BYSCORE LIMIT} {
+ set res [r zrangestore z2{t} z1{t} 0 5 BYSCORE LIMIT 0 2]
+ assert_equal $res 2
+ r zrange z2{t} 0 -1 withscores
+ } {a 1 b 2}
+
+ test {ZRANGESTORE BYSCORE REV LIMIT} {
+ set res [r zrangestore z2{t} z1{t} 5 0 BYSCORE REV LIMIT 0 2]
+ assert_equal $res 2
+ r zrange z2{t} 0 -1 withscores
+ } {c 3 d 4}
+
+ test {ZRANGE BYSCORE REV LIMIT} {
+ r zrange z1{t} 5 0 BYSCORE REV LIMIT 0 2 WITHSCORES
+ } {d 4 c 3}
+
+ test {ZRANGESTORE - src key missing} {
+ set res [r zrangestore z2{t} missing{t} 0 -1]
+ assert_equal $res 0
+ r exists z2{t}
+ } {0}
+
+ test {ZRANGESTORE - src key wrong type} {
+ r zadd z2{t} 1 a
+ r set foo{t} bar
+ assert_error "*WRONGTYPE*" {r zrangestore z2{t} foo{t} 0 -1}
+ r zrange z2{t} 0 -1
+ } {a}
+
+ test {ZRANGESTORE - empty range} {
+ set res [r zrangestore z2{t} z1{t} 5 6]
+ assert_equal $res 0
+ r exists z2{t}
+ } {0}
+
+ test {ZRANGESTORE BYLEX - empty range} {
+ set res [r zrangestore z2{t} z1{t} \[f \[g BYLEX]
+ assert_equal $res 0
+ r exists z2{t}
+ } {0}
+
+ test {ZRANGESTORE BYSCORE - empty range} {
+ set res [r zrangestore z2{t} z1{t} 5 6 BYSCORE]
+ assert_equal $res 0
+ r exists z2{t}
+ } {0}
+
+ test {ZRANGE BYLEX} {
+ r zrange z1{t} \[b \[c BYLEX
+ } {b c}
+
+ test {ZRANGESTORE invalid syntax} {
+ catch {r zrangestore z2{t} z1{t} 0 -1 limit 1 2} err
+ assert_match "*syntax*" $err
+ catch {r zrangestore z2{t} z1{t} 0 -1 WITHSCORES} err
+ assert_match "*syntax*" $err
+ }
+
+ test {ZRANGESTORE with zset-max-listpack-entries 0 #10767 case} {
+ set original_max [lindex [r config get zset-max-listpack-entries] 1]
+ r config set zset-max-listpack-entries 0
+ r del z1{t} z2{t}
+ r zadd z1{t} 1 a
+ assert_encoding skiplist z1{t}
+ assert_equal 1 [r zrangestore z2{t} z1{t} 0 -1]
+ assert_encoding skiplist z2{t}
+ r config set zset-max-listpack-entries $original_max
+ }
+
+ test {ZRANGESTORE with zset-max-listpack-entries 1 dst key should use skiplist encoding} {
+ set original_max [lindex [r config get zset-max-listpack-entries] 1]
+ r config set zset-max-listpack-entries 1
+ r del z1{t} z2{t} z3{t}
+ r zadd z1{t} 1 a 2 b
+ assert_equal 1 [r zrangestore z2{t} z1{t} 0 0]
+ assert_encoding listpack z2{t}
+ assert_equal 2 [r zrangestore z3{t} z1{t} 0 1]
+ assert_encoding skiplist z3{t}
+ r config set zset-max-listpack-entries $original_max
+ }
+
+ test {ZRANGE invalid syntax} {
+ catch {r zrange z1{t} 0 -1 limit 1 2} err
+ assert_match "*syntax*" $err
+ catch {r zrange z1{t} 0 -1 BYLEX WITHSCORES} err
+ assert_match "*syntax*" $err
+ catch {r zrevrange z1{t} 0 -1 BYSCORE} err
+ assert_match "*syntax*" $err
+ catch {r zrangebyscore z1{t} 0 -1 REV} err
+ assert_match "*syntax*" $err
+ }
+
+ proc get_keys {l} {
+ set res {}
+ foreach {score key} $l {
+ lappend res $key
+ }
+ return $res
+ }
+
+ # Check whether the zset members belong to the zset
+ proc check_member {mydict res} {
+ foreach ele $res {
+ assert {[dict exists $mydict $ele]}
+ }
+ }
+
+ # Check whether the zset members and score belong to the zset
+ proc check_member_and_score {mydict res} {
+ foreach {key val} $res {
+ assert_equal $val [dict get $mydict $key]
+ }
+ }
+
+ foreach {type contents} "listpack {1 a 2 b 3 c} skiplist {1 a 2 b 3 [randstring 70 90 alpha]}" {
+ set original_max_value [lindex [r config get zset-max-ziplist-value] 1]
+ r config set zset-max-ziplist-value 10
+ create_zset myzset $contents
+ assert_encoding $type myzset
+
+ test "ZRANDMEMBER - $type" {
+ unset -nocomplain myzset
+ array set myzset {}
+ for {set i 0} {$i < 100} {incr i} {
+ set key [r zrandmember myzset]
+ set myzset($key) 1
+ }
+ assert_equal [lsort [get_keys $contents]] [lsort [array names myzset]]
+ }
+ r config set zset-max-ziplist-value $original_max_value
+ }
+
+ test "ZRANDMEMBER with RESP3" {
+ r hello 3
+ set res [r zrandmember myzset 3 withscores]
+ assert_equal [llength $res] 3
+ assert_equal [llength [lindex $res 1]] 2
+
+ set res [r zrandmember myzset 3]
+ assert_equal [llength $res] 3
+ assert_equal [llength [lindex $res 1]] 1
+ r hello 2
+ }
+
+ test "ZRANDMEMBER count of 0 is handled correctly" {
+ r zrandmember myzset 0
+ } {}
+
+ test "ZRANDMEMBER with <count> against non existing key" {
+ r zrandmember nonexisting_key 100
+ } {}
+
+ test "ZRANDMEMBER count overflow" {
+ r zadd myzset 0 a
+ assert_error {*value is out of range*} {r zrandmember myzset -9223372036854770000 withscores}
+ assert_error {*value is out of range*} {r zrandmember myzset -9223372036854775808 withscores}
+ assert_error {*value is out of range*} {r zrandmember myzset -9223372036854775808}
+ } {}
+
+ # Make sure we can distinguish between an empty array and a null response
+ r readraw 1
+
+ test "ZRANDMEMBER count of 0 is handled correctly - emptyarray" {
+ r zrandmember myzset 0
+ } {*0}
+
+ test "ZRANDMEMBER with <count> against non existing key - emptyarray" {
+ r zrandmember nonexisting_key 100
+ } {*0}
+
+ r readraw 0
+
+ foreach {type contents} "
+ skiplist {1 a 2 b 3 c 4 d 5 e 6 f 7 g 7 h 9 i 10 [randstring 70 90 alpha]}
+ listpack {1 a 2 b 3 c 4 d 5 e 6 f 7 g 7 h 9 i 10 j} " {
+ test "ZRANDMEMBER with <count> - $type" {
+ set original_max_value [lindex [r config get zset-max-ziplist-value] 1]
+ r config set zset-max-ziplist-value 10
+ create_zset myzset $contents
+ assert_encoding $type myzset
+
+ # create a dict for easy lookup
+ set mydict [dict create {*}[r zrange myzset 0 -1 withscores]]
+
+ # We'll stress different parts of the code, see the implementation
+ # of ZRANDMEMBER for more information, but basically there are
+ # four different code paths.
+
+ # PATH 1: Use negative count.
+
+ # 1) Check that it returns repeated elements with and without values.
+ # 2) Check that all the elements actually belong to the original zset.
+ set res [r zrandmember myzset -20]
+ assert_equal [llength $res] 20
+ check_member $mydict $res
+
+ set res [r zrandmember myzset -1001]
+ assert_equal [llength $res] 1001
+ check_member $mydict $res
+
+ # again with WITHSCORES
+ set res [r zrandmember myzset -20 withscores]
+ assert_equal [llength $res] 40
+ check_member_and_score $mydict $res
+
+ set res [r zrandmember myzset -1001 withscores]
+ assert_equal [llength $res] 2002
+ check_member_and_score $mydict $res
+
+ # Test random uniform distribution
+ # df = 9, 40 means 0.00001 probability
+ set res [r zrandmember myzset -1000]
+ assert_lessthan [chi_square_value $res] 40
+ check_member $mydict $res
+
+ # 3) Check that eventually all the elements are returned.
+ # Use both WITHSCORES and without
+ unset -nocomplain auxset
+ set iterations 1000
+ while {$iterations != 0} {
+ incr iterations -1
+ if {[expr {$iterations % 2}] == 0} {
+ set res [r zrandmember myzset -3 withscores]
+ foreach {key val} $res {
+ dict append auxset $key $val
+ }
+ } else {
+ set res [r zrandmember myzset -3]
+ foreach key $res {
+ dict append auxset $key
+ }
+ }
+ if {[lsort [dict keys $mydict]] eq
+ [lsort [dict keys $auxset]]} {
+ break;
+ }
+ }
+ assert {$iterations != 0}
+
+ # PATH 2: positive count (unique behavior) with requested size
+ # equal or greater than set size.
+ foreach size {10 20} {
+ set res [r zrandmember myzset $size]
+ assert_equal [llength $res] 10
+ assert_equal [lsort $res] [lsort [dict keys $mydict]]
+ check_member $mydict $res
+
+ # again with WITHSCORES
+ set res [r zrandmember myzset $size withscores]
+ assert_equal [llength $res] 20
+ assert_equal [lsort $res] [lsort $mydict]
+ check_member_and_score $mydict $res
+ }
+
+ # PATH 3: Ask almost as elements as there are in the set.
+ # In this case the implementation will duplicate the original
+ # set and will remove random elements up to the requested size.
+ #
+ # PATH 4: Ask a number of elements definitely smaller than
+ # the set size.
+ #
+ # We can test both the code paths just changing the size but
+ # using the same code.
+ foreach size {1 2 8} {
+ # 1) Check that all the elements actually belong to the
+ # original set.
+ set res [r zrandmember myzset $size]
+ assert_equal [llength $res] $size
+ check_member $mydict $res
+
+ # again with WITHSCORES
+ set res [r zrandmember myzset $size withscores]
+ assert_equal [llength $res] [expr {$size * 2}]
+ check_member_and_score $mydict $res
+
+ # 2) Check that eventually all the elements are returned.
+ # Use both WITHSCORES and without
+ unset -nocomplain auxset
+ unset -nocomplain allkey
+ set iterations [expr {1000 / $size}]
+ set all_ele_return false
+ while {$iterations != 0} {
+ incr iterations -1
+ if {[expr {$iterations % 2}] == 0} {
+ set res [r zrandmember myzset $size withscores]
+ foreach {key value} $res {
+ dict append auxset $key $value
+ lappend allkey $key
+ }
+ } else {
+ set res [r zrandmember myzset $size]
+ foreach key $res {
+ dict append auxset $key
+ lappend allkey $key
+ }
+ }
+ if {[lsort [dict keys $mydict]] eq
+ [lsort [dict keys $auxset]]} {
+ set all_ele_return true
+ }
+ }
+ assert_equal $all_ele_return true
+ # df = 9, 40 means 0.00001 probability
+ assert_lessthan [chi_square_value $allkey] 40
+ }
+ }
+ r config set zset-max-ziplist-value $original_max_value
+ }
+
+ test {zset score double range} {
+ set dblmax 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368.00000000000000000
+ r del zz
+ r zadd zz $dblmax dblmax
+ assert_encoding listpack zz
+ r zscore zz dblmax
+ } {1.7976931348623157e+308}
+
+ test {zunionInterDiffGenericCommand acts on SET and ZSET} {
+ r del set_small{t} set_big{t} zset_small{t} zset_big{t} zset_dest{t}
+
+ foreach set_type {intset listpack hashtable} {
+ # Restore all default configurations before each round of testing.
+ r config set set-max-intset-entries 512
+ r config set set-max-listpack-entries 128
+ r config set zset-max-listpack-entries 128
+
+ r del set_small{t} set_big{t}
+
+ if {$set_type == "intset"} {
+ r sadd set_small{t} 1 2 3
+ r sadd set_big{t} 1 2 3 4 5
+ assert_encoding intset set_small{t}
+ assert_encoding intset set_big{t}
+ } elseif {$set_type == "listpack"} {
+ # Add an "a" and then remove it, make sure the set is listpack encoding.
+ r sadd set_small{t} a 1 2 3
+ r sadd set_big{t} a 1 2 3 4 5
+ r srem set_small{t} a
+ r srem set_big{t} a
+ assert_encoding listpack set_small{t}
+ assert_encoding listpack set_big{t}
+ } elseif {$set_type == "hashtable"} {
+ r config set set-max-intset-entries 0
+ r config set set-max-listpack-entries 0
+ r sadd set_small{t} 1 2 3
+ r sadd set_big{t} 1 2 3 4 5
+ assert_encoding hashtable set_small{t}
+ assert_encoding hashtable set_big{t}
+ }
+
+ foreach zset_type {listpack skiplist} {
+ r del zset_small{t} zset_big{t}
+
+ if {$zset_type == "listpack"} {
+ r zadd zset_small{t} 1 1 2 2 3 3
+ r zadd zset_big{t} 1 1 2 2 3 3 4 4 5 5
+ assert_encoding listpack zset_small{t}
+ assert_encoding listpack zset_big{t}
+ } elseif {$zset_type == "skiplist"} {
+ r config set zset-max-listpack-entries 0
+ r zadd zset_small{t} 1 1 2 2 3 3
+ r zadd zset_big{t} 1 1 2 2 3 3 4 4 5 5
+ assert_encoding skiplist zset_small{t}
+ assert_encoding skiplist zset_big{t}
+ }
+
+ # Test one key is big and one key is small separately.
+ # The reason for this is because we will sort the sets from smallest to largest.
+ # So set one big key and one small key, then the test can cover more code paths.
+ foreach {small_or_big set_key zset_key} {
+ small set_small{t} zset_big{t}
+ big set_big{t} zset_small{t}
+ } {
+ # The result of these commands are not related to the order of the keys.
+ assert_equal {1 2 3 4 5} [lsort [r zunion 2 $set_key $zset_key]]
+ assert_equal {5} [r zunionstore zset_dest{t} 2 $set_key $zset_key]
+ assert_equal {1 2 3} [lsort [r zinter 2 $set_key $zset_key]]
+ assert_equal {3} [r zinterstore zset_dest{t} 2 $set_key $zset_key]
+ assert_equal {3} [r zintercard 2 $set_key $zset_key]
+
+ # The result of sdiff is related to the order of the keys.
+ if {$small_or_big == "small"} {
+ assert_equal {} [r zdiff 2 $set_key $zset_key]
+ assert_equal {0} [r zdiffstore zset_dest{t} 2 $set_key $zset_key]
+ } else {
+ assert_equal {4 5} [lsort [r zdiff 2 $set_key $zset_key]]
+ assert_equal {2} [r zdiffstore zset_dest{t} 2 $set_key $zset_key]
+ }
+ }
+ }
+ }
+
+ r config set set-max-intset-entries 512
+ r config set set-max-listpack-entries 128
+ r config set zset-max-listpack-entries 128
+ }
+
+ foreach type {single multiple single_multiple} {
+ test "ZADD overflows the maximum allowed elements in a listpack - $type" {
+ r del myzset
+
+ set max_entries 64
+ set original_max [lindex [r config get zset-max-listpack-entries] 1]
+ r config set zset-max-listpack-entries $max_entries
+
+ if {$type == "single"} {
+ # All are single zadd commands.
+ for {set i 0} {$i < $max_entries} {incr i} { r zadd myzset $i $i }
+ } elseif {$type == "multiple"} {
+ # One zadd command to add all elements.
+ set args {}
+ for {set i 0} {$i < $max_entries * 2} {incr i} { lappend args $i }
+ r zadd myzset {*}$args
+ } elseif {$type == "single_multiple"} {
+ # First one zadd adds an element (creates a key) and then one zadd adds all elements.
+ r zadd myzset 1 1
+ set args {}
+ for {set i 0} {$i < $max_entries * 2} {incr i} { lappend args $i }
+ r zadd myzset {*}$args
+ }
+
+ assert_encoding listpack myzset
+ assert_equal $max_entries [r zcard myzset]
+ assert_equal 1 [r zadd myzset 1 b]
+ assert_encoding skiplist myzset
+
+ r config set zset-max-listpack-entries $original_max
+ }
+ }
+}