summaryrefslogtreecommitdiffstats
path: root/tests/unit/bitops.tcl
blob: 1b7db407a3863f60811d8e136802b9bd2b0d39b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Compare Redis commands against Tcl implementations of the same commands.
proc count_bits s {
    binary scan $s b* bits
    string length [regsub -all {0} $bits {}]
}

# start end are bit index
proc count_bits_start_end {s start end} {
    binary scan $s B* bits
    string length [regsub -all {0} [string range $bits $start $end] {}]
}

proc simulate_bit_op {op args} {
    set maxlen 0
    set j 0
    set count [llength $args]
    foreach a $args {
        binary scan $a b* bits
        set b($j) $bits
        if {[string length $bits] > $maxlen} {
            set maxlen [string length $bits]
        }
        incr j
    }
    for {set j 0} {$j < $count} {incr j} {
        if {[string length $b($j)] < $maxlen} {
            append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
        }
    }
    set out {}
    for {set x 0} {$x < $maxlen} {incr x} {
        set bit [string range $b(0) $x $x]
        if {$op eq {not}} {set bit [expr {!$bit}]}
        for {set j 1} {$j < $count} {incr j} {
            set bit2 [string range $b($j) $x $x]
            switch $op {
                and {set bit [expr {$bit & $bit2}]}
                or  {set bit [expr {$bit | $bit2}]}
                xor {set bit [expr {$bit ^ $bit2}]}
            }
        }
        append out $bit
    }
    binary format b* $out
}

start_server {tags {"bitops"}} {
    test {BITCOUNT returns 0 against non existing key} {
        assert {[r bitcount no-key] == 0}
        assert {[r bitcount no-key 0 1000 bit] == 0}
    }

    test {BITCOUNT returns 0 with out of range indexes} {
        r set str "xxxx"
        assert {[r bitcount str 4 10] == 0}
        assert {[r bitcount str 32 87 bit] == 0}
    }

    test {BITCOUNT returns 0 with negative indexes where start > end} {
        r set str "xxxx"
        assert {[r bitcount str -6 -7] == 0}
        assert {[r bitcount str -6 -15 bit] == 0}
    }

    catch {unset num}
    foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
        incr num
        test "BITCOUNT against test vector #$num" {
            r set str $vec
            set count [count_bits $vec]
            assert {[r bitcount str] == $count}
            assert {[r bitcount str 0 -1 bit] == $count}
        }
    }

    test {BITCOUNT fuzzing without start/end} {
        for {set j 0} {$j < 100} {incr j} {
            set str [randstring 0 3000]
            r set str $str
            set count [count_bits $str]
            assert {[r bitcount str] == $count}
            assert {[r bitcount str 0 -1 bit] == $count}
        }
    }

    test {BITCOUNT fuzzing with start/end} {
        for {set j 0} {$j < 100} {incr j} {
            set str [randstring 0 3000]
            r set str $str
            set l [string length $str]
            set start [randomInt $l]
            set end [randomInt $l]
            if {$start > $end} {
                # Swap start and end
                lassign [list $end $start] start end
            }
            assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
        }

        for {set j 0} {$j < 100} {incr j} {
            set str [randstring 0 3000]
            r set str $str
            set l [expr [string length $str] * 8]
            set start [randomInt $l]
            set end [randomInt $l]
            if {$start > $end} {
                # Swap start and end
                lassign [list $end $start] start end
            }
            assert {[r bitcount str $start $end bit] == [count_bits_start_end $str $start $end]}
        }
    }

    test {BITCOUNT with start, end} {
        set s "foobar"
        r set s $s
        assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
        assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
        assert_equal [r bitcount s -2 1] [count_bits ""]
        assert_equal [r bitcount s 0 1000] [count_bits "foobar"]

        assert_equal [r bitcount s 0 -1 bit] [count_bits $s]
        assert_equal [r bitcount s 10 14 bit] [count_bits_start_end $s 10 14]
        assert_equal [r bitcount s 3 14 bit] [count_bits_start_end $s 3 14]
        assert_equal [r bitcount s 3 29 bit] [count_bits_start_end $s 3 29]
        assert_equal [r bitcount s 10 -34 bit] [count_bits_start_end $s 10 14]
        assert_equal [r bitcount s 3 -34 bit] [count_bits_start_end $s 3 14]
        assert_equal [r bitcount s 3 -19 bit] [count_bits_start_end $s 3 29]
        assert_equal [r bitcount s -2 1 bit] 0
        assert_equal [r bitcount s 0 1000 bit] [count_bits $s]
    }

    test {BITCOUNT syntax error #1} {
        catch {r bitcount s 0} e
        set e
    } {ERR *syntax*}

    test {BITCOUNT syntax error #2} {
        catch {r bitcount s 0 1 hello} e
        set e
    } {ERR *syntax*}

    test {BITCOUNT regression test for github issue #582} {
        r del foo
        r setbit foo 0 1
        if {[catch {r bitcount foo 0 4294967296} e]} {
            assert_match {*ERR*out of range*} $e
            set _ 1
        } else {
            set e
        }
    } {1}

    test {BITCOUNT misaligned prefix} {
        r del str
        r set str ab
        r bitcount str 1 -1
    } {3}

    test {BITCOUNT misaligned prefix + full words + remainder} {
        r del str
        r set str __PPxxxxxxxxxxxxxxxxRR__
        r bitcount str 2 -3
    } {74}

    test {BITOP NOT (empty string)} {
        r set s{t} ""
        r bitop not dest{t} s{t}
        r get dest{t}
    } {}

    test {BITOP NOT (known string)} {
        r set s{t} "\xaa\x00\xff\x55"
        r bitop not dest{t} s{t}
        r get dest{t}
    } "\x55\xff\x00\xaa"

    test {BITOP where dest and target are the same key} {
        r set s "\xaa\x00\xff\x55"
        r bitop not s s
        r get s
    } "\x55\xff\x00\xaa"

    test {BITOP AND|OR|XOR don't change the string with single input key} {
        r set a{t} "\x01\x02\xff"
        r bitop and res1{t} a{t}
        r bitop or  res2{t} a{t}
        r bitop xor res3{t} a{t}
        list [r get res1{t}] [r get res2{t}] [r get res3{t}]
    } [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]

    test {BITOP missing key is considered a stream of zero} {
        r set a{t} "\x01\x02\xff"
        r bitop and res1{t} no-suck-key{t} a{t}
        r bitop or  res2{t} no-suck-key{t} a{t} no-such-key{t}
        r bitop xor res3{t} no-such-key{t} a{t}
        list [r get res1{t}] [r get res2{t}] [r get res3{t}]
    } [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]

    test {BITOP shorter keys are zero-padded to the key with max length} {
        r set a{t} "\x01\x02\xff\xff"
        r set b{t} "\x01\x02\xff"
        r bitop and res1{t} a{t} b{t}
        r bitop or  res2{t} a{t} b{t}
        r bitop xor res3{t} a{t} b{t}
        list [r get res1{t}] [r get res2{t}] [r get res3{t}]
    } [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]

    foreach op {and or xor} {
        test "BITOP $op fuzzing" {
            for {set i 0} {$i < 10} {incr i} {
                r flushall
                set vec {}
                set veckeys {}
                set numvec [expr {[randomInt 10]+1}]
                for {set j 0} {$j < $numvec} {incr j} {
                    set str [randstring 0 1000]
                    lappend vec $str
                    lappend veckeys vector_$j{t}
                    r set vector_$j{t} $str
                }
                r bitop $op target{t} {*}$veckeys
                assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec]
            }
        }
    }

    test {BITOP NOT fuzzing} {
        for {set i 0} {$i < 10} {incr i} {
            r flushall
            set str [randstring 0 1000]
            r set str{t} $str
            r bitop not target{t} str{t}
            assert_equal [r get target{t}] [simulate_bit_op not $str]
        }
    }

    test {BITOP with integer encoded source objects} {
        r set a{t} 1
        r set b{t} 2
        r bitop xor dest{t} a{t} b{t} a{t}
        r get dest{t}
    } {2}

    test {BITOP with non string source key} {
        r del c{t}
        r set a{t} 1
        r set b{t} 2
        r lpush c{t} foo
        catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e
        set e
    } {WRONGTYPE*}

    test {BITOP with empty string after non empty string (issue #529)} {
        r flushdb
        r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
        r bitop or x{t} a{t} b{t}
    } {32}

    test {BITPOS bit=0 with empty key returns 0} {
        r del str
        assert {[r bitpos str 0] == 0}
        assert {[r bitpos str 0 0 -1 bit] == 0}
    }

    test {BITPOS bit=1 with empty key returns -1} {
        r del str
        assert {[r bitpos str 1] == -1}
        assert {[r bitpos str 1 0 -1] == -1}
    }

    test {BITPOS bit=0 with string less than 1 word works} {
        r set str "\xff\xf0\x00"
        assert {[r bitpos str 0] == 12}
        assert {[r bitpos str 0 0 -1 bit] == 12}
    }

    test {BITPOS bit=1 with string less than 1 word works} {
        r set str "\x00\x0f\x00"
        assert {[r bitpos str 1] == 12}
        assert {[r bitpos str 1 0 -1 bit] == 12}
    }

    test {BITPOS bit=0 starting at unaligned address} {
        r set str "\xff\xf0\x00"
        assert {[r bitpos str 0 1] == 12}
        assert {[r bitpos str 0 1 -1 bit] == 12}
    }

    test {BITPOS bit=1 starting at unaligned address} {
        r set str "\x00\x0f\xff"
        assert {[r bitpos str 1 1] == 12}
        assert {[r bitpos str 1 1 -1 bit] == 12}
    }

    test {BITPOS bit=0 unaligned+full word+reminder} {
        r del str
        r set str "\xff\xff\xff" ; # Prefix
        # Followed by two (or four in 32 bit systems) full words
        r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
        r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
        r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
        # First zero bit.
        r append str "\x0f"
        assert {[r bitpos str 0] == 216}
        assert {[r bitpos str 0 1] == 216}
        assert {[r bitpos str 0 2] == 216}
        assert {[r bitpos str 0 3] == 216}
        assert {[r bitpos str 0 4] == 216}
        assert {[r bitpos str 0 5] == 216}
        assert {[r bitpos str 0 6] == 216}
        assert {[r bitpos str 0 7] == 216}
        assert {[r bitpos str 0 8] == 216}

        assert {[r bitpos str 0 1 -1 bit] == 216}
        assert {[r bitpos str 0 9 -1 bit] == 216}
        assert {[r bitpos str 0 17 -1 bit] == 216}
        assert {[r bitpos str 0 25 -1 bit] == 216}
        assert {[r bitpos str 0 33 -1 bit] == 216}
        assert {[r bitpos str 0 41 -1 bit] == 216}
        assert {[r bitpos str 0 49 -1 bit] == 216}
        assert {[r bitpos str 0 57 -1 bit] == 216}
        assert {[r bitpos str 0 65 -1 bit] == 216}
    }

    test {BITPOS bit=1 unaligned+full word+reminder} {
        r del str
        r set str "\x00\x00\x00" ; # Prefix
        # Followed by two (or four in 32 bit systems) full words
        r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
        r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
        r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
        # First zero bit.
        r append str "\xf0"
        assert {[r bitpos str 1] == 216}
        assert {[r bitpos str 1 1] == 216}
        assert {[r bitpos str 1 2] == 216}
        assert {[r bitpos str 1 3] == 216}
        assert {[r bitpos str 1 4] == 216}
        assert {[r bitpos str 1 5] == 216}
        assert {[r bitpos str 1 6] == 216}
        assert {[r bitpos str 1 7] == 216}
        assert {[r bitpos str 1 8] == 216}

        assert {[r bitpos str 1 1 -1 bit] == 216}
        assert {[r bitpos str 1 9 -1 bit] == 216}
        assert {[r bitpos str 1 17 -1 bit] == 216}
        assert {[r bitpos str 1 25 -1 bit] == 216}
        assert {[r bitpos str 1 33 -1 bit] == 216}
        assert {[r bitpos str 1 41 -1 bit] == 216}
        assert {[r bitpos str 1 49 -1 bit] == 216}
        assert {[r bitpos str 1 57 -1 bit] == 216}
        assert {[r bitpos str 1 65 -1 bit] == 216}
    }

    test {BITPOS bit=1 returns -1 if string is all 0 bits} {
        r set str ""
        for {set j 0} {$j < 20} {incr j} {
            assert {[r bitpos str 1] == -1}
            assert {[r bitpos str 1 0 -1 bit] == -1}
            r append str "\x00"
        }
    }

    test {BITPOS bit=0 works with intervals} {
        r set str "\x00\xff\x00"
        assert {[r bitpos str 0 0 -1] == 0}
        assert {[r bitpos str 0 1 -1] == 16}
        assert {[r bitpos str 0 2 -1] == 16}
        assert {[r bitpos str 0 2 200] == 16}
        assert {[r bitpos str 0 1 1] == -1}

        assert {[r bitpos str 0 0 -1 bit] == 0}
        assert {[r bitpos str 0 8 -1 bit] == 16}
        assert {[r bitpos str 0 16 -1 bit] == 16}
        assert {[r bitpos str 0 16 200 bit] == 16}
        assert {[r bitpos str 0 8 8 bit] == -1}
    }

    test {BITPOS bit=1 works with intervals} {
        r set str "\x00\xff\x00"
        assert {[r bitpos str 1 0 -1] == 8}
        assert {[r bitpos str 1 1 -1] == 8}
        assert {[r bitpos str 1 2 -1] == -1}
        assert {[r bitpos str 1 2 200] == -1}
        assert {[r bitpos str 1 1 1] == 8}

        assert {[r bitpos str 1 0 -1 bit] == 8}
        assert {[r bitpos str 1 8 -1 bit] == 8}
        assert {[r bitpos str 1 16 -1 bit] == -1}
        assert {[r bitpos str 1 16 200 bit] == -1}
        assert {[r bitpos str 1 8 8 bit] == 8}
    }

    test {BITPOS bit=0 changes behavior if end is given} {
        r set str "\xff\xff\xff"
        assert {[r bitpos str 0] == 24}
        assert {[r bitpos str 0 0] == 24}
        assert {[r bitpos str 0 0 -1] == -1}
        assert {[r bitpos str 0 0 -1 bit] == -1}
    }

    test {SETBIT/BITFIELD only increase dirty when the value changed} {
        r del foo{t} foo2{t} foo3{t}
        set dirty [s rdb_changes_since_last_save]

        # Create a new key, always increase the dirty.
        r setbit foo{t} 0 0
        r bitfield foo2{t} set i5 0 0
        set dirty2 [s rdb_changes_since_last_save]
        assert {$dirty2 == $dirty + 2}

        # No change.
        r setbit foo{t} 0 0
        r bitfield foo2{t} set i5 0 0
        set dirty3 [s rdb_changes_since_last_save]
        assert {$dirty3 == $dirty2}

        # Do a change and a no change.
        r setbit foo{t} 0 1
        r setbit foo{t} 0 1
        r setbit foo{t} 0 0
        r setbit foo{t} 0 0
        r bitfield foo2{t} set i5 0 1
        r bitfield foo2{t} set i5 0 1
        r bitfield foo2{t} set i5 0 0
        r bitfield foo2{t} set i5 0 0
        set dirty4 [s rdb_changes_since_last_save]
        assert {$dirty4 == $dirty3 + 4}

        # BITFIELD INCRBY always increase dirty.
        r bitfield foo3{t} incrby i5 0 1
        r bitfield foo3{t} incrby i5 0 1
        set dirty5 [s rdb_changes_since_last_save]
        assert {$dirty5 == $dirty4 + 2}

        # Change length only
        r setbit foo{t} 90 0
        r bitfield foo2{t} set i5 90 0
        set dirty6 [s rdb_changes_since_last_save]
        assert {$dirty6 == $dirty5 + 2}
    }

    test {BITPOS bit=1 fuzzy testing using SETBIT} {
        r del str
        set max 524288; # 64k
        set first_one_pos -1
        for {set j 0} {$j < 1000} {incr j} {
            assert {[r bitpos str 1] == $first_one_pos}
            assert {[r bitpos str 1 0 -1 bit] == $first_one_pos}
            set pos [randomInt $max]
            r setbit str $pos 1
            if {$first_one_pos == -1 || $first_one_pos > $pos} {
                # Update the position of the first 1 bit in the array
                # if the bit we set is on the left of the previous one.
                set first_one_pos $pos
            }
        }
    }

    test {BITPOS bit=0 fuzzy testing using SETBIT} {
        set max 524288; # 64k
        set first_zero_pos $max
        r set str [string repeat "\xff" [expr $max/8]]
        for {set j 0} {$j < 1000} {incr j} {
            assert {[r bitpos str 0] == $first_zero_pos}
            if {$first_zero_pos == $max} {
                assert {[r bitpos str 0 0 -1 bit] == -1}
            } else {
                assert {[r bitpos str 0 0 -1 bit] == $first_zero_pos}
            }
            set pos [randomInt $max]
            r setbit str $pos 0
            if {$first_zero_pos > $pos} {
                # Update the position of the first 0 bit in the array
                # if the bit we clear is on the left of the previous one.
                set first_zero_pos $pos
            }
        }
    }

    # This test creates a string of 10 bytes. It has two iterations. One clears
    # all the bits and sets just one bit and another set all the bits and clears
    # just one bit. Each iteration loops from bit offset 0 to 79 and uses SETBIT
    # to set the bit to 0 or 1, and then use BITPOS and BITCOUNT on a few mutations.
    test {BITPOS/BITCOUNT fuzzy testing using SETBIT} {
        # We have two start and end ranges, each range used to select a random
        # position, one for start position and one for end position.
        proc test_one {start1 end1 start2 end2 pos bit pos_type} {
            set start [randomRange $start1 $end1]
            set end [randomRange $start2 $end2]
            if {$start > $end} {
                # Swap start and end
                lassign [list $end $start] start end
            }
            set startbit $start
            set endbit $end
            # For byte index, we need to generate the real bit index
            if {[string equal $pos_type byte]} {
                set startbit [expr $start << 3]
                set endbit [expr ($end << 3) + 7]
            }
            # This means whether the test bit index is in the range.
            set inrange [expr ($pos >= $startbit && $pos <= $endbit) ? 1: 0]
            # For bitcount, there are four different results.
            # $inrange == 0 && $bit == 0, all bits in the range are set, so $endbit - $startbit + 1
            # $inrange == 0 && $bit == 1, all bits in the range are clear, so 0
            # $inrange == 1 && $bit == 0, all bits in the range are set but one, so $endbit - $startbit
            # $inrange == 1 && $bit == 1, all bits in the range are clear but one, so 1
            set res_count [expr ($endbit - $startbit + 1) * (1 - $bit) + $inrange * [expr $bit ? 1 : -1]]
            assert {[r bitpos str $bit $start $end $pos_type] == [expr $inrange ? $pos : -1]}
            assert {[r bitcount str $start $end $pos_type] == $res_count}
        }

        r del str
        set max 80;
        r setbit str [expr $max - 1] 0
        set bytes [expr $max >> 3]
        # First iteration sets all bits to 1, then set bit to 0 from 0 to max - 1
        # Second iteration sets all bits to 0, then set bit to 1 from 0 to max - 1
        for {set bit 0} {$bit < 2} {incr bit} {
            r bitop not str str
            for {set j 0} {$j < $max} {incr j} {
                r setbit str $j $bit

                # First iteration tests byte index and second iteration tests bit index.
                foreach {curr end pos_type} [list [expr $j >> 3] $bytes byte $j $max bit] {
                    # start==end set to bit position
                    test_one $curr $curr $curr $curr $j $bit $pos_type
                    # Both start and end are before bit position
                    if {$curr > 0} {
                        test_one 0 $curr 0 $curr $j $bit $pos_type
                    }
                    # Both start and end are after bit position
                    if {$curr < [expr $end - 1]} {
                        test_one [expr $curr + 1] $end [expr $curr + 1] $end $j $bit $pos_type
                    }
                    # start is before and end is after bit position
                    if {$curr > 0 && $curr < [expr $end - 1]} {
                        test_one 0 $curr [expr $curr +1] $end $j $bit $pos_type
                    }
                }

                # restore bit
                r setbit str $j [expr 1 - $bit]
            }
        }
    }
}

run_solo {bitops-large-memory} {
start_server {tags {"bitops"}} {
    test "BIT pos larger than UINT_MAX" {
        set bytes [expr (1 << 29) + 1]
        set bitpos [expr (1 << 32)]
        set oldval [lindex [r config get proto-max-bulk-len] 1]
        r config set proto-max-bulk-len $bytes
        r setbit mykey $bitpos 1
        assert_equal $bytes [r strlen mykey]
        assert_equal 1 [r getbit mykey $bitpos]
        assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos]
        assert_equal $bitpos [r bitpos mykey 1]
        assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]]
        if {$::accurate} {
            # set all bits to 1
            set mega [expr (1 << 23)]
            set part [string repeat "\xFF" $mega]
            for {set i 0} {$i < 64} {incr i} {
                r setrange mykey [expr $i * $mega] $part
            }
            r setrange mykey [expr $bytes - 1] "\xFF"
            assert_equal [expr $bitpos + 8] [r bitcount mykey]
            assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]]
        }
        r config set proto-max-bulk-len $oldval
        r del mykey
    } {1} {large-memory}

    test "SETBIT values larger than UINT32_MAX and lzf_compress/lzf_decompress correctly" {
        set bytes [expr (1 << 32) + 1]
        set bitpos [expr (1 << 35)]
        set oldval [lindex [r config get proto-max-bulk-len] 1]
        r config set proto-max-bulk-len $bytes
        r setbit mykey $bitpos 1
        assert_equal $bytes [r strlen mykey]
        assert_equal 1 [r getbit mykey $bitpos]
        r debug reload ;# lzf_compress/lzf_decompress when RDB saving/loading.
        assert_equal 1 [r getbit mykey $bitpos]
        r config set proto-max-bulk-len $oldval
        r del mykey
    } {1} {large-memory needs:debug}
}
} ;#run_solo