summaryrefslogtreecommitdiffstats
path: root/src/tests/cipher.cpp
blob: 25b98bfa5726694c816a3fa5df1844b11a5cd9a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
/*
 * Copyright (c) 2017-2022 [Ribose Inc](https://www.ribose.com).
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1.  Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 * 2.  Redistributions in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <crypto/common.h>
#include <crypto.h>
#include <pgp-key.h>
#include "rnp.h"
#include <librepgp/stream-packet.h>
#include <librepgp/stream-key.h>

#include "rnp_tests.h"
#include "support.h"
#include "fingerprint.h"

TEST_F(rnp_tests, hash_test_success)
{
    uint8_t hash_output[PGP_MAX_HASH_SIZE];

    const pgp_hash_alg_t hash_algs[] = {PGP_HASH_MD5,
                                        PGP_HASH_SHA1,
                                        PGP_HASH_SHA256,
                                        PGP_HASH_SHA384,
                                        PGP_HASH_SHA512,
                                        PGP_HASH_SHA224,
                                        PGP_HASH_SM3,
                                        PGP_HASH_SHA3_256,
                                        PGP_HASH_SHA3_512,
                                        PGP_HASH_UNKNOWN};

    const uint8_t test_input[3] = {'a', 'b', 'c'};
    const char *  hash_alg_expected_outputs[] = {
      "900150983CD24FB0D6963F7D28E17F72",
      "A9993E364706816ABA3E25717850C26C9CD0D89D",
      "BA7816BF8F01CFEA414140DE5DAE2223B00361A396177A9CB410FF61F20015AD",
      "CB00753F45A35E8BB5A03D699AC65007272C32AB0EDED1631A8B605A43FF5BED8086072BA1"
      "E7CC2358BAECA"
      "134C825A7",
      "DDAF35A193617ABACC417349AE20413112E6FA4E89A97EA20A9EEEE64B55D39A2192992A27"
      "4FC1A836BA3C2"
      "3A3FEEBBD454D4423643CE80E2A9AC94FA54CA49F",
      "23097D223405D8228642A477BDA255B32AADBCE4BDA0B3F7E36C9DA7",
      "66C7F0F462EEEDD9D1F2D46BDC10E4E24167C4875CF2F7A2297DA02B8F4BA8E0",
      "3A985DA74FE225B2045C172D6BD390BD855F086E3E9D525B46BFE24511431532",
      ("B751850B1A57168A5693CD924B6B096E08F621827444F70D884F5D0240D2712E1"
       "0E116E9192AF3C91A7EC57647E3934057340B4CF408D5A56592F8274EEC53F0")};

    for (int i = 0; hash_algs[i] != PGP_HASH_UNKNOWN; ++i) {
#if !defined(ENABLE_SM2)
        if (hash_algs[i] == PGP_HASH_SM3) {
            assert_throw({ auto hash = rnp::Hash::create(hash_algs[i]); });
            size_t hash_size = rnp::Hash::size(hash_algs[i]);
            assert_int_equal(hash_size * 2, strlen(hash_alg_expected_outputs[i]));
            continue;
        }
#endif
        auto   hash = rnp::Hash::create(hash_algs[i]);
        size_t hash_size = rnp::Hash::size(hash_algs[i]);
        assert_int_equal(hash_size * 2, strlen(hash_alg_expected_outputs[i]));

        hash->add(test_input, 1);
        hash->add(test_input + 1, sizeof(test_input) - 1);
        hash->finish(hash_output);

        assert_true(bin_eq_hex(hash_output, hash_size, hash_alg_expected_outputs[i]));
    }
}

TEST_F(rnp_tests, cipher_test_success)
{
    const uint8_t  key[16] = {0};
    uint8_t        iv[16];
    pgp_symm_alg_t alg = PGP_SA_AES_128;
    pgp_crypt_t    crypt;

    uint8_t cfb_data[20] = {0};
    memset(iv, 0x42, sizeof(iv));

    assert_int_equal(1, pgp_cipher_cfb_start(&crypt, alg, key, iv));

    assert_int_equal(0, pgp_cipher_cfb_encrypt(&crypt, cfb_data, cfb_data, sizeof(cfb_data)));

    assert_true(
      bin_eq_hex(cfb_data, sizeof(cfb_data), "BFDAA57CB812189713A950AD9947887983021617"));
    assert_int_equal(0, pgp_cipher_cfb_finish(&crypt));

    assert_int_equal(1, pgp_cipher_cfb_start(&crypt, alg, key, iv));
    assert_int_equal(0, pgp_cipher_cfb_decrypt(&crypt, cfb_data, cfb_data, sizeof(cfb_data)));
    assert_true(
      bin_eq_hex(cfb_data, sizeof(cfb_data), "0000000000000000000000000000000000000000"));
    assert_int_equal(0, pgp_cipher_cfb_finish(&crypt));
}

TEST_F(rnp_tests, pkcs1_rsa_test_success)
{
    uint8_t             ptext[1024 / 8] = {'a', 'b', 'c', 0};
    uint8_t             dec[1024 / 8];
    pgp_rsa_encrypted_t enc;
    size_t              dec_size;

    rnp_keygen_crypto_params_t key_desc;
    key_desc.key_alg = PGP_PKA_RSA;
    key_desc.hash_alg = PGP_HASH_SHA256;
    key_desc.rsa.modulus_bit_len = 1024;
    key_desc.ctx = &global_ctx;
    pgp_key_pkt_t seckey;
    assert_true(pgp_generate_seckey(key_desc, seckey, true));
    const pgp_rsa_key_t *key_rsa = &seckey.material.rsa;

    assert_rnp_success(rsa_encrypt_pkcs1(&global_ctx.rng, &enc, ptext, 3, key_rsa));
    assert_int_equal(enc.m.len, 1024 / 8);

    memset(dec, 0, sizeof(dec));
    dec_size = 0;
    assert_rnp_success(rsa_decrypt_pkcs1(&global_ctx.rng, dec, &dec_size, &enc, key_rsa));
    assert_true(bin_eq_hex(dec, 3, "616263"));
    assert_int_equal(dec_size, 3);
}

TEST_F(rnp_tests, rnp_test_eddsa)
{
    rnp::SecurityContext       ctx;
    rnp_keygen_crypto_params_t key_desc;
    key_desc.key_alg = PGP_PKA_EDDSA;
    key_desc.hash_alg = PGP_HASH_SHA256;
    key_desc.ctx = &ctx;

    pgp_key_pkt_t seckey;
    assert_true(pgp_generate_seckey(key_desc, seckey, true));

    const uint8_t      hash[32] = {0};
    pgp_ec_signature_t sig = {{{0}}};

    assert_rnp_success(
      eddsa_sign(&global_ctx.rng, &sig, hash, sizeof(hash), &seckey.material.ec));

    assert_rnp_success(eddsa_verify(&sig, hash, sizeof(hash), &seckey.material.ec));

    // cut one byte off hash -> invalid sig
    assert_rnp_failure(eddsa_verify(&sig, hash, sizeof(hash) - 1, &seckey.material.ec));

    // swap r/s -> invalid sig
    pgp_mpi_t tmp = sig.r;
    sig.r = sig.s;
    sig.s = tmp;
    assert_rnp_failure(eddsa_verify(&sig, hash, sizeof(hash), &seckey.material.ec));
}

TEST_F(rnp_tests, rnp_test_x25519)
{
    rnp_keygen_crypto_params_t key_desc = {};
    pgp_key_pkt_t              seckey;
    pgp_ecdh_encrypted_t       enc = {};
    uint8_t           in[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
    uint8_t           out[16] = {};
    size_t            outlen = 0;
    pgp_fingerprint_t fp = {};

    key_desc.key_alg = PGP_PKA_ECDH;
    key_desc.hash_alg = PGP_HASH_SHA256;
    key_desc.ctx = &global_ctx;
    key_desc.ecc.curve = PGP_CURVE_25519;

    assert_true(pgp_generate_seckey(key_desc, seckey, true));
    /* check for length and correctly tweaked bits */
    assert_int_equal(seckey.material.ec.x.len, 32);
    assert_int_equal(seckey.material.ec.x.mpi[31] & 7, 0);
    assert_int_equal(seckey.material.ec.x.mpi[0] & 128, 0);
    assert_int_equal(seckey.material.ec.x.mpi[0] & 64, 64);
    assert_rnp_success(pgp_fingerprint(fp, seckey));
    assert_rnp_success(
      ecdh_encrypt_pkcs5(&global_ctx.rng, &enc, in, sizeof(in), &seckey.material.ec, fp));
    assert_true(enc.mlen > 16);
    assert_true((enc.p.mpi[0] == 0x40) && (enc.p.len == 33));
    outlen = sizeof(out);
    assert_rnp_success(ecdh_decrypt_pkcs5(out, &outlen, &enc, &seckey.material.ec, fp));
    assert_true(outlen == 16);
    assert_true(memcmp(in, out, 16) == 0);

    /* negative cases */
    enc.p.mpi[16] ^= 0xff;
    assert_rnp_failure(ecdh_decrypt_pkcs5(out, &outlen, &enc, &seckey.material.ec, fp));

    enc.p.mpi[16] ^= 0xff;
    enc.p.mpi[0] = 0x04;
    assert_rnp_failure(ecdh_decrypt_pkcs5(out, &outlen, &enc, &seckey.material.ec, fp));

    enc.p.mpi[0] = 0x40;
    enc.mlen--;
    assert_rnp_failure(ecdh_decrypt_pkcs5(out, &outlen, &enc, &seckey.material.ec, fp));

    enc.mlen += 2;
    assert_rnp_failure(ecdh_decrypt_pkcs5(out, &outlen, &enc, &seckey.material.ec, fp));
}

static void
elgamal_roundtrip(pgp_eg_key_t *key)
{
    const uint8_t      in_b[] = {0x01, 0x02, 0x03, 0x04, 0x17};
    pgp_eg_encrypted_t enc = {{{0}}};
    uint8_t            res[1024];
    size_t             res_len = 0;

    assert_int_equal(elgamal_encrypt_pkcs1(&global_ctx.rng, &enc, in_b, sizeof(in_b), key),
                     RNP_SUCCESS);
    assert_int_equal(elgamal_decrypt_pkcs1(&global_ctx.rng, res, &res_len, &enc, key),
                     RNP_SUCCESS);
    assert_int_equal(res_len, sizeof(in_b));
    assert_true(bin_eq_hex(res, res_len, "0102030417"));
}

TEST_F(rnp_tests, raw_elgamal_random_key_test_success)
{
    pgp_eg_key_t key;

    assert_int_equal(elgamal_generate(&global_ctx.rng, &key, 1024), RNP_SUCCESS);
    elgamal_roundtrip(&key);
}

TEST_F(rnp_tests, ecdsa_signverify_success)
{
    uint8_t              message[64];
    const pgp_hash_alg_t hash_alg = PGP_HASH_SHA512;

    struct curve {
        pgp_curve_t id;
        size_t      size;
    } curves[] = {
      {PGP_CURVE_NIST_P_256, 32}, {PGP_CURVE_NIST_P_384, 48}, {PGP_CURVE_NIST_P_521, 64}};

    for (size_t i = 0; i < ARRAY_SIZE(curves); i++) {
        // Generate test data. Mainly to make valgrind not to complain about uninitialized data
        global_ctx.rng.get(message, sizeof(message));

        pgp_ec_signature_t         sig = {{{0}}};
        rnp_keygen_crypto_params_t key_desc;
        key_desc.key_alg = PGP_PKA_ECDSA;
        key_desc.hash_alg = hash_alg;
        key_desc.ecc.curve = curves[i].id;
        key_desc.ctx = &global_ctx;

        pgp_key_pkt_t seckey1;
        pgp_key_pkt_t seckey2;

        assert_true(pgp_generate_seckey(key_desc, seckey1, true));
        assert_true(pgp_generate_seckey(key_desc, seckey2, true));

        const pgp_ec_key_t *key1 = &seckey1.material.ec;
        const pgp_ec_key_t *key2 = &seckey2.material.ec;

        assert_rnp_success(
          ecdsa_sign(&global_ctx.rng, &sig, hash_alg, message, sizeof(message), key1));

        assert_rnp_success(ecdsa_verify(&sig, hash_alg, message, sizeof(message), key1));

        // Fails because of different key used
        assert_rnp_failure(ecdsa_verify(&sig, hash_alg, message, sizeof(message), key2));

        // Fails because message won't verify
        message[0] = ~message[0];
        assert_rnp_failure(ecdsa_verify(&sig, hash_alg, message, sizeof(message), key1));
    }
}

TEST_F(rnp_tests, ecdh_roundtrip)
{
    struct curve {
        pgp_curve_t id;
        size_t      size;
    } curves[] = {
      {PGP_CURVE_NIST_P_256, 32}, {PGP_CURVE_NIST_P_384, 48}, {PGP_CURVE_NIST_P_521, 66}};

    pgp_ecdh_encrypted_t enc;
    uint8_t              plaintext[32] = {0};
    size_t               plaintext_len = sizeof(plaintext);
    uint8_t              result[32] = {0};
    size_t               result_len = sizeof(result);

    for (size_t i = 0; i < ARRAY_SIZE(curves); i++) {
        rnp_keygen_crypto_params_t key_desc;
        key_desc.key_alg = PGP_PKA_ECDH;
        key_desc.hash_alg = PGP_HASH_SHA512;
        key_desc.ecc.curve = curves[i].id;
        key_desc.ctx = &global_ctx;

        pgp_key_pkt_t ecdh_key1;
        assert_true(pgp_generate_seckey(key_desc, ecdh_key1, true));

        pgp_fingerprint_t ecdh_key1_fpr = {};
        assert_rnp_success(pgp_fingerprint(ecdh_key1_fpr, ecdh_key1));

        assert_rnp_success(ecdh_encrypt_pkcs5(&global_ctx.rng,
                                              &enc,
                                              plaintext,
                                              plaintext_len,
                                              &ecdh_key1.material.ec,
                                              ecdh_key1_fpr));

        assert_rnp_success(ecdh_decrypt_pkcs5(
          result, &result_len, &enc, &ecdh_key1.material.ec, ecdh_key1_fpr));

        assert_int_equal(plaintext_len, result_len);
        assert_int_equal(memcmp(plaintext, result, result_len), 0);
    }
}

TEST_F(rnp_tests, ecdh_decryptionNegativeCases)
{
    uint8_t              plaintext[32] = {0};
    size_t               plaintext_len = sizeof(plaintext);
    uint8_t              result[32] = {0};
    size_t               result_len = sizeof(result);
    pgp_ecdh_encrypted_t enc;

    rnp_keygen_crypto_params_t key_desc;
    key_desc.key_alg = PGP_PKA_ECDH;
    key_desc.hash_alg = PGP_HASH_SHA512;
    key_desc.ecc.curve = PGP_CURVE_NIST_P_256;
    key_desc.ctx = &global_ctx;

    pgp_key_pkt_t ecdh_key1;
    assert_true(pgp_generate_seckey(key_desc, ecdh_key1, true));

    pgp_fingerprint_t ecdh_key1_fpr = {};
    assert_rnp_success(pgp_fingerprint(ecdh_key1_fpr, ecdh_key1));

    assert_rnp_success(ecdh_encrypt_pkcs5(
      &global_ctx.rng, &enc, plaintext, plaintext_len, &ecdh_key1.material.ec, ecdh_key1_fpr));

    assert_int_equal(ecdh_decrypt_pkcs5(NULL, 0, &enc, &ecdh_key1.material.ec, ecdh_key1_fpr),
                     RNP_ERROR_BAD_PARAMETERS);

    assert_int_equal(ecdh_decrypt_pkcs5(result, &result_len, &enc, NULL, ecdh_key1_fpr),
                     RNP_ERROR_BAD_PARAMETERS);

    assert_int_equal(
      ecdh_decrypt_pkcs5(result, &result_len, NULL, &ecdh_key1.material.ec, ecdh_key1_fpr),
      RNP_ERROR_BAD_PARAMETERS);

    size_t mlen = enc.mlen;
    enc.mlen = 0;
    assert_int_equal(
      ecdh_decrypt_pkcs5(result, &result_len, &enc, &ecdh_key1.material.ec, ecdh_key1_fpr),
      RNP_ERROR_GENERIC);

    enc.mlen = mlen - 1;
    assert_int_equal(
      ecdh_decrypt_pkcs5(result, &result_len, &enc, &ecdh_key1.material.ec, ecdh_key1_fpr),
      RNP_ERROR_GENERIC);

    int key_wrapping_alg = ecdh_key1.material.ec.key_wrap_alg;
    ecdh_key1.material.ec.key_wrap_alg = PGP_SA_IDEA;
    assert_int_equal(
      ecdh_decrypt_pkcs5(result, &result_len, &enc, &ecdh_key1.material.ec, ecdh_key1_fpr),
      RNP_ERROR_NOT_SUPPORTED);
    ecdh_key1.material.ec.key_wrap_alg = (pgp_symm_alg_t) key_wrapping_alg;
}

#if defined(ENABLE_SM2)
TEST_F(rnp_tests, sm2_roundtrip)
{
    uint8_t key[27] = {0};
    uint8_t decrypted[27];
    size_t  decrypted_size;

    rnp_keygen_crypto_params_t key_desc;
    key_desc.key_alg = PGP_PKA_SM2;
    key_desc.hash_alg = PGP_HASH_SM3;
    key_desc.ecc.curve = PGP_CURVE_SM2_P_256;
    key_desc.ctx = &global_ctx;

    global_ctx.rng.get(key, sizeof(key));

    pgp_key_pkt_t seckey;
    assert_true(pgp_generate_seckey(key_desc, seckey, true));

    const pgp_ec_key_t *eckey = &seckey.material.ec;

    pgp_hash_alg_t      hashes[] = {PGP_HASH_SM3, PGP_HASH_SHA256, PGP_HASH_SHA512};
    pgp_sm2_encrypted_t enc;
    rnp_result_t        ret;

    for (size_t i = 0; i < ARRAY_SIZE(hashes); ++i) {
        ret = sm2_encrypt(&global_ctx.rng, &enc, key, sizeof(key), hashes[i], eckey);
        assert_int_equal(ret, RNP_SUCCESS);

        memset(decrypted, 0, sizeof(decrypted));
        decrypted_size = sizeof(decrypted);
        ret = sm2_decrypt(decrypted, &decrypted_size, &enc, eckey);
        assert_int_equal(ret, RNP_SUCCESS);
        assert_int_equal(decrypted_size, sizeof(key));
        for (size_t i = 0; i < decrypted_size; ++i) {
            assert_int_equal(key[i], decrypted[i]);
        }
    }
}
#endif

#if defined(ENABLE_SM2)
TEST_F(rnp_tests, sm2_sm3_signature_test)
{
    const char *msg = "no backdoors here";

    pgp_ec_key_t       sm2_key;
    pgp_ec_signature_t sig;

    pgp_hash_alg_t hash_alg = PGP_HASH_SM3;
    const size_t   hash_len = rnp::Hash::size(hash_alg);

    uint8_t digest[PGP_MAX_HASH_SIZE];

    sm2_key.curve = PGP_CURVE_NIST_P_256;

    hex2mpi(&sm2_key.p,
            "04d9a2025f1ab59bc44e35fc53aeb8e87a79787d30cd70a1f7c49e064b8b8a2fb24d8"
            "c82f49ee0a5b11df22cb0c3c6d9d5526d9e24d02ff8c83c06a859c26565f1");
    hex2mpi(&sm2_key.x, "110E7973206F68C19EE5F7328C036F26911C8C73B4E4F36AE3291097F8984FFC");

    assert_int_equal(sm2_validate_key(&global_ctx.rng, &sm2_key, true), RNP_SUCCESS);

    auto hash = rnp::Hash::create(hash_alg);

    assert_int_equal(sm2_compute_za(sm2_key, *hash, "sm2_p256_test@example.com"), RNP_SUCCESS);
    hash->add(msg, strlen(msg));
    assert_int_equal(hash->finish(digest), hash_len);

    // First generate a signature, then verify it
    assert_int_equal(sm2_sign(&global_ctx.rng, &sig, hash_alg, digest, hash_len, &sm2_key),
                     RNP_SUCCESS);
    assert_int_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);

    // Check that invalid signatures are rejected
    digest[0] ^= 1;
    assert_int_not_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);

    digest[0] ^= 1;
    assert_int_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);

    // Now verify a known good signature for this key/message (generated by GmSSL)
    hex2mpi(&sig.r, "96AA39A0C4A5C454653F394E86386F2E38BE14C57D0E555F3A27A5CEF30E51BD");
    hex2mpi(&sig.s, "62372BE4AC97DBE725AC0B279BB8FD15883858D814FD792DDB0A401DCC988E70");
    assert_int_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);
}
#endif

#if defined(ENABLE_SM2)
TEST_F(rnp_tests, sm2_sha256_signature_test)
{
    const char *       msg = "hi chappy";
    pgp_ec_key_t       sm2_key;
    pgp_ec_signature_t sig;
    pgp_hash_alg_t     hash_alg = PGP_HASH_SHA256;
    const size_t       hash_len = rnp::Hash::size(hash_alg);
    uint8_t            digest[PGP_MAX_HASH_SIZE];

    sm2_key.curve = PGP_CURVE_SM2_P_256;
    hex2mpi(&sm2_key.p,
            "04d03d30dd01ca3422aeaccf9b88043b554659d3092b0a9e8cce3e8c4530a98cb79d7"
            "05e6213eee145b748e36e274e5f101dc10d7bbc9dab9a04022e73b76e02cd");
    hex2mpi(&sm2_key.x, "110E7973206F68C19EE5F7328C036F26911C8C73B4E4F36AE3291097F8984FFC");

    assert_int_equal(sm2_validate_key(&global_ctx.rng, &sm2_key, true), RNP_SUCCESS);

    auto hash = rnp::Hash::create(hash_alg);
    assert_int_equal(sm2_compute_za(sm2_key, *hash, "sm2test@example.com"), RNP_SUCCESS);
    hash->add(msg, strlen(msg));
    assert_int_equal(hash->finish(digest), hash_len);

    // First generate a signature, then verify it
    assert_int_equal(sm2_sign(&global_ctx.rng, &sig, hash_alg, digest, hash_len, &sm2_key),
                     RNP_SUCCESS);
    assert_int_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);

    // Check that invalid signatures are rejected
    digest[0] ^= 1;
    assert_int_not_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);

    digest[0] ^= 1;
    assert_int_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);

    // Now verify a known good signature for this key/message (generated by GmSSL)
    hex2mpi(&sig.r, "94DA20EA69E4FC70692158BF3D30F87682A4B2F84DF4A4829A1EFC5D9C979D3F");
    hex2mpi(&sig.s, "EE15AF8D455B728AB80E592FCB654BF5B05620B2F4D25749D263D5C01FAD365F");
    assert_int_equal(sm2_verify(&sig, hash_alg, digest, hash_len, &sm2_key), RNP_SUCCESS);
}
#endif

TEST_F(rnp_tests, test_dsa_roundtrip)
{
    uint8_t             message[PGP_MAX_HASH_SIZE];
    pgp_key_pkt_t       seckey;
    pgp_dsa_signature_t sig;

    struct key_params {
        size_t         p;
        size_t         q;
        pgp_hash_alg_t h;
    } keys[] = {
      // all 1024 key-hash combinations
      {1024, 160, PGP_HASH_SHA1},
      {1024, 160, PGP_HASH_SHA224},
      {1024, 160, PGP_HASH_SHA256},
      {1024, 160, PGP_HASH_SHA384},
      {1024, 160, PGP_HASH_SHA512},
      // all 2048 key-hash combinations
      {2048, 256, PGP_HASH_SHA256},
      {2048, 256, PGP_HASH_SHA384},
      {2048, 256, PGP_HASH_SHA512},
      // misc
      {1088, 224, PGP_HASH_SHA512},
      {1024, 256, PGP_HASH_SHA256},
    };

    global_ctx.rng.get(message, sizeof(message));

    for (size_t i = 0; i < ARRAY_SIZE(keys); i++) {
        sig = {};
        rnp_keygen_crypto_params_t key_desc;
        key_desc.key_alg = PGP_PKA_DSA;
        key_desc.hash_alg = keys[i].h;
        key_desc.dsa.p_bitlen = keys[i].p;
        key_desc.dsa.q_bitlen = keys[i].q;
        key_desc.ctx = &global_ctx;

        assert_true(pgp_generate_seckey(key_desc, seckey, true));
        // try to prevent timeouts in travis-ci
        printf("p: %zu q: %zu h: %s\n",
               key_desc.dsa.p_bitlen,
               key_desc.dsa.q_bitlen,
               rnp::Hash::name(key_desc.hash_alg));
        fflush(stdout);

        pgp_dsa_key_t *key1 = &seckey.material.dsa;

        size_t h_size = rnp::Hash::size(keys[i].h);
        assert_int_equal(dsa_sign(&global_ctx.rng, &sig, message, h_size, key1), RNP_SUCCESS);
        assert_int_equal(dsa_verify(&sig, message, h_size, key1), RNP_SUCCESS);
    }
}

TEST_F(rnp_tests, test_dsa_verify_negative)
{
    uint8_t             message[PGP_MAX_HASH_SIZE];
    pgp_key_pkt_t       sec_key1;
    pgp_key_pkt_t       sec_key2;
    pgp_dsa_signature_t sig = {};

    struct key_params {
        size_t         p;
        size_t         q;
        pgp_hash_alg_t h;
    } key = {1024, 160, PGP_HASH_SHA1};

    global_ctx.rng.get(message, sizeof(message));

    rnp_keygen_crypto_params_t key_desc;
    key_desc.key_alg = PGP_PKA_DSA;
    key_desc.hash_alg = key.h;
    key_desc.dsa.p_bitlen = key.p;
    key_desc.dsa.q_bitlen = key.q;
    key_desc.ctx = &global_ctx;

    assert_true(pgp_generate_seckey(key_desc, sec_key1, true));
    // try to prevent timeouts in travis-ci
    printf("p: %zu q: %zu h: %s\n",
           key_desc.dsa.p_bitlen,
           key_desc.dsa.q_bitlen,
           rnp::Hash::name(key_desc.hash_alg));
    assert_true(pgp_generate_seckey(key_desc, sec_key2, true));

    pgp_dsa_key_t *key1 = &sec_key1.material.dsa;
    pgp_dsa_key_t *key2 = &sec_key2.material.dsa;

    size_t h_size = rnp::Hash::size(key.h);
    assert_int_equal(dsa_sign(&global_ctx.rng, &sig, message, h_size, key1), RNP_SUCCESS);
    // wrong key used
    assert_int_equal(dsa_verify(&sig, message, h_size, key2), RNP_ERROR_SIGNATURE_INVALID);
    // different message
    message[0] = ~message[0];
    assert_int_equal(dsa_verify(&sig, message, h_size, key1), RNP_ERROR_SIGNATURE_INVALID);
}

// platforms known to not have a robust response can compile with
// -DS2K_MINIMUM_TUNING_RATIO=2 (or whatever they need)
#ifndef S2K_MINIMUM_TUNING_RATIO
#define S2K_MINIMUM_TUNING_RATIO 6
#endif

TEST_F(rnp_tests, s2k_iteration_tuning)
{
    pgp_hash_alg_t hash_alg = PGP_HASH_SHA512;

    /*
    Run trials for a while (1/4 second) to ensure dynamically clocked
    cores spin up to full speed.
    */
    const size_t TRIAL_MSEC = 250;

    const size_t iters_100 = pgp_s2k_compute_iters(hash_alg, 100, TRIAL_MSEC);
    const size_t iters_10 = pgp_s2k_compute_iters(hash_alg, 10, TRIAL_MSEC);

    double ratio = static_cast<double>(iters_100) / iters_10;
    printf("s2k iteration tuning ratio: %g, (%zu:%zu)\n", ratio, iters_10, iters_100);
    // Test roughly linear cost, often skeyed by clock idle
    assert_greater_than(ratio, S2K_MINIMUM_TUNING_RATIO);

    // Should not crash for unknown hash algorithm
    assert_int_equal(pgp_s2k_compute_iters(PGP_HASH_UNKNOWN, 1000, TRIAL_MSEC), 0);
    /// TODO test that hashing iters_xx data takes roughly requested time

    size_t iter_sha1 = global_ctx.s2k_iterations(PGP_HASH_SHA1);
    assert_int_equal(iter_sha1, global_ctx.s2k_iterations(PGP_HASH_SHA1));
    size_t iter_sha512 = global_ctx.s2k_iterations(PGP_HASH_SHA512);
    assert_int_equal(iter_sha512, global_ctx.s2k_iterations(PGP_HASH_SHA512));
    assert_int_equal(global_ctx.s2k_iterations(PGP_HASH_UNKNOWN), 0);
}

TEST_F(rnp_tests, s2k_iteration_encode_decode)
{
    const size_t MAX_ITER = 0x3e00000; // 0x1F << (0xF + 6);
    // encoding tests
    assert_int_equal(pgp_s2k_encode_iterations(0), 0);
    assert_int_equal(pgp_s2k_encode_iterations(512), 0);
    assert_int_equal(pgp_s2k_encode_iterations(1024), 0);
    assert_int_equal(pgp_s2k_encode_iterations(1024), 0);
    assert_int_equal(pgp_s2k_encode_iterations(1025), 1);
    assert_int_equal(pgp_s2k_encode_iterations(1088), 1);
    assert_int_equal(pgp_s2k_encode_iterations(1089), 2);
    assert_int_equal(pgp_s2k_encode_iterations(2048), 16);
    assert_int_equal(pgp_s2k_encode_iterations(MAX_ITER - 1), 0xFF);
    assert_int_equal(pgp_s2k_encode_iterations(MAX_ITER), 0xFF);
    assert_int_equal(pgp_s2k_encode_iterations(MAX_ITER + 1), 0xFF);
    assert_int_equal(pgp_s2k_encode_iterations(SIZE_MAX), 0xFF);
    // decoding tests
    assert_int_equal(pgp_s2k_decode_iterations(0), 1024);
    assert_int_equal(pgp_s2k_decode_iterations(1), 1088);
    assert_int_equal(pgp_s2k_decode_iterations(16), 2048);
    assert_int_equal(pgp_s2k_decode_iterations(0xFF), MAX_ITER);
}

static bool
read_key_pkt(pgp_key_pkt_t *key, const char *path)
{
    pgp_source_t src = {};
    if (init_file_src(&src, path)) {
        return false;
    }
    bool res = !key->parse(src);
    src_close(&src);
    return res;
}

#define KEYS "data/test_validate_key_material/"

TEST_F(rnp_tests, test_validate_key_material)
{
    pgp_key_pkt_t key;
    rnp::RNG &    rng = global_ctx.rng;

    /* RSA key and subkey */
    assert_true(read_key_pkt(&key, KEYS "rsa-pub.pgp"));
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.n.mpi[key.material.rsa.n.len - 1] &= ~1;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.n.mpi[key.material.rsa.n.len - 1] |= 1;
    key.material.rsa.e.mpi[key.material.rsa.e.len - 1] &= ~1;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key = pgp_key_pkt_t();

    assert_true(read_key_pkt(&key, KEYS "rsa-sub.pgp"));
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.n.mpi[key.material.rsa.n.len - 1] &= ~1;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.n.mpi[key.material.rsa.n.len - 1] |= 1;
    key.material.rsa.e.mpi[key.material.rsa.e.len - 1] &= ~1;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key = pgp_key_pkt_t();

    assert_true(read_key_pkt(&key, KEYS "rsa-sec.pgp"));
    key.material.validate(global_ctx);
    assert_true(key.material.validity.valid);
    assert_true(key.material.validity.validated);
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    /* make sure validity is reset after decryption */
    assert_false(key.material.validity.valid);
    assert_false(key.material.validity.validated);
    assert_true(key.material.secret);
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.e.mpi[key.material.rsa.e.len - 1] += 1;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.e.mpi[key.material.rsa.e.len - 1] -= 1;
    key.material.rsa.p.mpi[key.material.rsa.p.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.p.mpi[key.material.rsa.p.len - 1] -= 2;
    key.material.rsa.p.mpi[key.material.rsa.q.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.p.mpi[key.material.rsa.q.len - 1] -= 2;
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key = pgp_key_pkt_t();

    assert_true(read_key_pkt(&key, KEYS "rsa-ssb.pgp"));
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    assert_true(key.material.secret);
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.e.mpi[key.material.rsa.e.len - 1] += 1;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.e.mpi[key.material.rsa.e.len - 1] -= 1;
    key.material.rsa.p.mpi[key.material.rsa.p.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.p.mpi[key.material.rsa.p.len - 1] -= 2;
    key.material.rsa.p.mpi[key.material.rsa.q.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.rsa.p.mpi[key.material.rsa.q.len - 1] -= 2;
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key = pgp_key_pkt_t();

    /* DSA-ElGamal key */
    assert_true(read_key_pkt(&key, KEYS "dsa-sec.pgp"));
    key.material.dsa.q.mpi[key.material.dsa.q.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.dsa.q.mpi[key.material.dsa.q.len - 1] -= 2;
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    assert_true(key.material.secret);
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.dsa.y.mpi[key.material.dsa.y.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.dsa.y.mpi[key.material.dsa.y.len - 1] -= 2;
    key.material.dsa.p.mpi[key.material.dsa.p.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.dsa.p.mpi[key.material.dsa.p.len - 1] -= 2;
    /* since Botan calculates y from x on key load we do not check x vs y */
    key.material.dsa.x = key.material.dsa.q;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key = pgp_key_pkt_t();

    assert_true(read_key_pkt(&key, KEYS "eg-sec.pgp"));
    key.material.eg.p.mpi[key.material.eg.p.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.eg.p.mpi[key.material.eg.p.len - 1] -= 2;
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    assert_true(key.material.secret);
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.eg.p.mpi[key.material.eg.p.len - 1] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.eg.p.mpi[key.material.eg.p.len - 1] -= 2;
    /* since Botan calculates y from x on key load we do not check x vs y */
    key.material.eg.x = key.material.eg.p;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key = pgp_key_pkt_t();

    /* ElGamal key with small subgroup */
    assert_true(read_key_pkt(&key, KEYS "eg-sec-small-group.pgp"));
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    key = pgp_key_pkt_t();

    assert_true(read_key_pkt(&key, KEYS "eg-sec-small-group-enc.pgp"));
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    assert_rnp_success(decrypt_secret_key(&key, "password"));
    key = pgp_key_pkt_t();

    /* ECDSA key */
    assert_true(read_key_pkt(&key, KEYS "ecdsa-p256-sec.pgp"));
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] -= 2;
    key.material.ec.p.mpi[10] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[10] -= 2;
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    assert_true(key.material.secret);
    key = pgp_key_pkt_t();

    /* ECDH key */
    assert_true(read_key_pkt(&key, KEYS "ecdh-p256-sec.pgp"));
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] -= 2;
    key.material.ec.p.mpi[10] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[10] -= 2;
    assert_rnp_success(decrypt_secret_key(&key, NULL));
    assert_true(key.material.secret);
    key = pgp_key_pkt_t();

    /* EDDSA key, just test for header since any value can be secret key */
    assert_true(read_key_pkt(&key, KEYS "ed25519-sec.pgp"));
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] -= 2;
    key = pgp_key_pkt_t();

    /* x25519 key, same as the previous - botan calculates pub key from the secret one */
    assert_true(read_key_pkt(&key, KEYS "x25519-sec.pgp"));
    assert_rnp_success(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] += 2;
    assert_rnp_failure(validate_pgp_key_material(&key.material, &rng));
    key.material.ec.p.mpi[0] -= 2;
    key = pgp_key_pkt_t();
}

TEST_F(rnp_tests, test_sm2_enabled)
{
    char *features = NULL;
    bool  supported = false;
    /* check whether FFI returns value which corresponds to defines */
#if defined(ENABLE_SM2)
    assert_true(sm2_enabled());
    /* SM2 */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_PK_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM2") != std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_PK_ALG, "SM2", &supported));
    assert_true(supported);
    /* SM3 */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_HASH_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM3") != std::string::npos);
    rnp_buffer_destroy(features);
    supported = false;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_HASH_ALG, "SM3", &supported));
    assert_true(supported);
    /* SM4 */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_SYMM_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM4") != std::string::npos);
    rnp_buffer_destroy(features);
    supported = false;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_SYMM_ALG, "SM4", &supported));
    assert_true(supported);
    /* Curve */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_CURVE, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM2 P-256") != std::string::npos);
    rnp_buffer_destroy(features);
    supported = false;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "SM2 P-256", &supported));
    assert_true(supported);
#else
    assert_false(sm2_enabled());
    /* SM2 */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_PK_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM2") == std::string::npos);
    rnp_buffer_destroy(features);
    supported = true;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_PK_ALG, "SM2", &supported));
    assert_false(supported);
    /* SM3 */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_HASH_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM3") == std::string::npos);
    rnp_buffer_destroy(features);
    supported = true;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_HASH_ALG, "SM3", &supported));
    assert_false(supported);
    /* SM4 */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_SYMM_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM4") == std::string::npos);
    rnp_buffer_destroy(features);
    supported = true;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_SYMM_ALG, "SM4", &supported));
    assert_false(supported);
    /* Curve */
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_CURVE, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("SM2 P-256") == std::string::npos);
    rnp_buffer_destroy(features);
    supported = true;
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "SM2 P-256", &supported));
    assert_false(supported);
#endif
}

TEST_F(rnp_tests, test_aead_enabled)
{
    char *features = NULL;
    bool  supported = false;
    /* check whether FFI returns value which corresponds to defines */
#if defined(ENABLE_AEAD)
    bool has_eax = aead_eax_enabled();
    bool has_ocb = aead_ocb_enabled();
    assert_true(has_eax || has_ocb);
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_AEAD_ALG, &features));
    assert_non_null(features);
    assert_true((std::string(features).find("EAX") != std::string::npos) == has_eax);
    assert_true((std::string(features).find("OCB") != std::string::npos) == has_ocb);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_AEAD_ALG, "EAX", &supported));
    assert_true(supported == has_eax);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_AEAD_ALG, "OCB", &supported));
    assert_true(supported == has_ocb);
#else
    assert_false(aead_eax_enabled());
    assert_false(aead_ocb_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_AEAD_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("EAX") == std::string::npos);
    assert_true(std::string(features).find("OCB") == std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_AEAD_ALG, "EAX", &supported));
    assert_false(supported);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_AEAD_ALG, "OCB", &supported));
    assert_false(supported);
#endif
}

TEST_F(rnp_tests, test_idea_enabled)
{
    char *features = NULL;
    bool  supported = false;
    /* check whether FFI returns value which corresponds to defines */
#if defined(ENABLE_IDEA)
    assert_true(idea_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_SYMM_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("IDEA") != std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_SYMM_ALG, "IDEA", &supported));
    assert_true(supported);
#else
    assert_false(idea_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_SYMM_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("IDEA") == std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_SYMM_ALG, "IDEA", &supported));
    assert_false(supported);
#endif
}

TEST_F(rnp_tests, test_twofish_enabled)
{
    char *features = NULL;
    bool  supported = false;
    /* check whether FFI returns value which corresponds to defines */
#if defined(ENABLE_TWOFISH)
    assert_true(twofish_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_SYMM_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("TWOFISH") != std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_SYMM_ALG, "TWOFISH", &supported));
    assert_true(supported);
#else
    assert_false(twofish_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_SYMM_ALG, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("TWOFISH") == std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_SYMM_ALG, "TWOFISH", &supported));
    assert_false(supported);
#endif
}

TEST_F(rnp_tests, test_brainpool_enabled)
{
    char *features = NULL;
    bool  supported = false;
    /* check whether FFI returns value which corresponds to defines */
#if defined(ENABLE_BRAINPOOL)
    assert_true(brainpool_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_CURVE, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("brainpool") != std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "brainpoolP256r1", &supported));
    assert_true(supported);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "brainpoolP384r1", &supported));
    assert_true(supported);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "brainpoolP512r1", &supported));
    assert_true(supported);
#else
    assert_false(brainpool_enabled());
    assert_rnp_success(rnp_supported_features(RNP_FEATURE_CURVE, &features));
    assert_non_null(features);
    assert_true(std::string(features).find("brainpool") == std::string::npos);
    rnp_buffer_destroy(features);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "brainpoolP256r1", &supported));
    assert_false(supported);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "brainpoolP384r1", &supported));
    assert_false(supported);
    assert_rnp_success(rnp_supports_feature(RNP_FEATURE_CURVE, "brainpoolP512r1", &supported));
    assert_false(supported);
#endif
}