summaryrefslogtreecommitdiffstats
path: root/src/tests/key-protect.cpp
blob: c9acf382d2b1f2f9be44d87d1da9494c4366f357 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
 * Copyright (c) 2017-2019 [Ribose Inc](https://www.ribose.com).
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1.  Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 * 2.  Redistributions in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "../librekey/key_store_pgp.h"
#include "pgp-key.h"

#include "rnp_tests.h"
#include "support.h"
#include "crypto.h"

/* This test loads a .gpg keyring and tests protect/unprotect functionality.
 * There is also some lock/unlock testing in here, since the two are
 * somewhat related.
 */
TEST_F(rnp_tests, test_key_protect_load_pgp)
{
    pgp_key_t *        key = NULL;
    static const char *keyids[] = {"7bc6709b15c23a4a", // primary
                                   "1ed63ee56fadc34d",
                                   "1d7e8a5393c997a8",
                                   "8a05b89fad5aded1",
                                   "2fcadf05ffa501bb", // primary
                                   "54505a936a4a970e",
                                   "326ef111425d14a5"};

    // load our keyring and do some quick checks
    {
        pgp_source_t     src = {};
        rnp_key_store_t *ks = new rnp_key_store_t(global_ctx);

        assert_rnp_success(init_file_src(&src, "data/keyrings/1/secring.gpg"));
        assert_rnp_success(rnp_key_store_pgp_read_from_src(ks, &src));
        src_close(&src);

        for (size_t i = 0; i < ARRAY_SIZE(keyids); i++) {
            pgp_key_t *key = NULL;
            assert_non_null(key = rnp_tests_get_key_by_id(ks, keyids[i]));
            assert_non_null(key);
            // all keys in this keyring are encrypted and thus should be both protected and
            // locked initially
            assert_true(key->is_protected());
            assert_true(key->is_locked());
        }

        pgp_key_t *tmp = NULL;
        assert_non_null(tmp = rnp_tests_get_key_by_id(ks, keyids[0]));

        // steal this key from the store
        key = new pgp_key_t(*tmp);
        assert_non_null(key);
        delete ks;
    }

    // confirm that this key is indeed RSA
    assert_int_equal(key->alg(), PGP_PKA_RSA);

    // confirm key material is currently all NULL (in other words, the key is locked)
    assert_true(mpi_empty(key->material().rsa.d));
    assert_true(mpi_empty(key->material().rsa.p));
    assert_true(mpi_empty(key->material().rsa.q));
    assert_true(mpi_empty(key->material().rsa.u));

    // try to unprotect with a failing password provider
    pgp_password_provider_t pprov(failing_password_callback);
    assert_false(key->unprotect(pprov, global_ctx));

    // try to unprotect with an incorrect password
    pprov = {string_copy_password_callback, (void *) "badpass"};
    assert_false(key->unprotect(pprov, global_ctx));

    // unprotect with the correct password
    pprov = {string_copy_password_callback, (void *) "password"};
    assert_true(key->unprotect(pprov, global_ctx));
    assert_false(key->is_protected());

    // should still be locked
    assert_true(key->is_locked());

    // confirm secret key material is still NULL
    assert_true(mpi_empty(key->material().rsa.d));
    assert_true(mpi_empty(key->material().rsa.p));
    assert_true(mpi_empty(key->material().rsa.q));
    assert_true(mpi_empty(key->material().rsa.u));

    // unlock (no password required since the key is not protected)
    pprov = {asserting_password_callback};
    assert_true(key->unlock(pprov));
    assert_false(key->is_locked());

    // secret key material should be available
    assert_false(mpi_empty(key->material().rsa.d));
    assert_false(mpi_empty(key->material().rsa.p));
    assert_false(mpi_empty(key->material().rsa.q));
    assert_false(mpi_empty(key->material().rsa.u));

    // save the secret MPIs for some later comparisons
    pgp_mpi_t d = key->material().rsa.d;
    pgp_mpi_t p = key->material().rsa.p;
    pgp_mpi_t q = key->material().rsa.q;
    pgp_mpi_t u = key->material().rsa.u;

    // confirm that packets[0] is no longer encrypted
    {
        pgp_source_t     memsrc = {};
        rnp_key_store_t *ks = new rnp_key_store_t(global_ctx);
        pgp_rawpacket_t &pkt = key->rawpkt();

        assert_rnp_success(init_mem_src(&memsrc, pkt.raw.data(), pkt.raw.size(), false));
        assert_rnp_success(rnp_key_store_pgp_read_from_src(ks, &memsrc));
        src_close(&memsrc);

        // grab the first key
        pgp_key_t *reloaded_key = NULL;
        assert_non_null(reloaded_key = rnp_tests_get_key_by_id(ks, keyids[0]));
        assert_non_null(reloaded_key);

        // should not be locked, nor protected
        assert_false(reloaded_key->is_locked());
        assert_false(reloaded_key->is_protected());
        // secret key material should not be NULL
        assert_false(mpi_empty(reloaded_key->material().rsa.d));
        assert_false(mpi_empty(reloaded_key->material().rsa.p));
        assert_false(mpi_empty(reloaded_key->material().rsa.q));
        assert_false(mpi_empty(reloaded_key->material().rsa.u));

        // compare MPIs of the reloaded key, with the unlocked key from earlier
        assert_true(mpi_equal(&key->material().rsa.d, &reloaded_key->material().rsa.d));
        assert_true(mpi_equal(&key->material().rsa.p, &reloaded_key->material().rsa.p));
        assert_true(mpi_equal(&key->material().rsa.q, &reloaded_key->material().rsa.q));
        assert_true(mpi_equal(&key->material().rsa.u, &reloaded_key->material().rsa.u));
        // negative test to try to ensure the above is a valid test
        assert_false(mpi_equal(&key->material().rsa.d, &reloaded_key->material().rsa.p));

        // lock it
        assert_true(reloaded_key->lock());
        assert_true(reloaded_key->is_locked());
        // confirm that secret MPIs are NULL again
        assert_true(mpi_empty(reloaded_key->material().rsa.d));
        assert_true(mpi_empty(reloaded_key->material().rsa.p));
        assert_true(mpi_empty(reloaded_key->material().rsa.q));
        assert_true(mpi_empty(reloaded_key->material().rsa.u));
        // unlock it (no password, since it's not protected)
        pgp_password_provider_t pprov(asserting_password_callback);
        assert_true(reloaded_key->unlock(pprov));
        assert_false(reloaded_key->is_locked());
        // compare MPIs of the reloaded key, with the unlocked key from earlier
        assert_true(mpi_equal(&key->material().rsa.d, &reloaded_key->material().rsa.d));
        assert_true(mpi_equal(&key->material().rsa.p, &reloaded_key->material().rsa.p));
        assert_true(mpi_equal(&key->material().rsa.q, &reloaded_key->material().rsa.q));
        assert_true(mpi_equal(&key->material().rsa.u, &reloaded_key->material().rsa.u));

        delete ks;
    }

    // lock
    assert_true(key->lock());

    // try to protect (will fail when key is locked)
    pprov = {string_copy_password_callback, (void *) "newpass"};
    assert_false(key->protect({}, pprov, global_ctx));
    assert_false(key->is_protected());

    // unlock
    pprov = {asserting_password_callback};
    assert_true(key->unlock(pprov));
    assert_false(key->is_locked());

    // try to protect with a failing password provider
    pprov = {failing_password_callback};
    assert_false(key->protect({}, pprov, global_ctx));
    assert_false(key->is_protected());

    // (re)protect with a new password
    pprov = {string_copy_password_callback, (void *) "newpass"};
    assert_true(key->protect({}, pprov, global_ctx));
    assert_true(key->is_protected());

    // lock
    assert_true(key->lock());
    assert_true(key->is_locked());

    // try to unlock with old password
    pprov = {string_copy_password_callback, (void *) "password"};
    assert_false(key->unlock(pprov));
    assert_true(key->is_locked());

    // unlock with new password
    pprov = {string_copy_password_callback, (void *) "newpass"};
    assert_true(key->unlock(pprov));
    assert_false(key->is_locked());

    // compare secret MPIs with those from earlier
    assert_true(mpi_equal(&key->material().rsa.d, &d));
    assert_true(mpi_equal(&key->material().rsa.p, &p));
    assert_true(mpi_equal(&key->material().rsa.q, &q));
    assert_true(mpi_equal(&key->material().rsa.u, &u));

    // cleanup
    delete key;
}

TEST_F(rnp_tests, test_key_protect_sec_data)
{
    rnp_keygen_primary_desc_t pri_desc = {};
    pri_desc.crypto.key_alg = PGP_PKA_RSA;
    pri_desc.crypto.rsa.modulus_bit_len = 1024;
    pri_desc.crypto.ctx = &global_ctx;
    pri_desc.cert.userid = "test";

    rnp_keygen_subkey_desc_t sub_desc = {};
    sub_desc.crypto.key_alg = PGP_PKA_RSA;
    sub_desc.crypto.rsa.modulus_bit_len = 1024;
    sub_desc.crypto.ctx = &global_ctx;

    /* generate raw unprotected keypair */
    pgp_key_t               skey, pkey, ssub, psub;
    pgp_password_provider_t prov = {};
    assert_true(pgp_generate_primary_key(pri_desc, true, skey, pkey, PGP_KEY_STORE_GPG));
    assert_true(
      pgp_generate_subkey(sub_desc, true, skey, pkey, ssub, psub, prov, PGP_KEY_STORE_GPG));
    assert_non_null(skey.pkt().sec_data);
    assert_non_null(ssub.pkt().sec_data);
    assert_null(pkey.pkt().sec_data);
    assert_null(psub.pkt().sec_data);
    /* copy part of the cleartext secret key and save pointers for later checks */
    assert_true(skey.pkt().sec_len >= 32);
    assert_true(ssub.pkt().sec_len >= 32);
    uint8_t raw_skey[32];
    uint8_t raw_ssub[32];
    memcpy(raw_skey, skey.pkt().sec_data, 32);
    memcpy(raw_ssub, ssub.pkt().sec_data, 32);
    pgp_key_pkt_t *skeypkt;
    pgp_key_pkt_t *ssubpkt;
#if defined(__has_feature)
#if !__has_feature(address_sanitizer)
    /* copy keys and delete, making sure secret data is wiped*/
    pgp_key_t *skeycp = new pgp_key_t(skey);
    pgp_key_t *ssubcp = new pgp_key_t(ssub);
    uint8_t *  raw_skey_ptr = skeycp->pkt().sec_data;
    uint8_t *  raw_ssub_ptr = ssubcp->pkt().sec_data;
    assert_int_equal(memcmp(raw_skey, raw_skey_ptr, 32), 0);
    assert_int_equal(memcmp(raw_ssub, raw_ssub_ptr, 32), 0);
    delete skeycp;
    delete ssubcp;
    assert_int_not_equal(memcmp(raw_skey, raw_skey_ptr, 32), 0);
    assert_int_not_equal(memcmp(raw_ssub, raw_ssub_ptr, 32), 0);
    /* do the same with key packet */
    skeypkt = new pgp_key_pkt_t(skey.pkt());
    ssubpkt = new pgp_key_pkt_t(ssub.pkt());
    raw_skey_ptr = skeypkt->sec_data;
    raw_ssub_ptr = ssubpkt->sec_data;
    assert_int_equal(memcmp(raw_skey, raw_skey_ptr, 32), 0);
    assert_int_equal(memcmp(raw_ssub, raw_ssub_ptr, 32), 0);
    delete skeypkt;
    delete ssubpkt;
    assert_int_not_equal(memcmp(raw_skey, raw_skey_ptr, 32), 0);
    assert_int_not_equal(memcmp(raw_ssub, raw_ssub_ptr, 32), 0);
    /* save original pointers */
    raw_skey_ptr = skey.pkt().sec_data;
    raw_ssub_ptr = ssub.pkt().sec_data;
#endif
#endif

    /* protect key and subkey */
    pgp_password_provider_t     pprov(string_copy_password_callback, (void *) "password");
    rnp_key_protection_params_t prot = {};
    assert_true(skey.protect(prot, pprov, global_ctx));
    assert_true(ssub.protect(prot, pprov, global_ctx));
    assert_int_not_equal(memcmp(raw_skey, skey.pkt().sec_data, 32), 0);
    assert_int_not_equal(memcmp(raw_ssub, ssub.pkt().sec_data, 32), 0);
#if defined(__has_feature)
#if !__has_feature(address_sanitizer)
    assert_int_not_equal(memcmp(raw_skey, raw_skey_ptr, 32), 0);
    assert_int_not_equal(memcmp(raw_ssub, raw_ssub_ptr, 32), 0);
#endif
#endif
    /* make sure rawpkt is also protected */
    skeypkt = new pgp_key_pkt_t();
    pgp_source_t memsrc = {};
    assert_rnp_success(
      init_mem_src(&memsrc, skey.rawpkt().raw.data(), skey.rawpkt().raw.size(), false));
    assert_rnp_success(skeypkt->parse(memsrc));
    src_close(&memsrc);
    assert_int_not_equal(memcmp(raw_skey, skeypkt->sec_data, 32), 0);
    assert_int_equal(skeypkt->sec_protection.s2k.specifier, PGP_S2KS_ITERATED_AND_SALTED);
    delete skeypkt;
    ssubpkt = new pgp_key_pkt_t();
    assert_rnp_success(
      init_mem_src(&memsrc, ssub.rawpkt().raw.data(), ssub.rawpkt().raw.size(), false));
    assert_rnp_success(ssubpkt->parse(memsrc));
    src_close(&memsrc);
    assert_int_not_equal(memcmp(raw_ssub, ssubpkt->sec_data, 32), 0);
    assert_int_equal(ssubpkt->sec_protection.s2k.specifier, PGP_S2KS_ITERATED_AND_SALTED);
    delete ssubpkt;

    /* unlock and make sure sec_data is not decrypted */
    assert_true(skey.unlock(pprov));
    assert_true(ssub.unlock(pprov));
    assert_int_not_equal(memcmp(raw_skey, skey.pkt().sec_data, 32), 0);
    assert_int_not_equal(memcmp(raw_ssub, ssub.pkt().sec_data, 32), 0);
    /* unprotect key */
    assert_true(skey.unprotect(pprov, global_ctx));
    assert_true(ssub.unprotect(pprov, global_ctx));
    assert_int_equal(memcmp(raw_skey, skey.pkt().sec_data, 32), 0);
    assert_int_equal(memcmp(raw_ssub, ssub.pkt().sec_data, 32), 0);
    /* protect it back  with another password */
    pgp_password_provider_t pprov2(string_copy_password_callback, (void *) "password2");
    assert_true(skey.protect(prot, pprov2, global_ctx));
    assert_true(ssub.protect(prot, pprov2, global_ctx));
    assert_int_not_equal(memcmp(raw_skey, skey.pkt().sec_data, 32), 0);
    assert_int_not_equal(memcmp(raw_ssub, ssub.pkt().sec_data, 32), 0);
    assert_false(skey.unlock(pprov));
    assert_false(ssub.unlock(pprov));
    assert_true(skey.unlock(pprov2));
    assert_true(ssub.unlock(pprov2));
    assert_true(skey.lock());
    assert_true(ssub.lock());
    /* make sure rawpkt is also protected */
    skeypkt = new pgp_key_pkt_t();
    assert_rnp_success(
      init_mem_src(&memsrc, skey.rawpkt().raw.data(), skey.rawpkt().raw.size(), false));
    assert_rnp_success(skeypkt->parse(memsrc));
    src_close(&memsrc);
    assert_int_not_equal(memcmp(raw_skey, skeypkt->sec_data, 32), 0);
    assert_int_equal(skeypkt->sec_protection.s2k.specifier, PGP_S2KS_ITERATED_AND_SALTED);
    delete skeypkt;
    ssubpkt = new pgp_key_pkt_t();
    assert_rnp_success(
      init_mem_src(&memsrc, ssub.rawpkt().raw.data(), ssub.rawpkt().raw.size(), false));
    assert_rnp_success(ssubpkt->parse(memsrc));
    src_close(&memsrc);
    assert_int_not_equal(memcmp(raw_ssub, ssubpkt->sec_data, 32), 0);
    assert_int_equal(ssubpkt->sec_protection.s2k.specifier, PGP_S2KS_ITERATED_AND_SALTED);
    delete ssubpkt;
}