summaryrefslogtreecommitdiffstats
path: root/contrib/snowball/compiler/space.c
blob: 5b058763a1da9994f68db0e002a595990f270c0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include <stdio.h>    /* for printf */
#include <stdlib.h>   /* malloc, free */
#include <string.h>   /* memmove */

#include "header.h"

#define HEAD 2*sizeof(int)
#define EXTENDER 40


/*  This modules provides a simple mechanism for arbitrary length writable
    strings, called 'blocks'. They are 'symbol *' items rather than 'char *'
    items however.

    The calls are:

        symbol * b = create_b(n);
            - create an empty block b with room for n symbols
        b = increase_capacity(b, n);
            - increase the capacity of block b by n symbols (b may change)
        b2 = copy_b(b)
            - copy block b into b2
        lose_b(b);
            - lose block b
        b = move_to_b(b, n, p);
            - set the data in b to be the n symbols at address p
        b = add_to_b(b, n, p);
            - add the n symbols at address p to the end of the data in b
        SIZE(b)
            - is the number of symbols in b
        For example:

        symbol * b = create_b(0);
        {   int i;
            char p[10];
            for (i = 0; i < 100; i++) {
                sprintf(p, " %d", i);
                add_s_to_b(b, p);
            }
        }

    and b contains " 0 1 2 ... 99" spaced out as symbols.
*/

/*  For a block b, SIZE(b) is the number of symbols so far written into it,
    CAPACITY(b) the total number it can contain, so SIZE(b) <= CAPACITY(b).
    In fact blocks have 1 extra character over the promised capacity so
    they can be zero terminated by 'b[SIZE(b)] = 0;' without fear of
    overwriting.
*/

extern symbol * create_b(int n) {
    symbol * p = (symbol *) (HEAD + (char *) MALLOC(HEAD + (n + 1) * sizeof(symbol)));
    CAPACITY(p) = n;
    SIZE(p) = 0;
    return p;
}

extern void report_b(FILE * out, const symbol * p) {
    int i;
    for (i = 0; i < SIZE(p); i++) {
        if (p[i] > 255) {
            printf("In report_b, can't convert p[%d] to char because it's 0x%02x\n", i, (int)p[i]);
            exit(1);
        }
        putc(p[i], out);
    }
}

extern void output_str(FILE * outfile, struct str * str) {
    report_b(outfile, str_data(str));
}

extern void lose_b(symbol * p) {
    if (p == 0) return;
    FREE((char *) p - HEAD);
}

extern symbol * increase_capacity(symbol * p, int n) {
    symbol * q = create_b(CAPACITY(p) + n + EXTENDER);
    memmove(q, p, CAPACITY(p) * sizeof(symbol));
    SIZE(q) = SIZE(p);
    lose_b(p); return q;
}

extern symbol * move_to_b(symbol * p, int n, const symbol * q) {
    int x = n - CAPACITY(p);
    if (x > 0) p = increase_capacity(p, x);
    memmove(p, q, n * sizeof(symbol)); SIZE(p) = n; return p;
}

extern symbol * add_to_b(symbol * p, int n, const symbol * q) {
    int x = SIZE(p) + n - CAPACITY(p);
    if (x > 0) p = increase_capacity(p, x);
    memmove(p + SIZE(p), q, n * sizeof(symbol)); SIZE(p) += n; return p;
}

extern symbol * copy_b(const symbol * p) {
    int n = SIZE(p);
    symbol * q = create_b(n);
    move_to_b(q, n, p);
    return q;
}

int space_count = 0;

extern void * check_malloc(int n) {
    space_count++;
    return malloc(n);
}

extern void check_free(void * p) {
    space_count--;
    free(p);
}

/* To convert a block to a zero terminated string:  */

extern char * b_to_s(const symbol * p) {
    int n = SIZE(p);
    char * s = (char *)malloc(n + 1);
    {
        int i;
        for (i = 0; i < n; i++) {
            if (p[i] > 255) {
                printf("In b_to_s, can't convert p[%d] to char because it's 0x%02x\n", i, (int)p[i]);
                exit(1);
            }
            s[i] = (char)p[i];
        }
    }
    s[n] = 0;
    return s;
}

/* To add a zero terminated string to a block. If p = 0 the
   block is created. */

extern symbol * add_s_to_b(symbol * p, const char * s) {
    int n = strlen(s);
    int k;
    if (p == 0) p = create_b(n);
    k = SIZE(p);
    {
        int x = k + n - CAPACITY(p);
        if (x > 0) p = increase_capacity(p, x);
    }
    {
        int i;
        for (i = 0; i < n; i++) p[i + k] = s[i];
    }
    SIZE(p) += n;
    return p;
}

/* The next section defines string handling capabilities in terms
   of the lower level block handling capabilities of space.c */
/* -------------------------------------------------------------*/

struct str {
    symbol * data;
};

/* Create a new string. */
extern struct str * str_new(void) {

    struct str * output = (struct str *) malloc(sizeof(struct str));
    output->data = create_b(0);
    return output;
}

/* Delete a string. */
extern void str_delete(struct str * str) {

    lose_b(str->data);
    free(str);
}

/* Append a str to this str. */
extern void str_append(struct str * str, const struct str * add) {

    symbol * q = add->data;
    str->data = add_to_b(str->data, SIZE(q), q);
}

/* Append a character to this str. */
extern void str_append_ch(struct str * str, char add) {

    symbol q[1];
    q[0] = add;
    str->data = add_to_b(str->data, 1, q);
}

/* Append a low level block to a str. */
extern void str_append_b(struct str * str, const symbol * q) {

    str->data = add_to_b(str->data, SIZE(q), q);
}

/* Append the tail of a low level block to a str. */
extern void str_append_b_tail(struct str * str, const symbol * q, int skip) {
    if (skip < 0 || skip >= SIZE(q)) return;

    str->data = add_to_b(str->data, SIZE(q) - skip, q + skip);
}

/* Append a (char *, null terminated) string to a str. */
extern void str_append_string(struct str * str, const char * s) {

    str->data = add_s_to_b(str->data, s);
}

/* Append an integer to a str. */
extern void str_append_int(struct str * str, int i) {

    char s[30];
    sprintf(s, "%d", i);
    str_append_string(str, s);
}

/* Clear a string */
extern void str_clear(struct str * str) {

    SIZE(str->data) = 0;
}

/* Set a string */
extern void str_assign(struct str * str, const char * s) {

    str_clear(str);
    str_append_string(str, s);
}

/* Copy a string. */
extern struct str * str_copy(const struct str * old) {

    struct str * newstr = str_new();
    str_append(newstr, old);
    return newstr;
}

/* Get the data stored in this str. */
extern symbol * str_data(const struct str * str) {

    return str->data;
}

/* Get the length of the str. */
extern int str_len(const struct str * str) {

    return SIZE(str->data);
}

/* Get the last character of the str.
 *
 * Or -1 if the string is empty.
 */
extern int str_back(const struct str *str) {
    return SIZE(str->data) ? str->data[SIZE(str->data) - 1] : -1;
}

extern int get_utf8(const symbol * p, int * slot) {
    int b0, b1;
    b0 = *p++;
    if (b0 < 0xC0) {   /* 1100 0000 */
        * slot = b0; return 1;
    }
    b1 = *p++;
    if (b0 < 0xE0) {   /* 1110 0000 */
        * slot = (b0 & 0x1F) << 6 | (b1 & 0x3F); return 2;
    }
    * slot = (b0 & 0xF) << 12 | (b1 & 0x3F) << 6 | (*p & 0x3F); return 3;
}

extern int put_utf8(int ch, symbol * p) {
    if (ch < 0x80) {
        p[0] = ch; return 1;
    }
    if (ch < 0x800) {
        p[0] = (ch >> 6) | 0xC0;
        p[1] = (ch & 0x3F) | 0x80; return 2;
    }
    p[0] = (ch >> 12) | 0xE0;
    p[1] = ((ch >> 6) & 0x3F) | 0x80;
    p[2] = (ch & 0x3F) | 0x80; return 3;
}