1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/*
* Copyright 2023 Vsevolod Stakhov
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RSPAMD_UTIL_HXX
#define RSPAMD_UTIL_HXX
#pragma once
#include <memory>
#include <array>
#include <string_view>
#include <optional>
#include <tuple>
#include <algorithm>
/*
* Common C++ utilities
*/
namespace rspamd {
/*
* Creates std::array from a standard C style array with automatic size calculation
*/
template<typename... Ts>
constexpr auto array_of(Ts &&...t) -> std::array<typename std::decay_t<typename std::common_type_t<Ts...>>, sizeof...(Ts)>
{
using T = typename std::decay_t<typename std::common_type_t<Ts...>>;
return {{std::forward<T>(t)...}};
}
/**
* Find a value in a map
* @tparam C Map type
* @tparam K Key type
* @tparam V Value type
* @param c Map to search
* @param k Key to search
* @return Value if found or std::nullopt otherwise
*/
template<class C, class K, class V = typename C::mapped_type, typename std::enable_if_t<std::is_constructible_v<typename C::key_type, K> && std::is_constructible_v<typename C::mapped_type, V>, bool> = false>
constexpr auto find_map(const C &c, const K &k) -> std::optional<std::reference_wrapper<const V>>
{
auto f = c.find(k);
if (f != c.end()) {
return std::cref<V>(f->second);
}
return std::nullopt;
}
template<typename It>
inline constexpr auto make_string_view_from_it(It begin, It end)
{
using result_type = std::string_view;
return result_type{((begin != end) ? &*begin : nullptr),
(typename result_type::size_type) std::max(std::distance(begin, end),
(typename result_type::difference_type) 0)};
}
/**
* Iterate over lines in a string, newline characters are dropped
* @tparam S
* @tparam F
* @param input
* @param functor
* @return
*/
template<class S, class F, typename std::enable_if_t<std::is_invocable_v<F, std::string_view> && std::is_constructible_v<std::string_view, S>, bool> = true>
inline auto string_foreach_line(const S &input, const F &functor)
{
auto it = input.begin();
auto end = input.end();
while (it != end) {
auto next = std::find(it, end, '\n');
while (next >= it && (*next == '\n' || *next == '\r')) {
--next;
}
functor(make_string_view_from_it(it, next));
it = next;
if (it != end) {
++it;
}
}
}
/**
* Iterate over elements in a string
* @tparam S string type
* @tparam D delimiter type
* @tparam F functor type
* @param input string to iterate
* @param delim delimiter to use
* @param functor functor to call
* @param ignore_empty ignore empty elements
* @return nothing
*/
template<class S, class D, class F,
typename std::enable_if_t<std::is_invocable_v<F, std::string_view> && std::is_constructible_v<std::string_view, S> && std::is_constructible_v<std::string_view, D>, bool> = true>
inline auto string_foreach_delim(const S &input, const D &delim, const F &functor, const bool ignore_empty = true) -> void
{
size_t first = 0;
auto sv_input = std::string_view{input};
auto sv_delim = std::string_view{delim};
while (first < sv_input.size()) {
const auto second = sv_input.find_first_of(sv_delim, first);
if (first != second || !ignore_empty) {
functor(sv_input.substr(first, second - first));
}
if (second == std::string_view::npos) {
break;
}
first = second + 1;
}
}
/**
* Split string on a character
* @tparam S string type
* @param input string to split
* @param chr character to split on
* @return pair of strings
*/
template<class S, typename std::enable_if_t<std::is_constructible_v<std::string_view, S>, bool> = true>
inline auto string_split_on(const S &input, std::string_view::value_type chr) -> std::pair<std::string_view, std::string_view>
{
auto pos = std::find(std::begin(input), std::end(input), chr);
if (pos != input.end()) {
auto first = std::string_view{std::begin(input), static_cast<std::size_t>(std::distance(std::begin(input), pos))};
while (*pos == chr && pos != input.end()) {
++pos;
}
auto last = std::string_view{pos, static_cast<std::size_t>(std::distance(pos, std::end(input)))};
return {first, last};
}
return {std::string_view{input}, std::string_view{}};
}
/**
* Enumerate for range loop
* @tparam T iterable type
* @tparam TIter iterator type
* @param iterable iterable object
* @return iterator object
*/
template<typename T,
typename TIter = decltype(std::begin(std::declval<T>())),
typename = decltype(std::end(std::declval<T>()))>
constexpr auto enumerate(T &&iterable)
{
struct iterator {
size_t i;
TIter iter;
bool operator!=(const iterator &other) const
{
return iter != other.iter;
}
void operator++()
{
++i;
++iter;
}
auto operator*() const
{
return std::tie(i, *iter);
}
};
struct iterable_wrapper {
T iterable;
auto begin()
{
return iterator{0, std::begin(iterable)};
}
auto end()
{
return iterator{0, std::end(iterable)};
}
};
return iterable_wrapper{std::forward<T>(iterable)};
}
/**
* Allocator that cleans up memory in a secure way on destruction
* @tparam T
*/
template<class T>
class secure_mem_allocator : public std::allocator<T> {
public:
using value_type = typename std::allocator<T>::value_type;
using size_type = typename std::allocator<T>::size_type;
template<class U>
struct rebind {
typedef secure_mem_allocator<U> other;
};
secure_mem_allocator() noexcept = default;
secure_mem_allocator(const secure_mem_allocator &_) noexcept
: std::allocator<T>(_)
{
}
template<class U>
explicit secure_mem_allocator(const secure_mem_allocator<U> &) noexcept
{
}
void deallocate(value_type *p, size_type num) noexcept
{
rspamd_explicit_memzero((void *) p, num);
std::allocator<T>::deallocate(p, num);
}
};
}// namespace rspamd
#endif//RSPAMD_UTIL_HXX
|