summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_abi/src/layout.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:18:32 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:18:32 +0000
commit4547b622d8d29df964fa2914213088b148c498fc (patch)
tree9fc6b25f3c3add6b745be9a2400a6e96140046e9 /compiler/rustc_abi/src/layout.rs
parentReleasing progress-linux version 1.66.0+dfsg1-1~progress7.99u1. (diff)
downloadrustc-4547b622d8d29df964fa2914213088b148c498fc.tar.xz
rustc-4547b622d8d29df964fa2914213088b148c498fc.zip
Merging upstream version 1.67.1+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_abi/src/layout.rs')
-rw-r--r--compiler/rustc_abi/src/layout.rs945
1 files changed, 945 insertions, 0 deletions
diff --git a/compiler/rustc_abi/src/layout.rs b/compiler/rustc_abi/src/layout.rs
new file mode 100644
index 000000000..9c2cf58ef
--- /dev/null
+++ b/compiler/rustc_abi/src/layout.rs
@@ -0,0 +1,945 @@
+use super::*;
+use std::{
+ borrow::Borrow,
+ cmp,
+ fmt::Debug,
+ iter,
+ ops::{Bound, Deref},
+};
+
+#[cfg(feature = "randomize")]
+use rand::{seq::SliceRandom, SeedableRng};
+#[cfg(feature = "randomize")]
+use rand_xoshiro::Xoshiro128StarStar;
+
+use tracing::debug;
+
+// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
+// This is used to go between `memory_index` (source field order to memory order)
+// and `inverse_memory_index` (memory order to source field order).
+// See also `FieldsShape::Arbitrary::memory_index` for more details.
+// FIXME(eddyb) build a better abstraction for permutations, if possible.
+fn invert_mapping(map: &[u32]) -> Vec<u32> {
+ let mut inverse = vec![0; map.len()];
+ for i in 0..map.len() {
+ inverse[map[i] as usize] = i as u32;
+ }
+ inverse
+}
+
+pub trait LayoutCalculator {
+ type TargetDataLayoutRef: Borrow<TargetDataLayout>;
+
+ fn delay_bug(&self, txt: &str);
+ fn current_data_layout(&self) -> Self::TargetDataLayoutRef;
+
+ fn scalar_pair<V: Idx>(&self, a: Scalar, b: Scalar) -> LayoutS<V> {
+ let dl = self.current_data_layout();
+ let dl = dl.borrow();
+ let b_align = b.align(dl);
+ let align = a.align(dl).max(b_align).max(dl.aggregate_align);
+ let b_offset = a.size(dl).align_to(b_align.abi);
+ let size = (b_offset + b.size(dl)).align_to(align.abi);
+
+ // HACK(nox): We iter on `b` and then `a` because `max_by_key`
+ // returns the last maximum.
+ let largest_niche = Niche::from_scalar(dl, b_offset, b)
+ .into_iter()
+ .chain(Niche::from_scalar(dl, Size::ZERO, a))
+ .max_by_key(|niche| niche.available(dl));
+
+ LayoutS {
+ variants: Variants::Single { index: V::new(0) },
+ fields: FieldsShape::Arbitrary {
+ offsets: vec![Size::ZERO, b_offset],
+ memory_index: vec![0, 1],
+ },
+ abi: Abi::ScalarPair(a, b),
+ largest_niche,
+ align,
+ size,
+ }
+ }
+
+ fn univariant<'a, V: Idx, F: Deref<Target = &'a LayoutS<V>> + Debug>(
+ &self,
+ dl: &TargetDataLayout,
+ fields: &[F],
+ repr: &ReprOptions,
+ kind: StructKind,
+ ) -> Option<LayoutS<V>> {
+ let pack = repr.pack;
+ let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
+ let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();
+ let optimize = !repr.inhibit_struct_field_reordering_opt();
+ if optimize {
+ let end =
+ if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
+ let optimizing = &mut inverse_memory_index[..end];
+ let effective_field_align = |f: &F| {
+ if let Some(pack) = pack {
+ // return the packed alignment in bytes
+ f.align.abi.min(pack).bytes()
+ } else {
+ // returns log2(effective-align).
+ // This is ok since `pack` applies to all fields equally.
+ // The calculation assumes that size is an integer multiple of align, except for ZSTs.
+ //
+ // group [u8; 4] with align-4 or [u8; 6] with align-2 fields
+ f.align.abi.bytes().max(f.size.bytes()).trailing_zeros() as u64
+ }
+ };
+
+ // If `-Z randomize-layout` was enabled for the type definition we can shuffle
+ // the field ordering to try and catch some code making assumptions about layouts
+ // we don't guarantee
+ if repr.can_randomize_type_layout() && cfg!(feature = "randomize") {
+ #[cfg(feature = "randomize")]
+ {
+ // `ReprOptions.layout_seed` is a deterministic seed that we can use to
+ // randomize field ordering with
+ let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);
+
+ // Shuffle the ordering of the fields
+ optimizing.shuffle(&mut rng);
+ }
+ // Otherwise we just leave things alone and actually optimize the type's fields
+ } else {
+ match kind {
+ StructKind::AlwaysSized | StructKind::MaybeUnsized => {
+ optimizing.sort_by_key(|&x| {
+ // Place ZSTs first to avoid "interesting offsets",
+ // especially with only one or two non-ZST fields.
+ // Then place largest alignments first, largest niches within an alignment group last
+ let f = &fields[x as usize];
+ let niche_size = f.largest_niche.map_or(0, |n| n.available(dl));
+ (!f.is_zst(), cmp::Reverse(effective_field_align(f)), niche_size)
+ });
+ }
+
+ StructKind::Prefixed(..) => {
+ // Sort in ascending alignment so that the layout stays optimal
+ // regardless of the prefix.
+ // And put the largest niche in an alignment group at the end
+ // so it can be used as discriminant in jagged enums
+ optimizing.sort_by_key(|&x| {
+ let f = &fields[x as usize];
+ let niche_size = f.largest_niche.map_or(0, |n| n.available(dl));
+ (effective_field_align(f), niche_size)
+ });
+ }
+ }
+
+ // FIXME(Kixiron): We can always shuffle fields within a given alignment class
+ // regardless of the status of `-Z randomize-layout`
+ }
+ }
+ // inverse_memory_index holds field indices by increasing memory offset.
+ // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
+ // We now write field offsets to the corresponding offset slot;
+ // field 5 with offset 0 puts 0 in offsets[5].
+ // At the bottom of this function, we invert `inverse_memory_index` to
+ // produce `memory_index` (see `invert_mapping`).
+ let mut sized = true;
+ let mut offsets = vec![Size::ZERO; fields.len()];
+ let mut offset = Size::ZERO;
+ let mut largest_niche = None;
+ let mut largest_niche_available = 0;
+ if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
+ let prefix_align =
+ if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
+ align = align.max(AbiAndPrefAlign::new(prefix_align));
+ offset = prefix_size.align_to(prefix_align);
+ }
+ for &i in &inverse_memory_index {
+ let field = &fields[i as usize];
+ if !sized {
+ self.delay_bug(&format!(
+ "univariant: field #{} comes after unsized field",
+ offsets.len(),
+ ));
+ }
+
+ if field.is_unsized() {
+ sized = false;
+ }
+
+ // Invariant: offset < dl.obj_size_bound() <= 1<<61
+ let field_align = if let Some(pack) = pack {
+ field.align.min(AbiAndPrefAlign::new(pack))
+ } else {
+ field.align
+ };
+ offset = offset.align_to(field_align.abi);
+ align = align.max(field_align);
+
+ debug!("univariant offset: {:?} field: {:#?}", offset, field);
+ offsets[i as usize] = offset;
+
+ if let Some(mut niche) = field.largest_niche {
+ let available = niche.available(dl);
+ if available > largest_niche_available {
+ largest_niche_available = available;
+ niche.offset += offset;
+ largest_niche = Some(niche);
+ }
+ }
+
+ offset = offset.checked_add(field.size, dl)?;
+ }
+ if let Some(repr_align) = repr.align {
+ align = align.max(AbiAndPrefAlign::new(repr_align));
+ }
+ debug!("univariant min_size: {:?}", offset);
+ let min_size = offset;
+ // As stated above, inverse_memory_index holds field indices by increasing offset.
+ // This makes it an already-sorted view of the offsets vec.
+ // To invert it, consider:
+ // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
+ // Field 5 would be the first element, so memory_index is i:
+ // Note: if we didn't optimize, it's already right.
+ let memory_index =
+ if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };
+ let size = min_size.align_to(align.abi);
+ let mut abi = Abi::Aggregate { sized };
+ // Unpack newtype ABIs and find scalar pairs.
+ if sized && size.bytes() > 0 {
+ // All other fields must be ZSTs.
+ let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());
+
+ match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
+ // We have exactly one non-ZST field.
+ (Some((i, field)), None, None) => {
+ // Field fills the struct and it has a scalar or scalar pair ABI.
+ if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
+ {
+ match field.abi {
+ // For plain scalars, or vectors of them, we can't unpack
+ // newtypes for `#[repr(C)]`, as that affects C ABIs.
+ Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
+ abi = field.abi;
+ }
+ // But scalar pairs are Rust-specific and get
+ // treated as aggregates by C ABIs anyway.
+ Abi::ScalarPair(..) => {
+ abi = field.abi;
+ }
+ _ => {}
+ }
+ }
+ }
+
+ // Two non-ZST fields, and they're both scalars.
+ (Some((i, a)), Some((j, b)), None) => {
+ match (a.abi, b.abi) {
+ (Abi::Scalar(a), Abi::Scalar(b)) => {
+ // Order by the memory placement, not source order.
+ let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
+ ((i, a), (j, b))
+ } else {
+ ((j, b), (i, a))
+ };
+ let pair = self.scalar_pair::<V>(a, b);
+ let pair_offsets = match pair.fields {
+ FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
+ assert_eq!(memory_index, &[0, 1]);
+ offsets
+ }
+ _ => panic!(),
+ };
+ if offsets[i] == pair_offsets[0]
+ && offsets[j] == pair_offsets[1]
+ && align == pair.align
+ && size == pair.size
+ {
+ // We can use `ScalarPair` only when it matches our
+ // already computed layout (including `#[repr(C)]`).
+ abi = pair.abi;
+ }
+ }
+ _ => {}
+ }
+ }
+
+ _ => {}
+ }
+ }
+ if fields.iter().any(|f| f.abi.is_uninhabited()) {
+ abi = Abi::Uninhabited;
+ }
+ Some(LayoutS {
+ variants: Variants::Single { index: V::new(0) },
+ fields: FieldsShape::Arbitrary { offsets, memory_index },
+ abi,
+ largest_niche,
+ align,
+ size,
+ })
+ }
+
+ fn layout_of_never_type<V: Idx>(&self) -> LayoutS<V> {
+ let dl = self.current_data_layout();
+ let dl = dl.borrow();
+ LayoutS {
+ variants: Variants::Single { index: V::new(0) },
+ fields: FieldsShape::Primitive,
+ abi: Abi::Uninhabited,
+ largest_niche: None,
+ align: dl.i8_align,
+ size: Size::ZERO,
+ }
+ }
+
+ fn layout_of_struct_or_enum<'a, V: Idx, F: Deref<Target = &'a LayoutS<V>> + Debug>(
+ &self,
+ repr: &ReprOptions,
+ variants: &IndexVec<V, Vec<F>>,
+ is_enum: bool,
+ is_unsafe_cell: bool,
+ scalar_valid_range: (Bound<u128>, Bound<u128>),
+ discr_range_of_repr: impl Fn(i128, i128) -> (Integer, bool),
+ discriminants: impl Iterator<Item = (V, i128)>,
+ niche_optimize_enum: bool,
+ always_sized: bool,
+ ) -> Option<LayoutS<V>> {
+ let dl = self.current_data_layout();
+ let dl = dl.borrow();
+
+ let scalar_unit = |value: Primitive| {
+ let size = value.size(dl);
+ assert!(size.bits() <= 128);
+ Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
+ };
+
+ // A variant is absent if it's uninhabited and only has ZST fields.
+ // Present uninhabited variants only require space for their fields,
+ // but *not* an encoding of the discriminant (e.g., a tag value).
+ // See issue #49298 for more details on the need to leave space
+ // for non-ZST uninhabited data (mostly partial initialization).
+ let absent = |fields: &[F]| {
+ let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
+ let is_zst = fields.iter().all(|f| f.is_zst());
+ uninhabited && is_zst
+ };
+ let (present_first, present_second) = {
+ let mut present_variants = variants
+ .iter_enumerated()
+ .filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
+ (present_variants.next(), present_variants.next())
+ };
+ let present_first = match present_first {
+ Some(present_first) => present_first,
+ // Uninhabited because it has no variants, or only absent ones.
+ None if is_enum => {
+ return Some(self.layout_of_never_type());
+ }
+ // If it's a struct, still compute a layout so that we can still compute the
+ // field offsets.
+ None => V::new(0),
+ };
+
+ let is_struct = !is_enum ||
+ // Only one variant is present.
+ (present_second.is_none() &&
+ // Representation optimizations are allowed.
+ !repr.inhibit_enum_layout_opt());
+ if is_struct {
+ // Struct, or univariant enum equivalent to a struct.
+ // (Typechecking will reject discriminant-sizing attrs.)
+
+ let v = present_first;
+ let kind = if is_enum || variants[v].is_empty() {
+ StructKind::AlwaysSized
+ } else {
+ if !always_sized { StructKind::MaybeUnsized } else { StructKind::AlwaysSized }
+ };
+
+ let mut st = self.univariant(dl, &variants[v], repr, kind)?;
+ st.variants = Variants::Single { index: v };
+
+ if is_unsafe_cell {
+ let hide_niches = |scalar: &mut _| match scalar {
+ Scalar::Initialized { value, valid_range } => {
+ *valid_range = WrappingRange::full(value.size(dl))
+ }
+ // Already doesn't have any niches
+ Scalar::Union { .. } => {}
+ };
+ match &mut st.abi {
+ Abi::Uninhabited => {}
+ Abi::Scalar(scalar) => hide_niches(scalar),
+ Abi::ScalarPair(a, b) => {
+ hide_niches(a);
+ hide_niches(b);
+ }
+ Abi::Vector { element, count: _ } => hide_niches(element),
+ Abi::Aggregate { sized: _ } => {}
+ }
+ st.largest_niche = None;
+ return Some(st);
+ }
+
+ let (start, end) = scalar_valid_range;
+ match st.abi {
+ Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
+ // Enlarging validity ranges would result in missed
+ // optimizations, *not* wrongly assuming the inner
+ // value is valid. e.g. unions already enlarge validity ranges,
+ // because the values may be uninitialized.
+ //
+ // Because of that we only check that the start and end
+ // of the range is representable with this scalar type.
+
+ let max_value = scalar.size(dl).unsigned_int_max();
+ if let Bound::Included(start) = start {
+ // FIXME(eddyb) this might be incorrect - it doesn't
+ // account for wrap-around (end < start) ranges.
+ assert!(start <= max_value, "{start} > {max_value}");
+ scalar.valid_range_mut().start = start;
+ }
+ if let Bound::Included(end) = end {
+ // FIXME(eddyb) this might be incorrect - it doesn't
+ // account for wrap-around (end < start) ranges.
+ assert!(end <= max_value, "{end} > {max_value}");
+ scalar.valid_range_mut().end = end;
+ }
+
+ // Update `largest_niche` if we have introduced a larger niche.
+ let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
+ if let Some(niche) = niche {
+ match st.largest_niche {
+ Some(largest_niche) => {
+ // Replace the existing niche even if they're equal,
+ // because this one is at a lower offset.
+ if largest_niche.available(dl) <= niche.available(dl) {
+ st.largest_niche = Some(niche);
+ }
+ }
+ None => st.largest_niche = Some(niche),
+ }
+ }
+ }
+ _ => assert!(
+ start == Bound::Unbounded && end == Bound::Unbounded,
+ "nonscalar layout for layout_scalar_valid_range type: {:#?}",
+ st,
+ ),
+ }
+
+ return Some(st);
+ }
+
+ // At this point, we have handled all unions and
+ // structs. (We have also handled univariant enums
+ // that allow representation optimization.)
+ assert!(is_enum);
+
+ // Until we've decided whether to use the tagged or
+ // niche filling LayoutS, we don't want to intern the
+ // variant layouts, so we can't store them in the
+ // overall LayoutS. Store the overall LayoutS
+ // and the variant LayoutSs here until then.
+ struct TmpLayout<V: Idx> {
+ layout: LayoutS<V>,
+ variants: IndexVec<V, LayoutS<V>>,
+ }
+
+ let calculate_niche_filling_layout = || -> Option<TmpLayout<V>> {
+ if niche_optimize_enum {
+ return None;
+ }
+
+ if variants.len() < 2 {
+ return None;
+ }
+
+ let mut align = dl.aggregate_align;
+ let mut variant_layouts = variants
+ .iter_enumerated()
+ .map(|(j, v)| {
+ let mut st = self.univariant(dl, v, repr, StructKind::AlwaysSized)?;
+ st.variants = Variants::Single { index: j };
+
+ align = align.max(st.align);
+
+ Some(st)
+ })
+ .collect::<Option<IndexVec<V, _>>>()?;
+
+ let largest_variant_index = variant_layouts
+ .iter_enumerated()
+ .max_by_key(|(_i, layout)| layout.size.bytes())
+ .map(|(i, _layout)| i)?;
+
+ let all_indices = (0..=variants.len() - 1).map(V::new);
+ let needs_disc = |index: V| index != largest_variant_index && !absent(&variants[index]);
+ let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap().index()
+ ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap().index();
+
+ let count = niche_variants.size_hint().1.unwrap() as u128;
+
+ // Find the field with the largest niche
+ let (field_index, niche, (niche_start, niche_scalar)) = variants[largest_variant_index]
+ .iter()
+ .enumerate()
+ .filter_map(|(j, field)| Some((j, field.largest_niche?)))
+ .max_by_key(|(_, niche)| niche.available(dl))
+ .and_then(|(j, niche)| Some((j, niche, niche.reserve(dl, count)?)))?;
+ let niche_offset =
+ niche.offset + variant_layouts[largest_variant_index].fields.offset(field_index);
+ let niche_size = niche.value.size(dl);
+ let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
+
+ let all_variants_fit = variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
+ if i == largest_variant_index {
+ return true;
+ }
+
+ layout.largest_niche = None;
+
+ if layout.size <= niche_offset {
+ // This variant will fit before the niche.
+ return true;
+ }
+
+ // Determine if it'll fit after the niche.
+ let this_align = layout.align.abi;
+ let this_offset = (niche_offset + niche_size).align_to(this_align);
+
+ if this_offset + layout.size > size {
+ return false;
+ }
+
+ // It'll fit, but we need to make some adjustments.
+ match layout.fields {
+ FieldsShape::Arbitrary { ref mut offsets, .. } => {
+ for (j, offset) in offsets.iter_mut().enumerate() {
+ if !variants[i][j].is_zst() {
+ *offset += this_offset;
+ }
+ }
+ }
+ _ => {
+ panic!("Layout of fields should be Arbitrary for variants")
+ }
+ }
+
+ // It can't be a Scalar or ScalarPair because the offset isn't 0.
+ if !layout.abi.is_uninhabited() {
+ layout.abi = Abi::Aggregate { sized: true };
+ }
+ layout.size += this_offset;
+
+ true
+ });
+
+ if !all_variants_fit {
+ return None;
+ }
+
+ let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
+
+ let others_zst = variant_layouts
+ .iter_enumerated()
+ .all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO);
+ let same_size = size == variant_layouts[largest_variant_index].size;
+ let same_align = align == variant_layouts[largest_variant_index].align;
+
+ let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
+ Abi::Uninhabited
+ } else if same_size && same_align && others_zst {
+ match variant_layouts[largest_variant_index].abi {
+ // When the total alignment and size match, we can use the
+ // same ABI as the scalar variant with the reserved niche.
+ Abi::Scalar(_) => Abi::Scalar(niche_scalar),
+ Abi::ScalarPair(first, second) => {
+ // Only the niche is guaranteed to be initialised,
+ // so use union layouts for the other primitive.
+ if niche_offset == Size::ZERO {
+ Abi::ScalarPair(niche_scalar, second.to_union())
+ } else {
+ Abi::ScalarPair(first.to_union(), niche_scalar)
+ }
+ }
+ _ => Abi::Aggregate { sized: true },
+ }
+ } else {
+ Abi::Aggregate { sized: true }
+ };
+
+ let layout = LayoutS {
+ variants: Variants::Multiple {
+ tag: niche_scalar,
+ tag_encoding: TagEncoding::Niche {
+ untagged_variant: largest_variant_index,
+ niche_variants: (V::new(*niche_variants.start())
+ ..=V::new(*niche_variants.end())),
+ niche_start,
+ },
+ tag_field: 0,
+ variants: IndexVec::new(),
+ },
+ fields: FieldsShape::Arbitrary {
+ offsets: vec![niche_offset],
+ memory_index: vec![0],
+ },
+ abi,
+ largest_niche,
+ size,
+ align,
+ };
+
+ Some(TmpLayout { layout, variants: variant_layouts })
+ };
+
+ let niche_filling_layout = calculate_niche_filling_layout();
+
+ let (mut min, mut max) = (i128::MAX, i128::MIN);
+ let discr_type = repr.discr_type();
+ let bits = Integer::from_attr(dl, discr_type).size().bits();
+ for (i, mut val) in discriminants {
+ if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
+ continue;
+ }
+ if discr_type.is_signed() {
+ // sign extend the raw representation to be an i128
+ val = (val << (128 - bits)) >> (128 - bits);
+ }
+ if val < min {
+ min = val;
+ }
+ if val > max {
+ max = val;
+ }
+ }
+ // We might have no inhabited variants, so pretend there's at least one.
+ if (min, max) == (i128::MAX, i128::MIN) {
+ min = 0;
+ max = 0;
+ }
+ assert!(min <= max, "discriminant range is {}...{}", min, max);
+ let (min_ity, signed) = discr_range_of_repr(min, max); //Integer::repr_discr(tcx, ty, &repr, min, max);
+
+ let mut align = dl.aggregate_align;
+ let mut size = Size::ZERO;
+
+ // We're interested in the smallest alignment, so start large.
+ let mut start_align = Align::from_bytes(256).unwrap();
+ assert_eq!(Integer::for_align(dl, start_align), None);
+
+ // repr(C) on an enum tells us to make a (tag, union) layout,
+ // so we need to grow the prefix alignment to be at least
+ // the alignment of the union. (This value is used both for
+ // determining the alignment of the overall enum, and the
+ // determining the alignment of the payload after the tag.)
+ let mut prefix_align = min_ity.align(dl).abi;
+ if repr.c() {
+ for fields in variants {
+ for field in fields {
+ prefix_align = prefix_align.max(field.align.abi);
+ }
+ }
+ }
+
+ // Create the set of structs that represent each variant.
+ let mut layout_variants = variants
+ .iter_enumerated()
+ .map(|(i, field_layouts)| {
+ let mut st = self.univariant(
+ dl,
+ field_layouts,
+ repr,
+ StructKind::Prefixed(min_ity.size(), prefix_align),
+ )?;
+ st.variants = Variants::Single { index: i };
+ // Find the first field we can't move later
+ // to make room for a larger discriminant.
+ for field in st.fields.index_by_increasing_offset().map(|j| &field_layouts[j]) {
+ if !field.is_zst() || field.align.abi.bytes() != 1 {
+ start_align = start_align.min(field.align.abi);
+ break;
+ }
+ }
+ size = cmp::max(size, st.size);
+ align = align.max(st.align);
+ Some(st)
+ })
+ .collect::<Option<IndexVec<V, _>>>()?;
+
+ // Align the maximum variant size to the largest alignment.
+ size = size.align_to(align.abi);
+
+ if size.bytes() >= dl.obj_size_bound() {
+ return None;
+ }
+
+ let typeck_ity = Integer::from_attr(dl, repr.discr_type());
+ if typeck_ity < min_ity {
+ // It is a bug if Layout decided on a greater discriminant size than typeck for
+ // some reason at this point (based on values discriminant can take on). Mostly
+ // because this discriminant will be loaded, and then stored into variable of
+ // type calculated by typeck. Consider such case (a bug): typeck decided on
+ // byte-sized discriminant, but layout thinks we need a 16-bit to store all
+ // discriminant values. That would be a bug, because then, in codegen, in order
+ // to store this 16-bit discriminant into 8-bit sized temporary some of the
+ // space necessary to represent would have to be discarded (or layout is wrong
+ // on thinking it needs 16 bits)
+ panic!(
+ "layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
+ min_ity, typeck_ity
+ );
+ // However, it is fine to make discr type however large (as an optimisation)
+ // after this point – we’ll just truncate the value we load in codegen.
+ }
+
+ // Check to see if we should use a different type for the
+ // discriminant. We can safely use a type with the same size
+ // as the alignment of the first field of each variant.
+ // We increase the size of the discriminant to avoid LLVM copying
+ // padding when it doesn't need to. This normally causes unaligned
+ // load/stores and excessive memcpy/memset operations. By using a
+ // bigger integer size, LLVM can be sure about its contents and
+ // won't be so conservative.
+
+ // Use the initial field alignment
+ let mut ity = if repr.c() || repr.int.is_some() {
+ min_ity
+ } else {
+ Integer::for_align(dl, start_align).unwrap_or(min_ity)
+ };
+
+ // If the alignment is not larger than the chosen discriminant size,
+ // don't use the alignment as the final size.
+ if ity <= min_ity {
+ ity = min_ity;
+ } else {
+ // Patch up the variants' first few fields.
+ let old_ity_size = min_ity.size();
+ let new_ity_size = ity.size();
+ for variant in &mut layout_variants {
+ match variant.fields {
+ FieldsShape::Arbitrary { ref mut offsets, .. } => {
+ for i in offsets {
+ if *i <= old_ity_size {
+ assert_eq!(*i, old_ity_size);
+ *i = new_ity_size;
+ }
+ }
+ // We might be making the struct larger.
+ if variant.size <= old_ity_size {
+ variant.size = new_ity_size;
+ }
+ }
+ _ => panic!(),
+ }
+ }
+ }
+
+ let tag_mask = ity.size().unsigned_int_max();
+ let tag = Scalar::Initialized {
+ value: Int(ity, signed),
+ valid_range: WrappingRange {
+ start: (min as u128 & tag_mask),
+ end: (max as u128 & tag_mask),
+ },
+ };
+ let mut abi = Abi::Aggregate { sized: true };
+
+ if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
+ abi = Abi::Uninhabited;
+ } else if tag.size(dl) == size {
+ // Make sure we only use scalar layout when the enum is entirely its
+ // own tag (i.e. it has no padding nor any non-ZST variant fields).
+ abi = Abi::Scalar(tag);
+ } else {
+ // Try to use a ScalarPair for all tagged enums.
+ let mut common_prim = None;
+ let mut common_prim_initialized_in_all_variants = true;
+ for (field_layouts, layout_variant) in iter::zip(variants, &layout_variants) {
+ let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
+ panic!();
+ };
+ let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
+ let (field, offset) = match (fields.next(), fields.next()) {
+ (None, None) => {
+ common_prim_initialized_in_all_variants = false;
+ continue;
+ }
+ (Some(pair), None) => pair,
+ _ => {
+ common_prim = None;
+ break;
+ }
+ };
+ let prim = match field.abi {
+ Abi::Scalar(scalar) => {
+ common_prim_initialized_in_all_variants &=
+ matches!(scalar, Scalar::Initialized { .. });
+ scalar.primitive()
+ }
+ _ => {
+ common_prim = None;
+ break;
+ }
+ };
+ if let Some(pair) = common_prim {
+ // This is pretty conservative. We could go fancier
+ // by conflating things like i32 and u32, or even
+ // realising that (u8, u8) could just cohabit with
+ // u16 or even u32.
+ if pair != (prim, offset) {
+ common_prim = None;
+ break;
+ }
+ } else {
+ common_prim = Some((prim, offset));
+ }
+ }
+ if let Some((prim, offset)) = common_prim {
+ let prim_scalar = if common_prim_initialized_in_all_variants {
+ scalar_unit(prim)
+ } else {
+ // Common prim might be uninit.
+ Scalar::Union { value: prim }
+ };
+ let pair = self.scalar_pair::<V>(tag, prim_scalar);
+ let pair_offsets = match pair.fields {
+ FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
+ assert_eq!(memory_index, &[0, 1]);
+ offsets
+ }
+ _ => panic!(),
+ };
+ if pair_offsets[0] == Size::ZERO
+ && pair_offsets[1] == *offset
+ && align == pair.align
+ && size == pair.size
+ {
+ // We can use `ScalarPair` only when it matches our
+ // already computed layout (including `#[repr(C)]`).
+ abi = pair.abi;
+ }
+ }
+ }
+
+ // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
+ // variants to ensure they are consistent. This is because a downcast is
+ // semantically a NOP, and thus should not affect layout.
+ if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
+ for variant in &mut layout_variants {
+ // We only do this for variants with fields; the others are not accessed anyway.
+ // Also do not overwrite any already existing "clever" ABIs.
+ if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
+ variant.abi = abi;
+ // Also need to bump up the size and alignment, so that the entire value fits in here.
+ variant.size = cmp::max(variant.size, size);
+ variant.align.abi = cmp::max(variant.align.abi, align.abi);
+ }
+ }
+ }
+
+ let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
+
+ let tagged_layout = LayoutS {
+ variants: Variants::Multiple {
+ tag,
+ tag_encoding: TagEncoding::Direct,
+ tag_field: 0,
+ variants: IndexVec::new(),
+ },
+ fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] },
+ largest_niche,
+ abi,
+ align,
+ size,
+ };
+
+ let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
+
+ let mut best_layout = match (tagged_layout, niche_filling_layout) {
+ (tl, Some(nl)) => {
+ // Pick the smaller layout; otherwise,
+ // pick the layout with the larger niche; otherwise,
+ // pick tagged as it has simpler codegen.
+ use cmp::Ordering::*;
+ let niche_size = |tmp_l: &TmpLayout<V>| {
+ tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
+ };
+ match (tl.layout.size.cmp(&nl.layout.size), niche_size(&tl).cmp(&niche_size(&nl))) {
+ (Greater, _) => nl,
+ (Equal, Less) => nl,
+ _ => tl,
+ }
+ }
+ (tl, None) => tl,
+ };
+
+ // Now we can intern the variant layouts and store them in the enum layout.
+ best_layout.layout.variants = match best_layout.layout.variants {
+ Variants::Multiple { tag, tag_encoding, tag_field, .. } => {
+ Variants::Multiple { tag, tag_encoding, tag_field, variants: best_layout.variants }
+ }
+ _ => panic!(),
+ };
+ Some(best_layout.layout)
+ }
+
+ fn layout_of_union<'a, V: Idx, F: Deref<Target = &'a LayoutS<V>> + Debug>(
+ &self,
+ repr: &ReprOptions,
+ variants: &IndexVec<V, Vec<F>>,
+ ) -> Option<LayoutS<V>> {
+ let dl = self.current_data_layout();
+ let dl = dl.borrow();
+ let mut align = if repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align };
+
+ if let Some(repr_align) = repr.align {
+ align = align.max(AbiAndPrefAlign::new(repr_align));
+ }
+
+ let optimize = !repr.inhibit_union_abi_opt();
+ let mut size = Size::ZERO;
+ let mut abi = Abi::Aggregate { sized: true };
+ let index = V::new(0);
+ for field in &variants[index] {
+ assert!(field.is_sized());
+ align = align.max(field.align);
+
+ // If all non-ZST fields have the same ABI, forward this ABI
+ if optimize && !field.is_zst() {
+ // Discard valid range information and allow undef
+ let field_abi = match field.abi {
+ Abi::Scalar(x) => Abi::Scalar(x.to_union()),
+ Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()),
+ Abi::Vector { element: x, count } => {
+ Abi::Vector { element: x.to_union(), count }
+ }
+ Abi::Uninhabited | Abi::Aggregate { .. } => Abi::Aggregate { sized: true },
+ };
+
+ if size == Size::ZERO {
+ // first non ZST: initialize 'abi'
+ abi = field_abi;
+ } else if abi != field_abi {
+ // different fields have different ABI: reset to Aggregate
+ abi = Abi::Aggregate { sized: true };
+ }
+ }
+
+ size = cmp::max(size, field.size);
+ }
+
+ if let Some(pack) = repr.pack {
+ align = align.min(AbiAndPrefAlign::new(pack));
+ }
+
+ Some(LayoutS {
+ variants: Variants::Single { index },
+ fields: FieldsShape::Union(NonZeroUsize::new(variants[index].len())?),
+ abi,
+ largest_niche: None,
+ align,
+ size: size.align_to(align.abi),
+ })
+ }
+}