summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_ast/src/util/literal.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /compiler/rustc_ast/src/util/literal.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_ast/src/util/literal.rs')
-rw-r--r--compiler/rustc_ast/src/util/literal.rs336
1 files changed, 336 insertions, 0 deletions
diff --git a/compiler/rustc_ast/src/util/literal.rs b/compiler/rustc_ast/src/util/literal.rs
new file mode 100644
index 000000000..9c18f55c0
--- /dev/null
+++ b/compiler/rustc_ast/src/util/literal.rs
@@ -0,0 +1,336 @@
+//! Code related to parsing literals.
+
+use crate::ast::{self, Lit, LitKind};
+use crate::token::{self, Token};
+
+use rustc_lexer::unescape::{unescape_byte, unescape_char};
+use rustc_lexer::unescape::{unescape_byte_literal, unescape_literal, Mode};
+use rustc_span::symbol::{kw, sym, Symbol};
+use rustc_span::Span;
+
+use std::ascii;
+use tracing::debug;
+
+pub enum LitError {
+ NotLiteral,
+ LexerError,
+ InvalidSuffix,
+ InvalidIntSuffix,
+ InvalidFloatSuffix,
+ NonDecimalFloat(u32),
+ IntTooLarge,
+}
+
+impl LitKind {
+ /// Converts literal token into a semantic literal.
+ pub fn from_lit_token(lit: token::Lit) -> Result<LitKind, LitError> {
+ let token::Lit { kind, symbol, suffix } = lit;
+ if suffix.is_some() && !kind.may_have_suffix() {
+ return Err(LitError::InvalidSuffix);
+ }
+
+ Ok(match kind {
+ token::Bool => {
+ assert!(symbol.is_bool_lit());
+ LitKind::Bool(symbol == kw::True)
+ }
+ token::Byte => {
+ return unescape_byte(symbol.as_str())
+ .map(LitKind::Byte)
+ .map_err(|_| LitError::LexerError);
+ }
+ token::Char => {
+ return unescape_char(symbol.as_str())
+ .map(LitKind::Char)
+ .map_err(|_| LitError::LexerError);
+ }
+
+ // There are some valid suffixes for integer and float literals,
+ // so all the handling is done internally.
+ token::Integer => return integer_lit(symbol, suffix),
+ token::Float => return float_lit(symbol, suffix),
+
+ token::Str => {
+ // If there are no characters requiring special treatment we can
+ // reuse the symbol from the token. Otherwise, we must generate a
+ // new symbol because the string in the LitKind is different to the
+ // string in the token.
+ let s = symbol.as_str();
+ let symbol = if s.contains(&['\\', '\r']) {
+ let mut buf = String::with_capacity(s.len());
+ let mut error = Ok(());
+ // Force-inlining here is aggressive but the closure is
+ // called on every char in the string, so it can be
+ // hot in programs with many long strings.
+ unescape_literal(
+ &s,
+ Mode::Str,
+ &mut #[inline(always)]
+ |_, unescaped_char| match unescaped_char {
+ Ok(c) => buf.push(c),
+ Err(err) => {
+ if err.is_fatal() {
+ error = Err(LitError::LexerError);
+ }
+ }
+ },
+ );
+ error?;
+ Symbol::intern(&buf)
+ } else {
+ symbol
+ };
+ LitKind::Str(symbol, ast::StrStyle::Cooked)
+ }
+ token::StrRaw(n) => {
+ // Ditto.
+ let s = symbol.as_str();
+ let symbol =
+ if s.contains('\r') {
+ let mut buf = String::with_capacity(s.len());
+ let mut error = Ok(());
+ unescape_literal(&s, Mode::RawStr, &mut |_, unescaped_char| {
+ match unescaped_char {
+ Ok(c) => buf.push(c),
+ Err(err) => {
+ if err.is_fatal() {
+ error = Err(LitError::LexerError);
+ }
+ }
+ }
+ });
+ error?;
+ Symbol::intern(&buf)
+ } else {
+ symbol
+ };
+ LitKind::Str(symbol, ast::StrStyle::Raw(n))
+ }
+ token::ByteStr => {
+ let s = symbol.as_str();
+ let mut buf = Vec::with_capacity(s.len());
+ let mut error = Ok(());
+ unescape_byte_literal(&s, Mode::ByteStr, &mut |_, unescaped_byte| {
+ match unescaped_byte {
+ Ok(c) => buf.push(c),
+ Err(err) => {
+ if err.is_fatal() {
+ error = Err(LitError::LexerError);
+ }
+ }
+ }
+ });
+ error?;
+ LitKind::ByteStr(buf.into())
+ }
+ token::ByteStrRaw(_) => {
+ let s = symbol.as_str();
+ let bytes = if s.contains('\r') {
+ let mut buf = Vec::with_capacity(s.len());
+ let mut error = Ok(());
+ unescape_byte_literal(&s, Mode::RawByteStr, &mut |_, unescaped_byte| {
+ match unescaped_byte {
+ Ok(c) => buf.push(c),
+ Err(err) => {
+ if err.is_fatal() {
+ error = Err(LitError::LexerError);
+ }
+ }
+ }
+ });
+ error?;
+ buf
+ } else {
+ symbol.to_string().into_bytes()
+ };
+
+ LitKind::ByteStr(bytes.into())
+ }
+ token::Err => LitKind::Err(symbol),
+ })
+ }
+
+ /// Attempts to recover a token from semantic literal.
+ /// This function is used when the original token doesn't exist (e.g. the literal is created
+ /// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
+ pub fn to_lit_token(&self) -> token::Lit {
+ let (kind, symbol, suffix) = match *self {
+ LitKind::Str(symbol, ast::StrStyle::Cooked) => {
+ // Don't re-intern unless the escaped string is different.
+ let s = symbol.as_str();
+ let escaped = s.escape_default().to_string();
+ let symbol = if s == escaped { symbol } else { Symbol::intern(&escaped) };
+ (token::Str, symbol, None)
+ }
+ LitKind::Str(symbol, ast::StrStyle::Raw(n)) => (token::StrRaw(n), symbol, None),
+ LitKind::ByteStr(ref bytes) => {
+ let string = bytes
+ .iter()
+ .cloned()
+ .flat_map(ascii::escape_default)
+ .map(Into::<char>::into)
+ .collect::<String>();
+ (token::ByteStr, Symbol::intern(&string), None)
+ }
+ LitKind::Byte(byte) => {
+ let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
+ (token::Byte, Symbol::intern(&string), None)
+ }
+ LitKind::Char(ch) => {
+ let string: String = ch.escape_default().map(Into::<char>::into).collect();
+ (token::Char, Symbol::intern(&string), None)
+ }
+ LitKind::Int(n, ty) => {
+ let suffix = match ty {
+ ast::LitIntType::Unsigned(ty) => Some(ty.name()),
+ ast::LitIntType::Signed(ty) => Some(ty.name()),
+ ast::LitIntType::Unsuffixed => None,
+ };
+ (token::Integer, sym::integer(n), suffix)
+ }
+ LitKind::Float(symbol, ty) => {
+ let suffix = match ty {
+ ast::LitFloatType::Suffixed(ty) => Some(ty.name()),
+ ast::LitFloatType::Unsuffixed => None,
+ };
+ (token::Float, symbol, suffix)
+ }
+ LitKind::Bool(value) => {
+ let symbol = if value { kw::True } else { kw::False };
+ (token::Bool, symbol, None)
+ }
+ LitKind::Err(symbol) => (token::Err, symbol, None),
+ };
+
+ token::Lit::new(kind, symbol, suffix)
+ }
+}
+
+impl Lit {
+ /// Converts literal token into an AST literal.
+ pub fn from_lit_token(token: token::Lit, span: Span) -> Result<Lit, LitError> {
+ Ok(Lit { token, kind: LitKind::from_lit_token(token)?, span })
+ }
+
+ /// Converts arbitrary token into an AST literal.
+ ///
+ /// Keep this in sync with `Token::can_begin_literal_or_bool` excluding unary negation.
+ pub fn from_token(token: &Token) -> Result<Lit, LitError> {
+ let lit = match token.uninterpolate().kind {
+ token::Ident(name, false) if name.is_bool_lit() => {
+ token::Lit::new(token::Bool, name, None)
+ }
+ token::Literal(lit) => lit,
+ token::Interpolated(ref nt) => {
+ if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt
+ && let ast::ExprKind::Lit(lit) = &expr.kind
+ {
+ return Ok(lit.clone());
+ }
+ return Err(LitError::NotLiteral);
+ }
+ _ => return Err(LitError::NotLiteral),
+ };
+
+ Lit::from_lit_token(lit, token.span)
+ }
+
+ /// Attempts to recover an AST literal from semantic literal.
+ /// This function is used when the original token doesn't exist (e.g. the literal is created
+ /// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
+ pub fn from_lit_kind(kind: LitKind, span: Span) -> Lit {
+ Lit { token: kind.to_lit_token(), kind, span }
+ }
+
+ /// Losslessly convert an AST literal into a token.
+ pub fn to_token(&self) -> Token {
+ let kind = match self.token.kind {
+ token::Bool => token::Ident(self.token.symbol, false),
+ _ => token::Literal(self.token),
+ };
+ Token::new(kind, self.span)
+ }
+}
+
+fn strip_underscores(symbol: Symbol) -> Symbol {
+ // Do not allocate a new string unless necessary.
+ let s = symbol.as_str();
+ if s.contains('_') {
+ let mut s = s.to_string();
+ s.retain(|c| c != '_');
+ return Symbol::intern(&s);
+ }
+ symbol
+}
+
+fn filtered_float_lit(
+ symbol: Symbol,
+ suffix: Option<Symbol>,
+ base: u32,
+) -> Result<LitKind, LitError> {
+ debug!("filtered_float_lit: {:?}, {:?}, {:?}", symbol, suffix, base);
+ if base != 10 {
+ return Err(LitError::NonDecimalFloat(base));
+ }
+ Ok(match suffix {
+ Some(suf) => LitKind::Float(
+ symbol,
+ ast::LitFloatType::Suffixed(match suf {
+ sym::f32 => ast::FloatTy::F32,
+ sym::f64 => ast::FloatTy::F64,
+ _ => return Err(LitError::InvalidFloatSuffix),
+ }),
+ ),
+ None => LitKind::Float(symbol, ast::LitFloatType::Unsuffixed),
+ })
+}
+
+fn float_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
+ debug!("float_lit: {:?}, {:?}", symbol, suffix);
+ filtered_float_lit(strip_underscores(symbol), suffix, 10)
+}
+
+fn integer_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
+ debug!("integer_lit: {:?}, {:?}", symbol, suffix);
+ let symbol = strip_underscores(symbol);
+ let s = symbol.as_str();
+
+ let base = match s.as_bytes() {
+ [b'0', b'x', ..] => 16,
+ [b'0', b'o', ..] => 8,
+ [b'0', b'b', ..] => 2,
+ _ => 10,
+ };
+
+ let ty = match suffix {
+ Some(suf) => match suf {
+ sym::isize => ast::LitIntType::Signed(ast::IntTy::Isize),
+ sym::i8 => ast::LitIntType::Signed(ast::IntTy::I8),
+ sym::i16 => ast::LitIntType::Signed(ast::IntTy::I16),
+ sym::i32 => ast::LitIntType::Signed(ast::IntTy::I32),
+ sym::i64 => ast::LitIntType::Signed(ast::IntTy::I64),
+ sym::i128 => ast::LitIntType::Signed(ast::IntTy::I128),
+ sym::usize => ast::LitIntType::Unsigned(ast::UintTy::Usize),
+ sym::u8 => ast::LitIntType::Unsigned(ast::UintTy::U8),
+ sym::u16 => ast::LitIntType::Unsigned(ast::UintTy::U16),
+ sym::u32 => ast::LitIntType::Unsigned(ast::UintTy::U32),
+ sym::u64 => ast::LitIntType::Unsigned(ast::UintTy::U64),
+ sym::u128 => ast::LitIntType::Unsigned(ast::UintTy::U128),
+ // `1f64` and `2f32` etc. are valid float literals, and
+ // `fxxx` looks more like an invalid float literal than invalid integer literal.
+ _ if suf.as_str().starts_with('f') => return filtered_float_lit(symbol, suffix, base),
+ _ => return Err(LitError::InvalidIntSuffix),
+ },
+ _ => ast::LitIntType::Unsuffixed,
+ };
+
+ let s = &s[if base != 10 { 2 } else { 0 }..];
+ u128::from_str_radix(s, base).map(|i| LitKind::Int(i, ty)).map_err(|_| {
+ // Small bases are lexed as if they were base 10, e.g, the string
+ // might be `0b10201`. This will cause the conversion above to fail,
+ // but these kinds of errors are already reported by the lexer.
+ let from_lexer =
+ base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
+ if from_lexer { LitError::LexerError } else { LitError::IntTooLarge }
+ })
+}