diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-06-07 05:48:48 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-06-07 05:48:48 +0000 |
commit | ef24de24a82fe681581cc130f342363c47c0969a (patch) | |
tree | 0d494f7e1a38b95c92426f58fe6eaa877303a86c /compiler/rustc_mir_build | |
parent | Releasing progress-linux version 1.74.1+dfsg1-1~progress7.99u1. (diff) | |
download | rustc-ef24de24a82fe681581cc130f342363c47c0969a.tar.xz rustc-ef24de24a82fe681581cc130f342363c47c0969a.zip |
Merging upstream version 1.75.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_mir_build')
27 files changed, 2774 insertions, 2191 deletions
diff --git a/compiler/rustc_mir_build/Cargo.toml b/compiler/rustc_mir_build/Cargo.toml index c7e2c625c..6dceacd75 100644 --- a/compiler/rustc_mir_build/Cargo.toml +++ b/compiler/rustc_mir_build/Cargo.toml @@ -3,25 +3,25 @@ name = "rustc_mir_build" version = "0.0.0" edition = "2021" -[lib] - [dependencies] -rustc_arena = { path = "../rustc_arena" } -tracing = "0.1" +# tidy-alphabetical-start either = "1" -rustc_middle = { path = "../rustc_middle" } rustc_apfloat = "0.2.0" +rustc_arena = { path = "../rustc_arena" } +rustc_ast = { path = "../rustc_ast" } rustc_data_structures = { path = "../rustc_data_structures" } -rustc_index = { path = "../rustc_index" } rustc_errors = { path = "../rustc_errors" } rustc_fluent_macro = { path = "../rustc_fluent_macro" } rustc_hir = { path = "../rustc_hir" } +rustc_index = { path = "../rustc_index" } rustc_infer = { path = "../rustc_infer" } rustc_macros = { path = "../rustc_macros" } +rustc_middle = { path = "../rustc_middle" } rustc_serialize = { path = "../rustc_serialize" } rustc_session = { path = "../rustc_session" } rustc_span = { path = "../rustc_span" } rustc_target = { path = "../rustc_target" } rustc_trait_selection = { path = "../rustc_trait_selection" } -rustc_ast = { path = "../rustc_ast" } smallvec = { version = "1.8.1", features = ["union", "may_dangle"] } +tracing = "0.1" +# tidy-alphabetical-end diff --git a/compiler/rustc_mir_build/messages.ftl b/compiler/rustc_mir_build/messages.ftl index ce021923f..7dd0e7d4b 100644 --- a/compiler/rustc_mir_build/messages.ftl +++ b/compiler/rustc_mir_build/messages.ftl @@ -173,7 +173,7 @@ mir_build_leading_irrefutable_let_patterns = leading irrefutable {$count -> mir_build_literal_in_range_out_of_bounds = literal out of range for `{$ty}` - .label = this value doesn't fit in `{$ty}` whose maximum value is `{$max}` + .label = this value does not fit into the type `{$ty}` whose range is `{$min}..={$max}` mir_build_lower_range_bound_must_be_less_than_or_equal_to_upper = lower range bound must be less than or equal to upper @@ -221,6 +221,11 @@ mir_build_non_exhaustive_omitted_pattern = some variants are not matched explici .help = ensure that all variants are matched explicitly by adding the suggested match arms .note = the matched value is of type `{$scrut_ty}` and the `non_exhaustive_omitted_patterns` attribute was found +mir_build_non_exhaustive_omitted_pattern_lint_on_arm = the lint level must be set on the whole match + .help = it no longer has any effect to set the lint level on an individual match arm + .label = remove this attribute + .suggestion = set the lint level on the whole match + mir_build_non_exhaustive_patterns_type_not_empty = non-exhaustive patterns: type `{$ty}` is non-empty .def_note = `{$peeled_ty}` defined here .type_note = the matched value is of type `{$ty}` @@ -242,7 +247,7 @@ mir_build_overlapping_range_endpoints = multiple patterns overlap on their endpo mir_build_pattern_not_covered = refutable pattern in {$origin} .pattern_ty = the matched value is of type `{$pattern_ty}` -mir_build_pointer_pattern = function pointers and unsized pointers in patterns behave unpredictably and should not be relied upon. See https://github.com/rust-lang/rust/issues/70861 for details. +mir_build_pointer_pattern = function pointers and raw pointers not derived from integers in patterns behave unpredictably and should not be relied upon. See https://github.com/rust-lang/rust/issues/70861 for details. mir_build_privately_uninhabited = pattern `{$witness_1}` is currently uninhabited, but this variant contains private fields which may become inhabited in the future @@ -315,6 +320,7 @@ mir_build_unreachable_pattern = unreachable pattern .label = unreachable pattern .catchall_label = matches any value +mir_build_unsafe_fn_safe_body = an unsafe function restricts its caller, but its body is safe by default mir_build_unsafe_not_inherited = items do not inherit unsafety from separate enclosing items mir_build_unsafe_op_in_unsafe_fn_borrow_of_layout_constrained_field_requires_unsafe = @@ -379,6 +385,7 @@ mir_build_unused_unsafe = unnecessary `unsafe` block .label = unnecessary `unsafe` block mir_build_unused_unsafe_enclosing_block_label = because it's nested under this `unsafe` block -mir_build_unused_unsafe_enclosing_fn_label = because it's nested under this `unsafe` fn mir_build_variant_defined_here = not covered + +mir_build_wrap_suggestion = consider wrapping the function body in an unsafe block diff --git a/compiler/rustc_mir_build/src/build/custom/mod.rs b/compiler/rustc_mir_build/src/build/custom/mod.rs index e5c2cc6c7..3de2f45ad 100644 --- a/compiler/rustc_mir_build/src/build/custom/mod.rs +++ b/compiler/rustc_mir_build/src/build/custom/mod.rs @@ -48,7 +48,7 @@ pub(super) fn build_custom_mir<'tcx>( source: MirSource::item(did), phase: MirPhase::Built, source_scopes: IndexVec::new(), - generator: None, + coroutine: None, local_decls: IndexVec::new(), user_type_annotations: IndexVec::new(), arg_count: params.len(), @@ -60,6 +60,7 @@ pub(super) fn build_custom_mir<'tcx>( tainted_by_errors: None, injection_phase: None, pass_count: 0, + function_coverage_info: None, }; body.local_decls.push(LocalDecl::new(return_ty, return_ty_span)); diff --git a/compiler/rustc_mir_build/src/build/expr/as_place.rs b/compiler/rustc_mir_build/src/build/expr/as_place.rs index 5bccba4fd..7e9191a37 100644 --- a/compiler/rustc_mir_build/src/build/expr/as_place.rs +++ b/compiler/rustc_mir_build/src/build/expr/as_place.rs @@ -75,7 +75,7 @@ pub(in crate::build) struct PlaceBuilder<'tcx> { /// Given a list of MIR projections, convert them to list of HIR ProjectionKind. /// The projections are truncated to represent a path that might be captured by a -/// closure/generator. This implies the vector returned from this function doesn't contain +/// closure/coroutine. This implies the vector returned from this function doesn't contain /// ProjectionElems `Downcast`, `ConstantIndex`, `Index`, or `Subslice` because those will never be /// part of a path that is captured by a closure. We stop applying projections once we see the first /// projection that isn't captured by a closure. @@ -213,7 +213,7 @@ fn to_upvars_resolved_place_builder<'tcx>( /// projections. /// /// Supports only HIR projection kinds that represent a path that might be -/// captured by a closure or a generator, i.e., an `Index` or a `Subslice` +/// captured by a closure or a coroutine, i.e., an `Index` or a `Subslice` /// projection kinds are unsupported. fn strip_prefix<'a, 'tcx>( mut base_ty: Ty<'tcx>, diff --git a/compiler/rustc_mir_build/src/build/expr/as_rvalue.rs b/compiler/rustc_mir_build/src/build/expr/as_rvalue.rs index d4089eef4..eece8684e 100644 --- a/compiler/rustc_mir_build/src/build/expr/as_rvalue.rs +++ b/compiler/rustc_mir_build/src/build/expr/as_rvalue.rs @@ -181,9 +181,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { block = success; // The `Box<T>` temporary created here is not a part of the HIR, - // and therefore is not considered during generator auto-trait + // and therefore is not considered during coroutine auto-trait // determination. See the comment about `box` at `yield_in_scope`. - let result = this.local_decls.push(LocalDecl::new(expr.ty, expr_span).internal()); + let result = this.local_decls.push(LocalDecl::new(expr.ty, expr_span)); this.cfg.push( block, Statement { source_info, kind: StatementKind::StorageLive(result) }, @@ -213,7 +213,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { // Casting an enum to an integer is equivalent to computing the discriminant and casting the // discriminant. Previously every backend had to repeat the logic for this operation. Now we // create all the steps directly in MIR with operations all backends need to support anyway. - let (source, ty) = if let ty::Adt(adt_def, ..) = source.ty.kind() && adt_def.is_enum() { + let (source, ty) = if let ty::Adt(adt_def, ..) = source.ty.kind() + && adt_def.is_enum() + { let discr_ty = adt_def.repr().discr_type().to_ty(this.tcx); let temp = unpack!(block = this.as_temp(block, scope, source, Mutability::Not)); let layout = this.tcx.layout_of(this.param_env.and(source.ty)); @@ -224,7 +226,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { discr, Rvalue::Discriminant(temp.into()), ); - let (op,ty) = (Operand::Move(discr), discr_ty); + let (op, ty) = (Operand::Move(discr), discr_ty); if let Abi::Scalar(scalar) = layout.unwrap().abi && !scalar.is_always_valid(&this.tcx) @@ -236,27 +238,30 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { block, source_info, unsigned_place, - Rvalue::Cast(CastKind::IntToInt, Operand::Copy(discr), unsigned_ty)); + Rvalue::Cast(CastKind::IntToInt, Operand::Copy(discr), unsigned_ty), + ); let bool_ty = this.tcx.types.bool; let range = scalar.valid_range(&this.tcx); let merge_op = - if range.start <= range.end { - BinOp::BitAnd - } else { - BinOp::BitOr - }; + if range.start <= range.end { BinOp::BitAnd } else { BinOp::BitOr }; let mut comparer = |range: u128, bin_op: BinOp| -> Place<'tcx> { - let range_val = - Const::from_bits(this.tcx, range, ty::ParamEnv::empty().and(unsigned_ty)); + let range_val = Const::from_bits( + this.tcx, + range, + ty::ParamEnv::empty().and(unsigned_ty), + ); let lit_op = this.literal_operand(expr.span, range_val); let is_bin_op = this.temp(bool_ty, expr_span); this.cfg.push_assign( block, source_info, is_bin_op, - Rvalue::BinaryOp(bin_op, Box::new((Operand::Copy(unsigned_place), lit_op))), + Rvalue::BinaryOp( + bin_op, + Box::new((Operand::Copy(unsigned_place), lit_op)), + ), ); is_bin_op }; @@ -270,7 +275,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { block, source_info, merge_place, - Rvalue::BinaryOp(merge_op, Box::new((Operand::Move(start_place), Operand::Move(end_place)))), + Rvalue::BinaryOp( + merge_op, + Box::new(( + Operand::Move(start_place), + Operand::Move(end_place), + )), + ), ); merge_place }; @@ -278,19 +289,24 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { block, Statement { source_info, - kind: StatementKind::Intrinsic(Box::new(NonDivergingIntrinsic::Assume( - Operand::Move(assert_place), - ))), + kind: StatementKind::Intrinsic(Box::new( + NonDivergingIntrinsic::Assume(Operand::Move(assert_place)), + )), }, ); } - (op,ty) - + (op, ty) } else { let ty = source.ty; let source = unpack!( - block = this.as_operand(block, scope, source, LocalInfo::Boring, NeedsTemporary::No) + block = this.as_operand( + block, + scope, + source, + LocalInfo::Boring, + NeedsTemporary::No + ) ); (source, ty) }; @@ -471,11 +487,11 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { .collect(); let result = match args { - UpvarArgs::Generator(args) => { + UpvarArgs::Coroutine(args) => { // We implicitly set the discriminant to 0. See // librustc_mir/transform/deaggregator.rs for details. let movability = movability.unwrap(); - Box::new(AggregateKind::Generator(closure_id.to_def_id(), args, movability)) + Box::new(AggregateKind::Coroutine(closure_id.to_def_id(), args, movability)) } UpvarArgs::Closure(args) => { Box::new(AggregateKind::Closure(closure_id.to_def_id(), args)) diff --git a/compiler/rustc_mir_build/src/build/expr/as_temp.rs b/compiler/rustc_mir_build/src/build/expr/as_temp.rs index c8910c272..a4ab365fa 100644 --- a/compiler/rustc_mir_build/src/build/expr/as_temp.rs +++ b/compiler/rustc_mir_build/src/build/expr/as_temp.rs @@ -52,12 +52,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let local_info = match expr.kind { ExprKind::StaticRef { def_id, .. } => { assert!(!this.tcx.is_thread_local_static(def_id)); - local_decl.internal = true; LocalInfo::StaticRef { def_id, is_thread_local: false } } ExprKind::ThreadLocalRef(def_id) => { assert!(this.tcx.is_thread_local_static(def_id)); - local_decl.internal = true; LocalInfo::StaticRef { def_id, is_thread_local: true } } ExprKind::NamedConst { def_id, .. } | ExprKind::ConstParam { def_id, .. } => { diff --git a/compiler/rustc_mir_build/src/build/expr/into.rs b/compiler/rustc_mir_build/src/build/expr/into.rs index a4de42d45..054661cf2 100644 --- a/compiler/rustc_mir_build/src/build/expr/into.rs +++ b/compiler/rustc_mir_build/src/build/expr/into.rs @@ -547,7 +547,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { source_info, TerminatorKind::Yield { value, resume, resume_arg: destination, drop: None }, ); - this.generator_drop_cleanup(block); + this.coroutine_drop_cleanup(block); resume.unit() } diff --git a/compiler/rustc_mir_build/src/build/expr/mod.rs b/compiler/rustc_mir_build/src/build/expr/mod.rs index f5ae060d6..dfe85b858 100644 --- a/compiler/rustc_mir_build/src/build/expr/mod.rs +++ b/compiler/rustc_mir_build/src/build/expr/mod.rs @@ -44,7 +44,7 @@ //! the most suitable spot to implement it, and then just let the //! other fns cycle around. The handoff works like this: //! -//! - `into(place)` -> fallback is to create a rvalue with `as_rvalue` and assign it to `place` +//! - `into(place)` -> fallback is to create an rvalue with `as_rvalue` and assign it to `place` //! - `as_rvalue` -> fallback is to create an Operand with `as_operand` and use `Rvalue::use` //! - `as_operand` -> either invokes `as_constant` or `as_temp` //! - `as_constant` -> (no fallback) diff --git a/compiler/rustc_mir_build/src/build/expr/stmt.rs b/compiler/rustc_mir_build/src/build/expr/stmt.rs index 396f82c27..7beaef602 100644 --- a/compiler/rustc_mir_build/src/build/expr/stmt.rs +++ b/compiler/rustc_mir_build/src/build/expr/stmt.rs @@ -120,32 +120,31 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { // // it is usually better to focus on `the_value` rather // than the entirety of block(s) surrounding it. - let adjusted_span = - if let ExprKind::Block { block } = expr.kind - && let Some(tail_ex) = this.thir[block].expr - { - let mut expr = &this.thir[tail_ex]; - loop { - match expr.kind { - ExprKind::Block { block } - if let Some(nested_expr) = this.thir[block].expr => - { - expr = &this.thir[nested_expr]; - } - ExprKind::Scope { value: nested_expr, .. } => { - expr = &this.thir[nested_expr]; - } - _ => break, + let adjusted_span = if let ExprKind::Block { block } = expr.kind + && let Some(tail_ex) = this.thir[block].expr + { + let mut expr = &this.thir[tail_ex]; + loop { + match expr.kind { + ExprKind::Block { block } + if let Some(nested_expr) = this.thir[block].expr => + { + expr = &this.thir[nested_expr]; } + ExprKind::Scope { value: nested_expr, .. } => { + expr = &this.thir[nested_expr]; + } + _ => break, } - this.block_context.push(BlockFrame::TailExpr { - tail_result_is_ignored: true, - span: expr.span, - }); - Some(expr.span) - } else { - None - }; + } + this.block_context.push(BlockFrame::TailExpr { + tail_result_is_ignored: true, + span: expr.span, + }); + Some(expr.span) + } else { + None + }; let temp = unpack!(block = this.as_temp(block, statement_scope, expr, Mutability::Not)); diff --git a/compiler/rustc_mir_build/src/build/matches/mod.rs b/compiler/rustc_mir_build/src/build/matches/mod.rs index 6baf8c7d7..304870274 100644 --- a/compiler/rustc_mir_build/src/build/matches/mod.rs +++ b/compiler/rustc_mir_build/src/build/matches/mod.rs @@ -157,7 +157,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { /// [ 0. Pre-match ] /// | /// [ 1. Evaluate Scrutinee (expression being matched on) ] - /// [ (fake read of scrutinee) ] + /// [ (PlaceMention of scrutinee) ] /// | /// [ 2. Decision tree -- check discriminants ] <--------+ /// | | @@ -184,7 +184,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { /// /// We generate MIR in the following steps: /// - /// 1. Evaluate the scrutinee and add the fake read of it ([Builder::lower_scrutinee]). + /// 1. Evaluate the scrutinee and add the PlaceMention of it ([Builder::lower_scrutinee]). /// 2. Create the decision tree ([Builder::lower_match_tree]). /// 3. Determine the fake borrows that are needed from the places that were /// matched against and create the required temporaries for them @@ -223,6 +223,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let fake_borrow_temps = self.lower_match_tree( block, scrutinee_span, + &scrutinee_place, match_start_span, match_has_guard, &mut candidates, @@ -238,7 +239,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { ) } - /// Evaluate the scrutinee and add the fake read of it. + /// Evaluate the scrutinee and add the PlaceMention for it. fn lower_scrutinee( &mut self, mut block: BasicBlock, @@ -246,26 +247,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { scrutinee_span: Span, ) -> BlockAnd<PlaceBuilder<'tcx>> { let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee)); - // Matching on a `scrutinee_place` with an uninhabited type doesn't - // generate any memory reads by itself, and so if the place "expression" - // contains unsafe operations like raw pointer dereferences or union - // field projections, we wouldn't know to require an `unsafe` block - // around a `match` equivalent to `std::intrinsics::unreachable()`. - // See issue #47412 for this hole being discovered in the wild. - // - // HACK(eddyb) Work around the above issue by adding a dummy inspection - // of `scrutinee_place`, specifically by applying `ReadForMatch`. - // - // NOTE: ReadForMatch also checks that the scrutinee is initialized. - // This is currently needed to not allow matching on an uninitialized, - // uninhabited value. If we get never patterns, those will check that - // the place is initialized, and so this read would only be used to - // check safety. - let cause_matched_place = FakeReadCause::ForMatchedPlace(None); - let source_info = self.source_info(scrutinee_span); - if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) { - self.cfg.push_fake_read(block, source_info, cause_matched_place, scrutinee_place); + let source_info = self.source_info(scrutinee_span); + self.cfg.push_place_mention(block, source_info, scrutinee_place); } block.and(scrutinee_place_builder) @@ -304,6 +288,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { &mut self, block: BasicBlock, scrutinee_span: Span, + scrutinee_place_builder: &PlaceBuilder<'tcx>, match_start_span: Span, match_has_guard: bool, candidates: &mut [&mut Candidate<'pat, 'tcx>], @@ -331,6 +316,33 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { // otherwise block. Match checking will ensure this is actually // unreachable. let source_info = self.source_info(scrutinee_span); + + // Matching on a `scrutinee_place` with an uninhabited type doesn't + // generate any memory reads by itself, and so if the place "expression" + // contains unsafe operations like raw pointer dereferences or union + // field projections, we wouldn't know to require an `unsafe` block + // around a `match` equivalent to `std::intrinsics::unreachable()`. + // See issue #47412 for this hole being discovered in the wild. + // + // HACK(eddyb) Work around the above issue by adding a dummy inspection + // of `scrutinee_place`, specifically by applying `ReadForMatch`. + // + // NOTE: ReadForMatch also checks that the scrutinee is initialized. + // This is currently needed to not allow matching on an uninitialized, + // uninhabited value. If we get never patterns, those will check that + // the place is initialized, and so this read would only be used to + // check safety. + let cause_matched_place = FakeReadCause::ForMatchedPlace(None); + + if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) { + self.cfg.push_fake_read( + otherwise_block, + source_info, + cause_matched_place, + scrutinee_place, + ); + } + self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable); } @@ -599,13 +611,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { } _ => { - let place_builder = unpack!(block = self.as_place_builder(block, initializer)); - - if let Some(place) = place_builder.try_to_place(self) { - let source_info = self.source_info(initializer.span); - self.cfg.push_place_mention(block, source_info, place); - } - + let place_builder = + unpack!(block = self.lower_scrutinee(block, initializer, initializer.span)); self.place_into_pattern(block, &irrefutable_pat, place_builder, true) } } @@ -622,6 +629,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let fake_borrow_temps = self.lower_match_tree( block, irrefutable_pat.span, + &initializer, irrefutable_pat.span, false, &mut [&mut candidate], @@ -736,7 +744,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) }); // Although there is almost always scope for given variable in corner cases // like #92893 we might get variable with no scope. - if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) && schedule_drop { + if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) + && schedule_drop + { self.schedule_drop(span, region_scope, local_id, DropKind::Storage); } Place::from(local_id) @@ -814,7 +824,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { } } - PatKind::Constant { .. } | PatKind::Range { .. } | PatKind::Wild => {} + PatKind::Constant { .. } + | PatKind::Range { .. } + | PatKind::Wild + | PatKind::Error(_) => {} PatKind::Deref { ref subpattern } => { self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f); @@ -842,6 +855,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { self.visit_primary_bindings(subpattern, subpattern_user_ty, f) } + PatKind::InlineConstant { ref subpattern, .. } => { + self.visit_primary_bindings(subpattern, pattern_user_ty, f) + } + PatKind::Leaf { ref subpatterns } => { for subpattern in subpatterns { let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field); @@ -1018,7 +1035,7 @@ enum TestKind<'tcx> { ty: Ty<'tcx>, }, - /// Test whether the value falls within an inclusive or exclusive range + /// Test whether the value falls within an inclusive or exclusive range. Range(Box<PatRange<'tcx>>), /// Test that the length of the slice is equal to `len`. @@ -1798,7 +1815,6 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let fake_borrow_ty = Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, fake_borrow_deref_ty); let mut fake_borrow_temp = LocalDecl::new(fake_borrow_ty, temp_span); - fake_borrow_temp.internal = self.local_decls[matched_place.local].internal; fake_borrow_temp.local_info = ClearCrossCrate::Set(Box::new(LocalInfo::FakeBorrow)); let fake_borrow_temp = self.local_decls.push(fake_borrow_temp); @@ -1833,6 +1849,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let fake_borrow_temps = self.lower_match_tree( block, pat.span, + &expr_place_builder, pat.span, false, &mut [&mut guard_candidate, &mut otherwise_candidate], @@ -2268,7 +2285,6 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { ty: var_ty, user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) }, source_info, - internal: false, local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(BindingForm::Var( VarBindingForm { binding_mode, @@ -2298,7 +2314,6 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { ty: Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, var_ty), user_ty: None, source_info, - internal: false, local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User( BindingForm::RefForGuard, ))), @@ -2336,6 +2351,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let fake_borrow_temps = this.lower_match_tree( block, initializer_span, + &scrutinee, pattern.span, false, &mut [&mut candidate, &mut wildcard], diff --git a/compiler/rustc_mir_build/src/build/matches/simplify.rs b/compiler/rustc_mir_build/src/build/matches/simplify.rs index 17ac1f4e0..6a40c8d84 100644 --- a/compiler/rustc_mir_build/src/build/matches/simplify.rs +++ b/compiler/rustc_mir_build/src/build/matches/simplify.rs @@ -15,11 +15,7 @@ use crate::build::expr::as_place::PlaceBuilder; use crate::build::matches::{Ascription, Binding, Candidate, MatchPair}; use crate::build::Builder; -use rustc_hir::RangeEnd; use rustc_middle::thir::{self, *}; -use rustc_middle::ty; -use rustc_middle::ty::layout::IntegerExt; -use rustc_target::abi::{Integer, Size}; use std::mem; @@ -148,7 +144,6 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { match_pair: MatchPair<'pat, 'tcx>, candidate: &mut Candidate<'pat, 'tcx>, ) -> Result<(), MatchPair<'pat, 'tcx>> { - let tcx = self.tcx; match match_pair.pattern.kind { PatKind::AscribeUserType { ref subpattern, @@ -168,7 +163,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { Ok(()) } - PatKind::Wild => { + PatKind::Wild | PatKind::Error(_) => { // nothing left to do Ok(()) } @@ -204,41 +199,16 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { Err(match_pair) } - PatKind::Range(box PatRange { lo, hi, end }) => { - let (range, bias) = match *lo.ty().kind() { - ty::Char => { - (Some(('\u{0000}' as u128, '\u{10FFFF}' as u128, Size::from_bits(32))), 0) - } - ty::Int(ity) => { - let size = Integer::from_int_ty(&tcx, ity).size(); - let max = size.truncate(u128::MAX); - let bias = 1u128 << (size.bits() - 1); - (Some((0, max, size)), bias) - } - ty::Uint(uty) => { - let size = Integer::from_uint_ty(&tcx, uty).size(); - let max = size.truncate(u128::MAX); - (Some((0, max, size)), 0) - } - _ => (None, 0), - }; - if let Some((min, max, sz)) = range { - // We want to compare ranges numerically, but the order of the bitwise - // representation of signed integers does not match their numeric order. Thus, - // to correct the ordering, we need to shift the range of signed integers to - // correct the comparison. This is achieved by XORing with a bias (see - // pattern/_match.rs for another pertinent example of this pattern). - // - // Also, for performance, it's important to only do the second `try_to_bits` if - // necessary. - let lo = lo.try_to_bits(sz).unwrap() ^ bias; - if lo <= min { - let hi = hi.try_to_bits(sz).unwrap() ^ bias; - if hi > max || hi == max && end == RangeEnd::Included { - // Irrefutable pattern match. - return Ok(()); - } - } + PatKind::InlineConstant { subpattern: ref pattern, def: _ } => { + candidate.match_pairs.push(MatchPair::new(match_pair.place, pattern, self)); + + Ok(()) + } + + PatKind::Range(ref range) => { + if let Some(true) = range.is_full_range(self.tcx) { + // Irrefutable pattern match. + return Ok(()); } Err(match_pair) } diff --git a/compiler/rustc_mir_build/src/build/matches/test.rs b/compiler/rustc_mir_build/src/build/matches/test.rs index 795d1db8e..bdd4f2011 100644 --- a/compiler/rustc_mir_build/src/build/matches/test.rs +++ b/compiler/rustc_mir_build/src/build/matches/test.rs @@ -8,7 +8,6 @@ use crate::build::expr::as_place::PlaceBuilder; use crate::build::matches::{Candidate, MatchPair, Test, TestKind}; use crate::build::Builder; -use crate::thir::pattern::compare_const_vals; use rustc_data_structures::fx::FxIndexMap; use rustc_hir::{LangItem, RangeEnd}; use rustc_index::bit_set::BitSet; @@ -59,8 +58,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { }, PatKind::Range(ref range) => { - assert_eq!(range.lo.ty(), match_pair.pattern.ty); - assert_eq!(range.hi.ty(), match_pair.pattern.ty); + assert_eq!(range.ty, match_pair.pattern.ty); Test { span: match_pair.pattern.span, kind: TestKind::Range(range.clone()) } } @@ -73,11 +71,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { PatKind::Or { .. } => bug!("or-patterns should have already been handled"), PatKind::AscribeUserType { .. } + | PatKind::InlineConstant { .. } | PatKind::Array { .. } | PatKind::Wild | PatKind::Binding { .. } | PatKind::Leaf { .. } - | PatKind::Deref { .. } => self.error_simplifiable(match_pair), + | PatKind::Deref { .. } + | PatKind::Error(_) => self.error_simplifiable(match_pair), } } @@ -110,8 +110,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { | PatKind::Or { .. } | PatKind::Binding { .. } | PatKind::AscribeUserType { .. } + | PatKind::InlineConstant { .. } | PatKind::Leaf { .. } - | PatKind::Deref { .. } => { + | PatKind::Deref { .. } + | PatKind::Error(_) => { // don't know how to add these patterns to a switch false } @@ -236,18 +238,27 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { TestKind::Eq { value, ty } => { let tcx = self.tcx; - if let ty::Adt(def, _) = ty.kind() && Some(def.did()) == tcx.lang_items().string() { + if let ty::Adt(def, _) = ty.kind() + && Some(def.did()) == tcx.lang_items().string() + { if !tcx.features().string_deref_patterns { - bug!("matching on `String` went through without enabling string_deref_patterns"); + bug!( + "matching on `String` went through without enabling string_deref_patterns" + ); } let re_erased = tcx.lifetimes.re_erased; - let ref_string = self.temp(Ty::new_imm_ref(tcx,re_erased, ty), test.span); - let ref_str_ty = Ty::new_imm_ref(tcx,re_erased, tcx.types.str_); + let ref_string = self.temp(Ty::new_imm_ref(tcx, re_erased, ty), test.span); + let ref_str_ty = Ty::new_imm_ref(tcx, re_erased, tcx.types.str_); let ref_str = self.temp(ref_str_ty, test.span); let deref = tcx.require_lang_item(LangItem::Deref, None); let method = trait_method(tcx, deref, sym::deref, [ty]); let eq_block = self.cfg.start_new_block(); - self.cfg.push_assign(block, source_info, ref_string, Rvalue::Ref(re_erased, BorrowKind::Shared, place)); + self.cfg.push_assign( + block, + source_info, + ref_string, + Rvalue::Ref(re_erased, BorrowKind::Shared, place), + ); self.cfg.terminate( block, source_info, @@ -262,10 +273,17 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { target: Some(eq_block), unwind: UnwindAction::Continue, call_source: CallSource::Misc, - fn_span: source_info.span - } + fn_span: source_info.span, + }, + ); + self.non_scalar_compare( + eq_block, + make_target_blocks, + source_info, + value, + ref_str, + ref_str_ty, ); - self.non_scalar_compare(eq_block, make_target_blocks, source_info, value, ref_str, ref_str_ty); return; } if !ty.is_scalar() { @@ -289,11 +307,14 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { } } - TestKind::Range(box PatRange { lo, hi, ref end }) => { + TestKind::Range(ref range) => { let lower_bound_success = self.cfg.start_new_block(); let target_blocks = make_target_blocks(self); // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons. + // FIXME: skip useless comparison when the range is half-open. + let lo = range.lo.to_const(range.ty, self.tcx); + let hi = range.hi.to_const(range.ty, self.tcx); let lo = self.literal_operand(test.span, lo); let hi = self.literal_operand(test.span, hi); let val = Operand::Copy(place); @@ -310,7 +331,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { lo, val.clone(), ); - let op = match *end { + let op = match range.end { RangeEnd::Included => BinOp::Le, RangeEnd::Excluded => BinOp::Lt, }; @@ -678,34 +699,18 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { } (TestKind::Range(test), PatKind::Range(pat)) => { - use std::cmp::Ordering::*; - if test == pat { self.candidate_without_match_pair(match_pair_index, candidate); return Some(0); } - // For performance, it's important to only do the second - // `compare_const_vals` if necessary. - let no_overlap = if matches!( - (compare_const_vals(self.tcx, test.hi, pat.lo, self.param_env)?, test.end), - (Less, _) | (Equal, RangeEnd::Excluded) // test < pat - ) || matches!( - (compare_const_vals(self.tcx, test.lo, pat.hi, self.param_env)?, pat.end), - (Greater, _) | (Equal, RangeEnd::Excluded) // test > pat - ) { - Some(1) - } else { - None - }; - // If the testing range does not overlap with pattern range, // the pattern can be matched only if this test fails. - no_overlap + if !test.overlaps(pat, self.tcx, self.param_env)? { Some(1) } else { None } } (TestKind::Range(range), &PatKind::Constant { value }) => { - if let Some(false) = self.const_range_contains(&*range, value) { + if !range.contains(value, self.tcx, self.param_env)? { // `value` is not contained in the testing range, // so `value` can be matched only if this test fails. Some(1) @@ -797,27 +802,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { span_bug!(match_pair.pattern.span, "simplifiable pattern found: {:?}", match_pair.pattern) } - fn const_range_contains(&self, range: &PatRange<'tcx>, value: Const<'tcx>) -> Option<bool> { - use std::cmp::Ordering::*; - - // For performance, it's important to only do the second - // `compare_const_vals` if necessary. - Some( - matches!(compare_const_vals(self.tcx, range.lo, value, self.param_env)?, Less | Equal) - && matches!( - (compare_const_vals(self.tcx, value, range.hi, self.param_env)?, range.end), - (Less, _) | (Equal, RangeEnd::Included) - ), - ) - } - fn values_not_contained_in_range( &self, range: &PatRange<'tcx>, options: &FxIndexMap<Const<'tcx>, u128>, ) -> Option<bool> { for &val in options.keys() { - if self.const_range_contains(range, val)? { + if range.contains(val, self.tcx, self.param_env)? { return Some(false); } } diff --git a/compiler/rustc_mir_build/src/build/misc.rs b/compiler/rustc_mir_build/src/build/misc.rs index c96e99ef0..c263de79c 100644 --- a/compiler/rustc_mir_build/src/build/misc.rs +++ b/compiler/rustc_mir_build/src/build/misc.rs @@ -15,9 +15,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { /// N.B., **No cleanup is scheduled for this temporary.** You should /// call `schedule_drop` once the temporary is initialized. pub(crate) fn temp(&mut self, ty: Ty<'tcx>, span: Span) -> Place<'tcx> { - // Mark this local as internal to avoid temporaries with types not present in the - // user's code resulting in ICEs from the generator transform. - let temp = self.local_decls.push(LocalDecl::new(ty, span).internal()); + let temp = self.local_decls.push(LocalDecl::new(ty, span)); let place = Place::from(temp); debug!("temp: created temp {:?} with type {:?}", place, self.local_decls[temp].ty); place diff --git a/compiler/rustc_mir_build/src/build/mod.rs b/compiler/rustc_mir_build/src/build/mod.rs index bba470564..886d80545 100644 --- a/compiler/rustc_mir_build/src/build/mod.rs +++ b/compiler/rustc_mir_build/src/build/mod.rs @@ -9,7 +9,7 @@ use rustc_errors::ErrorGuaranteed; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::def_id::{DefId, LocalDefId}; -use rustc_hir::{GeneratorKind, Node}; +use rustc_hir::{CoroutineKind, Node}; use rustc_index::bit_set::GrowableBitSet; use rustc_index::{Idx, IndexSlice, IndexVec}; use rustc_infer::infer::{InferCtxt, TyCtxtInferExt}; @@ -53,10 +53,7 @@ pub(crate) fn closure_saved_names_of_captured_variables<'tcx>( } /// Construct the MIR for a given `DefId`. -fn mir_build(tcx: TyCtxt<'_>, def: LocalDefId) -> Body<'_> { - // Ensure unsafeck and abstract const building is ran before we steal the THIR. - tcx.ensure_with_value() - .thir_check_unsafety(tcx.typeck_root_def_id(def.to_def_id()).expect_local()); +fn mir_build<'tcx>(tcx: TyCtxt<'tcx>, def: LocalDefId) -> Body<'tcx> { tcx.ensure_with_value().thir_abstract_const(def); if let Err(e) = tcx.check_match(def) { return construct_error(tcx, def, e); @@ -65,20 +62,27 @@ fn mir_build(tcx: TyCtxt<'_>, def: LocalDefId) -> Body<'_> { let body = match tcx.thir_body(def) { Err(error_reported) => construct_error(tcx, def, error_reported), Ok((thir, expr)) => { - // We ran all queries that depended on THIR at the beginning - // of `mir_build`, so now we can steal it - let thir = thir.steal(); + let build_mir = |thir: &Thir<'tcx>| match thir.body_type { + thir::BodyTy::Fn(fn_sig) => construct_fn(tcx, def, thir, expr, fn_sig), + thir::BodyTy::Const(ty) => construct_const(tcx, def, thir, expr, ty), + }; - tcx.ensure().check_match(def); // this must run before MIR dump, because // "not all control paths return a value" is reported here. // // maybe move the check to a MIR pass? tcx.ensure().check_liveness(def); - match thir.body_type { - thir::BodyTy::Fn(fn_sig) => construct_fn(tcx, def, &thir, expr, fn_sig), - thir::BodyTy::Const(ty) => construct_const(tcx, def, &thir, expr, ty), + if tcx.sess.opts.unstable_opts.thir_unsafeck { + // Don't steal here if THIR unsafeck is being used. Instead + // steal in unsafeck. This is so that pattern inline constants + // can be evaluated as part of building the THIR of the parent + // function without a cycle. + build_mir(&thir.borrow()) + } else { + // We ran all queries that depended on THIR at the beginning + // of `mir_build`, so now we can steal it + build_mir(&thir.steal()) } } }; @@ -173,7 +177,7 @@ struct Builder<'a, 'tcx> { check_overflow: bool, fn_span: Span, arg_count: usize, - generator_kind: Option<GeneratorKind>, + coroutine_kind: Option<CoroutineKind>, /// The current set of scopes, updated as we traverse; /// see the `scope` module for more details. @@ -448,7 +452,7 @@ fn construct_fn<'tcx>( ) -> Body<'tcx> { let span = tcx.def_span(fn_def); let fn_id = tcx.hir().local_def_id_to_hir_id(fn_def); - let generator_kind = tcx.generator_kind(fn_def); + let coroutine_kind = tcx.coroutine_kind(fn_def); // The representation of thir for `-Zunpretty=thir-tree` relies on // the entry expression being the last element of `thir.exprs`. @@ -478,15 +482,15 @@ fn construct_fn<'tcx>( let arguments = &thir.params; - let (yield_ty, return_ty) = if generator_kind.is_some() { - let gen_ty = arguments[thir::UPVAR_ENV_PARAM].ty; - let gen_sig = match gen_ty.kind() { - ty::Generator(_, gen_args, ..) => gen_args.as_generator().sig(), + let (yield_ty, return_ty) = if coroutine_kind.is_some() { + let coroutine_ty = arguments[thir::UPVAR_ENV_PARAM].ty; + let coroutine_sig = match coroutine_ty.kind() { + ty::Coroutine(_, gen_args, ..) => gen_args.as_coroutine().sig(), _ => { - span_bug!(span, "generator w/o generator type: {:?}", gen_ty) + span_bug!(span, "coroutine w/o coroutine type: {:?}", coroutine_ty) } }; - (Some(gen_sig.yield_ty), gen_sig.return_ty) + (Some(coroutine_sig.yield_ty), coroutine_sig.return_ty) } else { (None, fn_sig.output()) }; @@ -519,7 +523,7 @@ fn construct_fn<'tcx>( safety, return_ty, return_ty_span, - generator_kind, + coroutine_kind, ); let call_site_scope = @@ -553,7 +557,7 @@ fn construct_fn<'tcx>( None }; if yield_ty.is_some() { - body.generator.as_mut().unwrap().yield_ty = yield_ty; + body.coroutine.as_mut().unwrap().yield_ty = yield_ty; } body } @@ -616,29 +620,53 @@ fn construct_const<'a, 'tcx>( /// /// This is required because we may still want to run MIR passes on an item /// with type errors, but normal MIR construction can't handle that in general. -fn construct_error(tcx: TyCtxt<'_>, def: LocalDefId, err: ErrorGuaranteed) -> Body<'_> { - let span = tcx.def_span(def); - let hir_id = tcx.hir().local_def_id_to_hir_id(def); - let generator_kind = tcx.generator_kind(def); - let body_owner_kind = tcx.hir().body_owner_kind(def); - - let ty = Ty::new_error(tcx, err); - let num_params = match body_owner_kind { - hir::BodyOwnerKind::Fn => tcx.fn_sig(def).skip_binder().inputs().skip_binder().len(), - hir::BodyOwnerKind::Closure => { - let ty = tcx.type_of(def).instantiate_identity(); - match ty.kind() { - ty::Closure(_, args) => 1 + args.as_closure().sig().inputs().skip_binder().len(), - ty::Generator(..) => 2, - _ => bug!("expected closure or generator, found {ty:?}"), - } +fn construct_error(tcx: TyCtxt<'_>, def_id: LocalDefId, guar: ErrorGuaranteed) -> Body<'_> { + let span = tcx.def_span(def_id); + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); + let coroutine_kind = tcx.coroutine_kind(def_id); + + let (inputs, output, yield_ty) = match tcx.def_kind(def_id) { + DefKind::Const + | DefKind::AssocConst + | DefKind::AnonConst + | DefKind::InlineConst + | DefKind::Static(_) => (vec![], tcx.type_of(def_id).instantiate_identity(), None), + DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn => { + let sig = tcx.liberate_late_bound_regions( + def_id.to_def_id(), + tcx.fn_sig(def_id).instantiate_identity(), + ); + (sig.inputs().to_vec(), sig.output(), None) + } + DefKind::Closure => { + let closure_ty = tcx.type_of(def_id).instantiate_identity(); + let ty::Closure(_, args) = closure_ty.kind() else { bug!() }; + let args = args.as_closure(); + let sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), args.sig()); + let self_ty = match args.kind() { + ty::ClosureKind::Fn => Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, closure_ty), + ty::ClosureKind::FnMut => Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, closure_ty), + ty::ClosureKind::FnOnce => closure_ty, + }; + ([self_ty].into_iter().chain(sig.inputs().to_vec()).collect(), sig.output(), None) + } + DefKind::Coroutine => { + let coroutine_ty = tcx.type_of(def_id).instantiate_identity(); + let ty::Coroutine(_, args, _) = coroutine_ty.kind() else { bug!() }; + let args = args.as_coroutine(); + let yield_ty = args.yield_ty(); + let return_ty = args.return_ty(); + (vec![coroutine_ty, args.resume_ty()], return_ty, Some(yield_ty)) } - hir::BodyOwnerKind::Const { .. } => 0, - hir::BodyOwnerKind::Static(_) => 0, + dk => bug!("{:?} is not a body: {:?}", def_id, dk), }; + + let source_info = SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }; + let local_decls = IndexVec::from_iter( + [output].iter().chain(&inputs).map(|ty| LocalDecl::with_source_info(*ty, source_info)), + ); let mut cfg = CFG { basic_blocks: IndexVec::new() }; let mut source_scopes = IndexVec::new(); - let mut local_decls = IndexVec::from_elem_n(LocalDecl::new(ty, span), 1); cfg.start_new_block(); source_scopes.push(SourceScopeData { @@ -651,28 +679,24 @@ fn construct_error(tcx: TyCtxt<'_>, def: LocalDefId, err: ErrorGuaranteed) -> Bo safety: Safety::Safe, }), }); - let source_info = SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }; - // Some MIR passes will expect the number of parameters to match the - // function declaration. - for _ in 0..num_params { - local_decls.push(LocalDecl::with_source_info(ty, source_info)); - } cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable); let mut body = Body::new( - MirSource::item(def.to_def_id()), + MirSource::item(def_id.to_def_id()), cfg.basic_blocks, source_scopes, local_decls, IndexVec::new(), - num_params, + inputs.len(), vec![], span, - generator_kind, - Some(err), + coroutine_kind, + Some(guar), ); - body.generator.as_mut().map(|gen| gen.yield_ty = Some(ty)); + + body.coroutine.as_mut().map(|gen| gen.yield_ty = yield_ty); + body } @@ -687,7 +711,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { safety: Safety, return_ty: Ty<'tcx>, return_span: Span, - generator_kind: Option<GeneratorKind>, + coroutine_kind: Option<CoroutineKind>, ) -> Builder<'a, 'tcx> { let tcx = infcx.tcx; let attrs = tcx.hir().attrs(hir_id); @@ -718,7 +742,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { cfg: CFG { basic_blocks: IndexVec::new() }, fn_span: span, arg_count, - generator_kind, + coroutine_kind, scopes: scope::Scopes::new(), block_context: BlockContext::new(), source_scopes: IndexVec::new(), @@ -760,7 +784,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { self.arg_count, self.var_debug_info, self.fn_span, - self.generator_kind, + self.coroutine_kind, None, ) } @@ -777,7 +801,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { let upvar_args = match closure_ty.kind() { ty::Closure(_, args) => ty::UpvarArgs::Closure(args), - ty::Generator(_, args, _) => ty::UpvarArgs::Generator(args), + ty::Coroutine(_, args, _) => ty::UpvarArgs::Coroutine(args), _ => return, }; @@ -847,7 +871,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { self.local_decls.push(LocalDecl::with_source_info(param.ty, source_info)); // If this is a simple binding pattern, give debuginfo a nice name. - if let Some(ref pat) = param.pat && let Some(name) = pat.simple_ident() { + if let Some(ref pat) = param.pat + && let Some(name) = pat.simple_ident() + { self.var_debug_info.push(VarDebugInfo { name, source_info, diff --git a/compiler/rustc_mir_build/src/build/scope.rs b/compiler/rustc_mir_build/src/build/scope.rs index 4cf6a349a..b3d3863b5 100644 --- a/compiler/rustc_mir_build/src/build/scope.rs +++ b/compiler/rustc_mir_build/src/build/scope.rs @@ -108,8 +108,8 @@ pub struct Scopes<'tcx> { /// [DropTree] for more details. unwind_drops: DropTree, - /// Drops that need to be done on paths to the `GeneratorDrop` terminator. - generator_drops: DropTree, + /// Drops that need to be done on paths to the `CoroutineDrop` terminator. + coroutine_drops: DropTree, } #[derive(Debug)] @@ -133,8 +133,8 @@ struct Scope { cached_unwind_block: Option<DropIdx>, /// The drop index that will drop everything in and below this scope on a - /// generator drop path. - cached_generator_drop_block: Option<DropIdx>, + /// coroutine drop path. + cached_coroutine_drop_block: Option<DropIdx>, } #[derive(Clone, Copy, Debug)] @@ -194,7 +194,7 @@ const ROOT_NODE: DropIdx = DropIdx::from_u32(0); /// A tree of drops that we have deferred lowering. It's used for: /// /// * Drops on unwind paths -/// * Drops on generator drop paths (when a suspended generator is dropped) +/// * Drops on coroutine drop paths (when a suspended coroutine is dropped) /// * Drops on return and loop exit paths /// * Drops on the else path in an `if let` chain /// @@ -222,8 +222,8 @@ impl Scope { /// * polluting the cleanup MIR with StorageDead creates /// landing pads even though there's no actual destructors /// * freeing up stack space has no effect during unwinding - /// Note that for generators we do emit StorageDeads, for the - /// use of optimizations in the MIR generator transform. + /// Note that for coroutines we do emit StorageDeads, for the + /// use of optimizations in the MIR coroutine transform. fn needs_cleanup(&self) -> bool { self.drops.iter().any(|drop| match drop.kind { DropKind::Value => true, @@ -233,7 +233,7 @@ impl Scope { fn invalidate_cache(&mut self) { self.cached_unwind_block = None; - self.cached_generator_drop_block = None; + self.cached_coroutine_drop_block = None; } } @@ -407,7 +407,7 @@ impl<'tcx> Scopes<'tcx> { breakable_scopes: Vec::new(), if_then_scope: None, unwind_drops: DropTree::new(), - generator_drops: DropTree::new(), + coroutine_drops: DropTree::new(), } } @@ -419,7 +419,7 @@ impl<'tcx> Scopes<'tcx> { drops: vec![], moved_locals: vec![], cached_unwind_block: None, - cached_generator_drop_block: None, + cached_coroutine_drop_block: None, }); } @@ -725,7 +725,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { // Add a dummy `Assign` statement to the CFG, with the span for the source code's `continue` // statement. fn add_dummy_assignment(&mut self, span: Span, block: BasicBlock, source_info: SourceInfo) { - let local_decl = LocalDecl::new(Ty::new_unit(self.tcx), span).internal(); + let local_decl = LocalDecl::new(Ty::new_unit(self.tcx), span); let temp_place = Place::from(self.local_decls.push(local_decl)); self.cfg.push_assign_unit(block, source_info, temp_place, self.tcx); } @@ -734,7 +734,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { // If we are emitting a `drop` statement, we need to have the cached // diverge cleanup pads ready in case that drop panics. let needs_cleanup = self.scopes.scopes.last().is_some_and(|scope| scope.needs_cleanup()); - let is_generator = self.generator_kind.is_some(); + let is_coroutine = self.coroutine_kind.is_some(); let unwind_to = if needs_cleanup { self.diverge_cleanup() } else { DropIdx::MAX }; let scope = self.scopes.scopes.last().expect("leave_top_scope called with no scopes"); @@ -744,7 +744,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { scope, block, unwind_to, - is_generator && needs_cleanup, + is_coroutine && needs_cleanup, self.arg_count, )) } @@ -984,11 +984,11 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { // caches gets invalidated. i.e., if a new drop is added into the middle scope, the // cache of outer scope stays intact. // - // Since we only cache drops for the unwind path and the generator drop + // Since we only cache drops for the unwind path and the coroutine drop // path, we only need to invalidate the cache for drops that happen on - // the unwind or generator drop paths. This means that for - // non-generators we don't need to invalidate caches for `DropKind::Storage`. - let invalidate_caches = needs_drop || self.generator_kind.is_some(); + // the unwind or coroutine drop paths. This means that for + // non-coroutines we don't need to invalidate caches for `DropKind::Storage`. + let invalidate_caches = needs_drop || self.coroutine_kind.is_some(); for scope in self.scopes.scopes.iter_mut().rev() { if invalidate_caches { scope.invalidate_cache(); @@ -1101,10 +1101,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { return cached_drop; } - let is_generator = self.generator_kind.is_some(); + let is_coroutine = self.coroutine_kind.is_some(); for scope in &mut self.scopes.scopes[uncached_scope..=target] { for drop in &scope.drops { - if is_generator || drop.kind == DropKind::Value { + if is_coroutine || drop.kind == DropKind::Value { cached_drop = self.scopes.unwind_drops.add_drop(*drop, cached_drop); } } @@ -1137,17 +1137,17 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { } /// Sets up a path that performs all required cleanup for dropping a - /// generator, starting from the given block that ends in + /// coroutine, starting from the given block that ends in /// [TerminatorKind::Yield]. /// - /// This path terminates in GeneratorDrop. - pub(crate) fn generator_drop_cleanup(&mut self, yield_block: BasicBlock) { + /// This path terminates in CoroutineDrop. + pub(crate) fn coroutine_drop_cleanup(&mut self, yield_block: BasicBlock) { debug_assert!( matches!( self.cfg.block_data(yield_block).terminator().kind, TerminatorKind::Yield { .. } ), - "generator_drop_cleanup called on block with non-yield terminator." + "coroutine_drop_cleanup called on block with non-yield terminator." ); let (uncached_scope, mut cached_drop) = self .scopes @@ -1156,18 +1156,18 @@ impl<'a, 'tcx> Builder<'a, 'tcx> { .enumerate() .rev() .find_map(|(scope_idx, scope)| { - scope.cached_generator_drop_block.map(|cached_block| (scope_idx + 1, cached_block)) + scope.cached_coroutine_drop_block.map(|cached_block| (scope_idx + 1, cached_block)) }) .unwrap_or((0, ROOT_NODE)); for scope in &mut self.scopes.scopes[uncached_scope..] { for drop in &scope.drops { - cached_drop = self.scopes.generator_drops.add_drop(*drop, cached_drop); + cached_drop = self.scopes.coroutine_drops.add_drop(*drop, cached_drop); } - scope.cached_generator_drop_block = Some(cached_drop); + scope.cached_coroutine_drop_block = Some(cached_drop); } - self.scopes.generator_drops.add_entry(yield_block, cached_drop); + self.scopes.coroutine_drops.add_entry(yield_block, cached_drop); } /// Utility function for *non*-scope code to build their own drops @@ -1274,7 +1274,7 @@ fn build_scope_drops<'tcx>( // drops panic (panicking while unwinding will abort, so there's no need for // another set of arrows). // - // For generators, we unwind from a drop on a local to its StorageDead + // For coroutines, we unwind from a drop on a local to its StorageDead // statement. For other functions we don't worry about StorageDead. The // drops for the unwind path should have already been generated by // `diverge_cleanup_gen`. @@ -1346,7 +1346,7 @@ impl<'a, 'tcx: 'a> Builder<'a, 'tcx> { blocks[ROOT_NODE] = continue_block; drops.build_mir::<ExitScopes>(&mut self.cfg, &mut blocks); - let is_generator = self.generator_kind.is_some(); + let is_coroutine = self.coroutine_kind.is_some(); // Link the exit drop tree to unwind drop tree. if drops.drops.iter().any(|(drop, _)| drop.kind == DropKind::Value) { @@ -1355,7 +1355,7 @@ impl<'a, 'tcx: 'a> Builder<'a, 'tcx> { for (drop_idx, drop_data) in drops.drops.iter_enumerated().skip(1) { match drop_data.0.kind { DropKind::Storage => { - if is_generator { + if is_coroutine { let unwind_drop = self .scopes .unwind_drops @@ -1381,10 +1381,10 @@ impl<'a, 'tcx: 'a> Builder<'a, 'tcx> { blocks[ROOT_NODE].map(BasicBlock::unit) } - /// Build the unwind and generator drop trees. + /// Build the unwind and coroutine drop trees. pub(crate) fn build_drop_trees(&mut self) { - if self.generator_kind.is_some() { - self.build_generator_drop_trees(); + if self.coroutine_kind.is_some() { + self.build_coroutine_drop_trees(); } else { Self::build_unwind_tree( &mut self.cfg, @@ -1395,18 +1395,18 @@ impl<'a, 'tcx: 'a> Builder<'a, 'tcx> { } } - fn build_generator_drop_trees(&mut self) { - // Build the drop tree for dropping the generator while it's suspended. - let drops = &mut self.scopes.generator_drops; + fn build_coroutine_drop_trees(&mut self) { + // Build the drop tree for dropping the coroutine while it's suspended. + let drops = &mut self.scopes.coroutine_drops; let cfg = &mut self.cfg; let fn_span = self.fn_span; let mut blocks = IndexVec::from_elem(None, &drops.drops); - drops.build_mir::<GeneratorDrop>(cfg, &mut blocks); + drops.build_mir::<CoroutineDrop>(cfg, &mut blocks); if let Some(root_block) = blocks[ROOT_NODE] { cfg.terminate( root_block, SourceInfo::outermost(fn_span), - TerminatorKind::GeneratorDrop, + TerminatorKind::CoroutineDrop, ); } @@ -1416,11 +1416,11 @@ impl<'a, 'tcx: 'a> Builder<'a, 'tcx> { Self::build_unwind_tree(cfg, unwind_drops, fn_span, resume_block); // Build the drop tree for unwinding when dropping a suspended - // generator. + // coroutine. // // This is a different tree to the standard unwind paths here to // prevent drop elaboration from creating drop flags that would have - // to be captured by the generator. I'm not sure how important this + // to be captured by the coroutine. I'm not sure how important this // optimization is, but it is here. for (drop_idx, drop_data) in drops.drops.iter_enumerated() { if let DropKind::Value = drop_data.0.kind { @@ -1461,9 +1461,9 @@ impl<'tcx> DropTreeBuilder<'tcx> for ExitScopes { } } -struct GeneratorDrop; +struct CoroutineDrop; -impl<'tcx> DropTreeBuilder<'tcx> for GeneratorDrop { +impl<'tcx> DropTreeBuilder<'tcx> for CoroutineDrop { fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock { cfg.start_new_block() } @@ -1474,7 +1474,7 @@ impl<'tcx> DropTreeBuilder<'tcx> for GeneratorDrop { } else { span_bug!( term.source_info.span, - "cannot enter generator drop tree from {:?}", + "cannot enter coroutine drop tree from {:?}", term.kind ) } @@ -1511,7 +1511,7 @@ impl<'tcx> DropTreeBuilder<'tcx> for Unwind { | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::Yield { .. } - | TerminatorKind::GeneratorDrop + | TerminatorKind::CoroutineDrop | TerminatorKind::FalseEdge { .. } => { span_bug!(term.source_info.span, "cannot unwind from {:?}", term.kind) } diff --git a/compiler/rustc_mir_build/src/check_unsafety.rs b/compiler/rustc_mir_build/src/check_unsafety.rs index 7b888dcbc..fcb563607 100644 --- a/compiler/rustc_mir_build/src/check_unsafety.rs +++ b/compiler/rustc_mir_build/src/check_unsafety.rs @@ -13,6 +13,7 @@ use rustc_span::def_id::{DefId, LocalDefId}; use rustc_span::symbol::Symbol; use rustc_span::Span; +use std::mem; use std::ops::Bound; struct UnsafetyVisitor<'a, 'tcx> { @@ -24,7 +25,6 @@ struct UnsafetyVisitor<'a, 'tcx> { /// The current "safety context". This notably tracks whether we are in an /// `unsafe` block, and whether it has been used. safety_context: SafetyContext, - body_unsafety: BodyUnsafety, /// The `#[target_feature]` attributes of the body. Used for checking /// calls to functions with `#[target_feature]` (RFC 2396). body_target_features: &'tcx [Symbol], @@ -34,43 +34,54 @@ struct UnsafetyVisitor<'a, 'tcx> { in_union_destructure: bool, param_env: ParamEnv<'tcx>, inside_adt: bool, + warnings: &'a mut Vec<UnusedUnsafeWarning>, + + /// Flag to ensure that we only suggest wrapping the entire function body in + /// an unsafe block once. + suggest_unsafe_block: bool, } impl<'tcx> UnsafetyVisitor<'_, 'tcx> { fn in_safety_context(&mut self, safety_context: SafetyContext, f: impl FnOnce(&mut Self)) { - if let ( - SafetyContext::UnsafeBlock { span: enclosing_span, .. }, - SafetyContext::UnsafeBlock { span: block_span, hir_id, .. }, - ) = (self.safety_context, safety_context) - { - self.warn_unused_unsafe( - hir_id, - block_span, - Some(UnusedUnsafeEnclosing::Block { - span: self.tcx.sess.source_map().guess_head_span(enclosing_span), - }), - ); - f(self); - } else { - let prev_context = self.safety_context; - self.safety_context = safety_context; + let prev_context = mem::replace(&mut self.safety_context, safety_context); - f(self); + f(self); - if let SafetyContext::UnsafeBlock { used: false, span, hir_id } = self.safety_context { - self.warn_unused_unsafe( - hir_id, - span, - if self.unsafe_op_in_unsafe_fn_allowed() { - self.body_unsafety - .unsafe_fn_sig_span() - .map(|span| UnusedUnsafeEnclosing::Function { span }) - } else { - None - }, - ); + let safety_context = mem::replace(&mut self.safety_context, prev_context); + if let SafetyContext::UnsafeBlock { used, span, hir_id, nested_used_blocks } = + safety_context + { + if !used { + self.warn_unused_unsafe(hir_id, span, None); + + if let SafetyContext::UnsafeBlock { + nested_used_blocks: ref mut prev_nested_used_blocks, + .. + } = self.safety_context + { + prev_nested_used_blocks.extend(nested_used_blocks); + } + } else { + for block in nested_used_blocks { + self.warn_unused_unsafe( + block.hir_id, + block.span, + Some(UnusedUnsafeEnclosing::Block { + span: self.tcx.sess.source_map().guess_head_span(span), + }), + ); + } + + match self.safety_context { + SafetyContext::UnsafeBlock { + nested_used_blocks: ref mut prev_nested_used_blocks, + .. + } => { + prev_nested_used_blocks.push(NestedUsedBlock { hir_id, span }); + } + _ => (), + } } - self.safety_context = prev_context; } } @@ -88,7 +99,13 @@ impl<'tcx> UnsafetyVisitor<'_, 'tcx> { SafetyContext::UnsafeFn if unsafe_op_in_unsafe_fn_allowed => {} SafetyContext::UnsafeFn => { // unsafe_op_in_unsafe_fn is disallowed - kind.emit_unsafe_op_in_unsafe_fn_lint(self.tcx, self.hir_context, span); + kind.emit_unsafe_op_in_unsafe_fn_lint( + self.tcx, + self.hir_context, + span, + self.suggest_unsafe_block, + ); + self.suggest_unsafe_block = false; } SafetyContext::Safe => { kind.emit_requires_unsafe_err( @@ -102,18 +119,12 @@ impl<'tcx> UnsafetyVisitor<'_, 'tcx> { } fn warn_unused_unsafe( - &self, + &mut self, hir_id: hir::HirId, block_span: Span, enclosing_unsafe: Option<UnusedUnsafeEnclosing>, ) { - let block_span = self.tcx.sess.source_map().guess_head_span(block_span); - self.tcx.emit_spanned_lint( - UNUSED_UNSAFE, - hir_id, - block_span, - UnusedUnsafe { span: block_span, enclosing: enclosing_unsafe }, - ); + self.warnings.push(UnusedUnsafeWarning { hir_id, block_span, enclosing_unsafe }); } /// Whether the `unsafe_op_in_unsafe_fn` lint is `allow`ed at the current HIR node. @@ -121,12 +132,21 @@ impl<'tcx> UnsafetyVisitor<'_, 'tcx> { self.tcx.lint_level_at_node(UNSAFE_OP_IN_UNSAFE_FN, self.hir_context).0 == Level::Allow } - /// Handle closures/generators/inline-consts, which is unsafecked with their parent body. + /// Handle closures/coroutines/inline-consts, which is unsafecked with their parent body. fn visit_inner_body(&mut self, def: LocalDefId) { if let Ok((inner_thir, expr)) = self.tcx.thir_body(def) { - let inner_thir = &inner_thir.borrow(); + // Runs all other queries that depend on THIR. + self.tcx.ensure_with_value().mir_built(def); + let inner_thir = &inner_thir.steal(); let hir_context = self.tcx.hir().local_def_id_to_hir_id(def); - let mut inner_visitor = UnsafetyVisitor { thir: inner_thir, hir_context, ..*self }; + let safety_context = mem::replace(&mut self.safety_context, SafetyContext::Safe); + let mut inner_visitor = UnsafetyVisitor { + thir: inner_thir, + hir_context, + safety_context, + warnings: self.warnings, + ..*self + }; inner_visitor.visit_expr(&inner_thir[expr]); // Unsafe blocks can be used in the inner body, make sure to take it into account self.safety_context = inner_visitor.safety_context; @@ -193,8 +213,15 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { }); } BlockSafety::ExplicitUnsafe(hir_id) => { + let used = + matches!(self.tcx.lint_level_at_node(UNUSED_UNSAFE, hir_id), (Level::Allow, _)); self.in_safety_context( - SafetyContext::UnsafeBlock { span: block.span, hir_id, used: false }, + SafetyContext::UnsafeBlock { + span: block.span, + hir_id, + used, + nested_used_blocks: Vec::new(), + }, |this| visit::walk_block(this, block), ); } @@ -224,7 +251,9 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { PatKind::Wild | // these just wrap other patterns PatKind::Or { .. } | - PatKind::AscribeUserType { .. } => {} + PatKind::InlineConstant { .. } | + PatKind::AscribeUserType { .. } | + PatKind::Error(_) => {} } }; @@ -276,6 +305,10 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { visit::walk_pat(self, pat); self.inside_adt = old_inside_adt; } + PatKind::InlineConstant { def, .. } => { + self.visit_inner_body(*def); + visit::walk_pat(self, pat); + } _ => { visit::walk_pat(self, pat); } @@ -372,7 +405,9 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { } } ExprKind::Deref { arg } => { - if let ExprKind::StaticRef { def_id, .. } = self.thir[arg].kind { + if let ExprKind::StaticRef { def_id, .. } | ExprKind::ThreadLocalRef(def_id) = + self.thir[arg].kind + { if self.tcx.is_mutable_static(def_id) { self.requires_unsafe(expr.span, UseOfMutableStatic); } else if self.tcx.is_foreign_item(def_id) { @@ -411,7 +446,9 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { } ExprKind::Field { lhs, .. } => { let lhs = &self.thir[lhs]; - if let ty::Adt(adt_def, _) = lhs.ty.kind() && adt_def.is_union() { + if let ty::Adt(adt_def, _) = lhs.ty.kind() + && adt_def.is_union() + { if let Some((assigned_ty, assignment_span)) = self.assignment_info { if assigned_ty.needs_drop(self.tcx, self.param_env) { // This would be unsafe, but should be outright impossible since we reject such unions. @@ -458,48 +495,35 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { } } } - ExprKind::Let { expr: expr_id, .. } => { - let let_expr = &self.thir[expr_id]; - if let ty::Adt(adt_def, _) = let_expr.ty.kind() && adt_def.is_union() { - self.requires_unsafe(expr.span, AccessToUnionField); - } - } _ => {} } visit::walk_expr(self, expr); } } -#[derive(Clone, Copy)] +#[derive(Clone)] enum SafetyContext { Safe, BuiltinUnsafeBlock, UnsafeFn, - UnsafeBlock { span: Span, hir_id: hir::HirId, used: bool }, + UnsafeBlock { + span: Span, + hir_id: hir::HirId, + used: bool, + nested_used_blocks: Vec<NestedUsedBlock>, + }, } #[derive(Clone, Copy)] -enum BodyUnsafety { - /// The body is not unsafe. - Safe, - /// The body is an unsafe function. The span points to - /// the signature of the function. - Unsafe(Span), +struct NestedUsedBlock { + hir_id: hir::HirId, + span: Span, } -impl BodyUnsafety { - /// Returns whether the body is unsafe. - fn is_unsafe(&self) -> bool { - matches!(self, BodyUnsafety::Unsafe(_)) - } - - /// If the body is unsafe, returns the `Span` of its signature. - fn unsafe_fn_sig_span(self) -> Option<Span> { - match self { - BodyUnsafety::Unsafe(span) => Some(span), - BodyUnsafety::Safe => None, - } - } +struct UnusedUnsafeWarning { + hir_id: hir::HirId, + block_span: Span, + enclosing_unsafe: Option<UnusedUnsafeEnclosing>, } #[derive(Clone, Copy, PartialEq)] @@ -524,7 +548,22 @@ impl UnsafeOpKind { tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, + suggest_unsafe_block: bool, ) { + let parent_id = tcx.hir().get_parent_item(hir_id); + let parent_owner = tcx.hir().owner(parent_id); + let should_suggest = parent_owner.fn_sig().map_or(false, |sig| sig.header.is_unsafe()); + let unsafe_not_inherited_note = if should_suggest { + suggest_unsafe_block.then(|| { + let body_span = tcx.hir().body(parent_owner.body_id().unwrap()).value.span; + UnsafeNotInheritedLintNote { + signature_span: tcx.def_span(parent_id.def_id), + body_span, + } + }) + } else { + None + }; // FIXME: ideally we would want to trim the def paths, but this is not // feasible with the current lint emission API (see issue #106126). match self { @@ -535,61 +574,89 @@ impl UnsafeOpKind { UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafe { span, function: &with_no_trimmed_paths!(tcx.def_path_str(*did)), + unsafe_not_inherited_note, }, ), CallToUnsafeFunction(None) => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafeNameless { span }, + UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafeNameless { + span, + unsafe_not_inherited_note, + }, ), UseOfInlineAssembly => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnUseOfInlineAssemblyRequiresUnsafe { span }, + UnsafeOpInUnsafeFnUseOfInlineAssemblyRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), InitializingTypeWith => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnInitializingTypeWithRequiresUnsafe { span }, + UnsafeOpInUnsafeFnInitializingTypeWithRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), UseOfMutableStatic => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnUseOfMutableStaticRequiresUnsafe { span }, + UnsafeOpInUnsafeFnUseOfMutableStaticRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), UseOfExternStatic => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnUseOfExternStaticRequiresUnsafe { span }, + UnsafeOpInUnsafeFnUseOfExternStaticRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), DerefOfRawPointer => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnDerefOfRawPointerRequiresUnsafe { span }, + UnsafeOpInUnsafeFnDerefOfRawPointerRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), AccessToUnionField => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnAccessToUnionFieldRequiresUnsafe { span }, + UnsafeOpInUnsafeFnAccessToUnionFieldRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), MutationOfLayoutConstrainedField => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnMutationOfLayoutConstrainedFieldRequiresUnsafe { span }, + UnsafeOpInUnsafeFnMutationOfLayoutConstrainedFieldRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), BorrowOfLayoutConstrainedField => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, hir_id, span, - UnsafeOpInUnsafeFnBorrowOfLayoutConstrainedFieldRequiresUnsafe { span }, + UnsafeOpInUnsafeFnBorrowOfLayoutConstrainedFieldRequiresUnsafe { + span, + unsafe_not_inherited_note, + }, ), CallToFunctionWith(did) => tcx.emit_spanned_lint( UNSAFE_OP_IN_UNSAFE_FN, @@ -598,6 +665,7 @@ impl UnsafeOpKind { UnsafeOpInUnsafeFnCallToFunctionWithRequiresUnsafe { span, function: &with_no_trimmed_paths!(tcx.def_path_str(*did)), + unsafe_not_inherited_note, }, ), } @@ -616,8 +684,7 @@ impl UnsafeOpKind { && let hir::BlockCheckMode::UnsafeBlock(_) = block.rules { true - } - else if let Some(sig) = tcx.hir().fn_sig_by_hir_id(*id) + } else if let Some(sig) = tcx.hir().fn_sig_by_hir_id(*id) && sig.header.is_unsafe() { true @@ -784,34 +851,47 @@ pub fn thir_check_unsafety(tcx: TyCtxt<'_>, def: LocalDefId) { } let Ok((thir, expr)) = tcx.thir_body(def) else { return }; - let thir = &thir.borrow(); + // Runs all other queries that depend on THIR. + tcx.ensure_with_value().mir_built(def); + let thir = &thir.steal(); // If `thir` is empty, a type error occurred, skip this body. if thir.exprs.is_empty() { return; } let hir_id = tcx.hir().local_def_id_to_hir_id(def); - let body_unsafety = tcx.hir().fn_sig_by_hir_id(hir_id).map_or(BodyUnsafety::Safe, |fn_sig| { + let safety_context = tcx.hir().fn_sig_by_hir_id(hir_id).map_or(SafetyContext::Safe, |fn_sig| { if fn_sig.header.unsafety == hir::Unsafety::Unsafe { - BodyUnsafety::Unsafe(fn_sig.span) + SafetyContext::UnsafeFn } else { - BodyUnsafety::Safe + SafetyContext::Safe } }); let body_target_features = &tcx.body_codegen_attrs(def.to_def_id()).target_features; - let safety_context = - if body_unsafety.is_unsafe() { SafetyContext::UnsafeFn } else { SafetyContext::Safe }; + let mut warnings = Vec::new(); let mut visitor = UnsafetyVisitor { tcx, thir, safety_context, hir_context: hir_id, - body_unsafety, body_target_features, assignment_info: None, in_union_destructure: false, param_env: tcx.param_env(def), inside_adt: false, + warnings: &mut warnings, + suggest_unsafe_block: true, }; visitor.visit_expr(&thir[expr]); + + warnings.sort_by_key(|w| w.block_span); + for UnusedUnsafeWarning { hir_id, block_span, enclosing_unsafe } in warnings { + let block_span = tcx.sess.source_map().guess_head_span(block_span); + tcx.emit_spanned_lint( + UNUSED_UNSAFE, + hir_id, + block_span, + UnusedUnsafe { span: block_span, enclosing: enclosing_unsafe }, + ); + } } diff --git a/compiler/rustc_mir_build/src/errors.rs b/compiler/rustc_mir_build/src/errors.rs index bee5ac550..418f9bb9d 100644 --- a/compiler/rustc_mir_build/src/errors.rs +++ b/compiler/rustc_mir_build/src/errors.rs @@ -1,6 +1,6 @@ use crate::{ fluent_generated as fluent, - thir::pattern::{deconstruct_pat::DeconstructedPat, MatchCheckCtxt}, + thir::pattern::{deconstruct_pat::WitnessPat, MatchCheckCtxt}, }; use rustc_errors::{ error_code, AddToDiagnostic, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, @@ -29,6 +29,8 @@ pub struct UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafe<'a> { #[label] pub span: Span, pub function: &'a str, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -37,6 +39,8 @@ pub struct UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafe<'a> { pub struct UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafeNameless { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -45,6 +49,8 @@ pub struct UnsafeOpInUnsafeFnCallToUnsafeFunctionRequiresUnsafeNameless { pub struct UnsafeOpInUnsafeFnUseOfInlineAssemblyRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -53,6 +59,8 @@ pub struct UnsafeOpInUnsafeFnUseOfInlineAssemblyRequiresUnsafe { pub struct UnsafeOpInUnsafeFnInitializingTypeWithRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -61,6 +69,8 @@ pub struct UnsafeOpInUnsafeFnInitializingTypeWithRequiresUnsafe { pub struct UnsafeOpInUnsafeFnUseOfMutableStaticRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -69,6 +79,8 @@ pub struct UnsafeOpInUnsafeFnUseOfMutableStaticRequiresUnsafe { pub struct UnsafeOpInUnsafeFnUseOfExternStaticRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -77,6 +89,8 @@ pub struct UnsafeOpInUnsafeFnUseOfExternStaticRequiresUnsafe { pub struct UnsafeOpInUnsafeFnDerefOfRawPointerRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -85,6 +99,8 @@ pub struct UnsafeOpInUnsafeFnDerefOfRawPointerRequiresUnsafe { pub struct UnsafeOpInUnsafeFnAccessToUnionFieldRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -93,6 +109,8 @@ pub struct UnsafeOpInUnsafeFnAccessToUnionFieldRequiresUnsafe { pub struct UnsafeOpInUnsafeFnMutationOfLayoutConstrainedFieldRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -100,6 +118,8 @@ pub struct UnsafeOpInUnsafeFnMutationOfLayoutConstrainedFieldRequiresUnsafe { pub struct UnsafeOpInUnsafeFnBorrowOfLayoutConstrainedFieldRequiresUnsafe { #[label] pub span: Span, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(LintDiagnostic)] @@ -109,6 +129,8 @@ pub struct UnsafeOpInUnsafeFnCallToFunctionWithRequiresUnsafe<'a> { #[label] pub span: Span, pub function: &'a str, + #[subdiagnostic] + pub unsafe_not_inherited_note: Option<UnsafeNotInheritedLintNote>, } #[derive(Diagnostic)] @@ -376,6 +398,27 @@ pub struct UnsafeNotInheritedNote { pub span: Span, } +pub struct UnsafeNotInheritedLintNote { + pub signature_span: Span, + pub body_span: Span, +} + +impl AddToDiagnostic for UnsafeNotInheritedLintNote { + fn add_to_diagnostic_with<F>(self, diag: &mut Diagnostic, _: F) + where + F: Fn(&mut Diagnostic, SubdiagnosticMessage) -> SubdiagnosticMessage, + { + diag.span_note(self.signature_span, fluent::mir_build_unsafe_fn_safe_body); + let body_start = self.body_span.shrink_to_lo(); + let body_end = self.body_span.shrink_to_hi(); + diag.tool_only_multipart_suggestion( + fluent::mir_build_wrap_suggestion, + vec![(body_start, "{ unsafe ".into()), (body_end, "}".into())], + Applicability::MaybeIncorrect, + ); + } +} + #[derive(LintDiagnostic)] #[diag(mir_build_unused_unsafe)] pub struct UnusedUnsafe { @@ -392,11 +435,6 @@ pub enum UnusedUnsafeEnclosing { #[primary_span] span: Span, }, - #[label(mir_build_unused_unsafe_enclosing_fn_label)] - Function { - #[primary_span] - span: Span, - }, } pub(crate) struct NonExhaustivePatternsTypeNotEmpty<'p, 'tcx, 'm> { @@ -551,6 +589,7 @@ pub struct LiteralOutOfRange<'tcx> { #[label] pub span: Span, pub ty: Ty<'tcx>, + pub min: i128, pub max: u128, } @@ -793,6 +832,18 @@ pub(crate) struct NonExhaustiveOmittedPattern<'tcx> { pub uncovered: Uncovered<'tcx>, } +#[derive(LintDiagnostic)] +#[diag(mir_build_non_exhaustive_omitted_pattern_lint_on_arm)] +#[help] +pub(crate) struct NonExhaustiveOmittedPatternLintOnArm { + #[label] + pub lint_span: Span, + #[suggestion(code = "#[{lint_level}({lint_name})]\n", applicability = "maybe-incorrect")] + pub suggest_lint_on_match: Option<Span>, + pub lint_level: &'static str, + pub lint_name: &'static str, +} + #[derive(Subdiagnostic)] #[label(mir_build_uncovered)] pub(crate) struct Uncovered<'tcx> { @@ -809,15 +860,21 @@ impl<'tcx> Uncovered<'tcx> { pub fn new<'p>( span: Span, cx: &MatchCheckCtxt<'p, 'tcx>, - witnesses: Vec<DeconstructedPat<'p, 'tcx>>, + witnesses: Vec<WitnessPat<'tcx>>, ) -> Self { - let witness_1 = witnesses.get(0).unwrap().to_pat(cx); + let witness_1 = witnesses.get(0).unwrap().to_diagnostic_pat(cx); Self { span, count: witnesses.len(), // Substitute dummy values if witnesses is smaller than 3. These will never be read. - witness_2: witnesses.get(1).map(|w| w.to_pat(cx)).unwrap_or_else(|| witness_1.clone()), - witness_3: witnesses.get(2).map(|w| w.to_pat(cx)).unwrap_or_else(|| witness_1.clone()), + witness_2: witnesses + .get(1) + .map(|w| w.to_diagnostic_pat(cx)) + .unwrap_or_else(|| witness_1.clone()), + witness_3: witnesses + .get(2) + .map(|w| w.to_diagnostic_pat(cx)) + .unwrap_or_else(|| witness_1.clone()), witness_1, remainder: witnesses.len().saturating_sub(3), } diff --git a/compiler/rustc_mir_build/src/lib.rs b/compiler/rustc_mir_build/src/lib.rs index 099fefbf0..745c3046d 100644 --- a/compiler/rustc_mir_build/src/lib.rs +++ b/compiler/rustc_mir_build/src/lib.rs @@ -20,7 +20,7 @@ mod build; mod check_unsafety; mod errors; pub mod lints; -pub mod thir; +mod thir; use rustc_middle::query::Providers; diff --git a/compiler/rustc_mir_build/src/lints.rs b/compiler/rustc_mir_build/src/lints.rs index 94be38bee..acf4d6bc2 100644 --- a/compiler/rustc_mir_build/src/lints.rs +++ b/compiler/rustc_mir_build/src/lints.rs @@ -67,16 +67,21 @@ pub fn check_drop_recursion<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) { let def_id = body.source.def_id().expect_local(); // First check if `body` is an `fn drop()` of `Drop` - if let DefKind::AssocFn = tcx.def_kind(def_id) && - let Some(trait_ref) = tcx.impl_of_method(def_id.to_def_id()).and_then(|def_id| tcx.impl_trait_ref(def_id)) && - let Some(drop_trait) = tcx.lang_items().drop_trait() && drop_trait == trait_ref.instantiate_identity().def_id { - + if let DefKind::AssocFn = tcx.def_kind(def_id) + && let Some(trait_ref) = + tcx.impl_of_method(def_id.to_def_id()).and_then(|def_id| tcx.impl_trait_ref(def_id)) + && let Some(drop_trait) = tcx.lang_items().drop_trait() + && drop_trait == trait_ref.instantiate_identity().def_id + { // It was. Now figure out for what type `Drop` is implemented and then // check for recursion. - if let ty::Ref(_, dropped_ty, _) = tcx.liberate_late_bound_regions( - def_id.to_def_id(), - tcx.fn_sig(def_id).instantiate_identity().input(0), - ).kind() { + if let ty::Ref(_, dropped_ty, _) = tcx + .liberate_late_bound_regions( + def_id.to_def_id(), + tcx.fn_sig(def_id).instantiate_identity().input(0), + ) + .kind() + { check_recursion(tcx, body, RecursiveDrop { drop_for: *dropped_ty }); } } @@ -187,7 +192,7 @@ impl<'mir, 'tcx, C: TerminatorClassifier<'tcx>> TriColorVisitor<BasicBlocks<'tcx match self.body[bb].terminator().kind { // These terminators return control flow to the caller. TerminatorKind::UnwindTerminate(_) - | TerminatorKind::GeneratorDrop + | TerminatorKind::CoroutineDrop | TerminatorKind::UnwindResume | TerminatorKind::Return | TerminatorKind::Unreachable diff --git a/compiler/rustc_mir_build/src/thir/cx/expr.rs b/compiler/rustc_mir_build/src/thir/cx/expr.rs index 16a85d427..dfd39b512 100644 --- a/compiler/rustc_mir_build/src/thir/cx/expr.rs +++ b/compiler/rustc_mir_build/src/thir/cx/expr.rs @@ -191,11 +191,16 @@ impl<'tcx> Cx<'tcx> { source: self.mirror_expr(source), cast: PointerCoercion::ArrayToPointer, } - } else { - // check whether this is casting an enum variant discriminant - // to prevent cycles, we refer to the discriminant initializer + } else if let hir::ExprKind::Path(ref qpath) = source.kind + && let res = self.typeck_results().qpath_res(qpath, source.hir_id) + && let ty = self.typeck_results().node_type(source.hir_id) + && let ty::Adt(adt_def, args) = ty.kind() + && let Res::Def(DefKind::Ctor(CtorOf::Variant, CtorKind::Const), variant_ctor_id) = res + { + // Check whether this is casting an enum variant discriminant. + // To prevent cycles, we refer to the discriminant initializer, // which is always an integer and thus doesn't need to know the - // enum's layout (or its tag type) to compute it during const eval + // enum's layout (or its tag type) to compute it during const eval. // Example: // enum Foo { // A, @@ -204,21 +209,6 @@ impl<'tcx> Cx<'tcx> { // The correct solution would be to add symbolic computations to miri, // so we wouldn't have to compute and store the actual value - let hir::ExprKind::Path(ref qpath) = source.kind else { - return ExprKind::Cast { source: self.mirror_expr(source) }; - }; - - let res = self.typeck_results().qpath_res(qpath, source.hir_id); - let ty = self.typeck_results().node_type(source.hir_id); - let ty::Adt(adt_def, args) = ty.kind() else { - return ExprKind::Cast { source: self.mirror_expr(source) }; - }; - - let Res::Def(DefKind::Ctor(CtorOf::Variant, CtorKind::Const), variant_ctor_id) = res - else { - return ExprKind::Cast { source: self.mirror_expr(source) }; - }; - let idx = adt_def.variant_index_with_ctor_id(variant_ctor_id); let (discr_did, discr_offset) = adt_def.discriminant_def_for_variant(idx); @@ -255,6 +245,10 @@ impl<'tcx> Cx<'tcx> { }; ExprKind::Cast { source } + } else { + // Default to `ExprKind::Cast` for all explicit casts. + // MIR building then picks the right MIR casts based on the types. + ExprKind::Cast { source: self.mirror_expr(source) } } } @@ -320,17 +314,23 @@ impl<'tcx> Cx<'tcx> { reason: errors::RustcBoxAttrReason::Attributes, }); } else if let Some(box_item) = tcx.lang_items().owned_box() { - if let hir::ExprKind::Path(hir::QPath::TypeRelative(ty, fn_path)) = fun.kind + if let hir::ExprKind::Path(hir::QPath::TypeRelative(ty, fn_path)) = + fun.kind && let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = ty.kind && path.res.opt_def_id().is_some_and(|did| did == box_item) && fn_path.ident.name == sym::new && let [value] = args { - return Expr { temp_lifetime, ty: expr_ty, span: expr.span, kind: ExprKind::Box { value: self.mirror_expr(value) } } + return Expr { + temp_lifetime, + ty: expr_ty, + span: expr.span, + kind: ExprKind::Box { value: self.mirror_expr(value) }, + }; } else { tcx.sess.emit_err(errors::RustcBoxAttributeError { span: expr.span, - reason: errors::RustcBoxAttrReason::NotBoxNew + reason: errors::RustcBoxAttrReason::NotBoxNew, }); } } else { @@ -343,17 +343,16 @@ impl<'tcx> Cx<'tcx> { // Tuple-like ADTs are represented as ExprKind::Call. We convert them here. let adt_data = if let hir::ExprKind::Path(ref qpath) = fun.kind - && let Some(adt_def) = expr_ty.ty_adt_def() { + && let Some(adt_def) = expr_ty.ty_adt_def() + { match qpath { - hir::QPath::Resolved(_, ref path) => { - match path.res { - Res::Def(DefKind::Ctor(_, CtorKind::Fn), ctor_id) => { - Some((adt_def, adt_def.variant_index_with_ctor_id(ctor_id))) - } - Res::SelfCtor(..) => Some((adt_def, FIRST_VARIANT)), - _ => None, + hir::QPath::Resolved(_, ref path) => match path.res { + Res::Def(DefKind::Ctor(_, CtorKind::Fn), ctor_id) => { + Some((adt_def, adt_def.variant_index_with_ctor_id(ctor_id))) } - } + Res::SelfCtor(..) => Some((adt_def, FIRST_VARIANT)), + _ => None, + }, hir::QPath::TypeRelative(_ty, _) => { if let Some((DefKind::Ctor(_, CtorKind::Fn), ctor_id)) = self.typeck_results().type_dependent_def(fun.hir_id) @@ -362,7 +361,6 @@ impl<'tcx> Cx<'tcx> { } else { None } - } _ => None, } @@ -570,8 +568,8 @@ impl<'tcx> Cx<'tcx> { let closure_ty = self.typeck_results().expr_ty(expr); let (def_id, args, movability) = match *closure_ty.kind() { ty::Closure(def_id, args) => (def_id, UpvarArgs::Closure(args), None), - ty::Generator(def_id, args, movability) => { - (def_id, UpvarArgs::Generator(args), Some(movability)) + ty::Coroutine(def_id, args, movability) => { + (def_id, UpvarArgs::Coroutine(args), Some(movability)) } _ => { span_bug!(expr.span, "closure expr w/o closure type: {:?}", closure_ty); @@ -672,7 +670,7 @@ impl<'tcx> Cx<'tcx> { hir::ExprKind::OffsetOf(_, _) => { let data = self.typeck_results.offset_of_data(); let &(container, ref indices) = data.get(expr.hir_id).unwrap(); - let fields = tcx.mk_fields_from_iter(indices.iter().copied()); + let fields = tcx.mk_offset_of_from_iter(indices.iter().copied()); ExprKind::OffsetOf { container, fields } } diff --git a/compiler/rustc_mir_build/src/thir/cx/mod.rs b/compiler/rustc_mir_build/src/thir/cx/mod.rs index d98cc76ad..b6adb383f 100644 --- a/compiler/rustc_mir_build/src/thir/cx/mod.rs +++ b/compiler/rustc_mir_build/src/thir/cx/mod.rs @@ -37,7 +37,7 @@ pub(crate) fn thir_body( // The resume argument may be missing, in that case we need to provide it here. // It will always be `()` in this case. - if tcx.def_kind(owner_def) == DefKind::Generator && body.params.is_empty() { + if tcx.def_kind(owner_def) == DefKind::Coroutine && body.params.is_empty() { cx.thir.params.push(Param { ty: Ty::new_unit(tcx), pat: None, @@ -148,11 +148,16 @@ impl<'tcx> Cx<'tcx> { Some(env_param) } - DefKind::Generator => { - let gen_ty = self.typeck_results.node_type(owner_id); - let gen_param = - Param { ty: gen_ty, pat: None, ty_span: None, self_kind: None, hir_id: None }; - Some(gen_param) + DefKind::Coroutine => { + let coroutine_ty = self.typeck_results.node_type(owner_id); + let coroutine_param = Param { + ty: coroutine_ty, + pat: None, + ty_span: None, + self_kind: None, + hir_id: None, + }; + Some(coroutine_param) } _ => None, } diff --git a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs index d440ca319..8c3d09c19 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs @@ -1,4 +1,4 @@ -use super::deconstruct_pat::{Constructor, DeconstructedPat}; +use super::deconstruct_pat::{Constructor, DeconstructedPat, WitnessPat}; use super::usefulness::{ compute_match_usefulness, MatchArm, MatchCheckCtxt, Reachability, UsefulnessReport, }; @@ -9,9 +9,7 @@ use rustc_arena::TypedArena; use rustc_ast::Mutability; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::stack::ensure_sufficient_stack; -use rustc_errors::{ - struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, MultiSpan, -}; +use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, MultiSpan}; use rustc_hir as hir; use rustc_hir::def::*; use rustc_hir::def_id::LocalDefId; @@ -44,7 +42,7 @@ pub(crate) fn check_match(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), Err for param in thir.params.iter() { if let Some(box ref pattern) = param.pat { - visitor.check_irrefutable(pattern, "function argument", None); + visitor.check_binding_is_irrefutable(pattern, "function argument", None); } } visitor.error @@ -58,7 +56,7 @@ fn create_e0004( struct_span_err!(sess, sp, E0004, "{}", &error_message) } -#[derive(PartialEq)] +#[derive(Debug, Copy, Clone, PartialEq)] enum RefutableFlag { Irrefutable, Refutable, @@ -68,24 +66,30 @@ use RefutableFlag::*; #[derive(Clone, Copy, Debug, PartialEq, Eq)] enum LetSource { None, + PlainLet, IfLet, IfLetGuard, LetElse, WhileLet, } -struct MatchVisitor<'a, 'p, 'tcx> { +struct MatchVisitor<'thir, 'p, 'tcx> { tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, - thir: &'a Thir<'tcx>, + thir: &'thir Thir<'tcx>, lint_level: HirId, let_source: LetSource, pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>, + /// Tracks if we encountered an error while checking this body. That the first function to + /// report it stores it here. Some functions return `Result` to allow callers to short-circuit + /// on error, but callers don't need to store it here again. error: Result<(), ErrorGuaranteed>, } -impl<'a, 'tcx> Visitor<'a, 'tcx> for MatchVisitor<'a, '_, 'tcx> { - fn thir(&self) -> &'a Thir<'tcx> { +// Visitor for a thir body. This calls `check_match`, `check_let` and `check_let_chain` as +// appropriate. +impl<'thir, 'tcx> Visitor<'thir, 'tcx> for MatchVisitor<'thir, '_, 'tcx> { + fn thir(&self) -> &'thir Thir<'tcx> { self.thir } @@ -100,7 +104,7 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for MatchVisitor<'a, '_, 'tcx> { } Some(Guard::IfLet(ref pat, expr)) => { this.with_let_source(LetSource::IfLetGuard, |this| { - this.check_let(pat, expr, LetSource::IfLetGuard, pat.span); + this.check_let(pat, Some(expr), pat.span); this.visit_pat(pat); this.visit_expr(&this.thir[expr]); }); @@ -148,10 +152,18 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for MatchVisitor<'a, '_, 'tcx> { self.check_match(scrutinee, arms, source, ex.span); } ExprKind::Let { box ref pat, expr } => { - self.check_let(pat, expr, self.let_source, ex.span); + self.check_let(pat, Some(expr), ex.span); } - ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => { - self.check_let_chain(self.let_source, ex.span, lhs, rhs); + ExprKind::LogicalOp { op: LogicalOp::And, .. } + if !matches!(self.let_source, LetSource::None) => + { + let mut chain_refutabilities = Vec::new(); + let Ok(()) = self.visit_land(ex, &mut chain_refutabilities) else { return }; + // If at least one of the operands is a `let ... = ...`. + if chain_refutabilities.iter().any(|x| x.is_some()) { + self.check_let_chain(chain_refutabilities, ex.span); + } + return; } _ => {} }; @@ -159,31 +171,27 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for MatchVisitor<'a, '_, 'tcx> { } fn visit_stmt(&mut self, stmt: &Stmt<'tcx>) { - let old_lint_level = self.lint_level; match stmt.kind { StmtKind::Let { box ref pattern, initializer, else_block, lint_level, span, .. } => { - if let LintLevel::Explicit(lint_level) = lint_level { - self.lint_level = lint_level; - } - - if let Some(initializer) = initializer && else_block.is_some() { - self.check_let(pattern, initializer, LetSource::LetElse, span); - } - - if else_block.is_none() { - self.check_irrefutable(pattern, "local binding", Some(span)); - } + self.with_lint_level(lint_level, |this| { + let let_source = + if else_block.is_some() { LetSource::LetElse } else { LetSource::PlainLet }; + this.with_let_source(let_source, |this| { + this.check_let(pattern, initializer, span) + }); + visit::walk_stmt(this, stmt); + }); + } + StmtKind::Expr { .. } => { + visit::walk_stmt(self, stmt); } - _ => {} } - visit::walk_stmt(self, stmt); - self.lint_level = old_lint_level; } } -impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { +impl<'thir, 'p, 'tcx> MatchVisitor<'thir, 'p, 'tcx> { #[instrument(level = "trace", skip(self, f))] fn with_let_source(&mut self, let_source: LetSource, f: impl FnOnce(&mut Self)) { let old_let_source = self.let_source; @@ -192,49 +200,127 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { self.let_source = old_let_source; } - fn with_lint_level(&mut self, new_lint_level: LintLevel, f: impl FnOnce(&mut Self)) { + fn with_lint_level<T>( + &mut self, + new_lint_level: LintLevel, + f: impl FnOnce(&mut Self) -> T, + ) -> T { if let LintLevel::Explicit(hir_id) = new_lint_level { let old_lint_level = self.lint_level; self.lint_level = hir_id; - f(self); + let ret = f(self); self.lint_level = old_lint_level; + ret } else { - f(self); + f(self) } } - fn check_patterns(&self, pat: &Pat<'tcx>, rf: RefutableFlag) { - pat.walk_always(|pat| check_borrow_conflicts_in_at_patterns(self, pat)); - check_for_bindings_named_same_as_variants(self, pat, rf); + /// Visit a nested chain of `&&`. Used for if-let chains. This must call `visit_expr` on the + /// subexpressions we are not handling ourselves. + fn visit_land( + &mut self, + ex: &Expr<'tcx>, + accumulator: &mut Vec<Option<(Span, RefutableFlag)>>, + ) -> Result<(), ErrorGuaranteed> { + match ex.kind { + ExprKind::Scope { value, lint_level, .. } => self.with_lint_level(lint_level, |this| { + this.visit_land(&this.thir[value], accumulator) + }), + ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => { + // We recurse into the lhs only, because `&&` chains associate to the left. + let res_lhs = self.visit_land(&self.thir[lhs], accumulator); + let res_rhs = self.visit_land_rhs(&self.thir[rhs])?; + accumulator.push(res_rhs); + res_lhs + } + _ => { + let res = self.visit_land_rhs(ex)?; + accumulator.push(res); + Ok(()) + } + } + } + + /// Visit the right-hand-side of a `&&`. Used for if-let chains. Returns `Some` if the + /// expression was ultimately a `let ... = ...`, and `None` if it was a normal boolean + /// expression. This must call `visit_expr` on the subexpressions we are not handling ourselves. + fn visit_land_rhs( + &mut self, + ex: &Expr<'tcx>, + ) -> Result<Option<(Span, RefutableFlag)>, ErrorGuaranteed> { + match ex.kind { + ExprKind::Scope { value, lint_level, .. } => { + self.with_lint_level(lint_level, |this| this.visit_land_rhs(&this.thir[value])) + } + ExprKind::Let { box ref pat, expr } => { + self.with_let_source(LetSource::None, |this| { + this.visit_expr(&this.thir()[expr]); + }); + Ok(Some((ex.span, self.is_let_irrefutable(pat)?))) + } + _ => { + self.with_let_source(LetSource::None, |this| { + this.visit_expr(ex); + }); + Ok(None) + } + } } fn lower_pattern( - &self, - cx: &mut MatchCheckCtxt<'p, 'tcx>, - pattern: &Pat<'tcx>, - ) -> &'p DeconstructedPat<'p, 'tcx> { - cx.pattern_arena.alloc(DeconstructedPat::from_pat(cx, &pattern)) + &mut self, + cx: &MatchCheckCtxt<'p, 'tcx>, + pat: &Pat<'tcx>, + ) -> Result<&'p DeconstructedPat<'p, 'tcx>, ErrorGuaranteed> { + if let Err(err) = pat.pat_error_reported() { + self.error = Err(err); + Err(err) + } else { + // Check the pattern for some things unrelated to exhaustiveness. + let refutable = if cx.refutable { Refutable } else { Irrefutable }; + pat.walk_always(|pat| check_borrow_conflicts_in_at_patterns(self, pat)); + pat.walk_always(|pat| check_for_bindings_named_same_as_variants(self, pat, refutable)); + Ok(cx.pattern_arena.alloc(DeconstructedPat::from_pat(cx, pat))) + } } - fn new_cx(&self, hir_id: HirId, refutable: bool) -> MatchCheckCtxt<'p, 'tcx> { + fn new_cx( + &self, + refutability: RefutableFlag, + match_span: Option<Span>, + ) -> MatchCheckCtxt<'p, 'tcx> { + let refutable = match refutability { + Irrefutable => false, + Refutable => true, + }; MatchCheckCtxt { tcx: self.tcx, param_env: self.param_env, - module: self.tcx.parent_module(hir_id).to_def_id(), + module: self.tcx.parent_module(self.lint_level).to_def_id(), pattern_arena: &self.pattern_arena, + match_span, refutable, } } #[instrument(level = "trace", skip(self))] - fn check_let(&mut self, pat: &Pat<'tcx>, scrutinee: ExprId, source: LetSource, span: Span) { - if let LetSource::None = source { - return; + fn check_let(&mut self, pat: &Pat<'tcx>, scrutinee: Option<ExprId>, span: Span) { + assert!(self.let_source != LetSource::None); + if let LetSource::PlainLet = self.let_source { + self.check_binding_is_irrefutable(pat, "local binding", Some(span)) + } else { + let Ok(refutability) = self.is_let_irrefutable(pat) else { return }; + if matches!(refutability, Irrefutable) { + report_irrefutable_let_patterns( + self.tcx, + self.lint_level, + self.let_source, + 1, + span, + ); + } } - self.check_patterns(pat, Refutable); - let mut cx = self.new_cx(self.lint_level, true); - let tpat = self.lower_pattern(&mut cx, pat); - self.check_let_reachability(&mut cx, self.lint_level, source, tpat, span); } fn check_match( @@ -244,32 +330,25 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { source: hir::MatchSource, expr_span: Span, ) { - let mut cx = self.new_cx(self.lint_level, true); + let cx = self.new_cx(Refutable, Some(expr_span)); + let mut tarms = Vec::with_capacity(arms.len()); for &arm in arms { - // Check the arm for some things unrelated to exhaustiveness. let arm = &self.thir.arms[arm]; - self.with_lint_level(arm.lint_level, |this| { - this.check_patterns(&arm.pattern, Refutable); + let got_error = self.with_lint_level(arm.lint_level, |this| { + let Ok(pat) = this.lower_pattern(&cx, &arm.pattern) else { return true }; + let arm = MatchArm { pat, hir_id: this.lint_level, has_guard: arm.guard.is_some() }; + tarms.push(arm); + false }); + if got_error { + return; + } } - let tarms: Vec<_> = arms - .iter() - .map(|&arm| { - let arm = &self.thir.arms[arm]; - let hir_id = match arm.lint_level { - LintLevel::Explicit(hir_id) => hir_id, - LintLevel::Inherited => self.lint_level, - }; - let pat = self.lower_pattern(&mut cx, &arm.pattern); - MatchArm { pat, hir_id, has_guard: arm.guard.is_some() } - }) - .collect(); - let scrut = &self.thir[scrut]; let scrut_ty = scrut.ty; - let report = compute_match_usefulness(&cx, &tarms, self.lint_level, scrut_ty); + let report = compute_match_usefulness(&cx, &tarms, self.lint_level, scrut_ty, scrut.span); match source { // Don't report arm reachability of desugared `match $iter.into_iter() { iter => .. }` @@ -293,107 +372,39 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { debug_assert_eq!(pat.span.desugaring_kind(), Some(DesugaringKind::ForLoop)); let PatKind::Variant { ref subpatterns, .. } = pat.kind else { bug!() }; let [pat_field] = &subpatterns[..] else { bug!() }; - self.check_irrefutable(&pat_field.pattern, "`for` loop binding", None); + self.check_binding_is_irrefutable(&pat_field.pattern, "`for` loop binding", None); } else { - self.error = Err(non_exhaustive_match( + self.error = Err(report_non_exhaustive_match( &cx, self.thir, scrut_ty, scrut.span, witnesses, arms, expr_span, )); } } } - fn check_let_reachability( - &mut self, - cx: &mut MatchCheckCtxt<'p, 'tcx>, - pat_id: HirId, - source: LetSource, - pat: &'p DeconstructedPat<'p, 'tcx>, - span: Span, - ) { - if is_let_irrefutable(cx, pat_id, pat) { - irrefutable_let_patterns(cx.tcx, pat_id, source, 1, span); - } - } - #[instrument(level = "trace", skip(self))] fn check_let_chain( &mut self, - let_source: LetSource, - top_expr_span: Span, - mut lhs: ExprId, - rhs: ExprId, + chain_refutabilities: Vec<Option<(Span, RefutableFlag)>>, + whole_chain_span: Span, ) { - if let LetSource::None = let_source { - return; - } - - // Lint level enclosing the next `lhs`. - let mut cur_lint_level = self.lint_level; - - // Obtain the refutabilities of all exprs in the chain, - // and record chain members that aren't let exprs. - let mut chain_refutabilities = Vec::new(); - - let add = |expr: ExprId, mut local_lint_level| { - // `local_lint_level` is the lint level enclosing the pattern inside `expr`. - let mut expr = &self.thir[expr]; - debug!(?expr, ?local_lint_level, "add"); - // Fast-forward through scopes. - while let ExprKind::Scope { value, lint_level, .. } = expr.kind { - if let LintLevel::Explicit(hir_id) = lint_level { - local_lint_level = hir_id - } - expr = &self.thir[value]; - } - debug!(?expr, ?local_lint_level, "after scopes"); - match expr.kind { - ExprKind::Let { box ref pat, expr: _ } => { - let mut ncx = self.new_cx(local_lint_level, true); - let tpat = self.lower_pattern(&mut ncx, pat); - let refutable = !is_let_irrefutable(&mut ncx, local_lint_level, tpat); - Some((expr.span, refutable)) - } - _ => None, - } - }; - - // Let chains recurse on the left, so we start by adding the rightmost. - chain_refutabilities.push(add(rhs, cur_lint_level)); - - loop { - while let ExprKind::Scope { value, lint_level, .. } = self.thir[lhs].kind { - if let LintLevel::Explicit(hir_id) = lint_level { - cur_lint_level = hir_id - } - lhs = value; - } - if let ExprKind::LogicalOp { op: LogicalOp::And, lhs: new_lhs, rhs: expr } = - self.thir[lhs].kind - { - chain_refutabilities.push(add(expr, cur_lint_level)); - lhs = new_lhs; - } else { - chain_refutabilities.push(add(lhs, cur_lint_level)); - break; - } - } - debug!(?chain_refutabilities); - chain_refutabilities.reverse(); + assert!(self.let_source != LetSource::None); - // Third, emit the actual warnings. - if chain_refutabilities.iter().all(|r| matches!(*r, Some((_, false)))) { + if chain_refutabilities.iter().all(|r| matches!(*r, Some((_, Irrefutable)))) { // The entire chain is made up of irrefutable `let` statements - irrefutable_let_patterns( + report_irrefutable_let_patterns( self.tcx, self.lint_level, - let_source, + self.let_source, chain_refutabilities.len(), - top_expr_span, + whole_chain_span, ); return; } - if let Some(until) = chain_refutabilities.iter().position(|r| !matches!(*r, Some((_, false)))) && until > 0 { + if let Some(until) = + chain_refutabilities.iter().position(|r| !matches!(*r, Some((_, Irrefutable)))) + && until > 0 + { // The chain has a non-zero prefix of irrefutable `let` statements. // Check if the let source is while, for there is no alternative place to put a prefix, @@ -402,43 +413,71 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { // so can't always be moved out. // FIXME: Add checking whether the bindings are actually used in the prefix, // and lint if they are not. - if !matches!(let_source, LetSource::WhileLet | LetSource::IfLetGuard) { + if !matches!(self.let_source, LetSource::WhileLet | LetSource::IfLetGuard) { // Emit the lint let prefix = &chain_refutabilities[..until]; let span_start = prefix[0].unwrap().0; let span_end = prefix.last().unwrap().unwrap().0; let span = span_start.to(span_end); let count = prefix.len(); - self.tcx.emit_spanned_lint(IRREFUTABLE_LET_PATTERNS, self.lint_level, span, LeadingIrrefutableLetPatterns { count }); + self.tcx.emit_spanned_lint( + IRREFUTABLE_LET_PATTERNS, + self.lint_level, + span, + LeadingIrrefutableLetPatterns { count }, + ); } } - if let Some(from) = chain_refutabilities.iter().rposition(|r| !matches!(*r, Some((_, false)))) && from != (chain_refutabilities.len() - 1) { + if let Some(from) = + chain_refutabilities.iter().rposition(|r| !matches!(*r, Some((_, Irrefutable)))) + && from != (chain_refutabilities.len() - 1) + { // The chain has a non-empty suffix of irrefutable `let` statements let suffix = &chain_refutabilities[from + 1..]; let span_start = suffix[0].unwrap().0; let span_end = suffix.last().unwrap().unwrap().0; let span = span_start.to(span_end); let count = suffix.len(); - self.tcx.emit_spanned_lint(IRREFUTABLE_LET_PATTERNS, self.lint_level, span, TrailingIrrefutableLetPatterns { count }); + self.tcx.emit_spanned_lint( + IRREFUTABLE_LET_PATTERNS, + self.lint_level, + span, + TrailingIrrefutableLetPatterns { count }, + ); } } - #[instrument(level = "trace", skip(self))] - fn check_irrefutable(&mut self, pat: &Pat<'tcx>, origin: &str, sp: Option<Span>) { - let mut cx = self.new_cx(self.lint_level, false); + fn analyze_binding( + &mut self, + pat: &Pat<'tcx>, + refutability: RefutableFlag, + ) -> Result<(MatchCheckCtxt<'p, 'tcx>, UsefulnessReport<'p, 'tcx>), ErrorGuaranteed> { + let cx = self.new_cx(refutability, None); + let pat = self.lower_pattern(&cx, pat)?; + let arms = [MatchArm { pat, hir_id: self.lint_level, has_guard: false }]; + let report = compute_match_usefulness(&cx, &arms, self.lint_level, pat.ty(), pat.span()); + Ok((cx, report)) + } - let pattern = self.lower_pattern(&mut cx, pat); - let pattern_ty = pattern.ty(); - let arm = MatchArm { pat: pattern, hir_id: self.lint_level, has_guard: false }; - let report = compute_match_usefulness(&cx, &[arm], self.lint_level, pattern_ty); + fn is_let_irrefutable(&mut self, pat: &Pat<'tcx>) -> Result<RefutableFlag, ErrorGuaranteed> { + let (cx, report) = self.analyze_binding(pat, Refutable)?; + // Report if the pattern is unreachable, which can only occur when the type is uninhabited. + // This also reports unreachable sub-patterns. + report_arm_reachability(&cx, &report); + // If the list of witnesses is empty, the match is exhaustive, i.e. the `if let` pattern is + // irrefutable. + Ok(if report.non_exhaustiveness_witnesses.is_empty() { Irrefutable } else { Refutable }) + } + + #[instrument(level = "trace", skip(self))] + fn check_binding_is_irrefutable(&mut self, pat: &Pat<'tcx>, origin: &str, sp: Option<Span>) { + let pattern_ty = pat.ty; - // Note: we ignore whether the pattern is unreachable (i.e. whether the type is empty). We - // only care about exhaustiveness here. + let Ok((cx, report)) = self.analyze_binding(pat, Irrefutable) else { return }; let witnesses = report.non_exhaustiveness_witnesses; if witnesses.is_empty() { // The pattern is irrefutable. - self.check_patterns(pat, Irrefutable); return; } @@ -448,23 +487,21 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { let mut interpreted_as_const = None; if let PatKind::Constant { .. } - | PatKind::AscribeUserType { - subpattern: box Pat { kind: PatKind::Constant { .. }, .. }, - .. - } = pat.kind + | PatKind::AscribeUserType { + subpattern: box Pat { kind: PatKind::Constant { .. }, .. }, + .. + } = pat.kind && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(pat.span) { // If the pattern to match is an integer literal: if snippet.chars().all(|c| c.is_digit(10)) { // Then give a suggestion, the user might've meant to create a binding instead. misc_suggestion = Some(MiscPatternSuggestion::AttemptedIntegerLiteral { - start_span: pat.span.shrink_to_lo() + start_span: pat.span.shrink_to_lo(), }); } else if snippet.chars().all(|c| c.is_alphanumeric() || c == '_') { - interpreted_as_const = Some(InterpretedAsConst { - span: pat.span, - variable: snippet, - }); + interpreted_as_const = + Some(InterpretedAsConst { span: pat.span, variable: snippet }); } } @@ -487,34 +524,23 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { }); }; - let adt_defined_here = try { - let ty = pattern_ty.peel_refs(); - let ty::Adt(def, _) = ty.kind() else { None? }; - let adt_def_span = cx.tcx.hir().get_if_local(def.did())?.ident()?.span; - let mut variants = vec![]; - - for span in maybe_point_at_variant(&cx, *def, witnesses.iter().take(5)) { - variants.push(Variant { span }); - } - AdtDefinedHere { adt_def_span, ty, variants } - }; + let adt_defined_here = report_adt_defined_here(self.tcx, pattern_ty, &witnesses, false); // Emit an extra note if the first uncovered witness would be uninhabited // if we disregard visibility. - let witness_1_is_privately_uninhabited = - if cx.tcx.features().exhaustive_patterns - && let Some(witness_1) = witnesses.get(0) - && let ty::Adt(adt, args) = witness_1.ty().kind() - && adt.is_enum() - && let Constructor::Variant(variant_index) = witness_1.ctor() - { - let variant = adt.variant(*variant_index); - let inhabited = variant.inhabited_predicate(cx.tcx, *adt).instantiate(cx.tcx, args); - assert!(inhabited.apply(cx.tcx, cx.param_env, cx.module)); - !inhabited.apply_ignore_module(cx.tcx, cx.param_env) - } else { - false - }; + let witness_1_is_privately_uninhabited = if self.tcx.features().exhaustive_patterns + && let Some(witness_1) = witnesses.get(0) + && let ty::Adt(adt, args) = witness_1.ty().kind() + && adt.is_enum() + && let Constructor::Variant(variant_index) = witness_1.ctor() + { + let variant = adt.variant(*variant_index); + let inhabited = variant.inhabited_predicate(self.tcx, *adt).instantiate(self.tcx, args); + assert!(inhabited.apply(self.tcx, cx.param_env, cx.module)); + !inhabited.apply_ignore_module(self.tcx, cx.param_env) + } else { + false + }; self.error = Err(self.tcx.sess.emit_err(PatternNotCovered { span: pat.span, @@ -532,69 +558,154 @@ impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> { } } -fn check_for_bindings_named_same_as_variants( - cx: &MatchVisitor<'_, '_, '_>, - pat: &Pat<'_>, - rf: RefutableFlag, -) { - pat.walk_always(|p| { - if let PatKind::Binding { - name, - mode: BindingMode::ByValue, - mutability: Mutability::Not, - subpattern: None, - ty, - .. - } = p.kind - && let ty::Adt(edef, _) = ty.peel_refs().kind() - && edef.is_enum() - && edef.variants().iter().any(|variant| { - variant.name == name && variant.ctor_kind() == Some(CtorKind::Const) - }) - { - let variant_count = edef.variants().len(); - let ty_path = with_no_trimmed_paths!({ - cx.tcx.def_path_str(edef.did()) +/// Check if a by-value binding is by-value. That is, check if the binding's type is not `Copy`. +/// Check that there are no borrow or move conflicts in `binding @ subpat` patterns. +/// +/// For example, this would reject: +/// - `ref x @ Some(ref mut y)`, +/// - `ref mut x @ Some(ref y)`, +/// - `ref mut x @ Some(ref mut y)`, +/// - `ref mut? x @ Some(y)`, and +/// - `x @ Some(ref mut? y)`. +/// +/// This analysis is *not* subsumed by NLL. +fn check_borrow_conflicts_in_at_patterns<'tcx>(cx: &MatchVisitor<'_, '_, 'tcx>, pat: &Pat<'tcx>) { + // Extract `sub` in `binding @ sub`. + let PatKind::Binding { name, mode, ty, subpattern: Some(box ref sub), .. } = pat.kind else { + return; + }; + + let is_binding_by_move = |ty: Ty<'tcx>| !ty.is_copy_modulo_regions(cx.tcx, cx.param_env); + + let sess = cx.tcx.sess; + + // Get the binding move, extract the mutability if by-ref. + let mut_outer = match mode { + BindingMode::ByValue if is_binding_by_move(ty) => { + // We have `x @ pat` where `x` is by-move. Reject all borrows in `pat`. + let mut conflicts_ref = Vec::new(); + sub.each_binding(|_, mode, _, span| match mode { + BindingMode::ByValue => {} + BindingMode::ByRef(_) => conflicts_ref.push(span), }); - cx.tcx.emit_spanned_lint( - BINDINGS_WITH_VARIANT_NAME, - cx.lint_level, - p.span, - BindingsWithVariantName { - // If this is an irrefutable pattern, and there's > 1 variant, - // then we can't actually match on this. Applying the below - // suggestion would produce code that breaks on `check_irrefutable`. - suggestion: if rf == Refutable || variant_count == 1 { - Some(p.span) - } else { None }, - ty_path, + if !conflicts_ref.is_empty() { + sess.emit_err(BorrowOfMovedValue { + binding_span: pat.span, + conflicts_ref, name, - }, - ) + ty, + suggest_borrowing: Some(pat.span.shrink_to_lo()), + }); + } + return; + } + BindingMode::ByValue => return, + BindingMode::ByRef(m) => m.mutability(), + }; + + // We now have `ref $mut_outer binding @ sub` (semantically). + // Recurse into each binding in `sub` and find mutability or move conflicts. + let mut conflicts_move = Vec::new(); + let mut conflicts_mut_mut = Vec::new(); + let mut conflicts_mut_ref = Vec::new(); + sub.each_binding(|name, mode, ty, span| { + match mode { + BindingMode::ByRef(mut_inner) => match (mut_outer, mut_inner.mutability()) { + // Both sides are `ref`. + (Mutability::Not, Mutability::Not) => {} + // 2x `ref mut`. + (Mutability::Mut, Mutability::Mut) => { + conflicts_mut_mut.push(Conflict::Mut { span, name }) + } + (Mutability::Not, Mutability::Mut) => { + conflicts_mut_ref.push(Conflict::Mut { span, name }) + } + (Mutability::Mut, Mutability::Not) => { + conflicts_mut_ref.push(Conflict::Ref { span, name }) + } + }, + BindingMode::ByValue if is_binding_by_move(ty) => { + conflicts_move.push(Conflict::Moved { span, name }) // `ref mut?` + by-move conflict. + } + BindingMode::ByValue => {} // `ref mut?` + by-copy is fine. } }); -} -/// Checks for common cases of "catchall" patterns that may not be intended as such. -fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool { - use Constructor::*; - match pat.ctor() { - Wildcard => true, - Single => pat.iter_fields().all(|pat| pat_is_catchall(pat)), - _ => false, + let report_mut_mut = !conflicts_mut_mut.is_empty(); + let report_mut_ref = !conflicts_mut_ref.is_empty(); + let report_move_conflict = !conflicts_move.is_empty(); + + let mut occurrences = match mut_outer { + Mutability::Mut => vec![Conflict::Mut { span: pat.span, name }], + Mutability::Not => vec![Conflict::Ref { span: pat.span, name }], + }; + occurrences.extend(conflicts_mut_mut); + occurrences.extend(conflicts_mut_ref); + occurrences.extend(conflicts_move); + + // Report errors if any. + if report_mut_mut { + // Report mutability conflicts for e.g. `ref mut x @ Some(ref mut y)`. + sess.emit_err(MultipleMutBorrows { span: pat.span, occurrences }); + } else if report_mut_ref { + // Report mutability conflicts for e.g. `ref x @ Some(ref mut y)` or the converse. + match mut_outer { + Mutability::Mut => { + sess.emit_err(AlreadyMutBorrowed { span: pat.span, occurrences }); + } + Mutability::Not => { + sess.emit_err(AlreadyBorrowed { span: pat.span, occurrences }); + } + }; + } else if report_move_conflict { + // Report by-ref and by-move conflicts, e.g. `ref x @ y`. + sess.emit_err(MovedWhileBorrowed { span: pat.span, occurrences }); } } -fn unreachable_pattern(tcx: TyCtxt<'_>, span: Span, id: HirId, catchall: Option<Span>) { - tcx.emit_spanned_lint( - UNREACHABLE_PATTERNS, - id, - span, - UnreachablePattern { span: if catchall.is_some() { Some(span) } else { None }, catchall }, - ); +fn check_for_bindings_named_same_as_variants( + cx: &MatchVisitor<'_, '_, '_>, + pat: &Pat<'_>, + rf: RefutableFlag, +) { + if let PatKind::Binding { + name, + mode: BindingMode::ByValue, + mutability: Mutability::Not, + subpattern: None, + ty, + .. + } = pat.kind + && let ty::Adt(edef, _) = ty.peel_refs().kind() + && edef.is_enum() + && edef + .variants() + .iter() + .any(|variant| variant.name == name && variant.ctor_kind() == Some(CtorKind::Const)) + { + let variant_count = edef.variants().len(); + let ty_path = with_no_trimmed_paths!(cx.tcx.def_path_str(edef.did())); + cx.tcx.emit_spanned_lint( + BINDINGS_WITH_VARIANT_NAME, + cx.lint_level, + pat.span, + BindingsWithVariantName { + // If this is an irrefutable pattern, and there's > 1 variant, + // then we can't actually match on this. Applying the below + // suggestion would produce code that breaks on `check_binding_is_irrefutable`. + suggestion: if rf == Refutable || variant_count == 1 { + Some(pat.span) + } else { + None + }, + ty_path, + name, + }, + ) + } } -fn irrefutable_let_patterns( +fn report_irrefutable_let_patterns( tcx: TyCtxt<'_>, id: HirId, source: LetSource, @@ -608,7 +719,7 @@ fn irrefutable_let_patterns( } match source { - LetSource::None => bug!(), + LetSource::None | LetSource::PlainLet => bug!(), LetSource::IfLet => emit_diag!(IrrefutableLetPatternsIfLet), LetSource::IfLetGuard => emit_diag!(IrrefutableLetPatternsIfLetGuard), LetSource::LetElse => emit_diag!(IrrefutableLetPatternsLetElse), @@ -616,34 +727,28 @@ fn irrefutable_let_patterns( } } -fn is_let_irrefutable<'p, 'tcx>( - cx: &mut MatchCheckCtxt<'p, 'tcx>, - pat_id: HirId, - pat: &'p DeconstructedPat<'p, 'tcx>, -) -> bool { - let arms = [MatchArm { pat, hir_id: pat_id, has_guard: false }]; - let report = compute_match_usefulness(&cx, &arms, pat_id, pat.ty()); - - // Report if the pattern is unreachable, which can only occur when the type is uninhabited. - // This also reports unreachable sub-patterns though, so we can't just replace it with an - // `is_uninhabited` check. - report_arm_reachability(&cx, &report); - - // If the list of witnesses is empty, the match is exhaustive, - // i.e. the `if let` pattern is irrefutable. - report.non_exhaustiveness_witnesses.is_empty() -} - /// Report unreachable arms, if any. fn report_arm_reachability<'p, 'tcx>( cx: &MatchCheckCtxt<'p, 'tcx>, report: &UsefulnessReport<'p, 'tcx>, ) { + let report_unreachable_pattern = |span, hir_id, catchall: Option<Span>| { + cx.tcx.emit_spanned_lint( + UNREACHABLE_PATTERNS, + hir_id, + span, + UnreachablePattern { + span: if catchall.is_some() { Some(span) } else { None }, + catchall, + }, + ); + }; + use Reachability::*; let mut catchall = None; for (arm, is_useful) in report.arm_usefulness.iter() { match is_useful { - Unreachable => unreachable_pattern(cx.tcx, arm.pat.span(), arm.hir_id, catchall), + Unreachable => report_unreachable_pattern(arm.pat.span(), arm.hir_id, catchall), Reachable(unreachables) if unreachables.is_empty() => {} // The arm is reachable, but contains unreachable subpatterns (from or-patterns). Reachable(unreachables) => { @@ -651,7 +756,7 @@ fn report_arm_reachability<'p, 'tcx>( // Emit lints in the order in which they occur in the file. unreachables.sort_unstable(); for span in unreachables { - unreachable_pattern(cx.tcx, span, arm.hir_id, None); + report_unreachable_pattern(span, arm.hir_id, None); } } } @@ -661,24 +766,23 @@ fn report_arm_reachability<'p, 'tcx>( } } -fn collect_non_exhaustive_tys<'p, 'tcx>( - pat: &DeconstructedPat<'p, 'tcx>, - non_exhaustive_tys: &mut FxHashSet<Ty<'tcx>>, -) { - if matches!(pat.ctor(), Constructor::NonExhaustive) { - non_exhaustive_tys.insert(pat.ty()); +/// Checks for common cases of "catchall" patterns that may not be intended as such. +fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool { + use Constructor::*; + match pat.ctor() { + Wildcard => true, + Single => pat.iter_fields().all(|pat| pat_is_catchall(pat)), + _ => false, } - pat.iter_fields() - .for_each(|field_pat| collect_non_exhaustive_tys(field_pat, non_exhaustive_tys)) } /// Report that a match is not exhaustive. -fn non_exhaustive_match<'p, 'tcx>( +fn report_non_exhaustive_match<'p, 'tcx>( cx: &MatchCheckCtxt<'p, 'tcx>, thir: &Thir<'tcx>, scrut_ty: Ty<'tcx>, sp: Span, - witnesses: Vec<DeconstructedPat<'p, 'tcx>>, + witnesses: Vec<WitnessPat<'tcx>>, arms: &[ArmId], expr_span: Span, ) -> ErrorGuaranteed { @@ -707,12 +811,19 @@ fn non_exhaustive_match<'p, 'tcx>( sp, format!("non-exhaustive patterns: {joined_patterns} not covered"), ); - err.span_label(sp, pattern_not_covered_label(&witnesses, &joined_patterns)); + err.span_label( + sp, + format!( + "pattern{} {} not covered", + rustc_errors::pluralize!(witnesses.len()), + joined_patterns + ), + ); patterns_len = witnesses.len(); pattern = if witnesses.len() < 4 { witnesses .iter() - .map(|witness| witness.to_pat(cx).to_string()) + .map(|witness| witness.to_diagnostic_pat(cx).to_string()) .collect::<Vec<String>>() .join(" | ") } else { @@ -720,19 +831,37 @@ fn non_exhaustive_match<'p, 'tcx>( }; }; - adt_defined_here(cx, &mut err, scrut_ty, &witnesses); + // Point at the definition of non-covered `enum` variants. + if let Some(AdtDefinedHere { adt_def_span, ty, variants }) = + report_adt_defined_here(cx.tcx, scrut_ty, &witnesses, true) + { + let mut multi_span = MultiSpan::from_span(adt_def_span); + multi_span.push_span_label(adt_def_span, ""); + for Variant { span } in variants { + multi_span.push_span_label(span, "not covered"); + } + err.span_note(multi_span, format!("`{ty}` defined here")); + } err.note(format!("the matched value is of type `{}`", scrut_ty)); - if !is_empty_match && witnesses.len() == 1 { + if !is_empty_match { let mut non_exhaustive_tys = FxHashSet::default(); - collect_non_exhaustive_tys(&witnesses[0], &mut non_exhaustive_tys); + // Look at the first witness. + collect_non_exhaustive_tys(cx.tcx, &witnesses[0], &mut non_exhaustive_tys); for ty in non_exhaustive_tys { if ty.is_ptr_sized_integral() { - err.note(format!( - "`{ty}` does not have a fixed maximum value, so a wildcard `_` is necessary to match \ - exhaustively", + if ty == cx.tcx.types.usize { + err.note(format!( + "`{ty}` does not have a fixed maximum value, so half-open ranges are necessary to match \ + exhaustively", + )); + } else if ty == cx.tcx.types.isize { + err.note(format!( + "`{ty}` does not have fixed minimum and maximum values, so half-open ranges are necessary to match \ + exhaustively", )); + } if cx.tcx.sess.is_nightly_build() { err.help(format!( "add `#![feature(precise_pointer_size_matching)]` to the crate attributes to \ @@ -770,8 +899,10 @@ fn non_exhaustive_match<'p, 'tcx>( } [only] => { let only = &thir[*only]; - let (pre_indentation, is_multiline) = if let Some(snippet) = sm.indentation_before(only.span) - && let Ok(with_trailing) = sm.span_extend_while(only.span, |c| c.is_whitespace() || c == ',') + let (pre_indentation, is_multiline) = if let Some(snippet) = + sm.indentation_before(only.span) + && let Ok(with_trailing) = + sm.span_extend_while(only.span, |c| c.is_whitespace() || c == ',') && sm.is_multiline(with_trailing) { (format!("\n{snippet}"), true) @@ -852,18 +983,18 @@ fn non_exhaustive_match<'p, 'tcx>( err.emit() } -pub(crate) fn joined_uncovered_patterns<'p, 'tcx>( +fn joined_uncovered_patterns<'p, 'tcx>( cx: &MatchCheckCtxt<'p, 'tcx>, - witnesses: &[DeconstructedPat<'p, 'tcx>], + witnesses: &[WitnessPat<'tcx>], ) -> String { const LIMIT: usize = 3; - let pat_to_str = |pat: &DeconstructedPat<'p, 'tcx>| pat.to_pat(cx).to_string(); + let pat_to_str = |pat: &WitnessPat<'tcx>| pat.to_diagnostic_pat(cx).to_string(); match witnesses { [] => bug!(), - [witness] => format!("`{}`", witness.to_pat(cx)), + [witness] => format!("`{}`", witness.to_diagnostic_pat(cx)), [head @ .., tail] if head.len() < LIMIT => { let head: Vec<_> = head.iter().map(pat_to_str).collect(); - format!("`{}` and `{}`", head.join("`, `"), tail.to_pat(cx)) + format!("`{}` and `{}`", head.join("`, `"), tail.to_diagnostic_pat(cx)) } _ => { let (head, tail) = witnesses.split_at(LIMIT); @@ -873,59 +1004,64 @@ pub(crate) fn joined_uncovered_patterns<'p, 'tcx>( } } -pub(crate) fn pattern_not_covered_label( - witnesses: &[DeconstructedPat<'_, '_>], - joined_patterns: &str, -) -> String { - format!("pattern{} {} not covered", rustc_errors::pluralize!(witnesses.len()), joined_patterns) +fn collect_non_exhaustive_tys<'tcx>( + tcx: TyCtxt<'tcx>, + pat: &WitnessPat<'tcx>, + non_exhaustive_tys: &mut FxHashSet<Ty<'tcx>>, +) { + if matches!(pat.ctor(), Constructor::NonExhaustive) { + non_exhaustive_tys.insert(pat.ty()); + } + if let Constructor::IntRange(range) = pat.ctor() { + if range.is_beyond_boundaries(pat.ty(), tcx) { + // The range denotes the values before `isize::MIN` or the values after `usize::MAX`/`isize::MAX`. + non_exhaustive_tys.insert(pat.ty()); + } + } + pat.iter_fields() + .for_each(|field_pat| collect_non_exhaustive_tys(tcx, field_pat, non_exhaustive_tys)) } -/// Point at the definition of non-covered `enum` variants. -fn adt_defined_here<'p, 'tcx>( - cx: &MatchCheckCtxt<'p, 'tcx>, - err: &mut Diagnostic, +fn report_adt_defined_here<'tcx>( + tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, - witnesses: &[DeconstructedPat<'p, 'tcx>], -) { + witnesses: &[WitnessPat<'tcx>], + point_at_non_local_ty: bool, +) -> Option<AdtDefinedHere<'tcx>> { let ty = ty.peel_refs(); - if let ty::Adt(def, _) = ty.kind() { - let mut spans = vec![]; - if witnesses.len() < 5 { - for sp in maybe_point_at_variant(cx, *def, witnesses.iter()) { - spans.push(sp); - } - } - let def_span = cx - .tcx - .hir() - .get_if_local(def.did()) - .and_then(|node| node.ident()) - .map(|ident| ident.span) - .unwrap_or_else(|| cx.tcx.def_span(def.did())); - let mut span: MultiSpan = - if spans.is_empty() { def_span.into() } else { spans.clone().into() }; - - span.push_span_label(def_span, ""); - for pat in spans { - span.push_span_label(pat, "not covered"); - } - err.span_note(span, format!("`{ty}` defined here")); + let ty::Adt(def, _) = ty.kind() else { + return None; + }; + let adt_def_span = + tcx.hir().get_if_local(def.did()).and_then(|node| node.ident()).map(|ident| ident.span); + let adt_def_span = if point_at_non_local_ty { + adt_def_span.unwrap_or_else(|| tcx.def_span(def.did())) + } else { + adt_def_span? + }; + + let mut variants = vec![]; + for span in maybe_point_at_variant(tcx, *def, witnesses.iter().take(5)) { + variants.push(Variant { span }); } + Some(AdtDefinedHere { adt_def_span, ty, variants }) } -fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'a>( - cx: &MatchCheckCtxt<'p, 'tcx>, +fn maybe_point_at_variant<'a, 'tcx: 'a>( + tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, - patterns: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>, + patterns: impl Iterator<Item = &'a WitnessPat<'tcx>>, ) -> Vec<Span> { use Constructor::*; let mut covered = vec![]; for pattern in patterns { if let Variant(variant_index) = pattern.ctor() { - if let ty::Adt(this_def, _) = pattern.ty().kind() && this_def.did() != def.did() { + if let ty::Adt(this_def, _) = pattern.ty().kind() + && this_def.did() != def.did() + { continue; } - let sp = def.variant(*variant_index).ident(cx.tcx).span; + let sp = def.variant(*variant_index).ident(tcx).span; if covered.contains(&sp) { // Don't point at variants that have already been covered due to other patterns to avoid // visual clutter. @@ -933,112 +1069,7 @@ fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'a>( } covered.push(sp); } - covered.extend(maybe_point_at_variant(cx, def, pattern.iter_fields())); + covered.extend(maybe_point_at_variant(tcx, def, pattern.iter_fields())); } covered } - -/// Check if a by-value binding is by-value. That is, check if the binding's type is not `Copy`. -/// Check that there are no borrow or move conflicts in `binding @ subpat` patterns. -/// -/// For example, this would reject: -/// - `ref x @ Some(ref mut y)`, -/// - `ref mut x @ Some(ref y)`, -/// - `ref mut x @ Some(ref mut y)`, -/// - `ref mut? x @ Some(y)`, and -/// - `x @ Some(ref mut? y)`. -/// -/// This analysis is *not* subsumed by NLL. -fn check_borrow_conflicts_in_at_patterns<'tcx>(cx: &MatchVisitor<'_, '_, 'tcx>, pat: &Pat<'tcx>) { - // Extract `sub` in `binding @ sub`. - let PatKind::Binding { name, mode, ty, subpattern: Some(box ref sub), .. } = pat.kind else { - return; - }; - - let is_binding_by_move = |ty: Ty<'tcx>| !ty.is_copy_modulo_regions(cx.tcx, cx.param_env); - - let sess = cx.tcx.sess; - - // Get the binding move, extract the mutability if by-ref. - let mut_outer = match mode { - BindingMode::ByValue if is_binding_by_move(ty) => { - // We have `x @ pat` where `x` is by-move. Reject all borrows in `pat`. - let mut conflicts_ref = Vec::new(); - sub.each_binding(|_, mode, _, span| match mode { - BindingMode::ByValue => {} - BindingMode::ByRef(_) => conflicts_ref.push(span), - }); - if !conflicts_ref.is_empty() { - sess.emit_err(BorrowOfMovedValue { - binding_span: pat.span, - conflicts_ref, - name, - ty, - suggest_borrowing: Some(pat.span.shrink_to_lo()), - }); - } - return; - } - BindingMode::ByValue => return, - BindingMode::ByRef(m) => m.mutability(), - }; - - // We now have `ref $mut_outer binding @ sub` (semantically). - // Recurse into each binding in `sub` and find mutability or move conflicts. - let mut conflicts_move = Vec::new(); - let mut conflicts_mut_mut = Vec::new(); - let mut conflicts_mut_ref = Vec::new(); - sub.each_binding(|name, mode, ty, span| { - match mode { - BindingMode::ByRef(mut_inner) => match (mut_outer, mut_inner.mutability()) { - // Both sides are `ref`. - (Mutability::Not, Mutability::Not) => {} - // 2x `ref mut`. - (Mutability::Mut, Mutability::Mut) => { - conflicts_mut_mut.push(Conflict::Mut { span, name }) - } - (Mutability::Not, Mutability::Mut) => { - conflicts_mut_ref.push(Conflict::Mut { span, name }) - } - (Mutability::Mut, Mutability::Not) => { - conflicts_mut_ref.push(Conflict::Ref { span, name }) - } - }, - BindingMode::ByValue if is_binding_by_move(ty) => { - conflicts_move.push(Conflict::Moved { span, name }) // `ref mut?` + by-move conflict. - } - BindingMode::ByValue => {} // `ref mut?` + by-copy is fine. - } - }); - - let report_mut_mut = !conflicts_mut_mut.is_empty(); - let report_mut_ref = !conflicts_mut_ref.is_empty(); - let report_move_conflict = !conflicts_move.is_empty(); - - let mut occurrences = match mut_outer { - Mutability::Mut => vec![Conflict::Mut { span: pat.span, name }], - Mutability::Not => vec![Conflict::Ref { span: pat.span, name }], - }; - occurrences.extend(conflicts_mut_mut); - occurrences.extend(conflicts_mut_ref); - occurrences.extend(conflicts_move); - - // Report errors if any. - if report_mut_mut { - // Report mutability conflicts for e.g. `ref mut x @ Some(ref mut y)`. - sess.emit_err(MultipleMutBorrows { span: pat.span, occurrences }); - } else if report_mut_ref { - // Report mutability conflicts for e.g. `ref x @ Some(ref mut y)` or the converse. - match mut_outer { - Mutability::Mut => { - sess.emit_err(AlreadyMutBorrowed { span: pat.span, occurrences }); - } - Mutability::Not => { - sess.emit_err(AlreadyBorrowed { span: pat.span, occurrences }); - } - }; - } else if report_move_conflict { - // Report by-ref and by-move conflicts, e.g. `ref x @ y`. - sess.emit_err(MovedWhileBorrowed { span: pat.span, occurrences }); - } -} diff --git a/compiler/rustc_mir_build/src/thir/pattern/const_to_pat.rs b/compiler/rustc_mir_build/src/thir/pattern/const_to_pat.rs index ae4424660..48a590f5d 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/const_to_pat.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/const_to_pat.rs @@ -7,7 +7,7 @@ use rustc_middle::mir; use rustc_middle::thir::{FieldPat, Pat, PatKind}; use rustc_middle::ty::{self, Ty, TyCtxt, ValTree}; use rustc_session::lint; -use rustc_span::Span; +use rustc_span::{ErrorGuaranteed, Span}; use rustc_target::abi::{FieldIdx, VariantIdx}; use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt; use rustc_trait_selection::traits::{self, ObligationCause}; @@ -48,7 +48,7 @@ struct ConstToPat<'tcx> { // This tracks if we emitted some hard error for a given const value, so that // we will not subsequently issue an irrelevant lint for the same const // value. - saw_const_match_error: Cell<bool>, + saw_const_match_error: Cell<Option<ErrorGuaranteed>>, // This tracks if we emitted some diagnostic for a given const value, so that // we will not subsequently issue an irrelevant lint for the same const @@ -84,7 +84,7 @@ impl<'tcx> ConstToPat<'tcx> { span, infcx, param_env: pat_ctxt.param_env, - saw_const_match_error: Cell::new(false), + saw_const_match_error: Cell::new(None), saw_const_match_lint: Cell::new(false), behind_reference: Cell::new(false), treat_byte_string_as_slice: pat_ctxt @@ -123,6 +123,8 @@ impl<'tcx> ConstToPat<'tcx> { }); debug!(?check_body_for_struct_match_violation, ?mir_structural_match_violation); + let have_valtree = + matches!(cv, mir::Const::Ty(c) if matches!(c.kind(), ty::ConstKind::Value(_))); let inlined_const_as_pat = match cv { mir::Const::Ty(c) => match c.kind() { ty::ConstKind::Param(_) @@ -154,7 +156,7 @@ impl<'tcx> ConstToPat<'tcx> { }), }; - if !self.saw_const_match_error.get() { + if self.saw_const_match_error.get().is_none() { // If we were able to successfully convert the const to some pat (possibly with some // lints, but no errors), double-check that all types in the const implement // `Structural` and `PartialEq`. @@ -180,36 +182,35 @@ impl<'tcx> ConstToPat<'tcx> { if let Some(non_sm_ty) = structural { if !self.type_has_partial_eq_impl(cv.ty()) { - if let ty::Adt(def, ..) = non_sm_ty.kind() { + let e = if let ty::Adt(def, ..) = non_sm_ty.kind() { if def.is_union() { let err = UnionPattern { span: self.span }; - self.tcx().sess.emit_err(err); + self.tcx().sess.emit_err(err) } else { // fatal avoids ICE from resolution of nonexistent method (rare case). self.tcx() .sess - .emit_fatal(TypeNotStructural { span: self.span, non_sm_ty }); + .emit_fatal(TypeNotStructural { span: self.span, non_sm_ty }) } } else { let err = InvalidPattern { span: self.span, non_sm_ty }; - self.tcx().sess.emit_err(err); - } + self.tcx().sess.emit_err(err) + }; // All branches above emitted an error. Don't print any more lints. - // The pattern we return is irrelevant since we errored. - return Box::new(Pat { span: self.span, ty: cv.ty(), kind: PatKind::Wild }); + // We errored. Signal that in the pattern, so that follow up errors can be silenced. + let kind = PatKind::Error(e); + return Box::new(Pat { span: self.span, ty: cv.ty(), kind }); + } else if let ty::Adt(..) = cv.ty().kind() && matches!(cv, mir::Const::Val(..)) { + // This branch is only entered when the current `cv` is `mir::Const::Val`. + // This is because `mir::Const::ty` has already been handled by `Self::recur` + // and the invalid types may be ignored. + let err = TypeNotStructural { span: self.span, non_sm_ty }; + let e = self.tcx().sess.emit_err(err); + let kind = PatKind::Error(e); + return Box::new(Pat { span: self.span, ty: cv.ty(), kind }); } else if !self.saw_const_match_lint.get() { if let Some(mir_structural_match_violation) = mir_structural_match_violation { match non_sm_ty.kind() { - ty::RawPtr(pointee) - if pointee.ty.is_sized(self.tcx(), self.param_env) => {} - ty::FnPtr(..) | ty::RawPtr(..) => { - self.tcx().emit_spanned_lint( - lint::builtin::POINTER_STRUCTURAL_MATCH, - self.id, - self.span, - PointerPattern, - ); - } ty::Adt(..) if mir_structural_match_violation => { self.tcx().emit_spanned_lint( lint::builtin::INDIRECT_STRUCTURAL_MATCH, @@ -227,19 +228,15 @@ impl<'tcx> ConstToPat<'tcx> { } } } - } else if !self.saw_const_match_lint.get() { - match cv.ty().kind() { - ty::RawPtr(pointee) if pointee.ty.is_sized(self.tcx(), self.param_env) => {} - ty::FnPtr(..) | ty::RawPtr(..) => { - self.tcx().emit_spanned_lint( - lint::builtin::POINTER_STRUCTURAL_MATCH, - self.id, - self.span, - PointerPattern, - ); - } - _ => {} - } + } else if !have_valtree && !self.saw_const_match_lint.get() { + // The only way valtree construction can fail without the structural match + // checker finding a violation is if there is a pointer somewhere. + self.tcx().emit_spanned_lint( + lint::builtin::POINTER_STRUCTURAL_MATCH, + self.id, + self.span, + PointerPattern, + ); } // Always check for `PartialEq`, even if we emitted other lints. (But not if there were @@ -330,7 +327,7 @@ impl<'tcx> ConstToPat<'tcx> { // Backwards compatibility hack because we can't cause hard errors on these // types, so we compare them via `PartialEq::eq` at runtime. ty::Adt(..) if !self.type_marked_structural(ty) && self.behind_reference.get() => { - if !self.saw_const_match_error.get() && !self.saw_const_match_lint.get() { + if self.saw_const_match_error.get().is_none() && !self.saw_const_match_lint.get() { self.saw_const_match_lint.set(true); tcx.emit_spanned_lint( lint::builtin::INDIRECT_STRUCTURAL_MATCH, @@ -345,18 +342,18 @@ impl<'tcx> ConstToPat<'tcx> { return Err(FallbackToOpaqueConst); } ty::FnDef(..) => { - self.saw_const_match_error.set(true); - tcx.sess.emit_err(InvalidPattern { span, non_sm_ty: ty }); - // We errored, so the pattern we generate is irrelevant. - PatKind::Wild + let e = tcx.sess.emit_err(InvalidPattern { span, non_sm_ty: ty }); + self.saw_const_match_error.set(Some(e)); + // We errored. Signal that in the pattern, so that follow up errors can be silenced. + PatKind::Error(e) } ty::Adt(adt_def, _) if !self.type_marked_structural(ty) => { debug!("adt_def {:?} has !type_marked_structural for cv.ty: {:?}", adt_def, ty,); - self.saw_const_match_error.set(true); let err = TypeNotStructural { span, non_sm_ty: ty }; - tcx.sess.emit_err(err); - // We errored, so the pattern we generate is irrelevant. - PatKind::Wild + let e = tcx.sess.emit_err(err); + self.saw_const_match_error.set(Some(e)); + // We errored. Signal that in the pattern, so that follow up errors can be silenced. + PatKind::Error(e) } ty::Adt(adt_def, args) if adt_def.is_enum() => { let (&variant_index, fields) = cv.unwrap_branch().split_first().unwrap(); @@ -380,11 +377,19 @@ impl<'tcx> ConstToPat<'tcx> { subpatterns: self .field_pats(cv.unwrap_branch().iter().copied().zip(fields.iter()))?, }, - ty::Adt(def, args) => PatKind::Leaf { - subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip( - def.non_enum_variant().fields.iter().map(|field| field.ty(self.tcx(), args)), - ))?, - }, + ty::Adt(def, args) => { + assert!(!def.is_union()); // Valtree construction would never succeed for unions. + PatKind::Leaf { + subpatterns: self.field_pats( + cv.unwrap_branch().iter().copied().zip( + def.non_enum_variant() + .fields + .iter() + .map(|field| field.ty(self.tcx(), args)), + ), + )?, + } + } ty::Slice(elem_ty) => PatKind::Slice { prefix: cv .unwrap_branch() @@ -416,7 +421,9 @@ impl<'tcx> ConstToPat<'tcx> { // instead of a hard error. ty::Adt(_, _) if !self.type_marked_structural(*pointee_ty) => { if self.behind_reference.get() { - if !self.saw_const_match_error.get() && !self.saw_const_match_lint.get() { + if self.saw_const_match_error.get().is_none() + && !self.saw_const_match_lint.get() + { self.saw_const_match_lint.set(true); tcx.emit_spanned_lint( lint::builtin::INDIRECT_STRUCTURAL_MATCH, @@ -427,14 +434,16 @@ impl<'tcx> ConstToPat<'tcx> { } return Err(FallbackToOpaqueConst); } else { - if !self.saw_const_match_error.get() { - self.saw_const_match_error.set(true); + if let Some(e) = self.saw_const_match_error.get() { + // We already errored. Signal that in the pattern, so that follow up errors can be silenced. + PatKind::Error(e) + } else { let err = TypeNotStructural { span, non_sm_ty: *pointee_ty }; - tcx.sess.emit_err(err); + let e = tcx.sess.emit_err(err); + self.saw_const_match_error.set(Some(e)); + // We errored. Signal that in the pattern, so that follow up errors can be silenced. + PatKind::Error(e) } - tcx.sess.delay_span_bug(span, "`saw_const_match_error` set but no error?"); - // We errored, so the pattern we generate is irrelevant. - PatKind::Wild } } // All other references are converted into deref patterns and then recursively @@ -443,11 +452,9 @@ impl<'tcx> ConstToPat<'tcx> { _ => { if !pointee_ty.is_sized(tcx, param_env) && !pointee_ty.is_slice() { let err = UnsizedPattern { span, non_sm_ty: *pointee_ty }; - tcx.sess.emit_err(err); - - // FIXME: introduce PatKind::Error to silence follow up diagnostics due to unreachable patterns. - // We errored, so the pattern we generate is irrelevant. - PatKind::Wild + let e = tcx.sess.emit_err(err); + // We errored. Signal that in the pattern, so that follow up errors can be silenced. + PatKind::Error(e) } else { let old = self.behind_reference.replace(true); // `b"foo"` produces a `&[u8; 3]`, but you can't use constants of array type when @@ -469,20 +476,25 @@ impl<'tcx> ConstToPat<'tcx> { } } }, - ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) => { + ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::RawPtr(..) => { + // The raw pointers we see here have been "vetted" by valtree construction to be + // just integers, so we simply allow them. PatKind::Constant { value: mir::Const::Ty(ty::Const::new_value(tcx, cv, ty)) } } - ty::FnPtr(..) | ty::RawPtr(..) => unreachable!(), + ty::FnPtr(..) => { + // Valtree construction would never succeed for these, so this is unreachable. + unreachable!() + } _ => { - self.saw_const_match_error.set(true); let err = InvalidPattern { span, non_sm_ty: ty }; - tcx.sess.emit_err(err); - // We errored, so the pattern we generate is irrelevant. - PatKind::Wild + let e = tcx.sess.emit_err(err); + self.saw_const_match_error.set(Some(e)); + // We errored. Signal that in the pattern, so that follow up errors can be silenced. + PatKind::Error(e) } }; - if !self.saw_const_match_error.get() + if self.saw_const_match_error.get().is_none() && !self.saw_const_match_lint.get() && mir_structural_match_violation // FIXME(#73448): Find a way to bring const qualification into parity with @@ -497,7 +509,7 @@ impl<'tcx> ConstToPat<'tcx> { lint::builtin::NONTRIVIAL_STRUCTURAL_MATCH, id, span, - NontrivialStructuralMatch {non_sm_ty} + NontrivialStructuralMatch { non_sm_ty }, ); } diff --git a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs index b79beb1c5..0c7c2c6f9 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs @@ -39,35 +39,35 @@ //! //! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for //! or-patterns; instead we just try the alternatives one-by-one. For details on splitting -//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see -//! [`SplitVarLenSlice`]. +//! wildcards, see [`Constructor::split`]; for integer ranges, see +//! [`IntRange::split`]; for slices, see [`Slice::split`]. use std::cell::Cell; use std::cmp::{self, max, min, Ordering}; use std::fmt; use std::iter::once; -use std::ops::RangeInclusive; use smallvec::{smallvec, SmallVec}; +use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS}; use rustc_data_structures::captures::Captures; -use rustc_hir::{HirId, RangeEnd}; +use rustc_data_structures::fx::FxHashSet; +use rustc_hir::RangeEnd; use rustc_index::Idx; use rustc_middle::middle::stability::EvalResult; use rustc_middle::mir; -use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange}; +use rustc_middle::mir::interpret::Scalar; +use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary}; use rustc_middle::ty::layout::IntegerExt; use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef}; -use rustc_session::lint; use rustc_span::{Span, DUMMY_SP}; -use rustc_target::abi::{FieldIdx, Integer, Size, VariantIdx, FIRST_VARIANT}; +use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT}; use self::Constructor::*; +use self::MaybeInfiniteInt::*; use self::SliceKind::*; -use super::compare_const_vals; use super::usefulness::{MatchCheckCtxt, PatCtxt}; -use crate::errors::{Overlap, OverlappingRangeEndpoints}; /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns. fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> { @@ -86,324 +86,317 @@ fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> { pats } -/// An inclusive interval, used for precise integer exhaustiveness checking. -/// `IntRange`s always store a contiguous range. This means that values are -/// encoded such that `0` encodes the minimum value for the integer, -/// regardless of the signedness. -/// For example, the pattern `-128..=127i8` is encoded as `0..=255`. -/// This makes comparisons and arithmetic on interval endpoints much more -/// straightforward. See `signed_bias` for details. -/// -/// `IntRange` is never used to encode an empty range or a "range" that wraps -/// around the (offset) space: i.e., `range.lo <= range.hi`. -#[derive(Clone, PartialEq, Eq)] -pub(crate) struct IntRange { - range: RangeInclusive<u128>, - /// Keeps the bias used for encoding the range. It depends on the type of the range and - /// possibly the pointer size of the current architecture. The algorithm ensures we never - /// compare `IntRange`s with different types/architectures. - bias: u128, +/// Whether we have seen a constructor in the column or not. +#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] +enum Presence { + Unseen, + Seen, } -impl IntRange { - #[inline] - fn is_integral(ty: Ty<'_>) -> bool { - matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool) - } - - fn is_singleton(&self) -> bool { - self.range.start() == self.range.end() - } - - fn boundaries(&self) -> (u128, u128) { - (*self.range.start(), *self.range.end()) - } +/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the +/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as +/// `255`. See `signed_bias` for details. +#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] +pub(crate) enum MaybeInfiniteInt { + NegInfinity, + /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`. + Finite(u128), + /// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range. + JustAfterMax, + PosInfinity, +} - #[inline] - fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> { +impl MaybeInfiniteInt { + // The return value of `signed_bias` should be XORed with a value to encode/decode it. + fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 { match *ty.kind() { - ty::Bool => Some((Size::from_bytes(1), 0)), - ty::Char => Some((Size::from_bytes(4), 0)), ty::Int(ity) => { - let size = Integer::from_int_ty(&tcx, ity).size(); - Some((size, 1u128 << (size.bits() as u128 - 1))) + let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128; + 1u128 << (bits - 1) } - ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)), - _ => None, + _ => 0, } } - #[inline] - fn from_constant<'tcx>( + fn new_finite(tcx: TyCtxt<'_>, ty: Ty<'_>, bits: u128) -> Self { + let bias = Self::signed_bias(tcx, ty); + // Perform a shift if the underlying types are signed, which makes the interval arithmetic + // type-independent. + let x = bits ^ bias; + Finite(x) + } + fn from_pat_range_bdy<'tcx>( + bdy: PatRangeBoundary<'tcx>, + ty: Ty<'tcx>, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, - value: mir::Const<'tcx>, - ) -> Option<IntRange> { - let ty = value.ty(); - let (target_size, bias) = Self::integral_size_and_signed_bias(tcx, ty)?; - let val = match value { - mir::Const::Ty(c) if let ty::ConstKind::Value(valtree) = c.kind() => { - valtree.unwrap_leaf().to_bits(target_size).ok() - }, - // This is a more general form of the previous case. - _ => value.try_eval_bits(tcx, param_env), - }?; - - let val = val ^ bias; - Some(IntRange { range: val..=val, bias }) + ) -> Self { + match bdy { + PatRangeBoundary::NegInfinity => NegInfinity, + PatRangeBoundary::Finite(value) => { + let bits = value.eval_bits(tcx, param_env); + Self::new_finite(tcx, ty, bits) + } + PatRangeBoundary::PosInfinity => PosInfinity, + } } - #[inline] - fn from_range<'tcx>( - tcx: TyCtxt<'tcx>, - lo: u128, - hi: u128, + /// Used only for diagnostics. + /// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for + /// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with + /// `PosInfinity`. + fn to_diagnostic_pat_range_bdy<'tcx>( + self, ty: Ty<'tcx>, - end: &RangeEnd, - ) -> Option<IntRange> { - Self::is_integral(ty).then(|| { - // Perform a shift if the underlying types are signed, - // which makes the interval arithmetic simpler. - let bias = IntRange::signed_bias(tcx, ty); - let (lo, hi) = (lo ^ bias, hi ^ bias); - let offset = (*end == RangeEnd::Excluded) as u128; - if lo > hi || (lo == hi && *end == RangeEnd::Excluded) { - // This should have been caught earlier by E0030. - bug!("malformed range pattern: {}..={}", lo, (hi - offset)); + tcx: TyCtxt<'tcx>, + ) -> PatRangeBoundary<'tcx> { + match self { + NegInfinity => PatRangeBoundary::NegInfinity, + Finite(x) => { + let bias = Self::signed_bias(tcx, ty); + let bits = x ^ bias; + let size = ty.primitive_size(tcx); + match Scalar::try_from_uint(bits, size) { + Some(scalar) => { + let value = mir::Const::from_scalar(tcx, scalar, ty); + PatRangeBoundary::Finite(value) + } + // The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value + // for a type, the problem isn't that the value is too small. So it must be too + // large. + None => PatRangeBoundary::PosInfinity, + } } - IntRange { range: lo..=(hi - offset), bias } - }) + JustAfterMax | PosInfinity => PatRangeBoundary::PosInfinity, + } } - // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it. - fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 { - match *ty.kind() { - ty::Int(ity) => { - let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128; - 1u128 << (bits - 1) - } - _ => 0, + /// Note: this will not turn a finite value into an infinite one or vice-versa. + pub(crate) fn minus_one(self) -> Self { + match self { + Finite(n) => match n.checked_sub(1) { + Some(m) => Finite(m), + None => bug!(), + }, + JustAfterMax => Finite(u128::MAX), + x => x, } } - - fn is_subrange(&self, other: &Self) -> bool { - other.range.start() <= self.range.start() && self.range.end() <= other.range.end() + /// Note: this will not turn a finite value into an infinite one or vice-versa. + pub(crate) fn plus_one(self) -> Self { + match self { + Finite(n) => match n.checked_add(1) { + Some(m) => Finite(m), + None => JustAfterMax, + }, + JustAfterMax => bug!(), + x => x, + } } +} - fn intersection(&self, other: &Self) -> Option<Self> { - let (lo, hi) = self.boundaries(); - let (other_lo, other_hi) = other.boundaries(); - if lo <= other_hi && other_lo <= hi { - Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias }) - } else { - None - } +/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always +/// store a contiguous range. +/// +/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset) +/// space: i.e., `range.lo < range.hi`. +#[derive(Clone, Copy, PartialEq, Eq)] +pub(crate) struct IntRange { + pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`. + pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`. +} + +impl IntRange { + #[inline] + pub(super) fn is_integral(ty: Ty<'_>) -> bool { + matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) } - fn suspicious_intersection(&self, other: &Self) -> bool { - // `false` in the following cases: - // 1 ---- // 1 ---------- // 1 ---- // 1 ---- - // 2 ---------- // 2 ---- // 2 ---- // 2 ---- - // - // The following are currently `false`, but could be `true` in the future (#64007): - // 1 --------- // 1 --------- - // 2 ---------- // 2 ---------- - // - // `true` in the following cases: - // 1 ------- // 1 ------- - // 2 -------- // 2 ------- - let (lo, hi) = self.boundaries(); - let (other_lo, other_hi) = other.boundaries(); - (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton() + /// Best effort; will not know that e.g. `255u8..` is a singleton. + pub(super) fn is_singleton(&self) -> bool { + // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite + // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`. + self.lo.plus_one() == self.hi } - /// Only used for displaying the range properly. - fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> { - let (lo, hi) = self.boundaries(); + #[inline] + fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange { + let x = MaybeInfiniteInt::new_finite(tcx, ty, bits); + IntRange { lo: x, hi: x.plus_one() } + } - let bias = self.bias; - let (lo, hi) = (lo ^ bias, hi ^ bias); + #[inline] + fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange { + if end == RangeEnd::Included { + hi = hi.plus_one(); + } + if lo >= hi { + // This should have been caught earlier by E0030. + bug!("malformed range pattern: {lo:?}..{hi:?}"); + } + IntRange { lo, hi } + } - let env = ty::ParamEnv::empty().and(ty); - let lo_const = mir::Const::from_bits(tcx, lo, env); - let hi_const = mir::Const::from_bits(tcx, hi, env); + fn is_subrange(&self, other: &Self) -> bool { + other.lo <= self.lo && self.hi <= other.hi + } - let kind = if lo == hi { - PatKind::Constant { value: lo_const } + fn intersection(&self, other: &Self) -> Option<Self> { + if self.lo < other.hi && other.lo < self.hi { + Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) }) } else { - PatKind::Range(Box::new(PatRange { - lo: lo_const, - hi: hi_const, - end: RangeEnd::Included, - })) - }; - - Pat { ty, span: DUMMY_SP, kind } + None + } } - /// Lint on likely incorrect range patterns (#63987) - pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>( + /// Partition a range of integers into disjoint subranges. This does constructor splitting for + /// integer ranges as explained at the top of the file. + /// + /// This returns an output that covers `self`. The output is split so that the only + /// intersections between an output range and a column range are inclusions. No output range + /// straddles the boundary of one of the inputs. + /// + /// Additionally, we track for each output range whether it is covered by one of the column ranges or not. + /// + /// The following input: + /// ```text + /// (--------------------------) // `self` + /// (------) (----------) (-) + /// (------) (--------) + /// ``` + /// is first intersected with `self`: + /// ```text + /// (--------------------------) // `self` + /// (----) (----------) (-) + /// (------) (--------) + /// ``` + /// and then iterated over as follows: + /// ```text + /// (-(--)-(-)-(------)-)--(-)- + /// ``` + /// where each sequence of dashes is an output range, and dashes outside parentheses are marked + /// as `Presence::Missing`. + /// + /// ## `isize`/`usize` + /// + /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize` + /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for + /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are + /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`. + /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and + /// not others. See discussions around the `precise_pointer_size_matching` feature for more + /// details. + /// + /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and + /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these + /// fictitious ranges sensibly. + fn split( &self, - pcx: &PatCtxt<'_, 'p, 'tcx>, - pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>, - column_count: usize, - lint_root: HirId, - ) { - if self.is_singleton() { - return; - } - - if column_count != 1 { - // FIXME: for now, only check for overlapping ranges on simple range - // patterns. Otherwise with the current logic the following is detected - // as overlapping: - // ``` - // match (0u8, true) { - // (0 ..= 125, false) => {} - // (125 ..= 255, true) => {} - // _ => {} - // } - // ``` - return; - } - - let overlap: Vec<_> = pats - .filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span()))) - .filter(|(range, _)| self.suspicious_intersection(range)) - .map(|(range, span)| Overlap { - range: self.intersection(&range).unwrap().to_pat(pcx.cx.tcx, pcx.ty), - span, - }) + column_ranges: impl Iterator<Item = IntRange>, + ) -> impl Iterator<Item = (Presence, IntRange)> { + // The boundaries of ranges in `column_ranges` intersected with `self`. + // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts + // a range and -1 if it ends it. When the count is > 0 between two boundaries, we + // are within an input range. + let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges + .filter_map(|r| self.intersection(&r)) + .flat_map(|r| [(r.lo, 1), (r.hi, -1)]) .collect(); + // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The + // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at + // the accumulated count between distinct boundary values. + boundaries.sort_unstable(); + + // Accumulate parenthesis counts. + let mut paren_counter = 0isize; + // Gather pairs of adjacent boundaries. + let mut prev_bdy = self.lo; + boundaries + .into_iter() + // End with the end of the range. The count is ignored. + .chain(once((self.hi, 0))) + // List pairs of adjacent boundaries and the count between them. + .map(move |(bdy, delta)| { + // `delta` affects the count as we cross `bdy`, so the relevant count between + // `prev_bdy` and `bdy` is untouched by `delta`. + let ret = (prev_bdy, paren_counter, bdy); + prev_bdy = bdy; + paren_counter += delta; + ret + }) + // Skip empty ranges. + .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy) + // Convert back to ranges. + .map(move |(prev_bdy, paren_count, bdy)| { + use Presence::*; + let presence = if paren_count > 0 { Seen } else { Unseen }; + let range = IntRange { lo: prev_bdy, hi: bdy }; + (presence, range) + }) + } - if !overlap.is_empty() { - pcx.cx.tcx.emit_spanned_lint( - lint::builtin::OVERLAPPING_RANGE_ENDPOINTS, - lint_root, - pcx.span, - OverlappingRangeEndpoints { overlap, range: pcx.span }, - ); + /// Whether the range denotes the fictitious values before `isize::MIN` or after + /// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist). + pub(crate) fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool { + ty.is_ptr_sized_integral() && !tcx.features().precise_pointer_size_matching && { + // The two invalid ranges are `NegInfinity..isize::MIN` (represented as + // `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy` + // converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `self.lo` + // otherwise. + let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx); + matches!(lo, PatRangeBoundary::PosInfinity) + || matches!(self.hi, MaybeInfiniteInt::Finite(0)) } } - - /// See `Constructor::is_covered_by` - fn is_covered_by(&self, other: &Self) -> bool { - if self.intersection(other).is_some() { - // Constructor splitting should ensure that all intersections we encounter are actually - // inclusions. - assert!(self.is_subrange(other)); - true + /// Only used for displaying the range. + pub(super) fn to_diagnostic_pat<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Pat<'tcx> { + let kind = if matches!((self.lo, self.hi), (NegInfinity, PosInfinity)) { + PatKind::Wild + } else if self.is_singleton() { + let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx); + let value = lo.as_finite().unwrap(); + PatKind::Constant { value } } else { - false - } + // We convert to an inclusive range for diagnostics. + let mut end = RangeEnd::Included; + let mut lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx); + if matches!(lo, PatRangeBoundary::PosInfinity) { + // The only reason to get `PosInfinity` here is the special case where + // `to_diagnostic_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the + // fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do + // this). We show this to the user as `usize::MAX..` which is slightly incorrect but + // probably clear enough. + let c = ty.numeric_max_val(tcx).unwrap(); + let value = mir::Const::from_ty_const(c, tcx); + lo = PatRangeBoundary::Finite(value); + } + let hi = if matches!(self.hi, MaybeInfiniteInt::Finite(0)) { + // The range encodes `..ty::MIN`, so we can't convert it to an inclusive range. + end = RangeEnd::Excluded; + self.hi + } else { + self.hi.minus_one() + }; + let hi = hi.to_diagnostic_pat_range_bdy(ty, tcx); + PatKind::Range(Box::new(PatRange { lo, hi, end, ty })) + }; + + Pat { ty, span: DUMMY_SP, kind } } } -/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and -/// would be displayed as such. To render properly, convert to a pattern first. +/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern +/// first. impl fmt::Debug for IntRange { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - let (lo, hi) = self.boundaries(); - let bias = self.bias; - let (lo, hi) = (lo ^ bias, hi ^ bias); - write!(f, "{lo}")?; - write!(f, "{}", RangeEnd::Included)?; - write!(f, "{hi}") - } -} - -/// Represents a border between 2 integers. Because the intervals spanning borders must be able to -/// cover every integer, we need to be able to represent 2^128 + 1 such borders. -#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] -enum IntBorder { - JustBefore(u128), - AfterMax, -} - -/// A range of integers that is partitioned into disjoint subranges. This does constructor -/// splitting for integer ranges as explained at the top of the file. -/// -/// This is fed multiple ranges, and returns an output that covers the input, but is split so that -/// the only intersections between an output range and a seen range are inclusions. No output range -/// straddles the boundary of one of the inputs. -/// -/// The following input: -/// ```text -/// |-------------------------| // `self` -/// |------| |----------| |----| -/// |-------| |-------| -/// ``` -/// would be iterated over as follows: -/// ```text -/// ||---|--||-|---|---|---|--| -/// ``` -#[derive(Debug, Clone)] -struct SplitIntRange { - /// The range we are splitting - range: IntRange, - /// The borders of ranges we have seen. They are all contained within `range`. This is kept - /// sorted. - borders: Vec<IntBorder>, -} - -impl SplitIntRange { - fn new(range: IntRange) -> Self { - SplitIntRange { range, borders: Vec::new() } - } - - /// Internal use - fn to_borders(r: IntRange) -> [IntBorder; 2] { - use IntBorder::*; - let (lo, hi) = r.boundaries(); - let lo = JustBefore(lo); - let hi = match hi.checked_add(1) { - Some(m) => JustBefore(m), - None => AfterMax, - }; - [lo, hi] - } - - /// Add ranges relative to which we split. - fn split(&mut self, ranges: impl Iterator<Item = IntRange>) { - let this_range = &self.range; - let included_ranges = ranges.filter_map(|r| this_range.intersection(&r)); - let included_borders = included_ranges.flat_map(|r| { - let borders = Self::to_borders(r); - once(borders[0]).chain(once(borders[1])) - }); - self.borders.extend(included_borders); - self.borders.sort_unstable(); - } - - /// Iterate over the contained ranges. - fn iter(&self) -> impl Iterator<Item = IntRange> + Captures<'_> { - use IntBorder::*; - - let self_range = Self::to_borders(self.range.clone()); - // Start with the start of the range. - let mut prev_border = self_range[0]; - self.borders - .iter() - .copied() - // End with the end of the range. - .chain(once(self_range[1])) - // List pairs of adjacent borders. - .map(move |border| { - let ret = (prev_border, border); - prev_border = border; - ret - }) - // Skip duplicates. - .filter(|(prev_border, border)| prev_border != border) - // Finally, convert to ranges. - .map(move |(prev_border, border)| { - let range = match (prev_border, border) { - (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1), - (JustBefore(n), AfterMax) => n..=u128::MAX, - _ => unreachable!(), // Ruled out by the sorting and filtering we did - }; - IntRange { range, bias: self.range.bias } - }) + if let Finite(lo) = self.lo { + write!(f, "{lo}")?; + } + write!(f, "{}", RangeEnd::Excluded)?; + if let Finite(hi) = self.hi { + write!(f, "{hi}")?; + } + Ok(()) } } @@ -463,142 +456,164 @@ impl Slice { fn is_covered_by(self, other: Self) -> bool { other.kind.covers_length(self.arity()) } -} -/// This computes constructor splitting for variable-length slices, as explained at the top of the -/// file. -/// -/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _, -/// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a -/// given minimum length. We obviously can't list this infinitude of constructors. Thankfully, -/// it turns out that for each finite set of slice patterns, all sufficiently large array lengths -/// are equivalent. -/// -/// Let's look at an example, where we are trying to split the last pattern: -/// ``` -/// # fn foo(x: &[bool]) { -/// match x { -/// [true, true, ..] => {} -/// [.., false, false] => {} -/// [..] => {} -/// } -/// # } -/// ``` -/// Here are the results of specialization for the first few lengths: -/// ``` -/// # fn foo(x: &[bool]) { match x { -/// // length 0 -/// [] => {} -/// // length 1 -/// [_] => {} -/// // length 2 -/// [true, true] => {} -/// [false, false] => {} -/// [_, _] => {} -/// // length 3 -/// [true, true, _ ] => {} -/// [_, false, false] => {} -/// [_, _, _ ] => {} -/// // length 4 -/// [true, true, _, _ ] => {} -/// [_, _, false, false] => {} -/// [_, _, _, _ ] => {} -/// // length 5 -/// [true, true, _, _, _ ] => {} -/// [_, _, _, false, false] => {} -/// [_, _, _, _, _ ] => {} -/// # _ => {} -/// # }} -/// ``` -/// -/// If we went above length 5, we would simply be inserting more columns full of wildcards in the -/// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for -/// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them. -/// -/// This applies to any set of slice patterns: there will be a length `L` above which all lengths -/// behave the same. This is exactly what we need for constructor splitting. Therefore a -/// variable-length slice can be split into a variable-length slice of minimal length `L`, and many -/// fixed-length slices of lengths `< L`. -/// -/// For each variable-length pattern `p` with a prefix of length `plâ‚š` and suffix of length `slâ‚š`, -/// only the first `plâ‚š` and the last `slâ‚š` elements are examined. Therefore, as long as `L` is -/// positive (to avoid concerns about empty types), all elements after the maximum prefix length -/// and before the maximum suffix length are not examined by any variable-length pattern, and -/// therefore can be added/removed without affecting them - creating equivalent patterns from any -/// sufficiently-large length. -/// -/// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to -/// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))` -/// -/// `max_slice` below will be made to have arity `L`. -#[derive(Debug)] -struct SplitVarLenSlice { - /// If the type is an array, this is its size. - array_len: Option<usize>, - /// The arity of the input slice. - arity: usize, - /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L` - /// described above. - max_slice: SliceKind, -} - -impl SplitVarLenSlice { - fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self { - SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) } - } - - /// Pass a set of slices relative to which to split this one. - fn split(&mut self, slices: impl Iterator<Item = SliceKind>) { - let VarLen(max_prefix_len, max_suffix_len) = &mut self.max_slice else { - // No need to split - return; - }; - // We grow `self.max_slice` to be larger than all slices encountered, as described above. - // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that - // `L = max_prefix_len + max_suffix_len`. - let mut max_fixed_len = 0; - for slice in slices { - match slice { - FixedLen(len) => { - max_fixed_len = cmp::max(max_fixed_len, len); + /// This computes constructor splitting for variable-length slices, as explained at the top of + /// the file. + /// + /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, + /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of + /// corresponding lengths. We obviously can't list this infinitude of constructors. + /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large + /// array lengths are equivalent. + /// + /// Let's look at an example, where we are trying to split the last pattern: + /// ``` + /// # fn foo(x: &[bool]) { + /// match x { + /// [true, true, ..] => {} + /// [.., false, false] => {} + /// [..] => {} + /// } + /// # } + /// ``` + /// Here are the results of specialization for the first few lengths: + /// ``` + /// # fn foo(x: &[bool]) { match x { + /// // length 0 + /// [] => {} + /// // length 1 + /// [_] => {} + /// // length 2 + /// [true, true] => {} + /// [false, false] => {} + /// [_, _] => {} + /// // length 3 + /// [true, true, _ ] => {} + /// [_, false, false] => {} + /// [_, _, _ ] => {} + /// // length 4 + /// [true, true, _, _ ] => {} + /// [_, _, false, false] => {} + /// [_, _, _, _ ] => {} + /// // length 5 + /// [true, true, _, _, _ ] => {} + /// [_, _, _, false, false] => {} + /// [_, _, _, _, _ ] => {} + /// # _ => {} + /// # }} + /// ``` + /// + /// We see that above length 4, we are simply inserting columns full of wildcards in the middle. + /// This means that specialization and witness computation with slices of length `l >= 4` will + /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there + /// will be a length `L` above which all lengths behave the same. This is exactly what we need + /// for constructor splitting. + /// + /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just + /// saw, we can split this in two: lengths below `L` are treated individually with a + /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice + /// constructor. + /// + /// For each variable-length slice pattern `p` with a prefix of length `plâ‚š` and suffix of + /// length `slâ‚š`, only the first `plâ‚š` and the last `slâ‚š` elements are examined. Therefore, as + /// long as `L` is positive (to avoid concerns about empty types), all elements after the + /// maximum prefix length and before the maximum suffix length are not examined by any + /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`. + /// + /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them, + /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`. + /// `max_slice` below will be made to have this arity `L`. + /// + /// If `self` is fixed-length, it is returned as-is. + /// + /// Additionally, we track for each output slice whether it is covered by one of the column slices or not. + fn split( + self, + column_slices: impl Iterator<Item = Slice>, + ) -> impl Iterator<Item = (Presence, Slice)> { + // Range of lengths below `L`. + let smaller_lengths; + let arity = self.arity(); + let mut max_slice = self.kind; + // Tracks the smallest variable-length slice we've seen. Any slice arity above it is + // therefore `Presence::Seen` in the column. + let mut min_var_len = usize::MAX; + // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`. + let mut seen_fixed_lens = FxHashSet::default(); + match &mut max_slice { + VarLen(max_prefix_len, max_suffix_len) => { + // We grow `max_slice` to be larger than all slices encountered, as described above. + // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that + // `L = max_prefix_len + max_suffix_len`. + let mut max_fixed_len = 0; + for slice in column_slices { + match slice.kind { + FixedLen(len) => { + max_fixed_len = cmp::max(max_fixed_len, len); + if arity <= len { + seen_fixed_lens.insert(len); + } + } + VarLen(prefix, suffix) => { + *max_prefix_len = cmp::max(*max_prefix_len, prefix); + *max_suffix_len = cmp::max(*max_suffix_len, suffix); + min_var_len = cmp::min(min_var_len, prefix + suffix); + } + } } - VarLen(prefix, suffix) => { - *max_prefix_len = cmp::max(*max_prefix_len, prefix); - *max_suffix_len = cmp::max(*max_suffix_len, suffix); + // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and + // suffix separate. + if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len { + // The subtraction can't overflow thanks to the above check. + // The new `max_prefix_len` is larger than its previous value. + *max_prefix_len = max_fixed_len + 1 - *max_suffix_len; } - } - } - // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and - // suffix separate. - if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len { - // The subtraction can't overflow thanks to the above check. - // The new `max_prefix_len` is larger than its previous value. - *max_prefix_len = max_fixed_len + 1 - *max_suffix_len; - } - // We cap the arity of `max_slice` at the array size. - match self.array_len { - Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len), - _ => {} - } - } + // We cap the arity of `max_slice` at the array size. + match self.array_len { + Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len), + _ => {} + } - /// Iterate over the partition of this slice. - fn iter(&self) -> impl Iterator<Item = Slice> + Captures<'_> { - let smaller_lengths = match self.array_len { - // The only admissible fixed-length slice is one of the array size. Whether `max_slice` - // is fixed-length or variable-length, it will be the only relevant slice to output - // here. - Some(_) => 0..0, // empty range - // We cover all arities in the range `(self.arity..infinity)`. We split that range into - // two: lengths smaller than `max_slice.arity()` are treated independently as - // fixed-lengths slices, and lengths above are captured by `max_slice`. - None => self.arity..self.max_slice.arity(), + smaller_lengths = match self.array_len { + // The only admissible fixed-length slice is one of the array size. Whether `max_slice` + // is fixed-length or variable-length, it will be the only relevant slice to output + // here. + Some(_) => 0..0, // empty range + // We need to cover all arities in the range `(arity..infinity)`. We split that + // range into two: lengths smaller than `max_slice.arity()` are treated + // independently as fixed-lengths slices, and lengths above are captured by + // `max_slice`. + None => self.arity()..max_slice.arity(), + }; + } + FixedLen(_) => { + // No need to split here. We only track presence. + for slice in column_slices { + match slice.kind { + FixedLen(len) => { + if len == arity { + seen_fixed_lens.insert(len); + } + } + VarLen(prefix, suffix) => { + min_var_len = cmp::min(min_var_len, prefix + suffix); + } + } + } + smaller_lengths = 0..0; + } }; - smaller_lengths - .map(FixedLen) - .chain(once(self.max_slice)) - .map(move |kind| Slice::new(self.array_len, kind)) + + smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| { + let arity = kind.arity(); + let seen = if min_var_len <= arity || seen_fixed_lens.contains(&arity) { + Presence::Seen + } else { + Presence::Unseen + }; + (seen, Slice::new(self.array_len, kind)) + }) } } @@ -616,10 +631,13 @@ pub(super) enum Constructor<'tcx> { Single, /// Enum variants. Variant(VariantIdx), + /// Booleans + Bool(bool), /// Ranges of integer literal values (`2`, `2..=5` or `2..5`). IntRange(IntRange), /// Ranges of floating-point literal values (`2.0..=5.2`). - FloatRange(mir::Const<'tcx>, mir::Const<'tcx>, RangeEnd), + F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd), + F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd), /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately. Str(mir::Const<'tcx>), /// Array and slice patterns. @@ -628,66 +646,50 @@ pub(super) enum Constructor<'tcx> { /// boxes for the purposes of exhaustiveness: we must not inspect them, and they /// don't count towards making a match exhaustive. Opaque, + /// Or-pattern. + Or, + /// Wildcard pattern. + Wildcard, /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. NonExhaustive, - /// Stands for constructors that are not seen in the matrix, as explained in the documentation - /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns` - /// lint. - Missing { nonexhaustive_enum_missing_real_variants: bool }, - /// Wildcard pattern. - Wildcard, - /// Or-pattern. - Or, + /// Fake extra constructor for variants that should not be mentioned in diagnostics. + /// We use this for variants behind an unstable gate as well as + /// `#[doc(hidden)]` ones. + Hidden, + /// Fake extra constructor for constructors that are not seen in the matrix, as explained in the + /// code for [`Constructor::split`]. + Missing, } impl<'tcx> Constructor<'tcx> { - pub(super) fn is_wildcard(&self) -> bool { - matches!(self, Wildcard) - } - pub(super) fn is_non_exhaustive(&self) -> bool { matches!(self, NonExhaustive) } - fn as_int_range(&self) -> Option<&IntRange> { + pub(super) fn as_variant(&self) -> Option<VariantIdx> { match self { - IntRange(range) => Some(range), + Variant(i) => Some(*i), _ => None, } } - - fn as_slice(&self) -> Option<Slice> { + fn as_bool(&self) -> Option<bool> { match self { - Slice(slice) => Some(*slice), + Bool(b) => Some(*b), _ => None, } } - - /// Checks if the `Constructor` is a variant and `TyCtxt::eval_stability` returns - /// `EvalResult::Deny { .. }`. - /// - /// This means that the variant has a stdlib unstable feature marking it. - pub(super) fn is_unstable_variant(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool { - if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() { - let variant_def_id = adt.variant(*idx).def_id; - // Filter variants that depend on a disabled unstable feature. - return matches!( - pcx.cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None), - EvalResult::Deny { .. } - ); + pub(super) fn as_int_range(&self) -> Option<&IntRange> { + match self { + IntRange(range) => Some(range), + _ => None, } - false } - - /// Checks if the `Constructor` is a `Constructor::Variant` with a `#[doc(hidden)]` - /// attribute from a type not local to the current crate. - pub(super) fn is_doc_hidden_variant(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool { - if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() { - let variant_def_id = adt.variants()[*idx].def_id; - return pcx.cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local(); + fn as_slice(&self) -> Option<Slice> { + match self { + Slice(slice) => Some(*slice), + _ => None, } - false } fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx { @@ -721,30 +723,33 @@ impl<'tcx> Constructor<'tcx> { _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty), }, Slice(slice) => slice.arity(), - Str(..) - | FloatRange(..) + Bool(..) | IntRange(..) - | NonExhaustive + | F32Range(..) + | F64Range(..) + | Str(..) | Opaque + | NonExhaustive + | Hidden | Missing { .. } | Wildcard => 0, Or => bug!("The `Or` constructor doesn't have a fixed arity"), } } - /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual - /// constructors (like variants, integers or fixed-sized slices). When specializing for these - /// constructors, we want to be specialising for the actual underlying constructors. + /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of + /// actual constructors (like variants, integers or fixed-sized slices). When specializing for + /// these constructors, we want to be specialising for the actual underlying constructors. /// Naively, we would simply return the list of constructors they correspond to. We instead are - /// more clever: if there are constructors that we know will behave the same wrt the current - /// matrix, we keep them grouped. For example, all slices of a sufficiently large length - /// will either be all useful or all non-useful with a given matrix. + /// more clever: if there are constructors that we know will behave the same w.r.t. the current + /// matrix, we keep them grouped. For example, all slices of a sufficiently large length will + /// either be all useful or all non-useful with a given matrix. /// /// See the branches for details on how the splitting is done. /// - /// This function may discard some irrelevant constructors if this preserves behavior and - /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the - /// matrix, unless all of them are. + /// This function may discard some irrelevant constructors if this preserves behavior. Eg. for + /// the `_` case, we ignore the constructors already present in the column, unless all of them + /// are. pub(super) fn split<'a>( &self, pcx: &PatCtxt<'_, '_, 'tcx>, @@ -755,23 +760,68 @@ impl<'tcx> Constructor<'tcx> { { match self { Wildcard => { - let mut split_wildcard = SplitWildcard::new(pcx); - split_wildcard.split(pcx, ctors); - split_wildcard.into_ctors(pcx) + let split_set = ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, ctors); + if !split_set.missing.is_empty() { + // We are splitting a wildcard in order to compute its usefulness. Some constructors are + // not present in the column. The first thing we note is that specializing with any of + // the missing constructors would select exactly the rows with wildcards. Moreover, they + // would all return equivalent results. We can therefore group them all into a + // fictitious `Missing` constructor. + // + // As an important optimization, this function will skip all the present constructors. + // This is correct because specializing with any of the present constructors would + // select a strict superset of the wildcard rows, and thus would only find witnesses + // already found with the `Missing` constructor. + // This does mean that diagnostics are incomplete: in + // ``` + // match x { + // Some(true) => {} + // } + // ``` + // we report `None` as missing but not `Some(false)`. + // + // When all the constructors are missing we can equivalently return the `Wildcard` + // constructor on its own. The difference between `Wildcard` and `Missing` will then + // only be in diagnostics. + + // If some constructors are missing, we typically want to report those constructors, + // e.g.: + // ``` + // enum Direction { N, S, E, W } + // let Direction::N = ...; + // ``` + // we can report 3 witnesses: `S`, `E`, and `W`. + // + // However, if the user didn't actually specify a constructor + // in this arm, e.g., in + // ``` + // let x: (Direction, Direction, bool) = ...; + // let (_, _, false) = x; + // ``` + // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>, + // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we + // prefer to report just a wildcard `_`. + // + // The exception is: if we are at the top-level, for example in an empty match, we + // usually prefer to report the full list of constructors. + let all_missing = split_set.present.is_empty(); + let report_when_all_missing = + pcx.is_top_level && !IntRange::is_integral(pcx.ty); + let ctor = + if all_missing && !report_when_all_missing { Wildcard } else { Missing }; + smallvec![ctor] + } else { + split_set.present + } } - // Fast-track if the range is trivial. In particular, we don't do the overlapping - // ranges check. - IntRange(ctor_range) if !ctor_range.is_singleton() => { - let mut split_range = SplitIntRange::new(ctor_range.clone()); - let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range()); - split_range.split(int_ranges.cloned()); - split_range.iter().map(IntRange).collect() + // Fast-track if the range is trivial. + IntRange(this_range) if !this_range.is_singleton() => { + let column_ranges = ctors.filter_map(|ctor| ctor.as_int_range()).cloned(); + this_range.split(column_ranges).map(|(_, range)| IntRange(range)).collect() } - &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => { - let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len); - let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind); - split_self.split(slices); - split_self.iter().map(Slice).collect() + Slice(this_slice @ Slice { kind: VarLen(..), .. }) => { + let column_slices = ctors.filter_map(|c| c.as_slice()); + this_slice.split(column_slices).map(|(_, slice)| Slice(slice)).collect() } // Any other constructor can be used unchanged. _ => smallvec![self.clone()], @@ -788,28 +838,29 @@ impl<'tcx> Constructor<'tcx> { match (self, other) { // Wildcards cover anything (_, Wildcard) => true, - // The missing ctors are not covered by anything in the matrix except wildcards. - (Missing { .. } | Wildcard, _) => false, + // Only a wildcard pattern can match these special constructors. + (Wildcard | Missing { .. } | NonExhaustive | Hidden, _) => false, (Single, Single) => true, (Variant(self_id), Variant(other_id)) => self_id == other_id, - - (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range), - ( - FloatRange(self_from, self_to, self_end), - FloatRange(other_from, other_to, other_end), - ) => { - match ( - compare_const_vals(pcx.cx.tcx, *self_to, *other_to, pcx.cx.param_env), - compare_const_vals(pcx.cx.tcx, *self_from, *other_from, pcx.cx.param_env), - ) { - (Some(to), Some(from)) => { - (from == Ordering::Greater || from == Ordering::Equal) - && (to == Ordering::Less - || (other_end == self_end && to == Ordering::Equal)) + (Bool(self_b), Bool(other_b)) => self_b == other_b, + + (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range), + (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => { + self_from.ge(other_from) + && match self_to.partial_cmp(other_to) { + Some(Ordering::Less) => true, + Some(Ordering::Equal) => other_end == self_end, + _ => false, + } + } + (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => { + self_from.ge(other_from) + && match self_to.partial_cmp(other_to) { + Some(Ordering::Less) => true, + Some(Ordering::Equal) => other_end == self_end, + _ => false, } - _ => false, - } } (Str(self_val), Str(other_val)) => { // FIXME Once valtrees are available we can directly use the bytes @@ -820,8 +871,6 @@ impl<'tcx> Constructor<'tcx> { // We are trying to inspect an opaque constant. Thus we skip the row. (Opaque, _) | (_, Opaque) => false, - // Only a wildcard pattern can match the special extra constructor. - (NonExhaustive, _) => false, _ => span_bug!( pcx.span, @@ -831,96 +880,131 @@ impl<'tcx> Constructor<'tcx> { ), } } +} - /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is - /// assumed to be built from `matrix.head_ctors()` with wildcards and opaques filtered out, - /// and `self` is assumed to have been split from a wildcard. - fn is_covered_by_any<'p>( - &self, - pcx: &PatCtxt<'_, 'p, 'tcx>, - used_ctors: &[Constructor<'tcx>], - ) -> bool { - if used_ctors.is_empty() { - return false; - } - - // This must be kept in sync with `is_covered_by`. - match self { - // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s. - Single => !used_ctors.is_empty(), - Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)), - IntRange(range) => used_ctors - .iter() - .filter_map(|c| c.as_int_range()) - .any(|other| range.is_covered_by(other)), - Slice(slice) => used_ctors - .iter() - .filter_map(|c| c.as_slice()) - .any(|other| slice.is_covered_by(other)), - // This constructor is never covered by anything else - NonExhaustive => false, - Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => { - span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self) - } - } - } +/// Describes the set of all constructors for a type. +#[derive(Debug)] +pub(super) enum ConstructorSet { + /// The type has a single constructor, e.g. `&T` or a struct. + Single, + /// This type has the following list of constructors. + /// Some variants are hidden, which means they won't be mentioned in diagnostics unless the user + /// mentioned them first. We use this for variants behind an unstable gate as well as + /// `#[doc(hidden)]` ones. + Variants { + visible_variants: Vec<VariantIdx>, + hidden_variants: Vec<VariantIdx>, + non_exhaustive: bool, + }, + /// Booleans. + Bool, + /// The type is spanned by integer values. The range or ranges give the set of allowed values. + /// The second range is only useful for `char`. + Integers { range_1: IntRange, range_2: Option<IntRange> }, + /// The type is matched by slices. The usize is the compile-time length of the array, if known. + Slice(Option<usize>), + /// The type is matched by slices whose elements are uninhabited. + SliceOfEmpty, + /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`, + /// floats. + Unlistable, + /// The type has no inhabitants. + Uninhabited, } -/// A wildcard constructor that we split relative to the constructors in the matrix, as explained -/// at the top of the file. +/// Describes the result of analyzing the constructors in a column of a match. /// -/// A constructor that is not present in the matrix rows will only be covered by the rows that have -/// wildcards. Thus we can group all of those constructors together; we call them "missing -/// constructors". Splitting a wildcard would therefore list all present constructors individually -/// (or grouped if they are integers or slices), and then all missing constructors together as a -/// group. +/// `present` is morally the set of constructors present in the column, and `missing` is the set of +/// constructors that exist in the type but are not present in the column. /// -/// However we can go further: since any constructor will match the wildcard rows, and having more -/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors -/// and only try the missing ones. -/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty -/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done -/// in `to_ctors`: in some cases we only return `Missing`. +/// More formally, they respect the following constraints: +/// - the union of `present` and `missing` covers the whole type +/// - `present` and `missing` are disjoint +/// - neither contains wildcards +/// - each constructor in `present` is covered by some non-wildcard constructor in the column +/// - together, the constructors in `present` cover all the non-wildcard constructor in the column +/// - non-wildcards in the column do no cover anything in `missing` +/// - constructors in `present` and `missing` are split for the column; in other words, they are +/// either fully included in or disjoint from each constructor in the column. This avoids +/// non-trivial intersections like between `0..10` and `5..15`. #[derive(Debug)] -pub(super) struct SplitWildcard<'tcx> { - /// Constructors (other than wildcards and opaques) seen in the matrix. - matrix_ctors: Vec<Constructor<'tcx>>, - /// All the constructors for this type - all_ctors: SmallVec<[Constructor<'tcx>; 1]>, +pub(super) struct SplitConstructorSet<'tcx> { + pub(super) present: SmallVec<[Constructor<'tcx>; 1]>, + pub(super) missing: Vec<Constructor<'tcx>>, } -impl<'tcx> SplitWildcard<'tcx> { - pub(super) fn new<'p>(pcx: &PatCtxt<'_, 'p, 'tcx>) -> Self { - debug!("SplitWildcard::new({:?})", pcx.ty); - let cx = pcx.cx; +impl ConstructorSet { + #[instrument(level = "debug", skip(cx), ret)] + pub(super) fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self { let make_range = |start, end| { - IntRange( - // `unwrap()` is ok because we know the type is an integer. - IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(), + IntRange::from_range( + MaybeInfiniteInt::new_finite(cx.tcx, ty, start), + MaybeInfiniteInt::new_finite(cx.tcx, ty, end), + RangeEnd::Included, ) }; - // This determines the set of all possible constructors for the type `pcx.ty`. For numbers, + // This determines the set of all possible constructors for the type `ty`. For numbers, // arrays and slices we use ranges and variable-length slices when appropriate. // // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the // returned list of constructors. - // Invariant: this is empty if and only if the type is uninhabited (as determined by + // Invariant: this is `Uninhabited` if and only if the type is uninhabited (as determined by // `cx.is_uninhabited()`). - let all_ctors = match pcx.ty.kind() { - ty::Bool => smallvec![make_range(0, 1)], + match ty.kind() { + ty::Bool => Self::Bool, + ty::Char => { + // The valid Unicode Scalar Value ranges. + Self::Integers { + range_1: make_range('\u{0000}' as u128, '\u{D7FF}' as u128), + range_2: Some(make_range('\u{E000}' as u128, '\u{10FFFF}' as u128)), + } + } + &ty::Int(ity) => { + let range = if ty.is_ptr_sized_integral() + && !cx.tcx.features().precise_pointer_size_matching + { + // The min/max values of `isize` are not allowed to be observed unless the + // `precise_pointer_size_matching` feature is enabled. + IntRange { lo: NegInfinity, hi: PosInfinity } + } else { + let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128; + let min = 1u128 << (bits - 1); + let max = min - 1; + make_range(min, max) + }; + Self::Integers { range_1: range, range_2: None } + } + &ty::Uint(uty) => { + let range = if ty.is_ptr_sized_integral() + && !cx.tcx.features().precise_pointer_size_matching + { + // The max value of `usize` is not allowed to be observed unless the + // `precise_pointer_size_matching` feature is enabled. + let lo = MaybeInfiniteInt::new_finite(cx.tcx, ty, 0); + IntRange { lo, hi: PosInfinity } + } else { + let size = Integer::from_uint_ty(&cx.tcx, uty).size(); + let max = size.truncate(u128::MAX); + make_range(0, max) + }; + Self::Integers { range_1: range, range_2: None } + } ty::Array(sub_ty, len) if len.try_eval_target_usize(cx.tcx, cx.param_env).is_some() => { let len = len.eval_target_usize(cx.tcx, cx.param_env) as usize; if len != 0 && cx.is_uninhabited(*sub_ty) { - smallvec![] + Self::Uninhabited } else { - smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))] + Self::Slice(Some(len)) } } // Treat arrays of a constant but unknown length like slices. ty::Array(sub_ty, _) | ty::Slice(sub_ty) => { - let kind = if cx.is_uninhabited(*sub_ty) { FixedLen(0) } else { VarLen(0, 0) }; - smallvec![Slice(Slice::new(None, kind))] + if cx.is_uninhabited(*sub_ty) { + Self::SliceOfEmpty + } else { + Self::Slice(None) + } } ty::Adt(def, args) if def.is_enum() => { // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an @@ -939,19 +1023,14 @@ impl<'tcx> SplitWildcard<'tcx> { // // we don't want to show every possible IO error, but instead have only `_` as the // witness. - let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty); - - let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns; - - // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it - // as though it had an "unknown" constructor to avoid exposing its emptiness. The - // exception is if the pattern is at the top level, because we want empty matches to be - // considered exhaustive. - let is_secretly_empty = - def.variants().is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level; + let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty); - let mut ctors: SmallVec<[_; 1]> = - def.variants() + if def.variants().is_empty() && !is_declared_nonexhaustive { + Self::Uninhabited + } else { + let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns; + let (hidden_variants, visible_variants) = def + .variants() .iter_enumerated() .filter(|(_, v)| { // If `exhaustive_patterns` is enabled, we exclude variants known to be @@ -961,135 +1040,188 @@ impl<'tcx> SplitWildcard<'tcx> { .instantiate(cx.tcx, args) .apply(cx.tcx, cx.param_env, cx.module) }) - .map(|(idx, _)| Variant(idx)) - .collect(); + .map(|(idx, _)| idx) + .partition(|idx| { + let variant_def_id = def.variant(*idx).def_id; + // Filter variants that depend on a disabled unstable feature. + let is_unstable = matches!( + cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None), + EvalResult::Deny { .. } + ); + // Filter foreign `#[doc(hidden)]` variants. + let is_doc_hidden = + cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local(); + is_unstable || is_doc_hidden + }); + + Self::Variants { + visible_variants, + hidden_variants, + non_exhaustive: is_declared_nonexhaustive, + } + } + } + ty::Never => Self::Uninhabited, + _ if cx.is_uninhabited(ty) => Self::Uninhabited, + ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => Self::Single, + // This type is one for which we cannot list constructors, like `str` or `f64`. + _ => Self::Unlistable, + } + } - if is_secretly_empty || is_declared_nonexhaustive { - ctors.push(NonExhaustive); + /// This is the core logical operation of exhaustiveness checking. This analyzes a column a + /// constructors to 1/ determine which constructors of the type (if any) are missing; 2/ split + /// constructors to handle non-trivial intersections e.g. on ranges or slices. + #[instrument(level = "debug", skip(self, pcx, ctors), ret)] + pub(super) fn split<'a, 'tcx>( + &self, + pcx: &PatCtxt<'_, '_, 'tcx>, + ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone, + ) -> SplitConstructorSet<'tcx> + where + 'tcx: 'a, + { + let mut present: SmallVec<[_; 1]> = SmallVec::new(); + let mut missing = Vec::new(); + // Constructors in `ctors`, except wildcards. + let mut seen = ctors.filter(|c| !(matches!(c, Opaque | Wildcard))); + match self { + ConstructorSet::Single => { + if seen.next().is_none() { + missing.push(Single); + } else { + present.push(Single); } - ctors } - ty::Char => { - smallvec![ - // The valid Unicode Scalar Value ranges. - make_range('\u{0000}' as u128, '\u{D7FF}' as u128), - make_range('\u{E000}' as u128, '\u{10FFFF}' as u128), - ] + ConstructorSet::Variants { visible_variants, hidden_variants, non_exhaustive } => { + let seen_set: FxHashSet<_> = seen.map(|c| c.as_variant().unwrap()).collect(); + let mut skipped_a_hidden_variant = false; + + for variant in visible_variants { + let ctor = Variant(*variant); + if seen_set.contains(&variant) { + present.push(ctor); + } else { + missing.push(ctor); + } + } + + for variant in hidden_variants { + let ctor = Variant(*variant); + if seen_set.contains(&variant) { + present.push(ctor); + } else { + skipped_a_hidden_variant = true; + } + } + if skipped_a_hidden_variant { + missing.push(Hidden); + } + + if *non_exhaustive { + missing.push(NonExhaustive); + } } - ty::Int(_) | ty::Uint(_) - if pcx.ty.is_ptr_sized_integral() - && !cx.tcx.features().precise_pointer_size_matching => - { - // `usize`/`isize` are not allowed to be matched exhaustively unless the - // `precise_pointer_size_matching` feature is enabled. So we treat those types like - // `#[non_exhaustive]` enums by returning a special unmatchable constructor. - smallvec![NonExhaustive] + ConstructorSet::Bool => { + let mut seen_false = false; + let mut seen_true = false; + for b in seen.map(|ctor| ctor.as_bool().unwrap()) { + if b { + seen_true = true; + } else { + seen_false = true; + } + } + if seen_false { + present.push(Bool(false)); + } else { + missing.push(Bool(false)); + } + if seen_true { + present.push(Bool(true)); + } else { + missing.push(Bool(true)); + } } - &ty::Int(ity) => { - let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128; - let min = 1u128 << (bits - 1); - let max = min - 1; - smallvec![make_range(min, max)] + ConstructorSet::Integers { range_1, range_2 } => { + let seen_ranges: Vec<_> = + seen.map(|ctor| ctor.as_int_range().unwrap().clone()).collect(); + for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) { + match seen { + Presence::Unseen => missing.push(IntRange(splitted_range)), + Presence::Seen => present.push(IntRange(splitted_range)), + } + } + if let Some(range_2) = range_2 { + for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) { + match seen { + Presence::Unseen => missing.push(IntRange(splitted_range)), + Presence::Seen => present.push(IntRange(splitted_range)), + } + } + } } - &ty::Uint(uty) => { - let size = Integer::from_uint_ty(&cx.tcx, uty).size(); - let max = size.truncate(u128::MAX); - smallvec![make_range(0, max)] + &ConstructorSet::Slice(array_len) => { + let seen_slices = seen.map(|c| c.as_slice().unwrap()); + let base_slice = Slice::new(array_len, VarLen(0, 0)); + for (seen, splitted_slice) in base_slice.split(seen_slices) { + let ctor = Slice(splitted_slice); + match seen { + Presence::Unseen => missing.push(ctor), + Presence::Seen => present.push(ctor), + } + } + } + ConstructorSet::SliceOfEmpty => { + // This one is tricky because even though there's only one possible value of this + // type (namely `[]`), slice patterns of all lengths are allowed, they're just + // unreachable if length != 0. + // We still gather the seen constructors in `present`, but the only slice that can + // go in `missing` is `[]`. + let seen_slices = seen.map(|c| c.as_slice().unwrap()); + let base_slice = Slice::new(None, VarLen(0, 0)); + for (seen, splitted_slice) in base_slice.split(seen_slices) { + let ctor = Slice(splitted_slice); + match seen { + Presence::Seen => present.push(ctor), + Presence::Unseen if splitted_slice.arity() == 0 => { + missing.push(Slice(Slice::new(None, FixedLen(0)))) + } + Presence::Unseen => {} + } + } } - // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot + ConstructorSet::Unlistable => { + // Since we can't list constructors, we take the ones in the column. This might list + // some constructors several times but there's not much we can do. + present.extend(seen.cloned()); + missing.push(NonExhaustive); + } + // If `exhaustive_patterns` is disabled and our scrutinee is an empty type, we cannot // expose its emptiness. The exception is if the pattern is at the top level, because we // want empty matches to be considered exhaustive. - ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => { - smallvec![NonExhaustive] + ConstructorSet::Uninhabited + if !pcx.cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => + { + missing.push(NonExhaustive); } - ty::Never => smallvec![], - _ if cx.is_uninhabited(pcx.ty) => smallvec![], - ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single], - // This type is one for which we cannot list constructors, like `str` or `f64`. - _ => smallvec![NonExhaustive], - }; + ConstructorSet::Uninhabited => {} + } - SplitWildcard { matrix_ctors: Vec::new(), all_ctors } + SplitConstructorSet { present, missing } } - /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't - /// do what you want. - pub(super) fn split<'a>( - &mut self, + /// Compute the set of constructors missing from this column. + /// This is only used for reporting to the user. + pub(super) fn compute_missing<'a, 'tcx>( + &self, pcx: &PatCtxt<'_, '_, 'tcx>, ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone, - ) where + ) -> Vec<Constructor<'tcx>> + where 'tcx: 'a, { - // Since `all_ctors` never contains wildcards, this won't recurse further. - self.all_ctors = - self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect(); - self.matrix_ctors = ctors.filter(|c| !matches!(c, Wildcard | Opaque)).cloned().collect(); - } - - /// Whether there are any value constructors for this type that are not present in the matrix. - fn any_missing(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool { - self.iter_missing(pcx).next().is_some() - } - - /// Iterate over the constructors for this type that are not present in the matrix. - pub(super) fn iter_missing<'a, 'p>( - &'a self, - pcx: &'a PatCtxt<'a, 'p, 'tcx>, - ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> { - self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors)) - } - - /// Return the set of constructors resulting from splitting the wildcard. As explained at the - /// top of the file, if any constructors are missing we can ignore the present ones. - fn into_ctors(self, pcx: &PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> { - if self.any_missing(pcx) { - // Some constructors are missing, thus we can specialize with the special `Missing` - // constructor, which stands for those constructors that are not seen in the matrix, - // and matches the same rows as any of them (namely the wildcard rows). See the top of - // the file for details. - // However, when all constructors are missing we can also specialize with the full - // `Wildcard` constructor. The difference will depend on what we want in diagnostics. - - // If some constructors are missing, we typically want to report those constructors, - // e.g.: - // ``` - // enum Direction { N, S, E, W } - // let Direction::N = ...; - // ``` - // we can report 3 witnesses: `S`, `E`, and `W`. - // - // However, if the user didn't actually specify a constructor - // in this arm, e.g., in - // ``` - // let x: (Direction, Direction, bool) = ...; - // let (_, _, false) = x; - // ``` - // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>, - // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we - // prefer to report just a wildcard `_`. - // - // The exception is: if we are at the top-level, for example in an empty match, we - // sometimes prefer reporting the list of constructors instead of just `_`. - let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty); - let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing { - if pcx.is_non_exhaustive { - Missing { - nonexhaustive_enum_missing_real_variants: self - .iter_missing(pcx) - .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))), - } - } else { - Missing { nonexhaustive_enum_missing_real_variants: false } - } - } else { - Wildcard - }; - return smallvec![ctor]; - } - - // All the constructors are present in the matrix, so we just go through them all. - self.all_ctors + self.split(pcx, ctors).missing } } @@ -1202,11 +1334,14 @@ impl<'p, 'tcx> Fields<'p, 'tcx> { } _ => bug!("bad slice pattern {:?} {:?}", constructor, pcx), }, - Str(..) - | FloatRange(..) + Bool(..) | IntRange(..) - | NonExhaustive + | F32Range(..) + | F64Range(..) + | Str(..) | Opaque + | NonExhaustive + | Hidden | Missing { .. } | Wildcard => Fields::empty(), Or => { @@ -1227,9 +1362,10 @@ impl<'p, 'tcx> Fields<'p, 'tcx> { /// Values and patterns can be represented as a constructor applied to some fields. This represents /// a pattern in this form. -/// This also keeps track of whether the pattern has been found reachable during analysis. For this -/// reason we should be careful not to clone patterns for which we care about that. Use -/// `clone_and_forget_reachability` if you're sure. +/// This also uses interior mutability to keep track of whether the pattern has been found reachable +/// during analysis. For this reason they cannot be cloned. +/// A `DeconstructedPat` will almost always come from user input; the only exception are some +/// `Wildcard`s introduced during specialization. pub(crate) struct DeconstructedPat<'p, 'tcx> { ctor: Constructor<'tcx>, fields: Fields<'p, 'tcx>, @@ -1252,26 +1388,13 @@ impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> { DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) } } - /// Construct a pattern that matches everything that starts with this constructor. - /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern - /// `Some(_)`. - pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self { - let fields = Fields::wildcards(pcx, &ctor); - DeconstructedPat::new(ctor, fields, pcx.ty, pcx.span) - } - - /// Clone this value. This method emphasizes that cloning loses reachability information and - /// should be done carefully. - pub(super) fn clone_and_forget_reachability(&self) -> Self { - DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty, self.span) - } - pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self { let mkpat = |pat| DeconstructedPat::from_pat(cx, pat); let ctor; let fields; match &pat.kind { - PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern), + PatKind::AscribeUserType { subpattern, .. } + | PatKind::InlineConstant { subpattern, .. } => return mkpat(subpattern), PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat), PatKind::Binding { subpattern: None, .. } | PatKind::Wild => { ctor = Wildcard; @@ -1343,50 +1466,95 @@ impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> { } } PatKind::Constant { value } => { - if let Some(int_range) = IntRange::from_constant(cx.tcx, cx.param_env, *value) { - ctor = IntRange(int_range); - fields = Fields::empty(); - } else { - match pat.ty.kind() { - ty::Float(_) => { - ctor = FloatRange(*value, *value, RangeEnd::Included); - fields = Fields::empty(); - } - ty::Ref(_, t, _) if t.is_str() => { - // We want a `&str` constant to behave like a `Deref` pattern, to be compatible - // with other `Deref` patterns. This could have been done in `const_to_pat`, - // but that causes issues with the rest of the matching code. - // So here, the constructor for a `"foo"` pattern is `&` (represented by - // `Single`), and has one field. That field has constructor `Str(value)` and no - // fields. - // Note: `t` is `str`, not `&str`. - let subpattern = - DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span); - ctor = Single; - fields = Fields::singleton(cx, subpattern) - } - // All constants that can be structurally matched have already been expanded - // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are - // opaque. - _ => { - ctor = Opaque; - fields = Fields::empty(); - } + match pat.ty.kind() { + ty::Bool => { + ctor = match value.try_eval_bool(cx.tcx, cx.param_env) { + Some(b) => Bool(b), + None => Opaque, + }; + fields = Fields::empty(); + } + ty::Char | ty::Int(_) | ty::Uint(_) => { + ctor = match value.try_eval_bits(cx.tcx, cx.param_env) { + Some(bits) => IntRange(IntRange::from_bits(cx.tcx, pat.ty, bits)), + None => Opaque, + }; + fields = Fields::empty(); + } + ty::Float(ty::FloatTy::F32) => { + ctor = match value.try_eval_bits(cx.tcx, cx.param_env) { + Some(bits) => { + use rustc_apfloat::Float; + let value = rustc_apfloat::ieee::Single::from_bits(bits); + F32Range(value, value, RangeEnd::Included) + } + None => Opaque, + }; + fields = Fields::empty(); + } + ty::Float(ty::FloatTy::F64) => { + ctor = match value.try_eval_bits(cx.tcx, cx.param_env) { + Some(bits) => { + use rustc_apfloat::Float; + let value = rustc_apfloat::ieee::Double::from_bits(bits); + F64Range(value, value, RangeEnd::Included) + } + None => Opaque, + }; + fields = Fields::empty(); + } + ty::Ref(_, t, _) if t.is_str() => { + // We want a `&str` constant to behave like a `Deref` pattern, to be compatible + // with other `Deref` patterns. This could have been done in `const_to_pat`, + // but that causes issues with the rest of the matching code. + // So here, the constructor for a `"foo"` pattern is `&` (represented by + // `Single`), and has one field. That field has constructor `Str(value)` and no + // fields. + // Note: `t` is `str`, not `&str`. + let subpattern = + DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span); + ctor = Single; + fields = Fields::singleton(cx, subpattern) + } + // All constants that can be structurally matched have already been expanded + // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are + // opaque. + _ => { + ctor = Opaque; + fields = Fields::empty(); } } } - &PatKind::Range(box PatRange { lo, hi, end }) => { - let ty = lo.ty(); - ctor = if let Some(int_range) = IntRange::from_range( - cx.tcx, - lo.eval_bits(cx.tcx, cx.param_env), - hi.eval_bits(cx.tcx, cx.param_env), - ty, - &end, - ) { - IntRange(int_range) - } else { - FloatRange(lo, hi, end) + PatKind::Range(box PatRange { lo, hi, end, .. }) => { + let ty = pat.ty; + ctor = match ty.kind() { + ty::Char | ty::Int(_) | ty::Uint(_) => { + let lo = + MaybeInfiniteInt::from_pat_range_bdy(*lo, ty, cx.tcx, cx.param_env); + let hi = + MaybeInfiniteInt::from_pat_range_bdy(*hi, ty, cx.tcx, cx.param_env); + IntRange(IntRange::from_range(lo, hi, *end)) + } + ty::Float(fty) => { + use rustc_apfloat::Float; + let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env)); + let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env)); + match fty { + ty::FloatTy::F32 => { + use rustc_apfloat::ieee::Single; + let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY); + let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY); + F32Range(lo, hi, *end) + } + ty::FloatTy::F64 => { + use rustc_apfloat::ieee::Double; + let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY); + let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY); + F64Range(lo, hi, *end) + } + } + } + _ => bug!("invalid type for range pattern: {}", ty), }; fields = Fields::empty(); } @@ -1412,103 +1580,24 @@ impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> { let pats = expand_or_pat(pat); fields = Fields::from_iter(cx, pats.into_iter().map(mkpat)); } + PatKind::Error(_) => { + ctor = Opaque; + fields = Fields::empty(); + } } DeconstructedPat::new(ctor, fields, pat.ty, pat.span) } - pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> { - let is_wildcard = |pat: &Pat<'_>| { - matches!(pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild) - }; - let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_pat(cx))); - let kind = match &self.ctor { - Single | Variant(_) => match self.ty.kind() { - ty::Tuple(..) => PatKind::Leaf { - subpatterns: subpatterns - .enumerate() - .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern }) - .collect(), - }, - ty::Adt(adt_def, _) if adt_def.is_box() => { - // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside - // of `std`). So this branch is only reachable when the feature is enabled and - // the pattern is a box pattern. - PatKind::Deref { subpattern: subpatterns.next().unwrap() } - } - ty::Adt(adt_def, args) => { - let variant_index = self.ctor.variant_index_for_adt(*adt_def); - let variant = &adt_def.variant(variant_index); - let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant) - .zip(subpatterns) - .map(|((field, _ty), pattern)| FieldPat { field, pattern }) - .collect(); - - if adt_def.is_enum() { - PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns } - } else { - PatKind::Leaf { subpatterns } - } - } - // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should - // be careful to reconstruct the correct constant pattern here. However a string - // literal pattern will never be reported as a non-exhaustiveness witness, so we - // ignore this issue. - ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() }, - _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty), - }, - Slice(slice) => { - match slice.kind { - FixedLen(_) => PatKind::Slice { - prefix: subpatterns.collect(), - slice: None, - suffix: Box::new([]), - }, - VarLen(prefix, _) => { - let mut subpatterns = subpatterns.peekable(); - let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect(); - if slice.array_len.is_some() { - // Improves diagnostics a bit: if the type is a known-size array, instead - // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`. - // This is incorrect if the size is not known, since `[_, ..]` captures - // arrays of lengths `>= 1` whereas `[..]` captures any length. - while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) { - prefix.pop(); - } - while subpatterns.peek().is_some() - && is_wildcard(subpatterns.peek().unwrap()) - { - subpatterns.next(); - } - } - let suffix: Box<[_]> = subpatterns.collect(); - let wild = Pat::wildcard_from_ty(self.ty); - PatKind::Slice { - prefix: prefix.into_boxed_slice(), - slice: Some(Box::new(wild)), - suffix, - } - } - } - } - &Str(value) => PatKind::Constant { value }, - &FloatRange(lo, hi, end) => PatKind::Range(Box::new(PatRange { lo, hi, end })), - IntRange(range) => return range.to_pat(cx.tcx, self.ty), - Wildcard | NonExhaustive => PatKind::Wild, - Missing { .. } => bug!( - "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug, - `Missing` should have been processed in `apply_constructors`" - ), - Opaque | Or => { - bug!("can't convert to pattern: {:?}", self) - } - }; - - Pat { ty: self.ty, span: DUMMY_SP, kind } - } - pub(super) fn is_or_pat(&self) -> bool { matches!(self.ctor, Or) } + pub(super) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> { + if self.is_or_pat() { + self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect() + } else { + smallvec![self] + } + } pub(super) fn ctor(&self) -> &Constructor<'tcx> { &self.ctor @@ -1673,21 +1762,151 @@ impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> { } write!(f, "]") } - &FloatRange(lo, hi, end) => { - write!(f, "{lo}")?; - write!(f, "{end}")?; - write!(f, "{hi}") - } - IntRange(range) => write!(f, "{range:?}"), // Best-effort, will render e.g. `false` as `0..=0` - Wildcard | Missing { .. } | NonExhaustive => write!(f, "_ : {:?}", self.ty), + Bool(b) => write!(f, "{b}"), + // Best-effort, will render signed ranges incorrectly + IntRange(range) => write!(f, "{range:?}"), + F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"), + F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"), + Str(value) => write!(f, "{value}"), + Opaque => write!(f, "<constant pattern>"), Or => { for pat in self.iter_fields() { write!(f, "{}{:?}", start_or_continue(" | "), pat)?; } Ok(()) } - Str(value) => write!(f, "{value}"), - Opaque => write!(f, "<constant pattern>"), + Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", self.ty), } } } + +/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics +/// purposes. As such they don't use interning and can be cloned. +#[derive(Debug, Clone)] +pub(crate) struct WitnessPat<'tcx> { + ctor: Constructor<'tcx>, + pub(crate) fields: Vec<WitnessPat<'tcx>>, + ty: Ty<'tcx>, +} + +impl<'tcx> WitnessPat<'tcx> { + pub(super) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self { + Self { ctor, fields, ty } + } + pub(super) fn wildcard(ty: Ty<'tcx>) -> Self { + Self::new(Wildcard, Vec::new(), ty) + } + + /// Construct a pattern that matches everything that starts with this constructor. + /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern + /// `Some(_)`. + pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self { + // Reuse `Fields::wildcards` to get the types. + let fields = Fields::wildcards(pcx, &ctor) + .iter_patterns() + .map(|deco_pat| Self::wildcard(deco_pat.ty())) + .collect(); + Self::new(ctor, fields, pcx.ty) + } + + pub(super) fn ctor(&self) -> &Constructor<'tcx> { + &self.ctor + } + pub(super) fn ty(&self) -> Ty<'tcx> { + self.ty + } + + /// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't + /// appear in diagnostics, like float ranges. + pub(crate) fn to_diagnostic_pat(&self, cx: &MatchCheckCtxt<'_, 'tcx>) -> Pat<'tcx> { + let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild); + let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_diagnostic_pat(cx))); + let kind = match &self.ctor { + Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) }, + IntRange(range) => return range.to_diagnostic_pat(self.ty, cx.tcx), + Single | Variant(_) => match self.ty.kind() { + ty::Tuple(..) => PatKind::Leaf { + subpatterns: subpatterns + .enumerate() + .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern }) + .collect(), + }, + ty::Adt(adt_def, _) if adt_def.is_box() => { + // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside + // of `std`). So this branch is only reachable when the feature is enabled and + // the pattern is a box pattern. + PatKind::Deref { subpattern: subpatterns.next().unwrap() } + } + ty::Adt(adt_def, args) => { + let variant_index = self.ctor.variant_index_for_adt(*adt_def); + let variant = &adt_def.variant(variant_index); + let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant) + .zip(subpatterns) + .map(|((field, _ty), pattern)| FieldPat { field, pattern }) + .collect(); + + if adt_def.is_enum() { + PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns } + } else { + PatKind::Leaf { subpatterns } + } + } + // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should + // be careful to reconstruct the correct constant pattern here. However a string + // literal pattern will never be reported as a non-exhaustiveness witness, so we + // ignore this issue. + ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() }, + _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty), + }, + Slice(slice) => { + match slice.kind { + FixedLen(_) => PatKind::Slice { + prefix: subpatterns.collect(), + slice: None, + suffix: Box::new([]), + }, + VarLen(prefix, _) => { + let mut subpatterns = subpatterns.peekable(); + let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect(); + if slice.array_len.is_some() { + // Improves diagnostics a bit: if the type is a known-size array, instead + // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`. + // This is incorrect if the size is not known, since `[_, ..]` captures + // arrays of lengths `>= 1` whereas `[..]` captures any length. + while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) { + prefix.pop(); + } + while subpatterns.peek().is_some() + && is_wildcard(subpatterns.peek().unwrap()) + { + subpatterns.next(); + } + } + let suffix: Box<[_]> = subpatterns.collect(); + let wild = Pat::wildcard_from_ty(self.ty); + PatKind::Slice { + prefix: prefix.into_boxed_slice(), + slice: Some(Box::new(wild)), + suffix, + } + } + } + } + &Str(value) => PatKind::Constant { value }, + Wildcard | NonExhaustive | Hidden => PatKind::Wild, + Missing { .. } => bug!( + "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug, + `Missing` should have been processed in `apply_constructors`" + ), + F32Range(..) | F64Range(..) | Opaque | Or => { + bug!("can't convert to pattern: {:?}", self) + } + }; + + Pat { ty: self.ty, span: DUMMY_SP, kind } + } + + pub(super) fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> { + self.fields.iter() + } +} diff --git a/compiler/rustc_mir_build/src/thir/pattern/mod.rs b/compiler/rustc_mir_build/src/thir/pattern/mod.rs index fe47a1cd7..0811ab6a0 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/mod.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/mod.rs @@ -17,18 +17,19 @@ use rustc_hir::def::{CtorOf, DefKind, Res}; use rustc_hir::pat_util::EnumerateAndAdjustIterator; use rustc_hir::RangeEnd; use rustc_index::Idx; -use rustc_middle::mir::interpret::{ - ErrorHandled, GlobalId, LitToConstError, LitToConstInput, Scalar, +use rustc_middle::mir::interpret::{ErrorHandled, GlobalId, LitToConstError, LitToConstInput}; +use rustc_middle::mir::{self, BorrowKind, Const, Mutability, UserTypeProjection}; +use rustc_middle::thir::{ + Ascription, BindingMode, FieldPat, LocalVarId, Pat, PatKind, PatRange, PatRangeBoundary, }; -use rustc_middle::mir::{self, Const, UserTypeProjection}; -use rustc_middle::mir::{BorrowKind, Mutability}; -use rustc_middle::thir::{Ascription, BindingMode, FieldPat, LocalVarId, Pat, PatKind, PatRange}; -use rustc_middle::ty::CanonicalUserTypeAnnotation; -use rustc_middle::ty::TypeVisitableExt; -use rustc_middle::ty::{self, AdtDef, Region, Ty, TyCtxt, UserType}; -use rustc_middle::ty::{GenericArg, GenericArgsRef}; -use rustc_span::{Span, Symbol}; -use rustc_target::abi::FieldIdx; +use rustc_middle::ty::layout::IntegerExt; +use rustc_middle::ty::{ + self, AdtDef, CanonicalUserTypeAnnotation, GenericArg, GenericArgsRef, Region, Ty, TyCtxt, + TypeVisitableExt, UserType, +}; +use rustc_span::def_id::LocalDefId; +use rustc_span::{ErrorGuaranteed, Span, Symbol}; +use rustc_target::abi::{FieldIdx, Integer}; use std::cmp::Ordering; @@ -85,127 +86,164 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { ) } - fn lower_range_expr( + fn lower_pattern_range_endpoint( &mut self, - expr: &'tcx hir::Expr<'tcx>, - ) -> (PatKind<'tcx>, Option<Ascription<'tcx>>) { - match self.lower_lit(expr) { - PatKind::AscribeUserType { ascription, subpattern: box Pat { kind, .. } } => { - (kind, Some(ascription)) + expr: Option<&'tcx hir::Expr<'tcx>>, + ) -> Result< + (Option<PatRangeBoundary<'tcx>>, Option<Ascription<'tcx>>, Option<LocalDefId>), + ErrorGuaranteed, + > { + match expr { + None => Ok((None, None, None)), + Some(expr) => { + let (kind, ascr, inline_const) = match self.lower_lit(expr) { + PatKind::InlineConstant { subpattern, def } => { + (subpattern.kind, None, Some(def)) + } + PatKind::AscribeUserType { ascription, subpattern: box Pat { kind, .. } } => { + (kind, Some(ascription), None) + } + kind => (kind, None, None), + }; + let value = if let PatKind::Constant { value } = kind { + value + } else { + let msg = format!( + "found bad range pattern endpoint `{expr:?}` outside of error recovery" + ); + return Err(self.tcx.sess.delay_span_bug(expr.span, msg)); + }; + Ok((Some(PatRangeBoundary::Finite(value)), ascr, inline_const)) } - kind => (kind, None), } } + /// Overflowing literals are linted against in a late pass. This is mostly fine, except when we + /// encounter a range pattern like `-130i8..2`: if we believe `eval_bits`, this looks like a + /// range where the endpoints are in the wrong order. To avoid a confusing error message, we + /// check for overflow then. + /// This is only called when the range is already known to be malformed. + fn error_on_literal_overflow( + &self, + expr: Option<&'tcx hir::Expr<'tcx>>, + ty: Ty<'tcx>, + ) -> Result<(), ErrorGuaranteed> { + use hir::{ExprKind, UnOp}; + use rustc_ast::ast::LitKind; + + let Some(mut expr) = expr else { + return Ok(()); + }; + let span = expr.span; + + // We need to inspect the original expression, because if we only inspect the output of + // `eval_bits`, an overflowed value has already been wrapped around. + // We mostly copy the logic from the `rustc_lint::OVERFLOWING_LITERALS` lint. + let mut negated = false; + if let ExprKind::Unary(UnOp::Neg, sub_expr) = expr.kind { + negated = true; + expr = sub_expr; + } + let ExprKind::Lit(lit) = expr.kind else { + return Ok(()); + }; + let LitKind::Int(lit_val, _) = lit.node else { + return Ok(()); + }; + let (min, max): (i128, u128) = match ty.kind() { + ty::Int(ity) => { + let size = Integer::from_int_ty(&self.tcx, *ity).size(); + (size.signed_int_min(), size.signed_int_max() as u128) + } + ty::Uint(uty) => { + let size = Integer::from_uint_ty(&self.tcx, *uty).size(); + (0, size.unsigned_int_max()) + } + _ => { + return Ok(()); + } + }; + // Detect literal value out of range `[min, max]` inclusive, avoiding use of `-min` to + // prevent overflow/panic. + if (negated && lit_val > max + 1) || (!negated && lit_val > max) { + return Err(self.tcx.sess.emit_err(LiteralOutOfRange { span, ty, min, max })); + } + Ok(()) + } + fn lower_pattern_range( &mut self, - ty: Ty<'tcx>, - lo: mir::Const<'tcx>, - hi: mir::Const<'tcx>, + lo_expr: Option<&'tcx hir::Expr<'tcx>>, + hi_expr: Option<&'tcx hir::Expr<'tcx>>, end: RangeEnd, + ty: Ty<'tcx>, span: Span, - lo_expr: Option<&hir::Expr<'tcx>>, - hi_expr: Option<&hir::Expr<'tcx>>, - ) -> PatKind<'tcx> { - assert_eq!(lo.ty(), ty); - assert_eq!(hi.ty(), ty); - let cmp = compare_const_vals(self.tcx, lo, hi, self.param_env); - let max = || { - self.tcx - .layout_of(self.param_env.with_reveal_all_normalized(self.tcx).and(ty)) - .ok() - .unwrap() - .size - .unsigned_int_max() - }; + ) -> Result<PatKind<'tcx>, ErrorGuaranteed> { + if lo_expr.is_none() && hi_expr.is_none() { + let msg = format!("found twice-open range pattern (`..`) outside of error recovery"); + return Err(self.tcx.sess.delay_span_bug(span, msg)); + } + + let (lo, lo_ascr, lo_inline) = self.lower_pattern_range_endpoint(lo_expr)?; + let (hi, hi_ascr, hi_inline) = self.lower_pattern_range_endpoint(hi_expr)?; + + let lo = lo.unwrap_or(PatRangeBoundary::NegInfinity); + let hi = hi.unwrap_or(PatRangeBoundary::PosInfinity); + + let cmp = lo.compare_with(hi, ty, self.tcx, self.param_env); + let mut kind = PatKind::Range(Box::new(PatRange { lo, hi, end, ty })); match (end, cmp) { // `x..y` where `x < y`. - // Non-empty because the range includes at least `x`. - (RangeEnd::Excluded, Some(Ordering::Less)) => { - PatKind::Range(Box::new(PatRange { lo, hi, end })) - } - // `x..y` where `x >= y`. The range is empty => error. - (RangeEnd::Excluded, _) => { - let mut lower_overflow = false; - let mut higher_overflow = false; - if let Some(hir::Expr { kind: hir::ExprKind::Lit(lit), .. }) = lo_expr - && let rustc_ast::ast::LitKind::Int(val, _) = lit.node - { - if lo.eval_bits(self.tcx, self.param_env) != val { - lower_overflow = true; - self.tcx.sess.emit_err(LiteralOutOfRange { span: lit.span, ty, max: max() }); - } - } - if let Some(hir::Expr { kind: hir::ExprKind::Lit(lit), .. }) = hi_expr - && let rustc_ast::ast::LitKind::Int(val, _) = lit.node - { - if hi.eval_bits(self.tcx, self.param_env) != val { - higher_overflow = true; - self.tcx.sess.emit_err(LiteralOutOfRange { span: lit.span, ty, max: max() }); - } - } - if !lower_overflow && !higher_overflow { - self.tcx.sess.emit_err(LowerRangeBoundMustBeLessThanUpper { span }); - } - PatKind::Wild - } - // `x..=y` where `x == y`. - (RangeEnd::Included, Some(Ordering::Equal)) => PatKind::Constant { value: lo }, + (RangeEnd::Excluded, Some(Ordering::Less)) => {} // `x..=y` where `x < y`. - (RangeEnd::Included, Some(Ordering::Less)) => { - PatKind::Range(Box::new(PatRange { lo, hi, end })) - } - // `x..=y` where `x > y` hence the range is empty => error. - (RangeEnd::Included, _) => { - let mut lower_overflow = false; - let mut higher_overflow = false; - if let Some(hir::Expr { kind: hir::ExprKind::Lit(lit), .. }) = lo_expr - && let rustc_ast::ast::LitKind::Int(val, _) = lit.node - { - if lo.eval_bits(self.tcx, self.param_env) != val { - lower_overflow = true; - self.tcx.sess.emit_err(LiteralOutOfRange { span: lit.span, ty, max: max() }); + (RangeEnd::Included, Some(Ordering::Less)) => {} + // `x..=y` where `x == y` and `x` and `y` are finite. + (RangeEnd::Included, Some(Ordering::Equal)) if lo.is_finite() && hi.is_finite() => { + kind = PatKind::Constant { value: lo.as_finite().unwrap() }; + } + // `..=x` where `x == ty::MIN`. + (RangeEnd::Included, Some(Ordering::Equal)) if !lo.is_finite() => {} + // `x..` where `x == ty::MAX` (yes, `x..` gives `RangeEnd::Included` since it is meant + // to include `ty::MAX`). + (RangeEnd::Included, Some(Ordering::Equal)) if !hi.is_finite() => {} + // `x..y` where `x >= y`, or `x..=y` where `x > y`. The range is empty => error. + _ => { + // Emit a more appropriate message if there was overflow. + self.error_on_literal_overflow(lo_expr, ty)?; + self.error_on_literal_overflow(hi_expr, ty)?; + let e = match end { + RangeEnd::Included => { + self.tcx.sess.emit_err(LowerRangeBoundMustBeLessThanOrEqualToUpper { + span, + teach: self.tcx.sess.teach(&error_code!(E0030)).then_some(()), + }) } - } - if let Some(hir::Expr { kind: hir::ExprKind::Lit(lit), .. }) = hi_expr - && let rustc_ast::ast::LitKind::Int(val, _) = lit.node - { - if hi.eval_bits(self.tcx, self.param_env) != val { - higher_overflow = true; - self.tcx.sess.emit_err(LiteralOutOfRange { span: lit.span, ty, max: max() }); + RangeEnd::Excluded => { + self.tcx.sess.emit_err(LowerRangeBoundMustBeLessThanUpper { span }) } - } - if !lower_overflow && !higher_overflow { - self.tcx.sess.emit_err(LowerRangeBoundMustBeLessThanOrEqualToUpper { - span, - teach: self.tcx.sess.teach(&error_code!(E0030)).then_some(()), - }); - } - PatKind::Wild + }; + return Err(e); } } - } - fn normalize_range_pattern_ends( - &self, - ty: Ty<'tcx>, - lo: Option<&PatKind<'tcx>>, - hi: Option<&PatKind<'tcx>>, - ) -> Option<(mir::Const<'tcx>, mir::Const<'tcx>)> { - match (lo, hi) { - (Some(PatKind::Constant { value: lo }), Some(PatKind::Constant { value: hi })) => { - Some((*lo, *hi)) - } - (Some(PatKind::Constant { value: lo }), None) => { - let hi = ty.numeric_max_val(self.tcx)?; - Some((*lo, mir::Const::from_ty_const(hi, self.tcx))) + // If we are handling a range with associated constants (e.g. + // `Foo::<'a>::A..=Foo::B`), we need to put the ascriptions for the associated + // constants somewhere. Have them on the range pattern. + for ascr in [lo_ascr, hi_ascr] { + if let Some(ascription) = ascr { + kind = PatKind::AscribeUserType { + ascription, + subpattern: Box::new(Pat { span, ty, kind }), + }; } - (None, Some(PatKind::Constant { value: hi })) => { - let lo = ty.numeric_min_val(self.tcx)?; - Some((mir::Const::from_ty_const(lo, self.tcx), *hi)) + } + for inline_const in [lo_inline, hi_inline] { + if let Some(def) = inline_const { + kind = + PatKind::InlineConstant { def, subpattern: Box::new(Pat { span, ty, kind }) }; } - _ => None, } + Ok(kind) } #[instrument(skip(self), level = "debug")] @@ -220,37 +258,8 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { hir::PatKind::Range(ref lo_expr, ref hi_expr, end) => { let (lo_expr, hi_expr) = (lo_expr.as_deref(), hi_expr.as_deref()); - let lo_span = lo_expr.map_or(pat.span, |e| e.span); - let lo = lo_expr.map(|e| self.lower_range_expr(e)); - let hi = hi_expr.map(|e| self.lower_range_expr(e)); - - let (lp, hp) = (lo.as_ref().map(|(x, _)| x), hi.as_ref().map(|(x, _)| x)); - let mut kind = match self.normalize_range_pattern_ends(ty, lp, hp) { - Some((lc, hc)) => { - self.lower_pattern_range(ty, lc, hc, end, lo_span, lo_expr, hi_expr) - } - None => { - let msg = format!( - "found bad range pattern `{:?}` outside of error recovery", - (&lo, &hi), - ); - self.tcx.sess.delay_span_bug(pat.span, msg); - PatKind::Wild - } - }; - - // If we are handling a range with associated constants (e.g. - // `Foo::<'a>::A..=Foo::B`), we need to put the ascriptions for the associated - // constants somewhere. Have them on the range pattern. - for end in &[lo, hi] { - if let Some((_, Some(ascription))) = end { - let subpattern = Box::new(Pat { span: pat.span, ty, kind }); - kind = - PatKind::AscribeUserType { ascription: ascription.clone(), subpattern }; - } - } - - kind + self.lower_pattern_range(lo_expr, hi_expr, end, ty, span) + .unwrap_or_else(PatKind::Error) } hir::PatKind::Path(ref qpath) => { @@ -418,9 +427,9 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { if adt_def.is_enum() { let args = match ty.kind() { ty::Adt(_, args) | ty::FnDef(_, args) => args, - ty::Error(_) => { + ty::Error(e) => { // Avoid ICE (#50585) - return PatKind::Wild; + return PatKind::Error(*e); } _ => bug!("inappropriate type for def: {:?}", ty), }; @@ -447,7 +456,7 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { | Res::SelfTyAlias { .. } | Res::SelfCtor(..) => PatKind::Leaf { subpatterns }, _ => { - match res { + let e = match res { Res::Def(DefKind::ConstParam, _) => { self.tcx.sess.emit_err(ConstParamInPattern { span }) } @@ -456,7 +465,7 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { } _ => self.tcx.sess.emit_err(NonConstPath { span }), }; - PatKind::Wild + PatKind::Error(e) } }; @@ -508,14 +517,13 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { // It should be assoc consts if there's no error but we cannot resolve it. debug_assert!(is_associated_const); - self.tcx.sess.emit_err(AssocConstInPattern { span }); - - return pat_from_kind(PatKind::Wild); + let e = self.tcx.sess.emit_err(AssocConstInPattern { span }); + return pat_from_kind(PatKind::Error(e)); } Err(_) => { - self.tcx.sess.emit_err(CouldNotEvalConstPattern { span }); - return pat_from_kind(PatKind::Wild); + let e = self.tcx.sess.emit_err(CouldNotEvalConstPattern { span }); + return pat_from_kind(PatKind::Error(e)); } }; @@ -569,12 +577,12 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { Err(ErrorHandled::TooGeneric(_)) => { // While `Reported | Linted` cases will have diagnostics emitted already // it is not true for TooGeneric case, so we need to give user more information. - self.tcx.sess.emit_err(ConstPatternDependsOnGenericParameter { span }); - pat_from_kind(PatKind::Wild) + let e = self.tcx.sess.emit_err(ConstPatternDependsOnGenericParameter { span }); + pat_from_kind(PatKind::Error(e)) } Err(_) => { - self.tcx.sess.emit_err(CouldNotEvalConstPattern { span }); - pat_from_kind(PatKind::Wild) + let e = self.tcx.sess.emit_err(CouldNotEvalConstPattern { span }); + pat_from_kind(PatKind::Error(e)) } } } @@ -597,11 +605,9 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { // const eval path below. // FIXME: investigate the performance impact of removing this. let lit_input = match expr.kind { - hir::ExprKind::Lit(ref lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }), - hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => match expr.kind { - hir::ExprKind::Lit(ref lit) => { - Some(LitToConstInput { lit: &lit.node, ty, neg: true }) - } + hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }), + hir::ExprKind::Unary(hir::UnOp::Neg, expr) => match expr.kind { + hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: true }), _ => None, }, _ => None, @@ -624,30 +630,30 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { let uneval = mir::UnevaluatedConst { def: def_id.to_def_id(), args, promoted: None }; debug_assert!(!args.has_free_regions()); - let ct = ty::UnevaluatedConst { def: def_id.to_def_id(), args: args }; + let ct = ty::UnevaluatedConst { def: def_id.to_def_id(), args }; // First try using a valtree in order to destructure the constant into a pattern. // FIXME: replace "try to do a thing, then fall back to another thing" // but something more principled, like a trait query checking whether this can be turned into a valtree. if let Ok(Some(valtree)) = self.tcx.const_eval_resolve_for_typeck(self.param_env, ct, Some(span)) { - self.const_to_pat( + let subpattern = self.const_to_pat( Const::Ty(ty::Const::new_value(self.tcx, valtree, ty)), id, span, None, - ) - .kind + ); + PatKind::InlineConstant { subpattern, def: def_id } } else { // If that fails, convert it to an opaque constant pattern. match tcx.const_eval_resolve(self.param_env, uneval, Some(span)) { Ok(val) => self.const_to_pat(mir::Const::Val(val, ty), id, span, None).kind, Err(ErrorHandled::TooGeneric(_)) => { // If we land here it means the const can't be evaluated because it's `TooGeneric`. - self.tcx.sess.emit_err(ConstPatternDependsOnGenericParameter { span }); - PatKind::Wild + let e = self.tcx.sess.emit_err(ConstPatternDependsOnGenericParameter { span }); + PatKind::Error(e) } - Err(ErrorHandled::Reported(..)) => PatKind::Wild, + Err(ErrorHandled::Reported(err, ..)) => PatKind::Error(err.into()), } } } @@ -680,7 +686,7 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> { Ok(constant) => { self.const_to_pat(Const::Ty(constant), expr.hir_id, lit.span, None).kind } - Err(LitToConstError::Reported(_)) => PatKind::Wild, + Err(LitToConstError::Reported(e)) => PatKind::Error(e), Err(LitToConstError::TypeError) => bug!("lower_lit: had type error"), } } @@ -786,6 +792,7 @@ impl<'tcx> PatternFoldable<'tcx> for PatKind<'tcx> { fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self { match *self { PatKind::Wild => PatKind::Wild, + PatKind::Error(e) => PatKind::Error(e), PatKind::AscribeUserType { ref subpattern, ascription: Ascription { ref annotation, variance }, @@ -819,6 +826,9 @@ impl<'tcx> PatternFoldable<'tcx> for PatKind<'tcx> { PatKind::Deref { subpattern: subpattern.fold_with(folder) } } PatKind::Constant { value } => PatKind::Constant { value }, + PatKind::InlineConstant { def, subpattern: ref pattern } => { + PatKind::InlineConstant { def, subpattern: pattern.fold_with(folder) } + } PatKind::Range(ref range) => PatKind::Range(range.clone()), PatKind::Slice { ref prefix, ref slice, ref suffix } => PatKind::Slice { prefix: prefix.fold_with(folder), @@ -834,59 +844,3 @@ impl<'tcx> PatternFoldable<'tcx> for PatKind<'tcx> { } } } - -#[instrument(skip(tcx), level = "debug")] -pub(crate) fn compare_const_vals<'tcx>( - tcx: TyCtxt<'tcx>, - a: mir::Const<'tcx>, - b: mir::Const<'tcx>, - param_env: ty::ParamEnv<'tcx>, -) -> Option<Ordering> { - assert_eq!(a.ty(), b.ty()); - - let ty = a.ty(); - - // This code is hot when compiling matches with many ranges. So we - // special-case extraction of evaluated scalars for speed, for types where - // raw data comparisons are appropriate. E.g. `unicode-normalization` has - // many ranges such as '\u{037A}'..='\u{037F}', and chars can be compared - // in this way. - match ty.kind() { - ty::Float(_) | ty::Int(_) => {} // require special handling, see below - _ => match (a, b) { - ( - mir::Const::Val(mir::ConstValue::Scalar(Scalar::Int(a)), _a_ty), - mir::Const::Val(mir::ConstValue::Scalar(Scalar::Int(b)), _b_ty), - ) => return Some(a.cmp(&b)), - (mir::Const::Ty(a), mir::Const::Ty(b)) => { - return Some(a.kind().cmp(&b.kind())); - } - _ => {} - }, - } - - let a = a.eval_bits(tcx, param_env); - let b = b.eval_bits(tcx, param_env); - - use rustc_apfloat::Float; - match *ty.kind() { - ty::Float(ty::FloatTy::F32) => { - let a = rustc_apfloat::ieee::Single::from_bits(a); - let b = rustc_apfloat::ieee::Single::from_bits(b); - a.partial_cmp(&b) - } - ty::Float(ty::FloatTy::F64) => { - let a = rustc_apfloat::ieee::Double::from_bits(a); - let b = rustc_apfloat::ieee::Double::from_bits(b); - a.partial_cmp(&b) - } - ty::Int(ity) => { - use rustc_middle::ty::layout::IntegerExt; - let size = rustc_target::abi::Integer::from_int_ty(&tcx, ity).size(); - let a = size.sign_extend(a); - let b = size.sign_extend(b); - Some((a as i128).cmp(&(b as i128))) - } - _ => Some(a.cmp(&b)), - } -} diff --git a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs index 21031e8ba..da7b6587a 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs @@ -213,7 +213,7 @@ //! or-patterns in the first column are expanded before being stored in the matrix. Specialization //! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and //! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the -//! [`Fields`] struct. +//! [`super::deconstruct_pat::Fields`] struct. //! //! //! # Computing usefulness @@ -307,8 +307,14 @@ use self::ArmType::*; use self::Usefulness::*; -use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard}; -use crate::errors::{NonExhaustiveOmittedPattern, Uncovered}; +use super::deconstruct_pat::{ + Constructor, ConstructorSet, DeconstructedPat, IntRange, MaybeInfiniteInt, SplitConstructorSet, + WitnessPat, +}; +use crate::errors::{ + NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap, + OverlappingRangeEndpoints, Uncovered, +}; use rustc_data_structures::captures::Captures; @@ -317,12 +323,12 @@ use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_hir::def_id::DefId; use rustc_hir::HirId; use rustc_middle::ty::{self, Ty, TyCtxt}; +use rustc_session::lint; use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS; use rustc_span::{Span, DUMMY_SP}; use smallvec::{smallvec, SmallVec}; use std::fmt; -use std::iter::once; pub(crate) struct MatchCheckCtxt<'p, 'tcx> { pub(crate) tcx: TyCtxt<'tcx>, @@ -334,6 +340,8 @@ pub(crate) struct MatchCheckCtxt<'p, 'tcx> { pub(crate) module: DefId, pub(crate) param_env: ty::ParamEnv<'tcx>, pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>, + /// The span of the whole match, if applicable. + pub(crate) match_span: Option<Span>, /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns. pub(crate) refutable: bool, } @@ -368,8 +376,6 @@ pub(super) struct PatCtxt<'a, 'p, 'tcx> { /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a /// subpattern. pub(super) is_top_level: bool, - /// Whether the current pattern is from a `non_exhaustive` enum. - pub(super) is_non_exhaustive: bool, } impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> { @@ -476,11 +482,6 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> { Matrix { patterns: vec![] } } - /// Number of columns of this matrix. `None` is the matrix is empty. - pub(super) fn column_count(&self) -> Option<usize> { - self.patterns.get(0).map(|r| r.len()) - } - /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively /// expands it. fn push(&mut self, row: PatStack<'p, 'tcx>) { @@ -557,20 +558,20 @@ impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> { /// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of /// witnesses of non-exhaustiveness when there are any. /// Which variant to use is dictated by `ArmType`. -#[derive(Debug)] -enum Usefulness<'p, 'tcx> { +#[derive(Debug, Clone)] +enum Usefulness<'tcx> { /// If we don't care about witnesses, simply remember if the pattern was useful. NoWitnesses { useful: bool }, /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole /// pattern is unreachable. - WithWitnesses(Vec<Witness<'p, 'tcx>>), + WithWitnesses(Vec<WitnessStack<'tcx>>), } -impl<'p, 'tcx> Usefulness<'p, 'tcx> { +impl<'tcx> Usefulness<'tcx> { fn new_useful(preference: ArmType) -> Self { match preference { // A single (empty) witness of reachability. - FakeExtraWildcard => WithWitnesses(vec![Witness(vec![])]), + FakeExtraWildcard => WithWitnesses(vec![WitnessStack(vec![])]), RealArm => NoWitnesses { useful: true }, } } @@ -607,8 +608,8 @@ impl<'p, 'tcx> Usefulness<'p, 'tcx> { /// with the results of specializing with the other constructors. fn apply_constructor( self, - pcx: &PatCtxt<'_, 'p, 'tcx>, - matrix: &Matrix<'p, 'tcx>, // used to compute missing ctors + pcx: &PatCtxt<'_, '_, 'tcx>, + matrix: &Matrix<'_, 'tcx>, // used to compute missing ctors ctor: &Constructor<'tcx>, ) -> Self { match self { @@ -616,62 +617,34 @@ impl<'p, 'tcx> Usefulness<'p, 'tcx> { WithWitnesses(ref witnesses) if witnesses.is_empty() => self, WithWitnesses(witnesses) => { let new_witnesses = if let Constructor::Missing { .. } = ctor { - // We got the special `Missing` constructor, so each of the missing constructors - // gives a new pattern that is not caught by the match. We list those patterns. - if pcx.is_non_exhaustive { - witnesses - .into_iter() - // Here we don't want the user to try to list all variants, we want them to add - // a wildcard, so we only suggest that. - .map(|witness| { - witness.apply_constructor(pcx, &Constructor::NonExhaustive) - }) - .collect() - } else { - let mut split_wildcard = SplitWildcard::new(pcx); - split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); - - // This lets us know if we skipped any variants because they are marked - // `doc(hidden)` or they are unstable feature gate (only stdlib types). - let mut hide_variant_show_wild = false; - // Construct for each missing constructor a "wild" version of this - // constructor, that matches everything that can be built with - // it. For example, if `ctor` is a `Constructor::Variant` for - // `Option::Some`, we get the pattern `Some(_)`. - let mut new_patterns: Vec<DeconstructedPat<'_, '_>> = split_wildcard - .iter_missing(pcx) - .filter_map(|missing_ctor| { - // Check if this variant is marked `doc(hidden)` - if missing_ctor.is_doc_hidden_variant(pcx) - || missing_ctor.is_unstable_variant(pcx) - { - hide_variant_show_wild = true; - return None; - } - Some(DeconstructedPat::wild_from_ctor(pcx, missing_ctor.clone())) - }) - .collect(); + let mut missing = ConstructorSet::for_ty(pcx.cx, pcx.ty) + .compute_missing(pcx, matrix.heads().map(DeconstructedPat::ctor)); + if missing.iter().any(|c| c.is_non_exhaustive()) { + // We only report `_` here; listing other constructors would be redundant. + missing = vec![Constructor::NonExhaustive]; + } - if hide_variant_show_wild { - new_patterns.push(DeconstructedPat::wildcard(pcx.ty, pcx.span)); - } + // We got the special `Missing` constructor, so each of the missing constructors + // gives a new pattern that is not caught by the match. + // We construct for each missing constructor a version of this constructor with + // wildcards for fields, i.e. that matches everything that can be built with it. + // For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get + // the pattern `Some(_)`. + let new_patterns: Vec<WitnessPat<'_>> = missing + .into_iter() + .map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor.clone())) + .collect(); - witnesses - .into_iter() - .flat_map(|witness| { - new_patterns.iter().map(move |pat| { - Witness( - witness - .0 - .iter() - .chain(once(pat)) - .map(DeconstructedPat::clone_and_forget_reachability) - .collect(), - ) - }) + witnesses + .into_iter() + .flat_map(|witness| { + new_patterns.iter().map(move |pat| { + let mut stack = witness.clone(); + stack.0.push(pat.clone()); + stack }) - .collect() - } + }) + .collect() } else { witnesses .into_iter() @@ -690,15 +663,17 @@ enum ArmType { RealArm, } -/// A witness of non-exhaustiveness for error reporting, represented -/// as a list of patterns (in reverse order of construction) with -/// wildcards inside to represent elements that can take any inhabitant -/// of the type as a value. +/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in +/// reverse order of construction) with wildcards inside to represent elements that can take any +/// inhabitant of the type as a value. /// -/// A witness against a list of patterns should have the same types -/// and length as the pattern matched against. Because Rust `match` -/// is always against a single pattern, at the end the witness will -/// have length 1, but in the middle of the algorithm, it can contain +/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we +/// are inspecting, and `WitnessStack` contains witnesses we are constructing. +/// FIXME(Nadrieril): use the same order of patterns for both +/// +/// A `WitnessStack` should have the same types and length as the `PatStacks` we are inspecting +/// (except we store the patterns in reverse order). Because Rust `match` is always against a single +/// pattern, at the end the stack will have length 1. In the middle of the algorithm, it can contain /// multiple patterns. /// /// For example, if we are constructing a witness for the match against @@ -713,23 +688,37 @@ enum ArmType { /// # } /// ``` /// -/// We'll perform the following steps: -/// 1. Start with an empty witness -/// `Witness(vec![])` -/// 2. Push a witness `true` against the `false` -/// `Witness(vec![true])` -/// 3. Push a witness `Some(_)` against the `None` -/// `Witness(vec![true, Some(_)])` -/// 4. Apply the `Pair` constructor to the witnesses -/// `Witness(vec![Pair(Some(_), true)])` +/// We'll perform the following steps (among others): +/// - Start with a matrix representing the match +/// `PatStack(vec![Pair(None, _)])` +/// `PatStack(vec![Pair(_, false)])` +/// - Specialize with `Pair` +/// `PatStack(vec![None, _])` +/// `PatStack(vec![_, false])` +/// - Specialize with `Some` +/// `PatStack(vec![_, false])` +/// - Specialize with `_` +/// `PatStack(vec![false])` +/// - Specialize with `true` +/// // no patstacks left +/// - This is a non-exhaustive match: we have the empty witness stack as a witness. +/// `WitnessStack(vec![])` +/// - Apply `true` +/// `WitnessStack(vec![true])` +/// - Apply `_` +/// `WitnessStack(vec![true, _])` +/// - Apply `Some` +/// `WitnessStack(vec![true, Some(_)])` +/// - Apply `Pair` +/// `WitnessStack(vec![Pair(Some(_), true)])` /// /// The final `Pair(Some(_), true)` is then the resulting witness. -#[derive(Debug)] -pub(crate) struct Witness<'p, 'tcx>(Vec<DeconstructedPat<'p, 'tcx>>); +#[derive(Debug, Clone)] +pub(crate) struct WitnessStack<'tcx>(Vec<WitnessPat<'tcx>>); -impl<'p, 'tcx> Witness<'p, 'tcx> { +impl<'tcx> WitnessStack<'tcx> { /// Asserts that the witness contains a single pattern, and returns it. - fn single_pattern(self) -> DeconstructedPat<'p, 'tcx> { + fn single_pattern(self) -> WitnessPat<'tcx> { assert_eq!(self.0.len(), 1); self.0.into_iter().next().unwrap() } @@ -747,13 +736,12 @@ impl<'p, 'tcx> Witness<'p, 'tcx> { /// /// left_ty: struct X { a: (bool, &'static str), b: usize} /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 } - fn apply_constructor(mut self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Self { + fn apply_constructor(mut self, pcx: &PatCtxt<'_, '_, 'tcx>, ctor: &Constructor<'tcx>) -> Self { let pat = { let len = self.0.len(); let arity = ctor.arity(pcx); - let pats = self.0.drain((len - arity)..).rev(); - let fields = Fields::from_iter(pcx.cx, pats); - DeconstructedPat::new(ctor.clone(), fields, pcx.ty, pcx.span) + let fields = self.0.drain((len - arity)..).rev().collect(); + WitnessPat::new(ctor.clone(), fields, pcx.ty) }; self.0.push(pat); @@ -793,7 +781,7 @@ fn is_useful<'p, 'tcx>( lint_root: HirId, is_under_guard: bool, is_top_level: bool, -) -> Usefulness<'p, 'tcx> { +) -> Usefulness<'tcx> { debug!(?matrix, ?v); let Matrix { patterns: rows, .. } = matrix; @@ -844,24 +832,13 @@ fn is_useful<'p, 'tcx>( ty = row.head().ty(); } } - let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty); debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span()); - let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level, is_non_exhaustive }; + let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level }; let v_ctor = v.head().ctor(); debug!(?v_ctor); - if let Constructor::IntRange(ctor_range) = &v_ctor { - // Lint on likely incorrect range patterns (#63987) - ctor_range.lint_overlapping_range_endpoints( - pcx, - matrix.heads(), - matrix.column_count().unwrap_or(0), - lint_root, - ) - } // We split the head constructor of `v`. let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); - let is_non_exhaustive_and_wild = is_non_exhaustive && v_ctor.is_wildcard(); // For each constructor, we compute whether there's a value that starts with it that would // witness the usefulness of `v`. let start_matrix = &matrix; @@ -882,56 +859,6 @@ fn is_useful<'p, 'tcx>( ) }); let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor); - - // When all the conditions are met we have a match with a `non_exhaustive` enum - // that has the potential to trigger the `non_exhaustive_omitted_patterns` lint. - // To understand the workings checkout `Constructor::split` and `SplitWildcard::new/into_ctors` - if is_non_exhaustive_and_wild - // Only emit a lint on refutable patterns. - && cx.refutable - // We check that the match has a wildcard pattern and that wildcard is useful, - // meaning there are variants that are covered by the wildcard. Without the check - // for `witness_preference` the lint would trigger on `if let NonExhaustiveEnum::A = foo {}` - && usefulness.is_useful() && matches!(witness_preference, RealArm) - && matches!( - &ctor, - Constructor::Missing { nonexhaustive_enum_missing_real_variants: true } - ) - { - let patterns = { - let mut split_wildcard = SplitWildcard::new(pcx); - split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); - // Construct for each missing constructor a "wild" version of this - // constructor, that matches everything that can be built with - // it. For example, if `ctor` is a `Constructor::Variant` for - // `Option::Some`, we get the pattern `Some(_)`. - split_wildcard - .iter_missing(pcx) - // Filter out the `NonExhaustive` because we want to list only real - // variants. Also remove any unstable feature gated variants. - // Because of how we computed `nonexhaustive_enum_missing_real_variants`, - // this will not return an empty `Vec`. - .filter(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))) - .cloned() - .map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor)) - .collect::<Vec<_>>() - }; - - // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns` - // is not exhaustive enough. - // - // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`. - cx.tcx.emit_spanned_lint( - NON_EXHAUSTIVE_OMITTED_PATTERNS, - lint_root, - pcx.span, - NonExhaustiveOmittedPattern { - scrut_ty: pcx.ty, - uncovered: Uncovered::new(pcx.span, pcx.cx, patterns), - }, - ); - } - ret.extend(usefulness); } } @@ -943,6 +870,214 @@ fn is_useful<'p, 'tcx>( ret } +/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that +/// inspect the same subvalue". +/// This is used to traverse patterns column-by-column for lints. Despite similarities with +/// `is_useful`, this is a different traversal. Notably this is linear in the depth of patterns, +/// whereas `is_useful` is worst-case exponential (exhaustiveness is NP-complete). +#[derive(Debug)] +struct PatternColumn<'p, 'tcx> { + patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>, +} + +impl<'p, 'tcx> PatternColumn<'p, 'tcx> { + fn new(patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>) -> Self { + Self { patterns } + } + + fn is_empty(&self) -> bool { + self.patterns.is_empty() + } + fn head_ty(&self) -> Option<Ty<'tcx>> { + if self.patterns.len() == 0 { + return None; + } + // If the type is opaque and it is revealed anywhere in the column, we take the revealed + // version. Otherwise we could encounter constructors for the revealed type and crash. + let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..)); + let first_ty = self.patterns[0].ty(); + if is_opaque(first_ty) { + for pat in &self.patterns { + let ty = pat.ty(); + if !is_opaque(ty) { + return Some(ty); + } + } + } + Some(first_ty) + } + + fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> { + let column_ctors = self.patterns.iter().map(|p| p.ctor()); + ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, column_ctors) + } + fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> { + self.patterns.iter().copied() + } + + /// Does specialization: given a constructor, this takes the patterns from the column that match + /// the constructor, and outputs their fields. + /// This returns one column per field of the constructor. The normally all have the same length + /// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns + /// which may change the lengths. + fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> { + let arity = ctor.arity(pcx); + if arity == 0 { + return Vec::new(); + } + + // We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These + // columns may have different lengths in the presence of or-patterns (this is why we can't + // reuse `Matrix`). + let mut specialized_columns: Vec<_> = + (0..arity).map(|_| Self { patterns: Vec::new() }).collect(); + let relevant_patterns = + self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor())); + for pat in relevant_patterns { + let specialized = pat.specialize(pcx, &ctor); + for (subpat, column) in specialized.iter().zip(&mut specialized_columns) { + if subpat.is_or_pat() { + column.patterns.extend(subpat.flatten_or_pat()) + } else { + column.patterns.push(subpat) + } + } + } + + assert!( + !specialized_columns[0].is_empty(), + "ctor {ctor:?} was listed as present but isn't; + there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`" + ); + specialized_columns + } +} + +/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned +/// in a given column. +#[instrument(level = "debug", skip(cx), ret)] +fn collect_nonexhaustive_missing_variants<'p, 'tcx>( + cx: &MatchCheckCtxt<'p, 'tcx>, + column: &PatternColumn<'p, 'tcx>, +) -> Vec<WitnessPat<'tcx>> { + let Some(ty) = column.head_ty() else { + return Vec::new(); + }; + let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false }; + + let set = column.analyze_ctors(pcx); + if set.present.is_empty() { + // We can't consistently handle the case where no constructors are present (since this would + // require digging deep through any type in case there's a non_exhaustive enum somewhere), + // so for consistency we refuse to handle the top-level case, where we could handle it. + return vec![]; + } + + let mut witnesses = Vec::new(); + if cx.is_foreign_non_exhaustive_enum(ty) { + witnesses.extend( + set.missing + .into_iter() + // This will list missing visible variants. + .filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive)) + .map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)), + ) + } + + // Recurse into the fields. + for ctor in set.present { + let specialized_columns = column.specialize(pcx, &ctor); + let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor); + for (i, col_i) in specialized_columns.iter().enumerate() { + // Compute witnesses for each column. + let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i); + // For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`, + // adding enough wildcards to match `arity`. + for wit in wits_for_col_i { + let mut pat = wild_pat.clone(); + pat.fields[i] = wit; + witnesses.push(pat); + } + } + } + witnesses +} + +/// Traverse the patterns to warn the user about ranges that overlap on their endpoints. +#[instrument(level = "debug", skip(cx, lint_root))] +fn lint_overlapping_range_endpoints<'p, 'tcx>( + cx: &MatchCheckCtxt<'p, 'tcx>, + column: &PatternColumn<'p, 'tcx>, + lint_root: HirId, +) { + let Some(ty) = column.head_ty() else { + return; + }; + let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false }; + + let set = column.analyze_ctors(pcx); + + if IntRange::is_integral(ty) { + let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| { + let overlap_as_pat = overlap.to_diagnostic_pat(ty, cx.tcx); + let overlaps: Vec<_> = overlapped_spans + .iter() + .copied() + .map(|span| Overlap { range: overlap_as_pat.clone(), span }) + .collect(); + cx.tcx.emit_spanned_lint( + lint::builtin::OVERLAPPING_RANGE_ENDPOINTS, + lint_root, + this_span, + OverlappingRangeEndpoints { overlap: overlaps, range: this_span }, + ); + }; + + // If two ranges overlapped, the split set will contain their intersection as a singleton. + let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range()); + for overlap_range in split_int_ranges.clone() { + if overlap_range.is_singleton() { + let overlap: MaybeInfiniteInt = overlap_range.lo; + // Ranges that look like `lo..=overlap`. + let mut prefixes: SmallVec<[_; 1]> = Default::default(); + // Ranges that look like `overlap..=hi`. + let mut suffixes: SmallVec<[_; 1]> = Default::default(); + // Iterate on patterns that contained `overlap`. + for pat in column.iter() { + let this_span = pat.span(); + let Constructor::IntRange(this_range) = pat.ctor() else { continue }; + if this_range.is_singleton() { + // Don't lint when one of the ranges is a singleton. + continue; + } + if this_range.lo == overlap { + // `this_range` looks like `overlap..=this_range.hi`; it overlaps with any + // ranges that look like `lo..=overlap`. + if !prefixes.is_empty() { + emit_lint(overlap_range, this_span, &prefixes); + } + suffixes.push(this_span) + } else if this_range.hi == overlap.plus_one() { + // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any + // ranges that look like `overlap..=hi`. + if !suffixes.is_empty() { + emit_lint(overlap_range, this_span, &suffixes); + } + prefixes.push(this_span) + } + } + } + } + } else { + // Recurse into the fields. + for ctor in set.present { + for col in column.specialize(pcx, &ctor) { + lint_overlapping_range_endpoints(cx, &col, lint_root); + } + } + } +} + /// The arm of a match expression. #[derive(Clone, Copy, Debug)] pub(crate) struct MatchArm<'p, 'tcx> { @@ -969,7 +1104,7 @@ pub(crate) struct UsefulnessReport<'p, 'tcx> { pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>, /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of /// exhaustiveness. - pub(crate) non_exhaustiveness_witnesses: Vec<DeconstructedPat<'p, 'tcx>>, + pub(crate) non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>, } /// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which @@ -983,6 +1118,7 @@ pub(crate) fn compute_match_usefulness<'p, 'tcx>( arms: &[MatchArm<'p, 'tcx>], lint_root: HirId, scrut_ty: Ty<'tcx>, + scrut_span: Span, ) -> UsefulnessReport<'p, 'tcx> { let mut matrix = Matrix::empty(); let arm_usefulness: Vec<_> = arms @@ -1007,9 +1143,63 @@ pub(crate) fn compute_match_usefulness<'p, 'tcx>( let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty, DUMMY_SP)); let v = PatStack::from_pattern(wild_pattern); let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, lint_root, false, true); - let non_exhaustiveness_witnesses = match usefulness { + let non_exhaustiveness_witnesses: Vec<_> = match usefulness { WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(), NoWitnesses { .. } => bug!(), }; + + let pat_column = arms.iter().flat_map(|arm| arm.pat.flatten_or_pat()).collect::<Vec<_>>(); + let pat_column = PatternColumn::new(pat_column); + lint_overlapping_range_endpoints(cx, &pat_column, lint_root); + + // Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting + // `if let`s. Only run if the match is exhaustive otherwise the error is redundant. + if cx.refutable && non_exhaustiveness_witnesses.is_empty() { + if !matches!( + cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, lint_root).0, + rustc_session::lint::Level::Allow + ) { + let witnesses = collect_nonexhaustive_missing_variants(cx, &pat_column); + + if !witnesses.is_empty() { + // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns` + // is not exhaustive enough. + // + // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`. + cx.tcx.emit_spanned_lint( + NON_EXHAUSTIVE_OMITTED_PATTERNS, + lint_root, + scrut_span, + NonExhaustiveOmittedPattern { + scrut_ty, + uncovered: Uncovered::new(scrut_span, cx, witnesses), + }, + ); + } + } else { + // We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match + // arm. This no longer makes sense so we warn users, to avoid silently breaking their + // usage of the lint. + for arm in arms { + let (lint_level, lint_level_source) = + cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.hir_id); + if !matches!(lint_level, rustc_session::lint::Level::Allow) { + let decorator = NonExhaustiveOmittedPatternLintOnArm { + lint_span: lint_level_source.span(), + suggest_lint_on_match: cx.match_span.map(|span| span.shrink_to_lo()), + lint_level: lint_level.as_str(), + lint_name: "non_exhaustive_omitted_patterns", + }; + + use rustc_errors::DecorateLint; + let mut err = cx.tcx.sess.struct_span_warn(arm.pat.span(), ""); + err.set_primary_message(decorator.msg()); + decorator.decorate_lint(&mut err); + err.emit(); + } + } + } + } + UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses } } diff --git a/compiler/rustc_mir_build/src/thir/print.rs b/compiler/rustc_mir_build/src/thir/print.rs index 3b6276cfe..c3b2309b7 100644 --- a/compiler/rustc_mir_build/src/thir/print.rs +++ b/compiler/rustc_mir_build/src/thir/print.rs @@ -692,7 +692,7 @@ impl<'a, 'tcx> ThirPrinter<'a, 'tcx> { } PatKind::Deref { subpattern } => { print_indented!(self, "Deref { ", depth_lvl + 1); - print_indented!(self, "subpattern: ", depth_lvl + 2); + print_indented!(self, "subpattern:", depth_lvl + 2); self.print_pat(subpattern, depth_lvl + 2); print_indented!(self, "}", depth_lvl + 1); } @@ -701,6 +701,13 @@ impl<'a, 'tcx> ThirPrinter<'a, 'tcx> { print_indented!(self, format!("value: {:?}", value), depth_lvl + 2); print_indented!(self, "}", depth_lvl + 1); } + PatKind::InlineConstant { def, subpattern } => { + print_indented!(self, "InlineConstant {", depth_lvl + 1); + print_indented!(self, format!("def: {:?}", def), depth_lvl + 2); + print_indented!(self, "subpattern:", depth_lvl + 2); + self.print_pat(subpattern, depth_lvl + 2); + print_indented!(self, "}", depth_lvl + 1); + } PatKind::Range(pat_range) => { print_indented!(self, format!("Range ( {:?} )", pat_range), depth_lvl + 1); } @@ -757,6 +764,9 @@ impl<'a, 'tcx> ThirPrinter<'a, 'tcx> { print_indented!(self, "]", depth_lvl + 2); print_indented!(self, "}", depth_lvl + 1); } + PatKind::Error(_) => { + print_indented!(self, "Error", depth_lvl + 1); + } } print_indented!(self, "}", depth_lvl); |