summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_pattern_analysis/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-06-19 09:26:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-06-19 09:26:03 +0000
commit9918693037dce8aa4bb6f08741b6812923486c18 (patch)
tree21d2b40bec7e6a7ea664acee056eb3d08e15a1cf /compiler/rustc_pattern_analysis/src
parentReleasing progress-linux version 1.75.0+dfsg1-5~progress7.99u1. (diff)
downloadrustc-9918693037dce8aa4bb6f08741b6812923486c18.tar.xz
rustc-9918693037dce8aa4bb6f08741b6812923486c18.zip
Merging upstream version 1.76.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_pattern_analysis/src')
-rw-r--r--compiler/rustc_pattern_analysis/src/constructor.rs1021
-rw-r--r--compiler/rustc_pattern_analysis/src/errors.rs95
-rw-r--r--compiler/rustc_pattern_analysis/src/lib.rs135
-rw-r--r--compiler/rustc_pattern_analysis/src/lints.rs296
-rw-r--r--compiler/rustc_pattern_analysis/src/pat.rs197
-rw-r--r--compiler/rustc_pattern_analysis/src/rustc.rs920
-rw-r--r--compiler/rustc_pattern_analysis/src/usefulness.rs1508
7 files changed, 4172 insertions, 0 deletions
diff --git a/compiler/rustc_pattern_analysis/src/constructor.rs b/compiler/rustc_pattern_analysis/src/constructor.rs
new file mode 100644
index 000000000..af0a7497a
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/constructor.rs
@@ -0,0 +1,1021 @@
+//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
+//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
+//!
+//! There are two important bits of core logic in this file: constructor inclusion and constructor
+//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
+//! is straightforward and defined in [`Constructor::is_covered_by`].
+//!
+//! Constructor splitting is mentioned in [`crate::usefulness`] but not detailed. We describe it
+//! precisely here.
+//!
+//!
+//!
+//! # Constructor grouping and splitting
+//!
+//! As explained in the corresponding section in [`crate::usefulness`], to make usefulness tractable
+//! we need to group together constructors that have the same effect when they are used to
+//! specialize the matrix.
+//!
+//! Example:
+//! ```compile_fail,E0004
+//! match (0, false) {
+//! (0 ..=100, true) => {}
+//! (50..=150, false) => {}
+//! (0 ..=200, _) => {}
+//! }
+//! ```
+//!
+//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
+//! `151..=200` and `200..`.
+//!
+//! In [`crate::usefulness`], we had said that `specialize` only takes value-only constructors. We
+//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
+//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
+//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
+//!
+//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
+//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
+//! constructors:
+//! - Whose union covers the whole type, and
+//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
+//! each either disjoint with or covered by any given column constructor).
+//!
+//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the
+//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
+//! column of constructors and splits the set into groups accordingly. The precise invariants of
+//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
+//!
+//! Constructor splitting has two interesting special cases: integer range splitting (see
+//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
+//!
+//!
+//!
+//! # The `Missing` constructor
+//!
+//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
+//!
+//! ```
+//! enum Direction { North, South, East, West }
+//! # let wind = (Direction::North, 0u8);
+//! match wind {
+//! (Direction::North, 50..) => {}
+//! (_, _) => {}
+//! }
+//! ```
+//!
+//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
+//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
+//! bit contextual: to know the exact list of constructors it represents we have to look at the
+//! column. In practice however we don't need to, because by construction it only matches rows that
+//! have wildcards. This is how this constructor is special: the only constructor that covers it is
+//! `Wildcard`.
+//!
+//! The only place where we care about which constructors `Missing` represents is in diagnostics
+//! (see `crate::usefulness::WitnessMatrix::apply_constructor`).
+//!
+//! We choose whether to specialize with `Missing` in
+//! `crate::usefulness::compute_exhaustiveness_and_usefulness`.
+//!
+//!
+//!
+//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
+//!
+//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
+//! They require careful handling.
+//!
+//! First, for soundness reasons related to the possible existence of invalid values, by default we
+//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
+//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
+//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
+//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
+//! place validity that are handled in `crate::usefulness`. Yes this is a bit tricky.
+//!
+//! The second thing is that regardless of the above, it is always allowed to use all the
+//! constructors of a type. For example, all the following is ok:
+//!
+//! ```rust,ignore(example)
+//! # #![feature(never_type)]
+//! # #![feature(exhaustive_patterns)]
+//! fn foo(x: Option<!>) {
+//! match x {
+//! None => {}
+//! Some(_) => {}
+//! }
+//! }
+//! fn bar(x: &[!]) -> u32 {
+//! match x {
+//! [] => 1,
+//! [_] => 2,
+//! [_, _] => 3,
+//! }
+//! }
+//! ```
+//!
+//! Moreover, take the following:
+//!
+//! ```rust
+//! # #![feature(never_type)]
+//! # #![feature(exhaustive_patterns)]
+//! # let x = None::<!>;
+//! match x {
+//! None => {}
+//! }
+//! ```
+//!
+//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
+//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
+//! of a type, we must therefore track which can be omitted.
+//!
+//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
+//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
+//! empty. The difference between empty and nonempty constructors is that empty constructors need
+//! not be present for the match to be exhaustive.
+//!
+//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
+//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
+//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
+//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
+//!
+//! This is all handled by [`TypeCx::ctors_for_ty`] and
+//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
+//!
+//!
+//!
+//! ## Opaque patterns
+//!
+//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
+//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
+//! we assume they never cover each other. In order to respect the invariants of
+//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
+
+use std::cmp::{self, max, min, Ordering};
+use std::fmt;
+use std::iter::once;
+
+use smallvec::SmallVec;
+
+use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
+use rustc_index::bit_set::{BitSet, GrowableBitSet};
+use rustc_index::IndexVec;
+
+use self::Constructor::*;
+use self::MaybeInfiniteInt::*;
+use self::SliceKind::*;
+
+use crate::usefulness::PlaceCtxt;
+use crate::TypeCx;
+
+/// Whether we have seen a constructor in the column or not.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+enum Presence {
+ Unseen,
+ Seen,
+}
+
+#[derive(Debug, Copy, Clone, PartialEq, Eq)]
+pub enum RangeEnd {
+ Included,
+ Excluded,
+}
+
+impl fmt::Display for RangeEnd {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str(match self {
+ RangeEnd::Included => "..=",
+ RangeEnd::Excluded => "..",
+ })
+ }
+}
+
+/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
+/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
+/// `255`. See `signed_bias` for details.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+pub enum MaybeInfiniteInt {
+ NegInfinity,
+ /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
+ #[non_exhaustive]
+ Finite(u128),
+ /// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range.
+ JustAfterMax,
+ PosInfinity,
+}
+
+impl MaybeInfiniteInt {
+ pub fn new_finite_uint(bits: u128) -> Self {
+ Finite(bits)
+ }
+ pub fn new_finite_int(bits: u128, size: u64) -> Self {
+ // Perform a shift if the underlying types are signed, which makes the interval arithmetic
+ // type-independent.
+ let bias = 1u128 << (size - 1);
+ Finite(bits ^ bias)
+ }
+
+ pub fn as_finite_uint(self) -> Option<u128> {
+ match self {
+ Finite(bits) => Some(bits),
+ _ => None,
+ }
+ }
+ pub fn as_finite_int(self, size: u64) -> Option<u128> {
+ // We decode the shift.
+ match self {
+ Finite(bits) => {
+ let bias = 1u128 << (size - 1);
+ Some(bits ^ bias)
+ }
+ _ => None,
+ }
+ }
+
+ /// Note: this will not turn a finite value into an infinite one or vice-versa.
+ pub fn minus_one(self) -> Self {
+ match self {
+ Finite(n) => match n.checked_sub(1) {
+ Some(m) => Finite(m),
+ None => panic!("Called `MaybeInfiniteInt::minus_one` on 0"),
+ },
+ JustAfterMax => Finite(u128::MAX),
+ x => x,
+ }
+ }
+ /// Note: this will not turn a finite value into an infinite one or vice-versa.
+ pub fn plus_one(self) -> Self {
+ match self {
+ Finite(n) => match n.checked_add(1) {
+ Some(m) => Finite(m),
+ None => JustAfterMax,
+ },
+ JustAfterMax => panic!("Called `MaybeInfiniteInt::plus_one` on u128::MAX+1"),
+ x => x,
+ }
+ }
+}
+
+/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
+/// store a contiguous range.
+///
+/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
+/// space: i.e., `range.lo < range.hi`.
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub struct IntRange {
+ pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
+ pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
+}
+
+impl IntRange {
+ /// Best effort; will not know that e.g. `255u8..` is a singleton.
+ pub fn is_singleton(&self) -> bool {
+ // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
+ // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
+ self.lo.plus_one() == self.hi
+ }
+
+ #[inline]
+ pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
+ IntRange { lo: x, hi: x.plus_one() }
+ }
+
+ #[inline]
+ pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
+ if end == RangeEnd::Included {
+ hi = hi.plus_one();
+ }
+ if lo >= hi {
+ // This should have been caught earlier by E0030.
+ panic!("malformed range pattern: {lo:?}..{hi:?}");
+ }
+ IntRange { lo, hi }
+ }
+
+ fn is_subrange(&self, other: &Self) -> bool {
+ other.lo <= self.lo && self.hi <= other.hi
+ }
+
+ fn intersection(&self, other: &Self) -> Option<Self> {
+ if self.lo < other.hi && other.lo < self.hi {
+ Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
+ } else {
+ None
+ }
+ }
+
+ /// Partition a range of integers into disjoint subranges. This does constructor splitting for
+ /// integer ranges as explained at the top of the file.
+ ///
+ /// This returns an output that covers `self`. The output is split so that the only
+ /// intersections between an output range and a column range are inclusions. No output range
+ /// straddles the boundary of one of the inputs.
+ ///
+ /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
+ ///
+ /// The following input:
+ /// ```text
+ /// (--------------------------) // `self`
+ /// (------) (----------) (-)
+ /// (------) (--------)
+ /// ```
+ /// is first intersected with `self`:
+ /// ```text
+ /// (--------------------------) // `self`
+ /// (----) (----------) (-)
+ /// (------) (--------)
+ /// ```
+ /// and then iterated over as follows:
+ /// ```text
+ /// (-(--)-(-)-(------)-)--(-)-
+ /// ```
+ /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
+ /// as `Presence::Missing`.
+ ///
+ /// ## `isize`/`usize`
+ ///
+ /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
+ /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
+ /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
+ /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
+ /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
+ /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
+ ///
+ /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
+ /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
+ /// fictitious ranges sensibly.
+ fn split(
+ &self,
+ column_ranges: impl Iterator<Item = IntRange>,
+ ) -> impl Iterator<Item = (Presence, IntRange)> {
+ // The boundaries of ranges in `column_ranges` intersected with `self`.
+ // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
+ // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
+ // are within an input range.
+ let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
+ .filter_map(|r| self.intersection(&r))
+ .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
+ .collect();
+ // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
+ // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
+ // the accumulated count between distinct boundary values.
+ boundaries.sort_unstable();
+
+ // Accumulate parenthesis counts.
+ let mut paren_counter = 0isize;
+ // Gather pairs of adjacent boundaries.
+ let mut prev_bdy = self.lo;
+ boundaries
+ .into_iter()
+ // End with the end of the range. The count is ignored.
+ .chain(once((self.hi, 0)))
+ // List pairs of adjacent boundaries and the count between them.
+ .map(move |(bdy, delta)| {
+ // `delta` affects the count as we cross `bdy`, so the relevant count between
+ // `prev_bdy` and `bdy` is untouched by `delta`.
+ let ret = (prev_bdy, paren_counter, bdy);
+ prev_bdy = bdy;
+ paren_counter += delta;
+ ret
+ })
+ // Skip empty ranges.
+ .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
+ // Convert back to ranges.
+ .map(move |(prev_bdy, paren_count, bdy)| {
+ use Presence::*;
+ let presence = if paren_count > 0 { Seen } else { Unseen };
+ let range = IntRange { lo: prev_bdy, hi: bdy };
+ (presence, range)
+ })
+ }
+}
+
+/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
+/// first.
+impl fmt::Debug for IntRange {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ if let Finite(lo) = self.lo {
+ write!(f, "{lo}")?;
+ }
+ write!(f, "{}", RangeEnd::Excluded)?;
+ if let Finite(hi) = self.hi {
+ write!(f, "{hi}")?;
+ }
+ Ok(())
+ }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum SliceKind {
+ /// Patterns of length `n` (`[x, y]`).
+ FixedLen(usize),
+ /// Patterns using the `..` notation (`[x, .., y]`).
+ /// Captures any array constructor of `length >= i + j`.
+ /// In the case where `array_len` is `Some(_)`,
+ /// this indicates that we only care about the first `i` and the last `j` values of the array,
+ /// and everything in between is a wildcard `_`.
+ VarLen(usize, usize),
+}
+
+impl SliceKind {
+ fn arity(self) -> usize {
+ match self {
+ FixedLen(length) => length,
+ VarLen(prefix, suffix) => prefix + suffix,
+ }
+ }
+
+ /// Whether this pattern includes patterns of length `other_len`.
+ fn covers_length(self, other_len: usize) -> bool {
+ match self {
+ FixedLen(len) => len == other_len,
+ VarLen(prefix, suffix) => prefix + suffix <= other_len,
+ }
+ }
+}
+
+/// A constructor for array and slice patterns.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub struct Slice {
+ /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
+ pub(crate) array_len: Option<usize>,
+ /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
+ pub(crate) kind: SliceKind,
+}
+
+impl Slice {
+ pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
+ let kind = match (array_len, kind) {
+ // If the middle `..` has length 0, we effectively have a fixed-length pattern.
+ (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
+ (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
+ "Slice pattern of length {} longer than its array length {len}",
+ prefix + suffix
+ ),
+ _ => kind,
+ };
+ Slice { array_len, kind }
+ }
+
+ pub(crate) fn arity(self) -> usize {
+ self.kind.arity()
+ }
+
+ /// See `Constructor::is_covered_by`
+ fn is_covered_by(self, other: Self) -> bool {
+ other.kind.covers_length(self.arity())
+ }
+
+ /// This computes constructor splitting for variable-length slices, as explained at the top of
+ /// the file.
+ ///
+ /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
+ /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
+ /// corresponding lengths. We obviously can't list this infinitude of constructors.
+ /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
+ /// array lengths are equivalent.
+ ///
+ /// Let's look at an example, where we are trying to split the last pattern:
+ /// ```
+ /// # fn foo(x: &[bool]) {
+ /// match x {
+ /// [true, true, ..] => {}
+ /// [.., false, false] => {}
+ /// [..] => {}
+ /// }
+ /// # }
+ /// ```
+ /// Here are the results of specialization for the first few lengths:
+ /// ```
+ /// # fn foo(x: &[bool]) { match x {
+ /// // length 0
+ /// [] => {}
+ /// // length 1
+ /// [_] => {}
+ /// // length 2
+ /// [true, true] => {}
+ /// [false, false] => {}
+ /// [_, _] => {}
+ /// // length 3
+ /// [true, true, _ ] => {}
+ /// [_, false, false] => {}
+ /// [_, _, _ ] => {}
+ /// // length 4
+ /// [true, true, _, _ ] => {}
+ /// [_, _, false, false] => {}
+ /// [_, _, _, _ ] => {}
+ /// // length 5
+ /// [true, true, _, _, _ ] => {}
+ /// [_, _, _, false, false] => {}
+ /// [_, _, _, _, _ ] => {}
+ /// # _ => {}
+ /// # }}
+ /// ```
+ ///
+ /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
+ /// This means that specialization and witness computation with slices of length `l >= 4` will
+ /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
+ /// will be a length `L` above which all lengths behave the same. This is exactly what we need
+ /// for constructor splitting.
+ ///
+ /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
+ /// saw, we can split this in two: lengths below `L` are treated individually with a
+ /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
+ /// constructor.
+ ///
+ /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
+ /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
+ /// long as `L` is positive (to avoid concerns about empty types), all elements after the
+ /// maximum prefix length and before the maximum suffix length are not examined by any
+ /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
+ ///
+ /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
+ /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
+ /// `max_slice` below will be made to have this arity `L`.
+ ///
+ /// If `self` is fixed-length, it is returned as-is.
+ ///
+ /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
+ fn split(
+ self,
+ column_slices: impl Iterator<Item = Slice>,
+ ) -> impl Iterator<Item = (Presence, Slice)> {
+ // Range of lengths below `L`.
+ let smaller_lengths;
+ let arity = self.arity();
+ let mut max_slice = self.kind;
+ // Tracks the smallest variable-length slice we've seen. Any slice arity above it is
+ // therefore `Presence::Seen` in the column.
+ let mut min_var_len = usize::MAX;
+ // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
+ let mut seen_fixed_lens = GrowableBitSet::new_empty();
+ match &mut max_slice {
+ VarLen(max_prefix_len, max_suffix_len) => {
+ // A length larger than any fixed-length slice encountered.
+ // We start at 1 in case the subtype is empty because in that case the zero-length
+ // slice must be treated separately from the rest.
+ let mut fixed_len_upper_bound = 1;
+ // We grow `max_slice` to be larger than all slices encountered, as described above.
+ // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
+ // lengths separate.
+ for slice in column_slices {
+ match slice.kind {
+ FixedLen(len) => {
+ fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
+ seen_fixed_lens.insert(len);
+ }
+ VarLen(prefix, suffix) => {
+ *max_prefix_len = cmp::max(*max_prefix_len, prefix);
+ *max_suffix_len = cmp::max(*max_suffix_len, suffix);
+ min_var_len = cmp::min(min_var_len, prefix + suffix);
+ }
+ }
+ }
+ // If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
+ if let Some(delta) =
+ fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
+ {
+ *max_prefix_len += delta
+ }
+
+ // We cap the arity of `max_slice` at the array size.
+ match self.array_len {
+ Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
+ _ => {}
+ }
+
+ smaller_lengths = match self.array_len {
+ // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
+ // is fixed-length or variable-length, it will be the only relevant slice to output
+ // here.
+ Some(_) => 0..0, // empty range
+ // We need to cover all arities in the range `(arity..infinity)`. We split that
+ // range into two: lengths smaller than `max_slice.arity()` are treated
+ // independently as fixed-lengths slices, and lengths above are captured by
+ // `max_slice`.
+ None => self.arity()..max_slice.arity(),
+ };
+ }
+ FixedLen(_) => {
+ // No need to split here. We only track presence.
+ for slice in column_slices {
+ match slice.kind {
+ FixedLen(len) => {
+ if len == arity {
+ seen_fixed_lens.insert(len);
+ }
+ }
+ VarLen(prefix, suffix) => {
+ min_var_len = cmp::min(min_var_len, prefix + suffix);
+ }
+ }
+ }
+ smaller_lengths = 0..0;
+ }
+ };
+
+ smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
+ let arity = kind.arity();
+ let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
+ Presence::Seen
+ } else {
+ Presence::Unseen
+ };
+ (seen, Slice::new(self.array_len, kind))
+ })
+ }
+}
+
+/// A globally unique id to distinguish `Opaque` patterns.
+#[derive(Clone, Debug, PartialEq, Eq)]
+pub struct OpaqueId(u32);
+
+impl OpaqueId {
+ pub fn new() -> Self {
+ use std::sync::atomic::{AtomicU32, Ordering};
+ static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
+ OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
+ }
+}
+
+/// A value can be decomposed into a constructor applied to some fields. This struct represents
+/// the constructor. See also `Fields`.
+///
+/// `pat_constructor` retrieves the constructor corresponding to a pattern.
+/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
+/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
+/// `Fields`.
+#[derive(Clone, Debug, PartialEq)]
+pub enum Constructor<Cx: TypeCx> {
+ /// Tuples and structs.
+ Struct,
+ /// Enum variants.
+ Variant(Cx::VariantIdx),
+ /// References
+ Ref,
+ /// Array and slice patterns.
+ Slice(Slice),
+ /// Union field accesses.
+ UnionField,
+ /// Booleans
+ Bool(bool),
+ /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
+ IntRange(IntRange),
+ /// Ranges of floating-point literal values (`2.0..=5.2`).
+ F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
+ F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
+ /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
+ Str(Cx::StrLit),
+ /// Constants that must not be matched structurally. They are treated as black boxes for the
+ /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
+ /// match exhaustive.
+ /// Carries an id that must be unique within a match. We need this to ensure the invariants of
+ /// [`SplitConstructorSet`].
+ Opaque(OpaqueId),
+ /// Or-pattern.
+ Or,
+ /// Wildcard pattern.
+ Wildcard,
+ /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
+ /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
+ NonExhaustive,
+ /// Fake extra constructor for variants that should not be mentioned in diagnostics.
+ /// We use this for variants behind an unstable gate as well as
+ /// `#[doc(hidden)]` ones.
+ Hidden,
+ /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
+ /// top of the file.
+ Missing,
+}
+
+impl<Cx: TypeCx> Constructor<Cx> {
+ pub(crate) fn is_non_exhaustive(&self) -> bool {
+ matches!(self, NonExhaustive)
+ }
+
+ pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
+ match self {
+ Variant(i) => Some(*i),
+ _ => None,
+ }
+ }
+ fn as_bool(&self) -> Option<bool> {
+ match self {
+ Bool(b) => Some(*b),
+ _ => None,
+ }
+ }
+ pub(crate) fn as_int_range(&self) -> Option<&IntRange> {
+ match self {
+ IntRange(range) => Some(range),
+ _ => None,
+ }
+ }
+ fn as_slice(&self) -> Option<Slice> {
+ match self {
+ Slice(slice) => Some(*slice),
+ _ => None,
+ }
+ }
+
+ /// The number of fields for this constructor. This must be kept in sync with
+ /// `Fields::wildcards`.
+ pub(crate) fn arity(&self, pcx: &PlaceCtxt<'_, '_, Cx>) -> usize {
+ pcx.ctor_arity(self)
+ }
+
+ /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
+ /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
+ /// this checks for inclusion.
+ // We inline because this has a single call site in `Matrix::specialize_constructor`.
+ #[inline]
+ pub(crate) fn is_covered_by<'p>(&self, pcx: &PlaceCtxt<'_, 'p, Cx>, other: &Self) -> bool {
+ match (self, other) {
+ (Wildcard, _) => pcx
+ .mcx
+ .tycx
+ .bug(format_args!("Constructor splitting should not have returned `Wildcard`")),
+ // Wildcards cover anything
+ (_, Wildcard) => true,
+ // Only a wildcard pattern can match these special constructors.
+ (Missing { .. } | NonExhaustive | Hidden, _) => false,
+
+ (Struct, Struct) => true,
+ (Ref, Ref) => true,
+ (UnionField, UnionField) => true,
+ (Variant(self_id), Variant(other_id)) => self_id == other_id,
+ (Bool(self_b), Bool(other_b)) => self_b == other_b,
+
+ (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
+ (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
+ self_from.ge(other_from)
+ && match self_to.partial_cmp(other_to) {
+ Some(Ordering::Less) => true,
+ Some(Ordering::Equal) => other_end == self_end,
+ _ => false,
+ }
+ }
+ (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
+ self_from.ge(other_from)
+ && match self_to.partial_cmp(other_to) {
+ Some(Ordering::Less) => true,
+ Some(Ordering::Equal) => other_end == self_end,
+ _ => false,
+ }
+ }
+ (Str(self_val), Str(other_val)) => {
+ // FIXME Once valtrees are available we can directly use the bytes
+ // in the `Str` variant of the valtree for the comparison here.
+ self_val == other_val
+ }
+ (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
+
+ // Opaque constructors don't interact with anything unless they come from the
+ // syntactically identical pattern.
+ (Opaque(self_id), Opaque(other_id)) => self_id == other_id,
+ (Opaque(..), _) | (_, Opaque(..)) => false,
+
+ _ => pcx.mcx.tycx.bug(format_args!(
+ "trying to compare incompatible constructors {self:?} and {other:?}"
+ )),
+ }
+ }
+}
+
+#[derive(Debug, Clone, Copy)]
+pub enum VariantVisibility {
+ /// Variant that doesn't fit the other cases, i.e. most variants.
+ Visible,
+ /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
+ /// mentioned in diagnostics unless the user mentioned it first.
+ Hidden,
+ /// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
+ /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
+ /// it first.
+ Empty,
+}
+
+/// Describes the set of all constructors for a type. For details, in particular about the emptiness
+/// of constructors, see the top of the file.
+///
+/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
+/// `exhaustive_patterns` feature.
+#[derive(Debug)]
+pub enum ConstructorSet<Cx: TypeCx> {
+ /// The type is a tuple or struct. `empty` tracks whether the type is empty.
+ Struct { empty: bool },
+ /// This type has the following list of constructors. If `variants` is empty and
+ /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
+ Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
+ /// The type is `&T`.
+ Ref,
+ /// The type is a union.
+ Union,
+ /// Booleans.
+ Bool,
+ /// The type is spanned by integer values. The range or ranges give the set of allowed values.
+ /// The second range is only useful for `char`.
+ Integers { range_1: IntRange, range_2: Option<IntRange> },
+ /// The type is matched by slices. `array_len` is the compile-time length of the array, if
+ /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
+ /// slice `[]`.
+ Slice { array_len: Option<usize>, subtype_is_empty: bool },
+ /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
+ /// floats.
+ Unlistable,
+ /// The type has no constructors (not even empty ones). This is `!` and empty enums.
+ NoConstructors,
+}
+
+/// Describes the result of analyzing the constructors in a column of a match.
+///
+/// `present` is morally the set of constructors present in the column, and `missing` is the set of
+/// constructors that exist in the type but are not present in the column.
+///
+/// More formally, if we discard wildcards from the column, this respects the following constraints:
+/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
+/// 2. each constructor in `present` is covered by something in the column
+/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
+/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
+/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
+/// the file);
+/// 6. `missing_empty` contains only empty constructors
+/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
+/// words, they are either fully included in or fully disjoint from each constructor in the
+/// column. In yet other words, there are no non-trivial intersections like between `0..10` and
+/// `5..15`.
+///
+/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
+/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
+/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
+#[derive(Debug)]
+pub(crate) struct SplitConstructorSet<Cx: TypeCx> {
+ pub(crate) present: SmallVec<[Constructor<Cx>; 1]>,
+ pub(crate) missing: Vec<Constructor<Cx>>,
+ pub(crate) missing_empty: Vec<Constructor<Cx>>,
+}
+
+impl<Cx: TypeCx> ConstructorSet<Cx> {
+ /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
+ /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
+ /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
+ /// and its invariants.
+ #[instrument(level = "debug", skip(self, pcx, ctors), ret)]
+ pub(crate) fn split<'a>(
+ &self,
+ pcx: &PlaceCtxt<'_, '_, Cx>,
+ ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
+ ) -> SplitConstructorSet<Cx>
+ where
+ Cx: 'a,
+ {
+ let mut present: SmallVec<[_; 1]> = SmallVec::new();
+ // Empty constructors found missing.
+ let mut missing_empty = Vec::new();
+ // Nonempty constructors found missing.
+ let mut missing = Vec::new();
+ // Constructors in `ctors`, except wildcards and opaques.
+ let mut seen = Vec::new();
+ for ctor in ctors.cloned() {
+ match ctor {
+ Opaque(..) => present.push(ctor),
+ Wildcard => {} // discard wildcards
+ _ => seen.push(ctor),
+ }
+ }
+
+ match self {
+ ConstructorSet::Struct { empty } => {
+ if !seen.is_empty() {
+ present.push(Struct);
+ } else if *empty {
+ missing_empty.push(Struct);
+ } else {
+ missing.push(Struct);
+ }
+ }
+ ConstructorSet::Ref => {
+ if !seen.is_empty() {
+ present.push(Ref);
+ } else {
+ missing.push(Ref);
+ }
+ }
+ ConstructorSet::Union => {
+ if !seen.is_empty() {
+ present.push(UnionField);
+ } else {
+ missing.push(UnionField);
+ }
+ }
+ ConstructorSet::Variants { variants, non_exhaustive } => {
+ let mut seen_set: BitSet<_> = BitSet::new_empty(variants.len());
+ for idx in seen.iter().map(|c| c.as_variant().unwrap()) {
+ seen_set.insert(idx);
+ }
+ let mut skipped_a_hidden_variant = false;
+
+ for (idx, visibility) in variants.iter_enumerated() {
+ let ctor = Variant(idx);
+ if seen_set.contains(idx) {
+ present.push(ctor);
+ } else {
+ // We only put visible variants directly into `missing`.
+ match visibility {
+ VariantVisibility::Visible => missing.push(ctor),
+ VariantVisibility::Hidden => skipped_a_hidden_variant = true,
+ VariantVisibility::Empty => missing_empty.push(ctor),
+ }
+ }
+ }
+
+ if skipped_a_hidden_variant {
+ missing.push(Hidden);
+ }
+ if *non_exhaustive {
+ missing.push(NonExhaustive);
+ }
+ }
+ ConstructorSet::Bool => {
+ let mut seen_false = false;
+ let mut seen_true = false;
+ for b in seen.iter().map(|ctor| ctor.as_bool().unwrap()) {
+ if b {
+ seen_true = true;
+ } else {
+ seen_false = true;
+ }
+ }
+ if seen_false {
+ present.push(Bool(false));
+ } else {
+ missing.push(Bool(false));
+ }
+ if seen_true {
+ present.push(Bool(true));
+ } else {
+ missing.push(Bool(true));
+ }
+ }
+ ConstructorSet::Integers { range_1, range_2 } => {
+ let seen_ranges: Vec<_> =
+ seen.iter().map(|ctor| *ctor.as_int_range().unwrap()).collect();
+ for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
+ match seen {
+ Presence::Unseen => missing.push(IntRange(splitted_range)),
+ Presence::Seen => present.push(IntRange(splitted_range)),
+ }
+ }
+ if let Some(range_2) = range_2 {
+ for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
+ match seen {
+ Presence::Unseen => missing.push(IntRange(splitted_range)),
+ Presence::Seen => present.push(IntRange(splitted_range)),
+ }
+ }
+ }
+ }
+ ConstructorSet::Slice { array_len, subtype_is_empty } => {
+ let seen_slices = seen.iter().map(|c| c.as_slice().unwrap());
+ let base_slice = Slice::new(*array_len, VarLen(0, 0));
+ for (seen, splitted_slice) in base_slice.split(seen_slices) {
+ let ctor = Slice(splitted_slice);
+ match seen {
+ Presence::Seen => present.push(ctor),
+ Presence::Unseen => {
+ if *subtype_is_empty && splitted_slice.arity() != 0 {
+ // We have subpatterns of an empty type, so the constructor is
+ // empty.
+ missing_empty.push(ctor);
+ } else {
+ missing.push(ctor);
+ }
+ }
+ }
+ }
+ }
+ ConstructorSet::Unlistable => {
+ // Since we can't list constructors, we take the ones in the column. This might list
+ // some constructors several times but there's not much we can do.
+ present.extend(seen);
+ missing.push(NonExhaustive);
+ }
+ ConstructorSet::NoConstructors => {
+ // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
+ // add a dummy empty constructor here, which will be ignored if the place is
+ // `ValidOnly`.
+ missing_empty.push(NonExhaustive);
+ }
+ }
+
+ // We have now grouped all the constructors into 3 buckets: present, missing, missing_empty.
+ // In the absence of the `exhaustive_patterns` feature however, we don't count nested empty
+ // types as empty. Only non-nested `!` or `enum Foo {}` are considered empty.
+ if !pcx.mcx.tycx.is_exhaustive_patterns_feature_on()
+ && !(pcx.is_scrutinee && matches!(self, Self::NoConstructors))
+ {
+ // Treat all missing constructors as nonempty.
+ // This clears `missing_empty`.
+ missing.append(&mut missing_empty);
+ }
+
+ SplitConstructorSet { present, missing, missing_empty }
+ }
+}
diff --git a/compiler/rustc_pattern_analysis/src/errors.rs b/compiler/rustc_pattern_analysis/src/errors.rs
new file mode 100644
index 000000000..88770b0c4
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/errors.rs
@@ -0,0 +1,95 @@
+use rustc_errors::{AddToDiagnostic, Diagnostic, SubdiagnosticMessage};
+use rustc_macros::{LintDiagnostic, Subdiagnostic};
+use rustc_middle::thir::Pat;
+use rustc_middle::ty::Ty;
+use rustc_span::Span;
+
+use crate::rustc::{RustcMatchCheckCtxt, WitnessPat};
+
+#[derive(Subdiagnostic)]
+#[label(pattern_analysis_uncovered)]
+pub struct Uncovered<'tcx> {
+ #[primary_span]
+ span: Span,
+ count: usize,
+ witness_1: Pat<'tcx>,
+ witness_2: Pat<'tcx>,
+ witness_3: Pat<'tcx>,
+ remainder: usize,
+}
+
+impl<'tcx> Uncovered<'tcx> {
+ pub fn new<'p>(
+ span: Span,
+ cx: &RustcMatchCheckCtxt<'p, 'tcx>,
+ witnesses: Vec<WitnessPat<'p, 'tcx>>,
+ ) -> Self {
+ let witness_1 = cx.hoist_witness_pat(witnesses.get(0).unwrap());
+ Self {
+ span,
+ count: witnesses.len(),
+ // Substitute dummy values if witnesses is smaller than 3. These will never be read.
+ witness_2: witnesses
+ .get(1)
+ .map(|w| cx.hoist_witness_pat(w))
+ .unwrap_or_else(|| witness_1.clone()),
+ witness_3: witnesses
+ .get(2)
+ .map(|w| cx.hoist_witness_pat(w))
+ .unwrap_or_else(|| witness_1.clone()),
+ witness_1,
+ remainder: witnesses.len().saturating_sub(3),
+ }
+ }
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_overlapping_range_endpoints)]
+#[note]
+pub struct OverlappingRangeEndpoints<'tcx> {
+ #[label]
+ pub range: Span,
+ #[subdiagnostic]
+ pub overlap: Vec<Overlap<'tcx>>,
+}
+
+pub struct Overlap<'tcx> {
+ pub span: Span,
+ pub range: Pat<'tcx>,
+}
+
+impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
+ fn add_to_diagnostic_with<F>(self, diag: &mut Diagnostic, _: F)
+ where
+ F: Fn(&mut Diagnostic, SubdiagnosticMessage) -> SubdiagnosticMessage,
+ {
+ let Overlap { span, range } = self;
+
+ // FIXME(mejrs) unfortunately `#[derive(LintDiagnostic)]`
+ // does not support `#[subdiagnostic(eager)]`...
+ let message = format!("this range overlaps on `{range}`...");
+ diag.span_label(span, message);
+ }
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_non_exhaustive_omitted_pattern)]
+#[help]
+#[note]
+pub(crate) struct NonExhaustiveOmittedPattern<'tcx> {
+ pub scrut_ty: Ty<'tcx>,
+ #[subdiagnostic]
+ pub uncovered: Uncovered<'tcx>,
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_non_exhaustive_omitted_pattern_lint_on_arm)]
+#[help]
+pub(crate) struct NonExhaustiveOmittedPatternLintOnArm {
+ #[label]
+ pub lint_span: Span,
+ #[suggestion(code = "#[{lint_level}({lint_name})]\n", applicability = "maybe-incorrect")]
+ pub suggest_lint_on_match: Option<Span>,
+ pub lint_level: &'static str,
+ pub lint_name: &'static str,
+}
diff --git a/compiler/rustc_pattern_analysis/src/lib.rs b/compiler/rustc_pattern_analysis/src/lib.rs
new file mode 100644
index 000000000..785a60e99
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/lib.rs
@@ -0,0 +1,135 @@
+//! Analysis of patterns, notably match exhaustiveness checking.
+
+pub mod constructor;
+#[cfg(feature = "rustc")]
+pub mod errors;
+#[cfg(feature = "rustc")]
+pub(crate) mod lints;
+pub mod pat;
+#[cfg(feature = "rustc")]
+pub mod rustc;
+pub mod usefulness;
+
+#[macro_use]
+extern crate tracing;
+#[cfg(feature = "rustc")]
+#[macro_use]
+extern crate rustc_middle;
+
+#[cfg(feature = "rustc")]
+rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
+
+use std::fmt;
+
+use rustc_index::Idx;
+#[cfg(feature = "rustc")]
+use rustc_middle::ty::Ty;
+
+use crate::constructor::{Constructor, ConstructorSet};
+#[cfg(feature = "rustc")]
+use crate::lints::{
+ lint_nonexhaustive_missing_variants, lint_overlapping_range_endpoints, PatternColumn,
+};
+use crate::pat::DeconstructedPat;
+#[cfg(feature = "rustc")]
+use crate::rustc::RustcMatchCheckCtxt;
+#[cfg(feature = "rustc")]
+use crate::usefulness::{compute_match_usefulness, ValidityConstraint};
+
+// It's not possible to only enable the `typed_arena` dependency when the `rustc` feature is off, so
+// we use another feature instead. The crate won't compile if one of these isn't enabled.
+#[cfg(feature = "rustc")]
+pub(crate) use rustc_arena::TypedArena;
+#[cfg(feature = "stable")]
+pub(crate) use typed_arena::Arena as TypedArena;
+
+pub trait Captures<'a> {}
+impl<'a, T: ?Sized> Captures<'a> for T {}
+
+/// Context that provides type information about constructors.
+///
+/// Most of the crate is parameterized on a type that implements this trait.
+pub trait TypeCx: Sized + Clone + fmt::Debug {
+ /// The type of a pattern.
+ type Ty: Copy + Clone + fmt::Debug; // FIXME: remove Copy
+ /// The index of an enum variant.
+ type VariantIdx: Clone + Idx;
+ /// A string literal
+ type StrLit: Clone + PartialEq + fmt::Debug;
+ /// Extra data to store in a match arm.
+ type ArmData: Copy + Clone + fmt::Debug;
+ /// Extra data to store in a pattern. `Default` needed when we create fictitious wildcard
+ /// patterns during analysis.
+ type PatData: Clone + Default;
+
+ fn is_opaque_ty(ty: Self::Ty) -> bool;
+ fn is_exhaustive_patterns_feature_on(&self) -> bool;
+
+ /// The number of fields for this constructor.
+ fn ctor_arity(&self, ctor: &Constructor<Self>, ty: Self::Ty) -> usize;
+
+ /// The types of the fields for this constructor. The result must have a length of
+ /// `ctor_arity()`.
+ fn ctor_sub_tys(&self, ctor: &Constructor<Self>, ty: Self::Ty) -> &[Self::Ty];
+
+ /// The set of all the constructors for `ty`.
+ ///
+ /// This must follow the invariants of `ConstructorSet`
+ fn ctors_for_ty(&self, ty: Self::Ty) -> ConstructorSet<Self>;
+
+ /// Best-effort `Debug` implementation.
+ fn debug_pat(f: &mut fmt::Formatter<'_>, pat: &DeconstructedPat<'_, Self>) -> fmt::Result;
+
+ /// Raise a bug.
+ fn bug(&self, fmt: fmt::Arguments<'_>) -> !;
+}
+
+/// Context that provides information global to a match.
+#[derive(Clone)]
+pub struct MatchCtxt<'a, 'p, Cx: TypeCx> {
+ /// The context for type information.
+ pub tycx: &'a Cx,
+ /// An arena to store the wildcards we produce during analysis.
+ pub wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
+}
+
+impl<'a, 'p, Cx: TypeCx> Copy for MatchCtxt<'a, 'p, Cx> {}
+
+/// The arm of a match expression.
+#[derive(Clone, Debug)]
+pub struct MatchArm<'p, Cx: TypeCx> {
+ pub pat: &'p DeconstructedPat<'p, Cx>,
+ pub has_guard: bool,
+ pub arm_data: Cx::ArmData,
+}
+
+impl<'p, Cx: TypeCx> Copy for MatchArm<'p, Cx> {}
+
+/// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are
+/// useful, and runs some lints.
+#[cfg(feature = "rustc")]
+pub fn analyze_match<'p, 'tcx>(
+ tycx: &RustcMatchCheckCtxt<'p, 'tcx>,
+ arms: &[rustc::MatchArm<'p, 'tcx>],
+ scrut_ty: Ty<'tcx>,
+) -> rustc::UsefulnessReport<'p, 'tcx> {
+ // Arena to store the extra wildcards we construct during analysis.
+ let wildcard_arena = tycx.pattern_arena;
+ let scrut_validity = ValidityConstraint::from_bool(tycx.known_valid_scrutinee);
+ let cx = MatchCtxt { tycx, wildcard_arena };
+
+ let report = compute_match_usefulness(cx, arms, scrut_ty, scrut_validity);
+
+ let pat_column = PatternColumn::new(arms);
+
+ // Lint on ranges that overlap on their endpoints, which is likely a mistake.
+ lint_overlapping_range_endpoints(cx, &pat_column);
+
+ // Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
+ // `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
+ if tycx.refutable && report.non_exhaustiveness_witnesses.is_empty() {
+ lint_nonexhaustive_missing_variants(cx, arms, &pat_column, scrut_ty)
+ }
+
+ report
+}
diff --git a/compiler/rustc_pattern_analysis/src/lints.rs b/compiler/rustc_pattern_analysis/src/lints.rs
new file mode 100644
index 000000000..072ef4836
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/lints.rs
@@ -0,0 +1,296 @@
+use smallvec::SmallVec;
+
+use rustc_data_structures::captures::Captures;
+use rustc_middle::ty::{self, Ty};
+use rustc_session::lint;
+use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
+use rustc_span::Span;
+
+use crate::constructor::{IntRange, MaybeInfiniteInt};
+use crate::errors::{
+ NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
+ OverlappingRangeEndpoints, Uncovered,
+};
+use crate::rustc::{
+ Constructor, DeconstructedPat, MatchArm, MatchCtxt, PlaceCtxt, RustcMatchCheckCtxt,
+ SplitConstructorSet, WitnessPat,
+};
+use crate::TypeCx;
+
+/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
+/// inspect the same subvalue/place".
+/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
+/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
+/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
+/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
+///
+/// This must not contain an or-pattern. `specialize` takes care to expand them.
+///
+/// This is not used in the main algorithm; only in lints.
+#[derive(Debug)]
+pub(crate) struct PatternColumn<'a, 'p, 'tcx> {
+ patterns: Vec<&'a DeconstructedPat<'p, 'tcx>>,
+}
+
+impl<'a, 'p, 'tcx> PatternColumn<'a, 'p, 'tcx> {
+ pub(crate) fn new(arms: &[MatchArm<'p, 'tcx>]) -> Self {
+ let mut patterns = Vec::with_capacity(arms.len());
+ for arm in arms {
+ if arm.pat.is_or_pat() {
+ patterns.extend(arm.pat.flatten_or_pat())
+ } else {
+ patterns.push(arm.pat)
+ }
+ }
+ Self { patterns }
+ }
+
+ fn is_empty(&self) -> bool {
+ self.patterns.is_empty()
+ }
+ fn head_ty(&self) -> Option<Ty<'tcx>> {
+ if self.patterns.len() == 0 {
+ return None;
+ }
+ // If the type is opaque and it is revealed anywhere in the column, we take the revealed
+ // version. Otherwise we could encounter constructors for the revealed type and crash.
+ let first_ty = self.patterns[0].ty();
+ if RustcMatchCheckCtxt::is_opaque_ty(first_ty) {
+ for pat in &self.patterns {
+ let ty = pat.ty();
+ if !RustcMatchCheckCtxt::is_opaque_ty(ty) {
+ return Some(ty);
+ }
+ }
+ }
+ Some(first_ty)
+ }
+
+ /// Do constructor splitting on the constructors of the column.
+ fn analyze_ctors(&self, pcx: &PlaceCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'p, 'tcx> {
+ let column_ctors = self.patterns.iter().map(|p| p.ctor());
+ pcx.ctors_for_ty().split(pcx, column_ctors)
+ }
+
+ fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>> + Captures<'b> {
+ self.patterns.iter().copied()
+ }
+
+ /// Does specialization: given a constructor, this takes the patterns from the column that match
+ /// the constructor, and outputs their fields.
+ /// This returns one column per field of the constructor. They usually all have the same length
+ /// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
+ /// which may change the lengths.
+ fn specialize(
+ &self,
+ pcx: &PlaceCtxt<'a, 'p, 'tcx>,
+ ctor: &Constructor<'p, 'tcx>,
+ ) -> Vec<PatternColumn<'a, 'p, 'tcx>> {
+ let arity = ctor.arity(pcx);
+ if arity == 0 {
+ return Vec::new();
+ }
+
+ // We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
+ // columns may have different lengths in the presence of or-patterns (this is why we can't
+ // reuse `Matrix`).
+ let mut specialized_columns: Vec<_> =
+ (0..arity).map(|_| Self { patterns: Vec::new() }).collect();
+ let relevant_patterns =
+ self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
+ for pat in relevant_patterns {
+ let specialized = pat.specialize(pcx, ctor);
+ for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
+ if subpat.is_or_pat() {
+ column.patterns.extend(subpat.flatten_or_pat())
+ } else {
+ column.patterns.push(subpat)
+ }
+ }
+ }
+
+ assert!(
+ !specialized_columns[0].is_empty(),
+ "ctor {ctor:?} was listed as present but isn't;
+ there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
+ );
+ specialized_columns
+ }
+}
+
+/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
+/// in a given column.
+#[instrument(level = "debug", skip(cx), ret)]
+fn collect_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
+ cx: MatchCtxt<'a, 'p, 'tcx>,
+ column: &PatternColumn<'a, 'p, 'tcx>,
+) -> Vec<WitnessPat<'p, 'tcx>> {
+ let Some(ty) = column.head_ty() else {
+ return Vec::new();
+ };
+ let pcx = &PlaceCtxt::new_dummy(cx, ty);
+
+ let set = column.analyze_ctors(pcx);
+ if set.present.is_empty() {
+ // We can't consistently handle the case where no constructors are present (since this would
+ // require digging deep through any type in case there's a non_exhaustive enum somewhere),
+ // so for consistency we refuse to handle the top-level case, where we could handle it.
+ return vec![];
+ }
+
+ let mut witnesses = Vec::new();
+ if cx.tycx.is_foreign_non_exhaustive_enum(ty) {
+ witnesses.extend(
+ set.missing
+ .into_iter()
+ // This will list missing visible variants.
+ .filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
+ .map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
+ )
+ }
+
+ // Recurse into the fields.
+ for ctor in set.present {
+ let specialized_columns = column.specialize(pcx, &ctor);
+ let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
+ for (i, col_i) in specialized_columns.iter().enumerate() {
+ // Compute witnesses for each column.
+ let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
+ // For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
+ // adding enough wildcards to match `arity`.
+ for wit in wits_for_col_i {
+ let mut pat = wild_pat.clone();
+ pat.fields[i] = wit;
+ witnesses.push(pat);
+ }
+ }
+ }
+ witnesses
+}
+
+pub(crate) fn lint_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
+ cx: MatchCtxt<'a, 'p, 'tcx>,
+ arms: &[MatchArm<'p, 'tcx>],
+ pat_column: &PatternColumn<'a, 'p, 'tcx>,
+ scrut_ty: Ty<'tcx>,
+) {
+ let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
+ if !matches!(
+ rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, rcx.match_lint_level).0,
+ rustc_session::lint::Level::Allow
+ ) {
+ let witnesses = collect_nonexhaustive_missing_variants(cx, pat_column);
+ if !witnesses.is_empty() {
+ // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
+ // is not exhaustive enough.
+ //
+ // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
+ rcx.tcx.emit_spanned_lint(
+ NON_EXHAUSTIVE_OMITTED_PATTERNS,
+ rcx.match_lint_level,
+ rcx.scrut_span,
+ NonExhaustiveOmittedPattern {
+ scrut_ty,
+ uncovered: Uncovered::new(rcx.scrut_span, rcx, witnesses),
+ },
+ );
+ }
+ } else {
+ // We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
+ // arm. This no longer makes sense so we warn users, to avoid silently breaking their
+ // usage of the lint.
+ for arm in arms {
+ let (lint_level, lint_level_source) =
+ rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.arm_data);
+ if !matches!(lint_level, rustc_session::lint::Level::Allow) {
+ let decorator = NonExhaustiveOmittedPatternLintOnArm {
+ lint_span: lint_level_source.span(),
+ suggest_lint_on_match: rcx.whole_match_span.map(|span| span.shrink_to_lo()),
+ lint_level: lint_level.as_str(),
+ lint_name: "non_exhaustive_omitted_patterns",
+ };
+
+ use rustc_errors::DecorateLint;
+ let mut err = rcx.tcx.sess.struct_span_warn(*arm.pat.data(), "");
+ err.set_primary_message(decorator.msg());
+ decorator.decorate_lint(&mut err);
+ err.emit();
+ }
+ }
+ }
+}
+
+/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
+#[instrument(level = "debug", skip(cx))]
+pub(crate) fn lint_overlapping_range_endpoints<'a, 'p, 'tcx>(
+ cx: MatchCtxt<'a, 'p, 'tcx>,
+ column: &PatternColumn<'a, 'p, 'tcx>,
+) {
+ let Some(ty) = column.head_ty() else {
+ return;
+ };
+ let pcx = &PlaceCtxt::new_dummy(cx, ty);
+ let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
+
+ let set = column.analyze_ctors(pcx);
+
+ if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) {
+ let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
+ let overlap_as_pat = rcx.hoist_pat_range(overlap, ty);
+ let overlaps: Vec<_> = overlapped_spans
+ .iter()
+ .copied()
+ .map(|span| Overlap { range: overlap_as_pat.clone(), span })
+ .collect();
+ rcx.tcx.emit_spanned_lint(
+ lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
+ rcx.match_lint_level,
+ this_span,
+ OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
+ );
+ };
+
+ // If two ranges overlapped, the split set will contain their intersection as a singleton.
+ let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
+ for overlap_range in split_int_ranges.clone() {
+ if overlap_range.is_singleton() {
+ let overlap: MaybeInfiniteInt = overlap_range.lo;
+ // Ranges that look like `lo..=overlap`.
+ let mut prefixes: SmallVec<[_; 1]> = Default::default();
+ // Ranges that look like `overlap..=hi`.
+ let mut suffixes: SmallVec<[_; 1]> = Default::default();
+ // Iterate on patterns that contained `overlap`.
+ for pat in column.iter() {
+ let this_span = *pat.data();
+ let Constructor::IntRange(this_range) = pat.ctor() else { continue };
+ if this_range.is_singleton() {
+ // Don't lint when one of the ranges is a singleton.
+ continue;
+ }
+ if this_range.lo == overlap {
+ // `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
+ // ranges that look like `lo..=overlap`.
+ if !prefixes.is_empty() {
+ emit_lint(overlap_range, this_span, &prefixes);
+ }
+ suffixes.push(this_span)
+ } else if this_range.hi == overlap.plus_one() {
+ // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
+ // ranges that look like `overlap..=hi`.
+ if !suffixes.is_empty() {
+ emit_lint(overlap_range, this_span, &suffixes);
+ }
+ prefixes.push(this_span)
+ }
+ }
+ }
+ }
+ } else {
+ // Recurse into the fields.
+ for ctor in set.present {
+ for col in column.specialize(pcx, &ctor) {
+ lint_overlapping_range_endpoints(cx, &col);
+ }
+ }
+ }
+}
diff --git a/compiler/rustc_pattern_analysis/src/pat.rs b/compiler/rustc_pattern_analysis/src/pat.rs
new file mode 100644
index 000000000..0cc8477b7
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/pat.rs
@@ -0,0 +1,197 @@
+//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
+//! fields. This file defines types that represent patterns in this way.
+use std::cell::Cell;
+use std::fmt;
+
+use smallvec::{smallvec, SmallVec};
+
+use crate::constructor::{Constructor, Slice, SliceKind};
+use crate::usefulness::PlaceCtxt;
+use crate::{Captures, TypeCx};
+
+use self::Constructor::*;
+
+/// Values and patterns can be represented as a constructor applied to some fields. This represents
+/// a pattern in this form.
+/// This also uses interior mutability to keep track of whether the pattern has been found reachable
+/// during analysis. For this reason they cannot be cloned.
+/// A `DeconstructedPat` will almost always come from user input; the only exception are some
+/// `Wildcard`s introduced during specialization.
+///
+/// Note that the number of fields may not match the fields declared in the original struct/variant.
+/// This happens if a private or `non_exhaustive` field is uninhabited, because the code mustn't
+/// observe that it is uninhabited. In that case that field is not included in `fields`. Care must
+/// be taken when converting to/from `thir::Pat`.
+pub struct DeconstructedPat<'p, Cx: TypeCx> {
+ ctor: Constructor<Cx>,
+ fields: &'p [DeconstructedPat<'p, Cx>],
+ ty: Cx::Ty,
+ data: Cx::PatData,
+ /// Whether removing this arm would change the behavior of the match expression.
+ useful: Cell<bool>,
+}
+
+impl<'p, Cx: TypeCx> DeconstructedPat<'p, Cx> {
+ pub fn wildcard(ty: Cx::Ty, data: Cx::PatData) -> Self {
+ Self::new(Wildcard, &[], ty, data)
+ }
+
+ pub fn new(
+ ctor: Constructor<Cx>,
+ fields: &'p [DeconstructedPat<'p, Cx>],
+ ty: Cx::Ty,
+ data: Cx::PatData,
+ ) -> Self {
+ DeconstructedPat { ctor, fields, ty, data, useful: Cell::new(false) }
+ }
+
+ pub(crate) fn is_or_pat(&self) -> bool {
+ matches!(self.ctor, Or)
+ }
+ /// Expand this (possibly-nested) or-pattern into its alternatives.
+ pub(crate) fn flatten_or_pat(&self) -> SmallVec<[&Self; 1]> {
+ if self.is_or_pat() {
+ self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
+ } else {
+ smallvec![self]
+ }
+ }
+
+ pub fn ctor(&self) -> &Constructor<Cx> {
+ &self.ctor
+ }
+ pub fn ty(&self) -> Cx::Ty {
+ self.ty
+ }
+ pub fn data(&self) -> &Cx::PatData {
+ &self.data
+ }
+
+ pub fn iter_fields<'a>(
+ &'a self,
+ ) -> impl Iterator<Item = &'p DeconstructedPat<'p, Cx>> + Captures<'a> {
+ self.fields.iter()
+ }
+
+ /// Specialize this pattern with a constructor.
+ /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
+ pub(crate) fn specialize<'a>(
+ &self,
+ pcx: &PlaceCtxt<'a, 'p, Cx>,
+ other_ctor: &Constructor<Cx>,
+ ) -> SmallVec<[&'a DeconstructedPat<'p, Cx>; 2]> {
+ let wildcard_sub_tys = || {
+ let tys = pcx.ctor_sub_tys(other_ctor);
+ tys.iter()
+ .map(|ty| DeconstructedPat::wildcard(*ty, Cx::PatData::default()))
+ .map(|pat| pcx.mcx.wildcard_arena.alloc(pat) as &_)
+ .collect()
+ };
+ match (&self.ctor, other_ctor) {
+ // Return a wildcard for each field of `other_ctor`.
+ (Wildcard, _) => wildcard_sub_tys(),
+ // The only non-trivial case: two slices of different arity. `other_slice` is
+ // guaranteed to have a larger arity, so we fill the middle part with enough
+ // wildcards to reach the length of the new, larger slice.
+ (
+ &Slice(self_slice @ Slice { kind: SliceKind::VarLen(prefix, suffix), .. }),
+ &Slice(other_slice),
+ ) if self_slice.arity() != other_slice.arity() => {
+ // Start with a slice of wildcards of the appropriate length.
+ let mut fields: SmallVec<[_; 2]> = wildcard_sub_tys();
+ // Fill in the fields from both ends.
+ let new_arity = fields.len();
+ for i in 0..prefix {
+ fields[i] = &self.fields[i];
+ }
+ for i in 0..suffix {
+ fields[new_arity - 1 - i] = &self.fields[self.fields.len() - 1 - i];
+ }
+ fields
+ }
+ _ => self.fields.iter().collect(),
+ }
+ }
+
+ /// We keep track for each pattern if it was ever useful during the analysis. This is used with
+ /// `redundant_subpatterns` to report redundant subpatterns arising from or patterns.
+ pub(crate) fn set_useful(&self) {
+ self.useful.set(true)
+ }
+ pub(crate) fn is_useful(&self) -> bool {
+ if self.useful.get() {
+ true
+ } else if self.is_or_pat() && self.iter_fields().any(|f| f.is_useful()) {
+ // We always expand or patterns in the matrix, so we will never see the actual
+ // or-pattern (the one with constructor `Or`) in the column. As such, it will not be
+ // marked as useful itself, only its children will. We recover this information here.
+ self.set_useful();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Report the subpatterns that were not useful, if any.
+ pub(crate) fn redundant_subpatterns(&self) -> Vec<&Self> {
+ let mut subpats = Vec::new();
+ self.collect_redundant_subpatterns(&mut subpats);
+ subpats
+ }
+ fn collect_redundant_subpatterns<'a>(&'a self, subpats: &mut Vec<&'a Self>) {
+ // We don't look at subpatterns if we already reported the whole pattern as redundant.
+ if !self.is_useful() {
+ subpats.push(self);
+ } else {
+ for p in self.iter_fields() {
+ p.collect_redundant_subpatterns(subpats);
+ }
+ }
+ }
+}
+
+/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
+/// `Display` impl.
+impl<'p, Cx: TypeCx> fmt::Debug for DeconstructedPat<'p, Cx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ Cx::debug_pat(f, self)
+ }
+}
+
+/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
+/// purposes. As such they don't use interning and can be cloned.
+#[derive(Debug, Clone)]
+pub struct WitnessPat<Cx: TypeCx> {
+ ctor: Constructor<Cx>,
+ pub(crate) fields: Vec<WitnessPat<Cx>>,
+ ty: Cx::Ty,
+}
+
+impl<Cx: TypeCx> WitnessPat<Cx> {
+ pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self {
+ Self { ctor, fields, ty }
+ }
+ pub(crate) fn wildcard(ty: Cx::Ty) -> Self {
+ Self::new(Wildcard, Vec::new(), ty)
+ }
+
+ /// Construct a pattern that matches everything that starts with this constructor.
+ /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
+ /// `Some(_)`.
+ pub(crate) fn wild_from_ctor(pcx: &PlaceCtxt<'_, '_, Cx>, ctor: Constructor<Cx>) -> Self {
+ let field_tys = pcx.ctor_sub_tys(&ctor);
+ let fields = field_tys.iter().map(|ty| Self::wildcard(*ty)).collect();
+ Self::new(ctor, fields, pcx.ty)
+ }
+
+ pub fn ctor(&self) -> &Constructor<Cx> {
+ &self.ctor
+ }
+ pub fn ty(&self) -> Cx::Ty {
+ self.ty
+ }
+
+ pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<Cx>> {
+ self.fields.iter()
+ }
+}
diff --git a/compiler/rustc_pattern_analysis/src/rustc.rs b/compiler/rustc_pattern_analysis/src/rustc.rs
new file mode 100644
index 000000000..65c90aa9f
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/rustc.rs
@@ -0,0 +1,920 @@
+use std::fmt;
+use std::iter::once;
+
+use rustc_arena::{DroplessArena, TypedArena};
+use rustc_data_structures::captures::Captures;
+use rustc_hir::def_id::DefId;
+use rustc_hir::HirId;
+use rustc_index::Idx;
+use rustc_index::IndexVec;
+use rustc_middle::middle::stability::EvalResult;
+use rustc_middle::mir::interpret::Scalar;
+use rustc_middle::mir::{self, Const};
+use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
+use rustc_middle::ty::layout::IntegerExt;
+use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
+use smallvec::SmallVec;
+
+use crate::constructor::{
+ IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility,
+};
+use crate::TypeCx;
+
+use crate::constructor::Constructor::*;
+
+// Re-export rustc-specific versions of all these types.
+pub type Constructor<'p, 'tcx> = crate::constructor::Constructor<RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type ConstructorSet<'p, 'tcx> =
+ crate::constructor::ConstructorSet<RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type DeconstructedPat<'p, 'tcx> =
+ crate::pat::DeconstructedPat<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type MatchArm<'p, 'tcx> = crate::MatchArm<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type MatchCtxt<'a, 'p, 'tcx> = crate::MatchCtxt<'a, 'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub(crate) type PlaceCtxt<'a, 'p, 'tcx> =
+ crate::usefulness::PlaceCtxt<'a, 'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub(crate) type SplitConstructorSet<'p, 'tcx> =
+ crate::constructor::SplitConstructorSet<RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type Usefulness<'p, 'tcx> = crate::usefulness::Usefulness<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type UsefulnessReport<'p, 'tcx> =
+ crate::usefulness::UsefulnessReport<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type WitnessPat<'p, 'tcx> = crate::pat::WitnessPat<RustcMatchCheckCtxt<'p, 'tcx>>;
+
+#[derive(Clone)]
+pub struct RustcMatchCheckCtxt<'p, 'tcx> {
+ pub tcx: TyCtxt<'tcx>,
+ /// The module in which the match occurs. This is necessary for
+ /// checking inhabited-ness of types because whether a type is (visibly)
+ /// inhabited can depend on whether it was defined in the current module or
+ /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
+ /// outside its module and should not be matchable with an empty match statement.
+ pub module: DefId,
+ pub param_env: ty::ParamEnv<'tcx>,
+ pub pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
+ pub dropless_arena: &'p DroplessArena,
+ /// Lint level at the match.
+ pub match_lint_level: HirId,
+ /// The span of the whole match, if applicable.
+ pub whole_match_span: Option<Span>,
+ /// Span of the scrutinee.
+ pub scrut_span: Span,
+ /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
+ pub refutable: bool,
+ /// Whether the data at the scrutinee is known to be valid. This is false if the scrutinee comes
+ /// from a union field, a pointer deref, or a reference deref (pending opsem decisions).
+ pub known_valid_scrutinee: bool,
+}
+
+impl<'p, 'tcx> fmt::Debug for RustcMatchCheckCtxt<'p, 'tcx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("RustcMatchCheckCtxt").finish()
+ }
+}
+
+impl<'p, 'tcx> RustcMatchCheckCtxt<'p, 'tcx> {
+ pub(crate) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
+ !ty.is_inhabited_from(self.tcx, self.module, self.param_env)
+ }
+
+ /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
+ pub fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
+ match ty.kind() {
+ ty::Adt(def, ..) => {
+ def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
+ }
+ _ => false,
+ }
+ }
+
+ /// Whether the range denotes the fictitious values before `isize::MIN` or after
+ /// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
+ pub fn is_range_beyond_boundaries(&self, range: &IntRange, ty: Ty<'tcx>) -> bool {
+ ty.is_ptr_sized_integral() && {
+ // The two invalid ranges are `NegInfinity..isize::MIN` (represented as
+ // `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `hoist_pat_range_bdy`
+ // converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `range.lo`
+ // otherwise.
+ let lo = self.hoist_pat_range_bdy(range.lo, ty);
+ matches!(lo, PatRangeBoundary::PosInfinity)
+ || matches!(range.hi, MaybeInfiniteInt::Finite(0))
+ }
+ }
+
+ // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
+ // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
+ // This lists the fields we keep along with their types.
+ pub(crate) fn list_variant_nonhidden_fields<'a>(
+ &'a self,
+ ty: Ty<'tcx>,
+ variant: &'a VariantDef,
+ ) -> impl Iterator<Item = (FieldIdx, Ty<'tcx>)> + Captures<'p> + Captures<'a> {
+ let cx = self;
+ let ty::Adt(adt, args) = ty.kind() else { bug!() };
+ // Whether we must not match the fields of this variant exhaustively.
+ let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
+
+ variant.fields.iter().enumerate().filter_map(move |(i, field)| {
+ let ty = field.ty(cx.tcx, args);
+ // `field.ty()` doesn't normalize after substituting.
+ let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
+ let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
+ let is_uninhabited = cx.tcx.features().exhaustive_patterns && cx.is_uninhabited(ty);
+
+ if is_uninhabited && (!is_visible || is_non_exhaustive) {
+ None
+ } else {
+ Some((FieldIdx::new(i), ty))
+ }
+ })
+ }
+
+ pub(crate) fn variant_index_for_adt(
+ ctor: &Constructor<'p, 'tcx>,
+ adt: ty::AdtDef<'tcx>,
+ ) -> VariantIdx {
+ match *ctor {
+ Variant(idx) => idx,
+ Struct | UnionField => {
+ assert!(!adt.is_enum());
+ FIRST_VARIANT
+ }
+ _ => bug!("bad constructor {:?} for adt {:?}", ctor, adt),
+ }
+ }
+
+ /// Returns the types of the fields for a given constructor. The result must have a length of
+ /// `ctor.arity()`.
+ #[instrument(level = "trace", skip(self))]
+ pub(crate) fn ctor_sub_tys(&self, ctor: &Constructor<'p, 'tcx>, ty: Ty<'tcx>) -> &[Ty<'tcx>] {
+ let cx = self;
+ match ctor {
+ Struct | Variant(_) | UnionField => match ty.kind() {
+ ty::Tuple(fs) => cx.dropless_arena.alloc_from_iter(fs.iter()),
+ ty::Adt(adt, args) => {
+ if adt.is_box() {
+ // The only legal patterns of type `Box` (outside `std`) are `_` and box
+ // patterns. If we're here we can assume this is a box pattern.
+ cx.dropless_arena.alloc_from_iter(once(args.type_at(0)))
+ } else {
+ let variant =
+ &adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
+ let tys = cx.list_variant_nonhidden_fields(ty, variant).map(|(_, ty)| ty);
+ cx.dropless_arena.alloc_from_iter(tys)
+ }
+ }
+ _ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
+ },
+ Ref => match ty.kind() {
+ ty::Ref(_, rty, _) => cx.dropless_arena.alloc_from_iter(once(*rty)),
+ _ => bug!("Unexpected type for `Ref` constructor: {ty:?}"),
+ },
+ Slice(slice) => match *ty.kind() {
+ ty::Slice(ty) | ty::Array(ty, _) => {
+ let arity = slice.arity();
+ cx.dropless_arena.alloc_from_iter((0..arity).map(|_| ty))
+ }
+ _ => bug!("bad slice pattern {:?} {:?}", ctor, ty),
+ },
+ Bool(..)
+ | IntRange(..)
+ | F32Range(..)
+ | F64Range(..)
+ | Str(..)
+ | Opaque(..)
+ | NonExhaustive
+ | Hidden
+ | Missing { .. }
+ | Wildcard => &[],
+ Or => {
+ bug!("called `Fields::wildcards` on an `Or` ctor")
+ }
+ }
+ }
+
+ /// The number of fields for this constructor.
+ pub(crate) fn ctor_arity(&self, ctor: &Constructor<'p, 'tcx>, ty: Ty<'tcx>) -> usize {
+ match ctor {
+ Struct | Variant(_) | UnionField => match ty.kind() {
+ ty::Tuple(fs) => fs.len(),
+ ty::Adt(adt, ..) => {
+ if adt.is_box() {
+ // The only legal patterns of type `Box` (outside `std`) are `_` and box
+ // patterns. If we're here we can assume this is a box pattern.
+ 1
+ } else {
+ let variant =
+ &adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
+ self.list_variant_nonhidden_fields(ty, variant).count()
+ }
+ }
+ _ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
+ },
+ Ref => 1,
+ Slice(slice) => slice.arity(),
+ Bool(..)
+ | IntRange(..)
+ | F32Range(..)
+ | F64Range(..)
+ | Str(..)
+ | Opaque(..)
+ | NonExhaustive
+ | Hidden
+ | Missing { .. }
+ | Wildcard => 0,
+ Or => bug!("The `Or` constructor doesn't have a fixed arity"),
+ }
+ }
+
+ /// Creates a set that represents all the constructors of `ty`.
+ ///
+ /// See [`crate::constructor`] for considerations of emptiness.
+ #[instrument(level = "debug", skip(self), ret)]
+ pub fn ctors_for_ty(&self, ty: Ty<'tcx>) -> ConstructorSet<'p, 'tcx> {
+ let cx = self;
+ let make_uint_range = |start, end| {
+ IntRange::from_range(
+ MaybeInfiniteInt::new_finite_uint(start),
+ MaybeInfiniteInt::new_finite_uint(end),
+ RangeEnd::Included,
+ )
+ };
+ // This determines the set of all possible constructors for the type `ty`. For numbers,
+ // arrays and slices we use ranges and variable-length slices when appropriate.
+ match ty.kind() {
+ ty::Bool => ConstructorSet::Bool,
+ ty::Char => {
+ // The valid Unicode Scalar Value ranges.
+ ConstructorSet::Integers {
+ range_1: make_uint_range('\u{0000}' as u128, '\u{D7FF}' as u128),
+ range_2: Some(make_uint_range('\u{E000}' as u128, '\u{10FFFF}' as u128)),
+ }
+ }
+ &ty::Int(ity) => {
+ let range = if ty.is_ptr_sized_integral() {
+ // The min/max values of `isize` are not allowed to be observed.
+ IntRange {
+ lo: MaybeInfiniteInt::NegInfinity,
+ hi: MaybeInfiniteInt::PosInfinity,
+ }
+ } else {
+ let size = Integer::from_int_ty(&cx.tcx, ity).size().bits();
+ let min = 1u128 << (size - 1);
+ let max = min - 1;
+ let min = MaybeInfiniteInt::new_finite_int(min, size);
+ let max = MaybeInfiniteInt::new_finite_int(max, size);
+ IntRange::from_range(min, max, RangeEnd::Included)
+ };
+ ConstructorSet::Integers { range_1: range, range_2: None }
+ }
+ &ty::Uint(uty) => {
+ let range = if ty.is_ptr_sized_integral() {
+ // The max value of `usize` is not allowed to be observed.
+ let lo = MaybeInfiniteInt::new_finite_uint(0);
+ IntRange { lo, hi: MaybeInfiniteInt::PosInfinity }
+ } else {
+ let size = Integer::from_uint_ty(&cx.tcx, uty).size();
+ let max = size.truncate(u128::MAX);
+ make_uint_range(0, max)
+ };
+ ConstructorSet::Integers { range_1: range, range_2: None }
+ }
+ ty::Slice(sub_ty) => ConstructorSet::Slice {
+ array_len: None,
+ subtype_is_empty: cx.is_uninhabited(*sub_ty),
+ },
+ ty::Array(sub_ty, len) => {
+ // We treat arrays of a constant but unknown length like slices.
+ ConstructorSet::Slice {
+ array_len: len.try_eval_target_usize(cx.tcx, cx.param_env).map(|l| l as usize),
+ subtype_is_empty: cx.is_uninhabited(*sub_ty),
+ }
+ }
+ ty::Adt(def, args) if def.is_enum() => {
+ let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty);
+ if def.variants().is_empty() && !is_declared_nonexhaustive {
+ ConstructorSet::NoConstructors
+ } else {
+ let mut variants =
+ IndexVec::from_elem(VariantVisibility::Visible, def.variants());
+ for (idx, v) in def.variants().iter_enumerated() {
+ let variant_def_id = def.variant(idx).def_id;
+ // Visibly uninhabited variants.
+ let is_inhabited = v
+ .inhabited_predicate(cx.tcx, *def)
+ .instantiate(cx.tcx, args)
+ .apply(cx.tcx, cx.param_env, cx.module);
+ // Variants that depend on a disabled unstable feature.
+ let is_unstable = matches!(
+ cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
+ EvalResult::Deny { .. }
+ );
+ // Foreign `#[doc(hidden)]` variants.
+ let is_doc_hidden =
+ cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
+ let visibility = if !is_inhabited {
+ // FIXME: handle empty+hidden
+ VariantVisibility::Empty
+ } else if is_unstable || is_doc_hidden {
+ VariantVisibility::Hidden
+ } else {
+ VariantVisibility::Visible
+ };
+ variants[idx] = visibility;
+ }
+
+ ConstructorSet::Variants { variants, non_exhaustive: is_declared_nonexhaustive }
+ }
+ }
+ ty::Adt(def, _) if def.is_union() => ConstructorSet::Union,
+ ty::Adt(..) | ty::Tuple(..) => ConstructorSet::Struct { empty: cx.is_uninhabited(ty) },
+ ty::Ref(..) => ConstructorSet::Ref,
+ ty::Never => ConstructorSet::NoConstructors,
+ // This type is one for which we cannot list constructors, like `str` or `f64`.
+ // FIXME(Nadrieril): which of these are actually allowed?
+ ty::Float(_)
+ | ty::Str
+ | ty::Foreign(_)
+ | ty::RawPtr(_)
+ | ty::FnDef(_, _)
+ | ty::FnPtr(_)
+ | ty::Dynamic(_, _, _)
+ | ty::Closure(_, _)
+ | ty::Coroutine(_, _, _)
+ | ty::Alias(_, _)
+ | ty::Param(_)
+ | ty::Error(_) => ConstructorSet::Unlistable,
+ ty::CoroutineWitness(_, _) | ty::Bound(_, _) | ty::Placeholder(_) | ty::Infer(_) => {
+ bug!("Encountered unexpected type in `ConstructorSet::for_ty`: {ty:?}")
+ }
+ }
+ }
+
+ pub(crate) fn lower_pat_range_bdy(
+ &self,
+ bdy: PatRangeBoundary<'tcx>,
+ ty: Ty<'tcx>,
+ ) -> MaybeInfiniteInt {
+ match bdy {
+ PatRangeBoundary::NegInfinity => MaybeInfiniteInt::NegInfinity,
+ PatRangeBoundary::Finite(value) => {
+ let bits = value.eval_bits(self.tcx, self.param_env);
+ match *ty.kind() {
+ ty::Int(ity) => {
+ let size = Integer::from_int_ty(&self.tcx, ity).size().bits();
+ MaybeInfiniteInt::new_finite_int(bits, size)
+ }
+ _ => MaybeInfiniteInt::new_finite_uint(bits),
+ }
+ }
+ PatRangeBoundary::PosInfinity => MaybeInfiniteInt::PosInfinity,
+ }
+ }
+
+ /// Note: the input patterns must have been lowered through
+ /// `rustc_mir_build::thir::pattern::check_match::MatchVisitor::lower_pattern`.
+ pub fn lower_pat(&self, pat: &Pat<'tcx>) -> DeconstructedPat<'p, 'tcx> {
+ let singleton = |pat| std::slice::from_ref(self.pattern_arena.alloc(pat));
+ let cx = self;
+ let ctor;
+ let fields: &[_];
+ match &pat.kind {
+ PatKind::AscribeUserType { subpattern, .. }
+ | PatKind::InlineConstant { subpattern, .. } => return self.lower_pat(subpattern),
+ PatKind::Binding { subpattern: Some(subpat), .. } => return self.lower_pat(subpat),
+ PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
+ ctor = Wildcard;
+ fields = &[];
+ }
+ PatKind::Deref { subpattern } => {
+ fields = singleton(self.lower_pat(subpattern));
+ ctor = match pat.ty.kind() {
+ // This is a box pattern.
+ ty::Adt(adt, ..) if adt.is_box() => Struct,
+ ty::Ref(..) => Ref,
+ _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
+ };
+ }
+ PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
+ match pat.ty.kind() {
+ ty::Tuple(fs) => {
+ ctor = Struct;
+ let mut wilds: SmallVec<[_; 2]> =
+ fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
+ for pat in subpatterns {
+ wilds[pat.field.index()] = self.lower_pat(&pat.pattern);
+ }
+ fields = cx.pattern_arena.alloc_from_iter(wilds);
+ }
+ ty::Adt(adt, args) if adt.is_box() => {
+ // The only legal patterns of type `Box` (outside `std`) are `_` and box
+ // patterns. If we're here we can assume this is a box pattern.
+ // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
+ // _)` or a box pattern. As a hack to avoid an ICE with the former, we
+ // ignore other fields than the first one. This will trigger an error later
+ // anyway.
+ // See https://github.com/rust-lang/rust/issues/82772,
+ // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
+ // The problem is that we can't know from the type whether we'll match
+ // normally or through box-patterns. We'll have to figure out a proper
+ // solution when we introduce generalized deref patterns. Also need to
+ // prevent mixing of those two options.
+ let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
+ let pat = if let Some(pat) = pattern {
+ self.lower_pat(&pat.pattern)
+ } else {
+ DeconstructedPat::wildcard(args.type_at(0), pat.span)
+ };
+ ctor = Struct;
+ fields = singleton(pat);
+ }
+ ty::Adt(adt, _) => {
+ ctor = match pat.kind {
+ PatKind::Leaf { .. } if adt.is_union() => UnionField,
+ PatKind::Leaf { .. } => Struct,
+ PatKind::Variant { variant_index, .. } => Variant(variant_index),
+ _ => bug!(),
+ };
+ let variant =
+ &adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
+ // For each field in the variant, we store the relevant index into `self.fields` if any.
+ let mut field_id_to_id: Vec<Option<usize>> =
+ (0..variant.fields.len()).map(|_| None).collect();
+ let tys = cx
+ .list_variant_nonhidden_fields(pat.ty, variant)
+ .enumerate()
+ .map(|(i, (field, ty))| {
+ field_id_to_id[field.index()] = Some(i);
+ ty
+ });
+ let mut wilds: SmallVec<[_; 2]> =
+ tys.map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
+ for pat in subpatterns {
+ if let Some(i) = field_id_to_id[pat.field.index()] {
+ wilds[i] = self.lower_pat(&pat.pattern);
+ }
+ }
+ fields = cx.pattern_arena.alloc_from_iter(wilds);
+ }
+ _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
+ }
+ }
+ PatKind::Constant { value } => {
+ match pat.ty.kind() {
+ ty::Bool => {
+ ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
+ Some(b) => Bool(b),
+ None => Opaque(OpaqueId::new()),
+ };
+ fields = &[];
+ }
+ ty::Char | ty::Int(_) | ty::Uint(_) => {
+ ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
+ Some(bits) => {
+ let x = match *pat.ty.kind() {
+ ty::Int(ity) => {
+ let size = Integer::from_int_ty(&cx.tcx, ity).size().bits();
+ MaybeInfiniteInt::new_finite_int(bits, size)
+ }
+ _ => MaybeInfiniteInt::new_finite_uint(bits),
+ };
+ IntRange(IntRange::from_singleton(x))
+ }
+ None => Opaque(OpaqueId::new()),
+ };
+ fields = &[];
+ }
+ ty::Float(ty::FloatTy::F32) => {
+ ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
+ Some(bits) => {
+ use rustc_apfloat::Float;
+ let value = rustc_apfloat::ieee::Single::from_bits(bits);
+ F32Range(value, value, RangeEnd::Included)
+ }
+ None => Opaque(OpaqueId::new()),
+ };
+ fields = &[];
+ }
+ ty::Float(ty::FloatTy::F64) => {
+ ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
+ Some(bits) => {
+ use rustc_apfloat::Float;
+ let value = rustc_apfloat::ieee::Double::from_bits(bits);
+ F64Range(value, value, RangeEnd::Included)
+ }
+ None => Opaque(OpaqueId::new()),
+ };
+ fields = &[];
+ }
+ ty::Ref(_, t, _) if t.is_str() => {
+ // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
+ // with other `Deref` patterns. This could have been done in `const_to_pat`,
+ // but that causes issues with the rest of the matching code.
+ // So here, the constructor for a `"foo"` pattern is `&` (represented by
+ // `Ref`), and has one field. That field has constructor `Str(value)` and no
+ // subfields.
+ // Note: `t` is `str`, not `&str`.
+ let subpattern = DeconstructedPat::new(Str(*value), &[], *t, pat.span);
+ ctor = Ref;
+ fields = singleton(subpattern)
+ }
+ // All constants that can be structurally matched have already been expanded
+ // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
+ // opaque.
+ _ => {
+ ctor = Opaque(OpaqueId::new());
+ fields = &[];
+ }
+ }
+ }
+ PatKind::Range(patrange) => {
+ let PatRange { lo, hi, end, .. } = patrange.as_ref();
+ let end = match end {
+ rustc_hir::RangeEnd::Included => RangeEnd::Included,
+ rustc_hir::RangeEnd::Excluded => RangeEnd::Excluded,
+ };
+ let ty = pat.ty;
+ ctor = match ty.kind() {
+ ty::Char | ty::Int(_) | ty::Uint(_) => {
+ let lo = cx.lower_pat_range_bdy(*lo, ty);
+ let hi = cx.lower_pat_range_bdy(*hi, ty);
+ IntRange(IntRange::from_range(lo, hi, end))
+ }
+ ty::Float(fty) => {
+ use rustc_apfloat::Float;
+ let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
+ let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
+ match fty {
+ ty::FloatTy::F32 => {
+ use rustc_apfloat::ieee::Single;
+ let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
+ let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
+ F32Range(lo, hi, end)
+ }
+ ty::FloatTy::F64 => {
+ use rustc_apfloat::ieee::Double;
+ let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
+ let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
+ F64Range(lo, hi, end)
+ }
+ }
+ }
+ _ => bug!("invalid type for range pattern: {}", ty),
+ };
+ fields = &[];
+ }
+ PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
+ let array_len = match pat.ty.kind() {
+ ty::Array(_, length) => {
+ Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
+ }
+ ty::Slice(_) => None,
+ _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
+ };
+ let kind = if slice.is_some() {
+ SliceKind::VarLen(prefix.len(), suffix.len())
+ } else {
+ SliceKind::FixedLen(prefix.len() + suffix.len())
+ };
+ ctor = Slice(Slice::new(array_len, kind));
+ fields = cx.pattern_arena.alloc_from_iter(
+ prefix.iter().chain(suffix.iter()).map(|p| self.lower_pat(&*p)),
+ )
+ }
+ PatKind::Or { .. } => {
+ ctor = Or;
+ let pats = expand_or_pat(pat);
+ fields =
+ cx.pattern_arena.alloc_from_iter(pats.into_iter().map(|p| self.lower_pat(p)))
+ }
+ PatKind::Never => {
+ // FIXME(never_patterns): handle `!` in exhaustiveness. This is a sane default
+ // in the meantime.
+ ctor = Wildcard;
+ fields = &[];
+ }
+ PatKind::Error(_) => {
+ ctor = Opaque(OpaqueId::new());
+ fields = &[];
+ }
+ }
+ DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
+ }
+
+ /// Convert back to a `thir::PatRangeBoundary` for diagnostic purposes.
+ /// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
+ /// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
+ /// `PosInfinity`.
+ pub(crate) fn hoist_pat_range_bdy(
+ &self,
+ miint: MaybeInfiniteInt,
+ ty: Ty<'tcx>,
+ ) -> PatRangeBoundary<'tcx> {
+ use MaybeInfiniteInt::*;
+ let tcx = self.tcx;
+ match miint {
+ NegInfinity => PatRangeBoundary::NegInfinity,
+ Finite(_) => {
+ let size = ty.primitive_size(tcx);
+ let bits = match *ty.kind() {
+ ty::Int(_) => miint.as_finite_int(size.bits()).unwrap(),
+ _ => miint.as_finite_uint().unwrap(),
+ };
+ match Scalar::try_from_uint(bits, size) {
+ Some(scalar) => {
+ let value = mir::Const::from_scalar(tcx, scalar, ty);
+ PatRangeBoundary::Finite(value)
+ }
+ // The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value
+ // for a type, the problem isn't that the value is too small. So it must be too
+ // large.
+ None => PatRangeBoundary::PosInfinity,
+ }
+ }
+ JustAfterMax | PosInfinity => PatRangeBoundary::PosInfinity,
+ }
+ }
+
+ /// Convert back to a `thir::Pat` for diagnostic purposes.
+ pub(crate) fn hoist_pat_range(&self, range: &IntRange, ty: Ty<'tcx>) -> Pat<'tcx> {
+ use MaybeInfiniteInt::*;
+ let cx = self;
+ let kind = if matches!((range.lo, range.hi), (NegInfinity, PosInfinity)) {
+ PatKind::Wild
+ } else if range.is_singleton() {
+ let lo = cx.hoist_pat_range_bdy(range.lo, ty);
+ let value = lo.as_finite().unwrap();
+ PatKind::Constant { value }
+ } else {
+ // We convert to an inclusive range for diagnostics.
+ let mut end = rustc_hir::RangeEnd::Included;
+ let mut lo = cx.hoist_pat_range_bdy(range.lo, ty);
+ if matches!(lo, PatRangeBoundary::PosInfinity) {
+ // The only reason to get `PosInfinity` here is the special case where
+ // `hoist_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
+ // fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
+ // this). We show this to the user as `usize::MAX..` which is slightly incorrect but
+ // probably clear enough.
+ let c = ty.numeric_max_val(cx.tcx).unwrap();
+ let value = mir::Const::from_ty_const(c, cx.tcx);
+ lo = PatRangeBoundary::Finite(value);
+ }
+ let hi = if matches!(range.hi, Finite(0)) {
+ // The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
+ end = rustc_hir::RangeEnd::Excluded;
+ range.hi
+ } else {
+ range.hi.minus_one()
+ };
+ let hi = cx.hoist_pat_range_bdy(hi, ty);
+ PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
+ };
+
+ Pat { ty, span: DUMMY_SP, kind }
+ }
+ /// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
+ /// appear in diagnostics, like float ranges.
+ pub fn hoist_witness_pat(&self, pat: &WitnessPat<'p, 'tcx>) -> Pat<'tcx> {
+ let cx = self;
+ let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
+ let mut subpatterns = pat.iter_fields().map(|p| Box::new(cx.hoist_witness_pat(p)));
+ let kind = match pat.ctor() {
+ Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
+ IntRange(range) => return self.hoist_pat_range(range, pat.ty()),
+ Struct | Variant(_) | UnionField => match pat.ty().kind() {
+ ty::Tuple(..) => PatKind::Leaf {
+ subpatterns: subpatterns
+ .enumerate()
+ .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
+ .collect(),
+ },
+ ty::Adt(adt_def, _) if adt_def.is_box() => {
+ // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
+ // of `std`). So this branch is only reachable when the feature is enabled and
+ // the pattern is a box pattern.
+ PatKind::Deref { subpattern: subpatterns.next().unwrap() }
+ }
+ ty::Adt(adt_def, args) => {
+ let variant_index =
+ RustcMatchCheckCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
+ let variant = &adt_def.variant(variant_index);
+ let subpatterns = cx
+ .list_variant_nonhidden_fields(pat.ty(), variant)
+ .zip(subpatterns)
+ .map(|((field, _ty), pattern)| FieldPat { field, pattern })
+ .collect();
+
+ if adt_def.is_enum() {
+ PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
+ } else {
+ PatKind::Leaf { subpatterns }
+ }
+ }
+ _ => bug!("unexpected ctor for type {:?} {:?}", pat.ctor(), pat.ty()),
+ },
+ // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+ // be careful to reconstruct the correct constant pattern here. However a string
+ // literal pattern will never be reported as a non-exhaustiveness witness, so we
+ // ignore this issue.
+ Ref => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
+ Slice(slice) => {
+ match slice.kind {
+ SliceKind::FixedLen(_) => PatKind::Slice {
+ prefix: subpatterns.collect(),
+ slice: None,
+ suffix: Box::new([]),
+ },
+ SliceKind::VarLen(prefix, _) => {
+ let mut subpatterns = subpatterns.peekable();
+ let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
+ if slice.array_len.is_some() {
+ // Improves diagnostics a bit: if the type is a known-size array, instead
+ // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
+ // This is incorrect if the size is not known, since `[_, ..]` captures
+ // arrays of lengths `>= 1` whereas `[..]` captures any length.
+ while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
+ prefix.pop();
+ }
+ while subpatterns.peek().is_some()
+ && is_wildcard(subpatterns.peek().unwrap())
+ {
+ subpatterns.next();
+ }
+ }
+ let suffix: Box<[_]> = subpatterns.collect();
+ let wild = Pat::wildcard_from_ty(pat.ty());
+ PatKind::Slice {
+ prefix: prefix.into_boxed_slice(),
+ slice: Some(Box::new(wild)),
+ suffix,
+ }
+ }
+ }
+ }
+ &Str(value) => PatKind::Constant { value },
+ Wildcard | NonExhaustive | Hidden => PatKind::Wild,
+ Missing { .. } => bug!(
+ "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
+ `Missing` should have been processed in `apply_constructors`"
+ ),
+ F32Range(..) | F64Range(..) | Opaque(..) | Or => {
+ bug!("can't convert to pattern: {:?}", pat)
+ }
+ };
+
+ Pat { ty: pat.ty(), span: DUMMY_SP, kind }
+ }
+
+ /// Best-effort `Debug` implementation.
+ pub(crate) fn debug_pat(
+ f: &mut fmt::Formatter<'_>,
+ pat: &crate::pat::DeconstructedPat<'_, Self>,
+ ) -> fmt::Result {
+ let mut first = true;
+ let mut start_or_continue = |s| {
+ if first {
+ first = false;
+ ""
+ } else {
+ s
+ }
+ };
+ let mut start_or_comma = || start_or_continue(", ");
+
+ match pat.ctor() {
+ Struct | Variant(_) | UnionField => match pat.ty().kind() {
+ ty::Adt(def, _) if def.is_box() => {
+ // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
+ // of `std`). So this branch is only reachable when the feature is enabled and
+ // the pattern is a box pattern.
+ let subpattern = pat.iter_fields().next().unwrap();
+ write!(f, "box {subpattern:?}")
+ }
+ ty::Adt(..) | ty::Tuple(..) => {
+ let variant =
+ match pat.ty().kind() {
+ ty::Adt(adt, _) => Some(adt.variant(
+ RustcMatchCheckCtxt::variant_index_for_adt(pat.ctor(), *adt),
+ )),
+ ty::Tuple(_) => None,
+ _ => unreachable!(),
+ };
+
+ if let Some(variant) = variant {
+ write!(f, "{}", variant.name)?;
+ }
+
+ // Without `cx`, we can't know which field corresponds to which, so we can't
+ // get the names of the fields. Instead we just display everything as a tuple
+ // struct, which should be good enough.
+ write!(f, "(")?;
+ for p in pat.iter_fields() {
+ write!(f, "{}", start_or_comma())?;
+ write!(f, "{p:?}")?;
+ }
+ write!(f, ")")
+ }
+ _ => write!(f, "_"),
+ },
+ // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+ // be careful to detect strings here. However a string literal pattern will never
+ // be reported as a non-exhaustiveness witness, so we can ignore this issue.
+ Ref => {
+ let subpattern = pat.iter_fields().next().unwrap();
+ write!(f, "&{:?}", subpattern)
+ }
+ Slice(slice) => {
+ let mut subpatterns = pat.iter_fields();
+ write!(f, "[")?;
+ match slice.kind {
+ SliceKind::FixedLen(_) => {
+ for p in subpatterns {
+ write!(f, "{}{:?}", start_or_comma(), p)?;
+ }
+ }
+ SliceKind::VarLen(prefix_len, _) => {
+ for p in subpatterns.by_ref().take(prefix_len) {
+ write!(f, "{}{:?}", start_or_comma(), p)?;
+ }
+ write!(f, "{}", start_or_comma())?;
+ write!(f, "..")?;
+ for p in subpatterns {
+ write!(f, "{}{:?}", start_or_comma(), p)?;
+ }
+ }
+ }
+ write!(f, "]")
+ }
+ Bool(b) => write!(f, "{b}"),
+ // Best-effort, will render signed ranges incorrectly
+ IntRange(range) => write!(f, "{range:?}"),
+ F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
+ F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
+ Str(value) => write!(f, "{value}"),
+ Opaque(..) => write!(f, "<constant pattern>"),
+ Or => {
+ for pat in pat.iter_fields() {
+ write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
+ }
+ Ok(())
+ }
+ Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", pat.ty()),
+ }
+ }
+}
+
+impl<'p, 'tcx> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
+ type Ty = Ty<'tcx>;
+ type VariantIdx = VariantIdx;
+ type StrLit = Const<'tcx>;
+ type ArmData = HirId;
+ type PatData = Span;
+
+ fn is_exhaustive_patterns_feature_on(&self) -> bool {
+ self.tcx.features().exhaustive_patterns
+ }
+ fn is_opaque_ty(ty: Self::Ty) -> bool {
+ matches!(ty.kind(), ty::Alias(ty::Opaque, ..))
+ }
+
+ fn ctor_arity(&self, ctor: &crate::constructor::Constructor<Self>, ty: Self::Ty) -> usize {
+ self.ctor_arity(ctor, ty)
+ }
+ fn ctor_sub_tys(
+ &self,
+ ctor: &crate::constructor::Constructor<Self>,
+ ty: Self::Ty,
+ ) -> &[Self::Ty] {
+ self.ctor_sub_tys(ctor, ty)
+ }
+ fn ctors_for_ty(&self, ty: Self::Ty) -> crate::constructor::ConstructorSet<Self> {
+ self.ctors_for_ty(ty)
+ }
+
+ fn debug_pat(
+ f: &mut fmt::Formatter<'_>,
+ pat: &crate::pat::DeconstructedPat<'_, Self>,
+ ) -> fmt::Result {
+ Self::debug_pat(f, pat)
+ }
+ fn bug(&self, fmt: fmt::Arguments<'_>) -> ! {
+ span_bug!(self.scrut_span, "{}", fmt)
+ }
+}
+
+/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
+fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
+ fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
+ if let PatKind::Or { pats } = &pat.kind {
+ for pat in pats.iter() {
+ expand(pat, vec);
+ }
+ } else {
+ vec.push(pat)
+ }
+ }
+
+ let mut pats = Vec::new();
+ expand(pat, &mut pats);
+ pats
+}
diff --git a/compiler/rustc_pattern_analysis/src/usefulness.rs b/compiler/rustc_pattern_analysis/src/usefulness.rs
new file mode 100644
index 000000000..a9e74eff8
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/usefulness.rs
@@ -0,0 +1,1508 @@
+//! # Match exhaustiveness and redundancy algorithm
+//!
+//! This file contains the logic for exhaustiveness and usefulness checking for pattern-matching.
+//! Specifically, given a list of patterns in a match, we can tell whether:
+//! (a) a given pattern is redundant
+//! (b) the patterns cover every possible value for the type (exhaustiveness)
+//!
+//! The algorithm implemented here is inspired from the one described in [this
+//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however changed it in
+//! various ways to accommodate the variety of patterns that Rust supports. We thus explain our
+//! version here, without being as precise.
+//!
+//! Fun fact: computing exhaustiveness is NP-complete, because we can encode a SAT problem as an
+//! exhaustiveness problem. See [here](https://niedzejkob.p4.team/rust-np) for the fun details.
+//!
+//!
+//! # Summary
+//!
+//! The algorithm is given as input a list of patterns, one for each arm of a match, and computes
+//! the following:
+//! - a set of values that match none of the patterns (if any),
+//! - for each subpattern (taking into account or-patterns), whether removing it would change
+//! anything about how the match executes, i.e. whether it is useful/not redundant.
+//!
+//! To a first approximation, the algorithm works by exploring all possible values for the type
+//! being matched on, and determining which arm(s) catch which value. To make this tractable we
+//! cleverly group together values, as we'll see below.
+//!
+//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
+//! usefulness for each subpattern and exhaustiveness for the whole match.
+//!
+//! In this page we explain the necessary concepts to understand how the algorithm works.
+//!
+//!
+//! # Usefulness
+//!
+//! The central concept of this file is the notion of "usefulness". Given some patterns `p_1 ..
+//! p_n`, a pattern `q` is said to be *useful* if there is a value that is matched by `q` and by
+//! none of the `p_i`. We write `usefulness(p_1 .. p_n, q)` for a function that returns a list of
+//! such values. The aim of this file is to compute it efficiently.
+//!
+//! This is enough to compute usefulness: a pattern in a `match` expression is redundant iff it is
+//! not useful w.r.t. the patterns above it:
+//! ```compile_fail,E0004
+//! # #![feature(exclusive_range_pattern)]
+//! # fn foo() {
+//! match Some(0u32) {
+//! Some(0..100) => {},
+//! Some(90..190) => {}, // useful: `Some(150)` is matched by this but not the branch above
+//! Some(50..150) => {}, // redundant: all the values this matches are already matched by
+//! // the branches above
+//! None => {}, // useful: `None` is matched by this but not the branches above
+//! }
+//! # }
+//! ```
+//!
+//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
+//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
+//! are used to tell the user which values are missing.
+//! ```compile_fail,E0004
+//! # fn foo(x: Option<u32>) {
+//! match x {
+//! None => {},
+//! Some(0) => {},
+//! // not exhaustive: `_` is useful because it matches `Some(1)`
+//! }
+//! # }
+//! ```
+//!
+//!
+//! # Constructors and fields
+//!
+//! In the value `Pair(Some(0), true)`, `Pair` is called the constructor of the value, and `Some(0)`
+//! and `true` are its fields. Every matcheable value can be decomposed in this way. Examples of
+//! constructors are: `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor
+//! for a struct `Foo`), and `2` (the constructor for the number `2`).
+//!
+//! Each constructor takes a fixed number of fields; this is called its arity. `Pair` and `(,)` have
+//! arity 2, `Some` has arity 1, `None` and `42` have arity 0. Each type has a known set of
+//! constructors. Some types have many constructors (like `u64`) or even an infinitely many (like
+//! `&str` and `&[T]`).
+//!
+//! Patterns are similar: `Pair(Some(_), _)` has constructor `Pair` and two fields. The difference
+//! is that we get some extra pattern-only constructors, namely: the wildcard `_`, variable
+//! bindings, integer ranges like `0..=10`, and variable-length slices like `[_, .., _]`. We treat
+//! or-patterns separately, see the dedicated section below.
+//!
+//! Now to check if a value `v` matches a pattern `p`, we check if `v`'s constructor matches `p`'s
+//! constructor, then recursively compare their fields if necessary. A few representative examples:
+//!
+//! - `matches!(v, _) := true`
+//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
+//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
+//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
+//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
+//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
+//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
+//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
+//!
+//! Constructors and relevant operations are defined in the [`crate::constructor`] module. A
+//! representation of patterns that uses constructors is available in [`crate::pat`]. The question
+//! of whether a constructor is matched by another one is answered by
+//! [`Constructor::is_covered_by`].
+//!
+//! Note 1: variable bindings (like the `x` in `Some(x)`) match anything, so we treat them as wildcards.
+//! Note 2: this only applies to matcheable values. For example a value of type `Rc<u64>` can't be
+//! deconstructed that way.
+//!
+//!
+//!
+//! # Specialization
+//!
+//! The examples in the previous section motivate the operation at the heart of the algorithm:
+//! "specialization". It captures this idea of "removing one layer of constructor".
+//!
+//! `specialize(c, p)` takes a value-only constructor `c` and a pattern `p`, and returns a
+//! pattern-tuple or nothing. It works as follows:
+//!
+//! - Specializing for the wrong constructor returns nothing
+//!
+//! - `specialize(None, Some(p0)) := <nothing>`
+//! - `specialize([,,,], [p0]) := <nothing>`
+//!
+//! - Specializing for the correct constructor returns a tuple of the fields
+//!
+//! - `specialize(Variant1, Variant1(p0, p1, p2)) := (p0, p1, p2)`
+//! - `specialize(Foo{ bar, baz, quz }, Foo { bar: p0, baz: p1, .. }) := (p0, p1, _)`
+//! - `specialize([,,,], [p0, .., p1]) := (p0, _, _, p1)`
+//!
+//! We get the following property: for any values `v_1, .., v_n` of appropriate types, we have:
+//! ```text
+//! matches!(c(v_1, .., v_n), p)
+//! <=> specialize(c, p) returns something
+//! && matches!((v_1, .., v_n), specialize(c, p))
+//! ```
+//!
+//! We also extend specialization to pattern-tuples by applying it to the first pattern:
+//! `specialize(c, (p_0, .., p_n)) := specialize(c, p_0) ++ (p_1, .., p_m)`
+//! where `++` is concatenation of tuples.
+//!
+//!
+//! The previous property extends to pattern-tuples:
+//! ```text
+//! matches!((c(v_1, .., v_n), w_1, .., w_m), (p_0, p_1, .., p_m))
+//! <=> specialize(c, p_0) does not error
+//! && matches!((v_1, .., v_n, w_1, .., w_m), specialize(c, (p_0, p_1, .., p_m)))
+//! ```
+//!
+//! Whether specialization returns something or not is given by [`Constructor::is_covered_by`].
+//! Specialization of a pattern is computed in [`DeconstructedPat::specialize`]. Specialization for
+//! a pattern-tuple is computed in [`PatStack::pop_head_constructor`]. Finally, specialization for a
+//! set of pattern-tuples is computed in [`Matrix::specialize_constructor`].
+//!
+//!
+//!
+//! # Undoing specialization
+//!
+//! To construct witnesses we will need an inverse of specialization. If `c` is a constructor of
+//! arity `n`, we define `unspecialize` as:
+//! `unspecialize(c, (p_1, .., p_n, q_1, .., q_m)) := (c(p_1, .., p_n), q_1, .., q_m)`.
+//!
+//! This is done for a single witness-tuple in [`WitnessStack::apply_constructor`], and for a set of
+//! witness-tuples in [`WitnessMatrix::apply_constructor`].
+//!
+//!
+//!
+//! # Computing usefulness
+//!
+//! We now present a naive version of the algorithm for computing usefulness. From now on we operate
+//! on pattern-tuples.
+//!
+//! Let `pt_1, .., pt_n` and `qt` be length-m tuples of patterns for the same type `(T_1, .., T_m)`.
+//! We compute `usefulness(tp_1, .., tp_n, tq)` as follows:
+//!
+//! - Base case: `m == 0`.
+//! The pattern-tuples are all empty, i.e. they're all `()`. Thus `tq` is useful iff there are
+//! no rows above it, i.e. if `n == 0`. In that case we return `()` as a witness-tuple of
+//! usefulness of `tq`.
+//!
+//! - Inductive case: `m > 0`.
+//! In this naive version, we list all the possible constructors for values of type `T1` (we
+//! will be more clever in the next section).
+//!
+//! - For each such constructor `c` for which `specialize(c, tq)` is not nothing:
+//! - We recursively compute `usefulness(specialize(c, tp_1) ... specialize(c, tp_n), specialize(c, tq))`,
+//! where we discard any `specialize(c, p_i)` that returns nothing.
+//! - For each witness-tuple `w` found, we apply `unspecialize(c, w)` to it.
+//!
+//! - We return the all the witnesses found, if any.
+//!
+//!
+//! Let's take the following example:
+//! ```compile_fail,E0004
+//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
+//! # use Enum::*;
+//! # fn foo(x: Enum) {
+//! match x {
+//! Variant1(_) => {} // `p1`
+//! Variant2(None, 0) => {} // `p2`
+//! Variant2(Some(_), 0) => {} // `q`
+//! }
+//! # }
+//! ```
+//!
+//! To compute the usefulness of `q`, we would proceed as follows:
+//! ```text
+//! Start:
+//! `tp1 = [Variant1(_)]`
+//! `tp2 = [Variant2(None, 0)]`
+//! `tq = [Variant2(Some(true), 0)]`
+//!
+//! Constructors are `Variant1` and `Variant2`. Only `Variant2` can specialize `tq`.
+//! Specialize with `Variant2`:
+//! `tp2 = [None, 0]`
+//! `tq = [Some(true), 0]`
+//!
+//! Constructors are `None` and `Some`. Only `Some` can specialize `tq`.
+//! Specialize with `Some`:
+//! `tq = [true, 0]`
+//!
+//! Constructors are `false` and `true`. Only `true` can specialize `tq`.
+//! Specialize with `true`:
+//! `tq = [0]`
+//!
+//! Constructors are `0`, `1`, .. up to infinity. Only `0` can specialize `tq`.
+//! Specialize with `0`:
+//! `tq = []`
+//!
+//! m == 0 and n == 0, so `tq` is useful with witness `[]`.
+//! `witness = []`
+//!
+//! Unspecialize with `0`:
+//! `witness = [0]`
+//! Unspecialize with `true`:
+//! `witness = [true, 0]`
+//! Unspecialize with `Some`:
+//! `witness = [Some(true), 0]`
+//! Unspecialize with `Variant2`:
+//! `witness = [Variant2(Some(true), 0)]`
+//! ```
+//!
+//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
+//!
+//!
+//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See
+//! the following sections for more accurate versions of the algorithm and corresponding links.
+//!
+//!
+//!
+//! # Computing usefulness and exhaustiveness in one go
+//!
+//! The algorithm we have described so far computes usefulness of each pattern in turn, and ends by
+//! checking if `_` is useful to determine exhaustiveness of the whole match. In practice, instead
+//! of doing "for each pattern { for each constructor { ... } }", we do "for each constructor { for
+//! each pattern { ... } }". This allows us to compute everything in one go.
+//!
+//! [`Matrix`] stores the set of pattern-tuples under consideration. We track usefulness of each
+//! row mutably in the matrix as we go along. We ignore witnesses of usefulness of the match rows.
+//! We gather witnesses of the usefulness of `_` in [`WitnessMatrix`]. The algorithm that computes
+//! all this is in [`compute_exhaustiveness_and_usefulness`].
+//!
+//! See the full example at the bottom of this documentation.
+//!
+//!
+//!
+//! # Making usefulness tractable: constructor splitting
+//!
+//! We're missing one last detail: which constructors do we list? Naively listing all value
+//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The final
+//! clever idea for this algorithm is that we can group together constructors that behave the same.
+//!
+//! Examples:
+//! ```compile_fail,E0004
+//! match (0, false) {
+//! (0 ..=100, true) => {}
+//! (50..=150, false) => {}
+//! (0 ..=200, _) => {}
+//! }
+//! ```
+//!
+//! In this example, trying any of `0`, `1`, .., `49` will give the same specialized matrix, and
+//! thus the same usefulness/exhaustiveness results. We can thus accelerate the algorithm by
+//! trying them all at once. Here in fact, the only cases we need to consider are: `0..50`,
+//! `50..=100`, `101..=150`,`151..=200` and `201..`.
+//!
+//! ```
+//! enum Direction { North, South, East, West }
+//! # let wind = (Direction::North, 0u8);
+//! match wind {
+//! (Direction::North, 50..) => {}
+//! (_, _) => {}
+//! }
+//! ```
+//!
+//! In this example, trying any of `South`, `East`, `West` will give the same specialized matrix. By
+//! the same reasoning, we only need to try two cases: `North`, and "everything else".
+//!
+//! We call _constructor splitting_ the operation that computes such a minimal set of cases to try.
+//! This is done in [`ConstructorSet::split`] and explained in [`crate::constructor`].
+//!
+//!
+//!
+//! # `Missing` and relevancy
+//!
+//! ## Relevant values
+//!
+//! Take the following example:
+//!
+//! ```compile_fail,E0004
+//! # let foo = (true, true);
+//! match foo {
+//! (true, _) => 1,
+//! (_, true) => 2,
+//! };
+//! ```
+//!
+//! Consider the value `(true, true)`:
+//! - Row 2 does not distinguish `(true, true)` and `(false, true)`;
+//! - `false` does not show up in the first column of the match, so without knowing anything else we
+//! can deduce that `(false, true)` matches the same or fewer rows than `(true, true)`.
+//!
+//! Using those two facts together, we deduce that `(true, true)` will not give us more usefulness
+//! information about row 2 than `(false, true)` would. We say that "`(true, true)` is made
+//! irrelevant for row 2 by `(false, true)`". We will use this idea to prune the search tree.
+//!
+//!
+//! ## Computing relevancy
+//!
+//! We now generalize from the above example to approximate relevancy in a simple way. Note that we
+//! will only compute an approximation: we can sometimes determine when a case is irrelevant, but
+//! computing this precisely is at least as hard as computing usefulness.
+//!
+//! Our computation of relevancy relies on the `Missing` constructor. As explained in
+//! [`crate::constructor`], `Missing` represents the constructors not present in a given column. For
+//! example in the following:
+//!
+//! ```compile_fail,E0004
+//! enum Direction { North, South, East, West }
+//! # let wind = (Direction::North, 0u8);
+//! match wind {
+//! (Direction::North, _) => 1,
+//! (_, 50..) => 2,
+//! };
+//! ```
+//!
+//! Here `South`, `East` and `West` are missing in the first column, and `0..50` is missing in the
+//! second. Both of these sets are represented by `Constructor::Missing` in their corresponding
+//! column.
+//!
+//! We then compute relevancy as follows: during the course of the algorithm, for a row `r`:
+//! - if `r` has a wildcard in the first column;
+//! - and some constructors are missing in that column;
+//! - then any `c != Missing` is considered irrelevant for row `r`.
+//!
+//! By this we mean that continuing the algorithm by specializing with `c` is guaranteed not to
+//! contribute more information about the usefulness of row `r` than what we would get by
+//! specializing with `Missing`. The argument is the same as in the previous subsection.
+//!
+//! Once we've specialized by a constructor `c` that is irrelevant for row `r`, we're guaranteed to
+//! only explore values irrelevant for `r`. If we then ever reach a point where we're only exploring
+//! values that are irrelevant to all of the rows (including the virtual wildcard row used for
+//! exhaustiveness), we skip that case entirely.
+//!
+//!
+//! ## Example
+//!
+//! Let's go through a variation on the first example:
+//!
+//! ```compile_fail,E0004
+//! # let foo = (true, true, true);
+//! match foo {
+//! (true, _, true) => 1,
+//! (_, true, _) => 2,
+//! };
+//! ```
+//!
+//! ```text
+//! ┐ Patterns:
+//! │ 1. `[(true, _, true)]`
+//! │ 2. `[(_, true, _)]`
+//! │ 3. `[_]` // virtual extra wildcard row
+//! │
+//! │ Specialize with `(,,)`:
+//! ├─┐ Patterns:
+//! │ │ 1. `[true, _, true]`
+//! │ │ 2. `[_, true, _]`
+//! │ │ 3. `[_, _, _]`
+//! │ │
+//! │ │ There are missing constructors in the first column (namely `false`), hence
+//! │ │ `true` is irrelevant for rows 2 and 3.
+//! │ │
+//! │ │ Specialize with `true`:
+//! │ ├─┐ Patterns:
+//! │ │ │ 1. `[_, true]`
+//! │ │ │ 2. `[true, _]` // now exploring irrelevant cases
+//! │ │ │ 3. `[_, _]` // now exploring irrelevant cases
+//! │ │ │
+//! │ │ │ There are missing constructors in the first column (namely `false`), hence
+//! │ │ │ `true` is irrelevant for rows 1 and 3.
+//! │ │ │
+//! │ │ │ Specialize with `true`:
+//! │ │ ├─┐ Patterns:
+//! │ │ │ │ 1. `[true]` // now exploring irrelevant cases
+//! │ │ │ │ 2. `[_]` // now exploring irrelevant cases
+//! │ │ │ │ 3. `[_]` // now exploring irrelevant cases
+//! │ │ │ │
+//! │ │ │ │ The current case is irrelevant for all rows: we backtrack immediately.
+//! │ │ ├─┘
+//! │ │ │
+//! │ │ │ Specialize with `false`:
+//! │ │ ├─┐ Patterns:
+//! │ │ │ │ 1. `[true]`
+//! │ │ │ │ 3. `[_]` // now exploring irrelevant cases
+//! │ │ │ │
+//! │ │ │ │ Specialize with `true`:
+//! │ │ │ ├─┐ Patterns:
+//! │ │ │ │ │ 1. `[]`
+//! │ │ │ │ │ 3. `[]` // now exploring irrelevant cases
+//! │ │ │ │ │
+//! │ │ │ │ │ Row 1 is therefore useful.
+//! │ │ │ ├─┘
+//! <etc...>
+//! ```
+//!
+//! Relevancy allowed us to skip the case `(true, true, _)` entirely. In some cases this pruning can
+//! give drastic speedups. The case this was built for is the following (#118437):
+//!
+//! ```ignore(illustrative)
+//! match foo {
+//! (true, _, _, _, ..) => 1,
+//! (_, true, _, _, ..) => 2,
+//! (_, _, true, _, ..) => 3,
+//! (_, _, _, true, ..) => 4,
+//! ...
+//! }
+//! ```
+//!
+//! Without considering relevancy, we would explore all 2^n combinations of the `true` and `Missing`
+//! constructors. Relevancy tells us that e.g. `(true, true, false, false, false, ...)` is
+//! irrelevant for all the rows. This allows us to skip all cases with more than one `true`
+//! constructor, changing the runtime from exponential to linear.
+//!
+//!
+//! ## Relevancy and exhaustiveness
+//!
+//! For exhaustiveness, we do something slightly different w.r.t relevancy: we do not report
+//! witnesses of non-exhaustiveness that are irrelevant for the virtual wildcard row. For example,
+//! in:
+//!
+//! ```ignore(illustrative)
+//! match foo {
+//! (true, true) => {}
+//! }
+//! ```
+//!
+//! we only report `(false, _)` as missing. This was a deliberate choice made early in the
+//! development of rust, for diagnostic and performance purposes. As showed in the previous section,
+//! ignoring irrelevant cases preserves usefulness, so this choice still correctly computes whether
+//! a match is exhaustive.
+//!
+//!
+//!
+//! # Or-patterns
+//!
+//! What we have described so far works well if there are no or-patterns. To handle them, if the
+//! first pattern of a row in the matrix is an or-pattern, we expand it by duplicating the rest of
+//! the row as necessary. This is handled automatically in [`Matrix`].
+//!
+//! This makes usefulness tracking subtle, because we also want to compute whether an alternative
+//! of an or-pattern is redundant, e.g. in `Some(_) | Some(0)`. We track usefulness of each
+//! subpattern by interior mutability in [`DeconstructedPat`] with `set_useful`/`is_useful`.
+//!
+//! It's unfortunate that we have to use interior mutability, but believe me (Nadrieril), I have
+//! tried [other](https://github.com/rust-lang/rust/pull/80104)
+//! [solutions](https://github.com/rust-lang/rust/pull/80632) and nothing is remotely as simple.
+//!
+//!
+//!
+//! # Constants and opaques
+//!
+//! There are two kinds of constants in patterns:
+//!
+//! * literals (`1`, `true`, `"foo"`)
+//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
+//!
+//! The latter are converted into the corresponding patterns by a previous phase. For example
+//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
+//! pattern. This gets problematic when comparing the constant via `==` would behave differently
+//! from matching on the constant converted to a pattern. The situation around this is currently
+//! unclear and the lang team is working on clarifying what we want to do there. In any case, there
+//! are constants we will not turn into patterns. We capture these with `Constructor::Opaque`. These
+//! `Opaque` patterns do not participate in exhaustiveness, specialization or overlap checking.
+//!
+//!
+//!
+//! # Usefulness vs reachability, validity, and empty patterns
+//!
+//! This is likely the subtlest aspect of the algorithm. To be fully precise, a match doesn't
+//! operate on a value, it operates on a place. In certain unsafe circumstances, it is possible for
+//! a place to not contain valid data for its type. This has subtle consequences for empty types.
+//! Take the following:
+//!
+//! ```rust
+//! enum Void {}
+//! let x: u8 = 0;
+//! let ptr: *const Void = &x as *const u8 as *const Void;
+//! unsafe {
+//! match *ptr {
+//! _ => println!("Reachable!"),
+//! }
+//! }
+//! ```
+//!
+//! In this example, `ptr` is a valid pointer pointing to a place with invalid data. The `_` pattern
+//! does not look at the contents of `*ptr`, so this is ok and the arm is taken. In other words,
+//! despite the place we are inspecting being of type `Void`, there is a reachable arm. If the
+//! arm had a binding however:
+//!
+//! ```rust
+//! # #[derive(Copy, Clone)]
+//! # enum Void {}
+//! # let x: u8 = 0;
+//! # let ptr: *const Void = &x as *const u8 as *const Void;
+//! # unsafe {
+//! match *ptr {
+//! _a => println!("Unreachable!"),
+//! }
+//! # }
+//! ```
+//!
+//! Here the binding loads the value of type `Void` from the `*ptr` place. In this example, this
+//! causes UB since the data is not valid. In the general case, this asserts validity of the data at
+//! `*ptr`. Either way, this arm will never be taken.
+//!
+//! Finally, let's consider the empty match `match *ptr {}`. If we consider this exhaustive, then
+//! having invalid data at `*ptr` is invalid. In other words, the empty match is semantically
+//! equivalent to the `_a => ...` match. In the interest of explicitness, we prefer the case with an
+//! arm, hence we won't tell the user to remove the `_a` arm. In other words, the `_a` arm is
+//! unreachable yet not redundant. This is why we lint on redundant arms rather than unreachable
+//! arms, despite the fact that the lint says "unreachable".
+//!
+//! These considerations only affects certain places, namely those that can contain non-valid data
+//! without UB. These are: pointer dereferences, reference dereferences, and union field accesses.
+//! We track in the algorithm whether a given place is known to contain valid data. This is done
+//! first by inspecting the scrutinee syntactically (which gives us `cx.known_valid_scrutinee`), and
+//! then by tracking validity of each column of the matrix (which correspond to places) as we
+//! recurse into subpatterns. That second part is done through [`ValidityConstraint`], most notably
+//! [`ValidityConstraint::specialize`].
+//!
+//! Having said all that, in practice we don't fully follow what's been presented in this section.
+//! Under `exhaustive_patterns`, we allow omitting empty arms even in `!known_valid` places, for
+//! backwards-compatibility until we have a better alternative. Without `exhaustive_patterns`, we
+//! mostly treat empty types as inhabited, except specifically a non-nested `!` or empty enum. In
+//! this specific case we also allow the empty match regardless of place validity, for
+//! backwards-compatibility. Hopefully we can eventually deprecate this.
+//!
+//!
+//!
+//! # Full example
+//!
+//! We illustrate a full run of the algorithm on the following match.
+//!
+//! ```compile_fail,E0004
+//! # struct Pair(Option<u32>, bool);
+//! # fn foo(x: Pair) -> u32 {
+//! match x {
+//! Pair(Some(0), _) => 1,
+//! Pair(_, false) => 2,
+//! Pair(Some(0), false) => 3,
+//! }
+//! # }
+//! ```
+//!
+//! We keep track of the original row for illustration purposes, this is not what the algorithm
+//! actually does (it tracks usefulness as a boolean on each row).
+//!
+//! ```text
+//! ┐ Patterns:
+//! │ 1. `[Pair(Some(0), _)]`
+//! │ 2. `[Pair(_, false)]`
+//! │ 3. `[Pair(Some(0), false)]`
+//! │
+//! │ Specialize with `Pair`:
+//! ├─┐ Patterns:
+//! │ │ 1. `[Some(0), _]`
+//! │ │ 2. `[_, false]`
+//! │ │ 3. `[Some(0), false]`
+//! │ │
+//! │ │ Specialize with `Some`:
+//! │ ├─┐ Patterns:
+//! │ │ │ 1. `[0, _]`
+//! │ │ │ 2. `[_, false]`
+//! │ │ │ 3. `[0, false]`
+//! │ │ │
+//! │ │ │ Specialize with `0`:
+//! │ │ ├─┐ Patterns:
+//! │ │ │ │ 1. `[_]`
+//! │ │ │ │ 3. `[false]`
+//! │ │ │ │
+//! │ │ │ │ Specialize with `true`:
+//! │ │ │ ├─┐ Patterns:
+//! │ │ │ │ │ 1. `[]`
+//! │ │ │ │ │
+//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), true)`).
+//! │ │ │ ├─┘
+//! │ │ │ │
+//! │ │ │ │ Specialize with `false`:
+//! │ │ │ ├─┐ Patterns:
+//! │ │ │ │ │ 1. `[]`
+//! │ │ │ │ │ 3. `[]`
+//! │ │ │ │ │
+//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), false)`).
+//! │ │ │ ├─┘
+//! │ │ ├─┘
+//! │ │ │
+//! │ │ │ Specialize with `1..`:
+//! │ │ ├─┐ Patterns:
+//! │ │ │ │ 2. `[false]`
+//! │ │ │ │
+//! │ │ │ │ Specialize with `true`:
+//! │ │ │ ├─┐ Patterns:
+//! │ │ │ │ │ // no rows left
+//! │ │ │ │ │
+//! │ │ │ │ │ We have found an unmatched value (`Pair(Some(1..), true)`)! This gives us a witness.
+//! │ │ │ │ │ New witnesses:
+//! │ │ │ │ │ `[]`
+//! │ │ │ ├─┘
+//! │ │ │ │ Unspecialize new witnesses with `true`:
+//! │ │ │ │ `[true]`
+//! │ │ │ │
+//! │ │ │ │ Specialize with `false`:
+//! │ │ │ ├─┐ Patterns:
+//! │ │ │ │ │ 2. `[]`
+//! │ │ │ │ │
+//! │ │ │ │ │ We note arm 2 is useful (by `Pair(Some(1..), false)`).
+//! │ │ │ ├─┘
+//! │ │ │ │
+//! │ │ │ │ Total witnesses for `1..`:
+//! │ │ │ │ `[true]`
+//! │ │ ├─┘
+//! │ │ │ Unspecialize new witnesses with `1..`:
+//! │ │ │ `[1.., true]`
+//! │ │ │
+//! │ │ │ Total witnesses for `Some`:
+//! │ │ │ `[1.., true]`
+//! │ ├─┘
+//! │ │ Unspecialize new witnesses with `Some`:
+//! │ │ `[Some(1..), true]`
+//! │ │
+//! │ │ Specialize with `None`:
+//! │ ├─┐ Patterns:
+//! │ │ │ 2. `[false]`
+//! │ │ │
+//! │ │ │ Specialize with `true`:
+//! │ │ ├─┐ Patterns:
+//! │ │ │ │ // no rows left
+//! │ │ │ │
+//! │ │ │ │ We have found an unmatched value (`Pair(None, true)`)! This gives us a witness.
+//! │ │ │ │ New witnesses:
+//! │ │ │ │ `[]`
+//! │ │ ├─┘
+//! │ │ │ Unspecialize new witnesses with `true`:
+//! │ │ │ `[true]`
+//! │ │ │
+//! │ │ │ Specialize with `false`:
+//! │ │ ├─┐ Patterns:
+//! │ │ │ │ 2. `[]`
+//! │ │ │ │
+//! │ │ │ │ We note arm 2 is useful (by `Pair(None, false)`).
+//! │ │ ├─┘
+//! │ │ │
+//! │ │ │ Total witnesses for `None`:
+//! │ │ │ `[true]`
+//! │ ├─┘
+//! │ │ Unspecialize new witnesses with `None`:
+//! │ │ `[None, true]`
+//! │ │
+//! │ │ Total witnesses for `Pair`:
+//! │ │ `[Some(1..), true]`
+//! │ │ `[None, true]`
+//! ├─┘
+//! │ Unspecialize new witnesses with `Pair`:
+//! │ `[Pair(Some(1..), true)]`
+//! │ `[Pair(None, true)]`
+//! │
+//! │ Final witnesses:
+//! │ `[Pair(Some(1..), true)]`
+//! │ `[Pair(None, true)]`
+//! ┘
+//! ```
+//!
+//! We conclude:
+//! - Arm 3 is redundant (it was never marked as useful);
+//! - The match is not exhaustive;
+//! - Adding arms with `Pair(Some(1..), true)` and `Pair(None, true)` would make the match exhaustive.
+//!
+//! Note that when we're deep in the algorithm, we don't know what specialization steps got us here.
+//! We can only figure out what our witnesses correspond to by unspecializing back up the stack.
+//!
+//!
+//! # Tests
+//!
+//! Note: tests specific to this file can be found in:
+//!
+//! - `ui/pattern/usefulness`
+//! - `ui/or-patterns`
+//! - `ui/consts/const_in_pattern`
+//! - `ui/rfc-2008-non-exhaustive`
+//! - `ui/half-open-range-patterns`
+//! - probably many others
+//!
+//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
+//! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.
+
+use smallvec::{smallvec, SmallVec};
+use std::fmt;
+
+use crate::constructor::{Constructor, ConstructorSet};
+use crate::pat::{DeconstructedPat, WitnessPat};
+use crate::{Captures, MatchArm, MatchCtxt, TypeCx, TypedArena};
+
+use self::ValidityConstraint::*;
+
+#[cfg(feature = "rustc")]
+use rustc_data_structures::stack::ensure_sufficient_stack;
+#[cfg(not(feature = "rustc"))]
+pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
+ f()
+}
+
+/// Context that provides information local to a place under investigation.
+#[derive(Clone)]
+pub(crate) struct PlaceCtxt<'a, 'p, Cx: TypeCx> {
+ pub(crate) mcx: MatchCtxt<'a, 'p, Cx>,
+ /// Type of the place under investigation.
+ pub(crate) ty: Cx::Ty,
+ /// Whether the place is the original scrutinee place, as opposed to a subplace of it.
+ pub(crate) is_scrutinee: bool,
+}
+
+impl<'a, 'p, Cx: TypeCx> PlaceCtxt<'a, 'p, Cx> {
+ /// A `PlaceCtxt` when code other than `is_useful` needs one.
+ #[cfg_attr(not(feature = "rustc"), allow(dead_code))]
+ pub(crate) fn new_dummy(mcx: MatchCtxt<'a, 'p, Cx>, ty: Cx::Ty) -> Self {
+ PlaceCtxt { mcx, ty, is_scrutinee: false }
+ }
+
+ pub(crate) fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
+ self.mcx.tycx.ctor_arity(ctor, self.ty)
+ }
+ pub(crate) fn ctor_sub_tys(&self, ctor: &Constructor<Cx>) -> &[Cx::Ty] {
+ self.mcx.tycx.ctor_sub_tys(ctor, self.ty)
+ }
+ pub(crate) fn ctors_for_ty(&self) -> ConstructorSet<Cx> {
+ self.mcx.tycx.ctors_for_ty(self.ty)
+ }
+}
+
+impl<'a, 'p, Cx: TypeCx> Copy for PlaceCtxt<'a, 'p, Cx> {}
+
+impl<'a, 'p, Cx: TypeCx> fmt::Debug for PlaceCtxt<'a, 'p, Cx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("PlaceCtxt").field("ty", &self.ty).finish()
+ }
+}
+
+/// Serves two purposes:
+/// - in a wildcard, tracks whether the wildcard matches only valid values (i.e. is a binding `_a`)
+/// or also invalid values (i.e. is a true `_` pattern).
+/// - in the matrix, track whether a given place (aka column) is known to contain a valid value or
+/// not.
+#[derive(Debug, Copy, Clone, PartialEq, Eq)]
+pub enum ValidityConstraint {
+ ValidOnly,
+ MaybeInvalid,
+ /// Option for backwards compatibility: the place is not known to be valid but we allow omitting
+ /// `useful && !reachable` arms anyway.
+ MaybeInvalidButAllowOmittingArms,
+}
+
+impl ValidityConstraint {
+ pub fn from_bool(is_valid_only: bool) -> Self {
+ if is_valid_only { ValidOnly } else { MaybeInvalid }
+ }
+
+ fn allow_omitting_side_effecting_arms(self) -> Self {
+ match self {
+ MaybeInvalid | MaybeInvalidButAllowOmittingArms => MaybeInvalidButAllowOmittingArms,
+ // There are no side-effecting empty arms here, nothing to do.
+ ValidOnly => ValidOnly,
+ }
+ }
+
+ fn is_known_valid(self) -> bool {
+ matches!(self, ValidOnly)
+ }
+ fn allows_omitting_empty_arms(self) -> bool {
+ matches!(self, ValidOnly | MaybeInvalidButAllowOmittingArms)
+ }
+
+ /// If the place has validity given by `self` and we read that the value at the place has
+ /// constructor `ctor`, this computes what we can assume about the validity of the constructor
+ /// fields.
+ ///
+ /// Pending further opsem decisions, the current behavior is: validity is preserved, except
+ /// inside `&` and union fields where validity is reset to `MaybeInvalid`.
+ fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self {
+ // We preserve validity except when we go inside a reference or a union field.
+ if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
+ // Validity of `x: &T` does not imply validity of `*x: T`.
+ MaybeInvalid
+ } else {
+ self
+ }
+ }
+}
+
+impl fmt::Display for ValidityConstraint {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ let s = match self {
+ ValidOnly => "✓",
+ MaybeInvalid | MaybeInvalidButAllowOmittingArms => "?",
+ };
+ write!(f, "{s}")
+ }
+}
+
+/// Represents a pattern-tuple under investigation.
+// The three lifetimes are:
+// - 'a allocated by us
+// - 'p coming from the input
+// - Cx global compilation context
+#[derive(Clone)]
+struct PatStack<'a, 'p, Cx: TypeCx> {
+ // Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
+ pats: SmallVec<[&'a DeconstructedPat<'p, Cx>; 2]>,
+ /// Sometimes we know that as far as this row is concerned, the current case is already handled
+ /// by a different, more general, case. When the case is irrelevant for all rows this allows us
+ /// to skip a case entirely. This is purely an optimization. See at the top for details.
+ relevant: bool,
+}
+
+impl<'a, 'p, Cx: TypeCx> PatStack<'a, 'p, Cx> {
+ fn from_pattern(pat: &'a DeconstructedPat<'p, Cx>) -> Self {
+ PatStack { pats: smallvec![pat], relevant: true }
+ }
+
+ fn is_empty(&self) -> bool {
+ self.pats.is_empty()
+ }
+
+ fn len(&self) -> usize {
+ self.pats.len()
+ }
+
+ fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
+ self.pats[0]
+ }
+
+ fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
+ self.pats.iter().copied()
+ }
+
+ // Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
+ // an or-pattern. Panics if `self` is empty.
+ fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = PatStack<'a, 'p, Cx>> + Captures<'b> {
+ self.head().flatten_or_pat().into_iter().map(move |pat| {
+ let mut new = self.clone();
+ new.pats[0] = pat;
+ new
+ })
+ }
+
+ /// This computes `specialize(ctor, self)`. See top of the file for explanations.
+ /// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
+ fn pop_head_constructor(
+ &self,
+ pcx: &PlaceCtxt<'a, 'p, Cx>,
+ ctor: &Constructor<Cx>,
+ ctor_is_relevant: bool,
+ ) -> PatStack<'a, 'p, Cx> {
+ // We pop the head pattern and push the new fields extracted from the arguments of
+ // `self.head()`.
+ let mut new_pats = self.head().specialize(pcx, ctor);
+ new_pats.extend_from_slice(&self.pats[1..]);
+ // `ctor` is relevant for this row if it is the actual constructor of this row, or if the
+ // row has a wildcard and `ctor` is relevant for wildcards.
+ let ctor_is_relevant =
+ !matches!(self.head().ctor(), Constructor::Wildcard) || ctor_is_relevant;
+ PatStack { pats: new_pats, relevant: self.relevant && ctor_is_relevant }
+ }
+}
+
+impl<'a, 'p, Cx: TypeCx> fmt::Debug for PatStack<'a, 'p, Cx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ // We pretty-print similarly to the `Debug` impl of `Matrix`.
+ write!(f, "+")?;
+ for pat in self.iter() {
+ write!(f, " {pat:?} +")?;
+ }
+ Ok(())
+ }
+}
+
+/// A row of the matrix.
+#[derive(Clone)]
+struct MatrixRow<'a, 'p, Cx: TypeCx> {
+ // The patterns in the row.
+ pats: PatStack<'a, 'p, Cx>,
+ /// Whether the original arm had a guard. This is inherited when specializing.
+ is_under_guard: bool,
+ /// When we specialize, we remember which row of the original matrix produced a given row of the
+ /// specialized matrix. When we unspecialize, we use this to propagate usefulness back up the
+ /// callstack.
+ parent_row: usize,
+ /// False when the matrix is just built. This is set to `true` by
+ /// [`compute_exhaustiveness_and_usefulness`] if the arm is found to be useful.
+ /// This is reset to `false` when specializing.
+ useful: bool,
+}
+
+impl<'a, 'p, Cx: TypeCx> MatrixRow<'a, 'p, Cx> {
+ fn is_empty(&self) -> bool {
+ self.pats.is_empty()
+ }
+
+ fn len(&self) -> usize {
+ self.pats.len()
+ }
+
+ fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
+ self.pats.head()
+ }
+
+ fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
+ self.pats.iter()
+ }
+
+ // Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
+ // an or-pattern. Panics if `self` is empty.
+ fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = MatrixRow<'a, 'p, Cx>> + Captures<'b> {
+ self.pats.expand_or_pat().map(|patstack| MatrixRow {
+ pats: patstack,
+ parent_row: self.parent_row,
+ is_under_guard: self.is_under_guard,
+ useful: false,
+ })
+ }
+
+ /// This computes `specialize(ctor, self)`. See top of the file for explanations.
+ /// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
+ fn pop_head_constructor(
+ &self,
+ pcx: &PlaceCtxt<'a, 'p, Cx>,
+ ctor: &Constructor<Cx>,
+ ctor_is_relevant: bool,
+ parent_row: usize,
+ ) -> MatrixRow<'a, 'p, Cx> {
+ MatrixRow {
+ pats: self.pats.pop_head_constructor(pcx, ctor, ctor_is_relevant),
+ parent_row,
+ is_under_guard: self.is_under_guard,
+ useful: false,
+ }
+ }
+}
+
+impl<'a, 'p, Cx: TypeCx> fmt::Debug for MatrixRow<'a, 'p, Cx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.pats.fmt(f)
+ }
+}
+
+/// A 2D matrix. Represents a list of pattern-tuples under investigation.
+///
+/// Invariant: each row must have the same length, and each column must have the same type.
+///
+/// Invariant: the first column must not contain or-patterns. This is handled by
+/// [`Matrix::expand_and_push`].
+///
+/// In fact each column corresponds to a place inside the scrutinee of the match. E.g. after
+/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
+/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
+#[derive(Clone)]
+struct Matrix<'a, 'p, Cx: TypeCx> {
+ /// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
+ /// each column must have the same type. Each column corresponds to a place within the
+ /// scrutinee.
+ rows: Vec<MatrixRow<'a, 'p, Cx>>,
+ /// Stores an extra fictitious row full of wildcards. Mostly used to keep track of the type of
+ /// each column. This must obey the same invariants as the real rows.
+ wildcard_row: PatStack<'a, 'p, Cx>,
+ /// Track for each column/place whether it contains a known valid value.
+ place_validity: SmallVec<[ValidityConstraint; 2]>,
+}
+
+impl<'a, 'p, Cx: TypeCx> Matrix<'a, 'p, Cx> {
+ /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
+ /// expands it. Internal method, prefer [`Matrix::new`].
+ fn expand_and_push(&mut self, row: MatrixRow<'a, 'p, Cx>) {
+ if !row.is_empty() && row.head().is_or_pat() {
+ // Expand nested or-patterns.
+ for new_row in row.expand_or_pat() {
+ self.rows.push(new_row);
+ }
+ } else {
+ self.rows.push(row);
+ }
+ }
+
+ /// Build a new matrix from an iterator of `MatchArm`s.
+ fn new(
+ wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
+ arms: &'a [MatchArm<'p, Cx>],
+ scrut_ty: Cx::Ty,
+ scrut_validity: ValidityConstraint,
+ ) -> Self {
+ let wild_pattern =
+ wildcard_arena.alloc(DeconstructedPat::wildcard(scrut_ty, Default::default()));
+ let wildcard_row = PatStack::from_pattern(wild_pattern);
+ let mut matrix = Matrix {
+ rows: Vec::with_capacity(arms.len()),
+ wildcard_row,
+ place_validity: smallvec![scrut_validity],
+ };
+ for (row_id, arm) in arms.iter().enumerate() {
+ let v = MatrixRow {
+ pats: PatStack::from_pattern(arm.pat),
+ parent_row: row_id, // dummy, we won't read it
+ is_under_guard: arm.has_guard,
+ useful: false,
+ };
+ matrix.expand_and_push(v);
+ }
+ matrix
+ }
+
+ fn head_ty(&self) -> Option<Cx::Ty> {
+ if self.column_count() == 0 {
+ return None;
+ }
+
+ let mut ty = self.wildcard_row.head().ty();
+ // If the type is opaque and it is revealed anywhere in the column, we take the revealed
+ // version. Otherwise we could encounter constructors for the revealed type and crash.
+ if Cx::is_opaque_ty(ty) {
+ for pat in self.heads() {
+ let pat_ty = pat.ty();
+ if !Cx::is_opaque_ty(pat_ty) {
+ ty = pat_ty;
+ break;
+ }
+ }
+ }
+ Some(ty)
+ }
+ fn column_count(&self) -> usize {
+ self.wildcard_row.len()
+ }
+
+ fn rows<'b>(
+ &'b self,
+ ) -> impl Iterator<Item = &'b MatrixRow<'a, 'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
+ {
+ self.rows.iter()
+ }
+ fn rows_mut<'b>(
+ &'b mut self,
+ ) -> impl Iterator<Item = &'b mut MatrixRow<'a, 'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
+ {
+ self.rows.iter_mut()
+ }
+
+ /// Iterate over the first pattern of each row.
+ fn heads<'b>(
+ &'b self,
+ ) -> impl Iterator<Item = &'b DeconstructedPat<'p, Cx>> + Clone + Captures<'a> {
+ self.rows().map(|r| r.head())
+ }
+
+ /// This computes `specialize(ctor, self)`. See top of the file for explanations.
+ fn specialize_constructor(
+ &self,
+ pcx: &PlaceCtxt<'a, 'p, Cx>,
+ ctor: &Constructor<Cx>,
+ ctor_is_relevant: bool,
+ ) -> Matrix<'a, 'p, Cx> {
+ let wildcard_row = self.wildcard_row.pop_head_constructor(pcx, ctor, ctor_is_relevant);
+ let new_validity = self.place_validity[0].specialize(ctor);
+ let new_place_validity = std::iter::repeat(new_validity)
+ .take(ctor.arity(pcx))
+ .chain(self.place_validity[1..].iter().copied())
+ .collect();
+ let mut matrix =
+ Matrix { rows: Vec::new(), wildcard_row, place_validity: new_place_validity };
+ for (i, row) in self.rows().enumerate() {
+ if ctor.is_covered_by(pcx, row.head().ctor()) {
+ let new_row = row.pop_head_constructor(pcx, ctor, ctor_is_relevant, i);
+ matrix.expand_and_push(new_row);
+ }
+ }
+ matrix
+ }
+}
+
+/// Pretty-printer for matrices of patterns, example:
+///
+/// ```text
+/// + _ + [] +
+/// + true + [First] +
+/// + true + [Second(true)] +
+/// + false + [_] +
+/// + _ + [_, _, tail @ ..] +
+/// | ✓ | ? | // column validity
+/// ```
+impl<'a, 'p, Cx: TypeCx> fmt::Debug for Matrix<'a, 'p, Cx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "\n")?;
+
+ let mut pretty_printed_matrix: Vec<Vec<String>> = self
+ .rows
+ .iter()
+ .map(|row| row.iter().map(|pat| format!("{pat:?}")).collect())
+ .collect();
+ pretty_printed_matrix
+ .push(self.place_validity.iter().map(|validity| format!("{validity}")).collect());
+
+ let column_count = self.column_count();
+ assert!(self.rows.iter().all(|row| row.len() == column_count));
+ assert!(self.place_validity.len() == column_count);
+ let column_widths: Vec<usize> = (0..column_count)
+ .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
+ .collect();
+
+ for (row_i, row) in pretty_printed_matrix.into_iter().enumerate() {
+ let is_validity_row = row_i == self.rows.len();
+ let sep = if is_validity_row { "|" } else { "+" };
+ write!(f, "{sep}")?;
+ for (column, pat_str) in row.into_iter().enumerate() {
+ write!(f, " ")?;
+ write!(f, "{:1$}", pat_str, column_widths[column])?;
+ write!(f, " {sep}")?;
+ }
+ if is_validity_row {
+ write!(f, " // column validity")?;
+ }
+ write!(f, "\n")?;
+ }
+ Ok(())
+ }
+}
+
+/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
+/// reverse order of construction).
+///
+/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
+/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
+/// FIXME(Nadrieril): use the same order of patterns for both.
+///
+/// A `WitnessStack` should have the same types and length as the `PatStack`s we are inspecting
+/// (except we store the patterns in reverse order). The same way `PatStack` starts with length 1,
+/// at the end of the algorithm this will have length 1. In the middle of the algorithm, it can
+/// contain multiple patterns.
+///
+/// For example, if we are constructing a witness for the match against
+///
+/// ```compile_fail,E0004
+/// struct Pair(Option<(u32, u32)>, bool);
+/// # fn foo(p: Pair) {
+/// match p {
+/// Pair(None, _) => {}
+/// Pair(_, false) => {}
+/// }
+/// # }
+/// ```
+///
+/// We'll perform the following steps (among others):
+/// ```text
+/// - Start with a matrix representing the match
+/// `PatStack(vec![Pair(None, _)])`
+/// `PatStack(vec![Pair(_, false)])`
+/// - Specialize with `Pair`
+/// `PatStack(vec![None, _])`
+/// `PatStack(vec![_, false])`
+/// - Specialize with `Some`
+/// `PatStack(vec![_, false])`
+/// - Specialize with `_`
+/// `PatStack(vec![false])`
+/// - Specialize with `true`
+/// // no patstacks left
+/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
+/// `WitnessStack(vec![])`
+/// - Apply `true`
+/// `WitnessStack(vec![true])`
+/// - Apply `_`
+/// `WitnessStack(vec![true, _])`
+/// - Apply `Some`
+/// `WitnessStack(vec![true, Some(_)])`
+/// - Apply `Pair`
+/// `WitnessStack(vec![Pair(Some(_), true)])`
+/// ```
+///
+/// The final `Pair(Some(_), true)` is then the resulting witness.
+///
+/// See the top of the file for more detailed explanations and examples.
+#[derive(Debug, Clone)]
+struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>);
+
+impl<Cx: TypeCx> WitnessStack<Cx> {
+ /// Asserts that the witness contains a single pattern, and returns it.
+ fn single_pattern(self) -> WitnessPat<Cx> {
+ assert_eq!(self.0.len(), 1);
+ self.0.into_iter().next().unwrap()
+ }
+
+ /// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
+ fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
+ self.0.push(pat);
+ }
+
+ /// Reverses specialization. Given a witness obtained after specialization, this constructs a
+ /// new witness valid for before specialization. See the section on `unspecialize` at the top of
+ /// the file.
+ ///
+ /// Examples:
+ /// ```text
+ /// ctor: tuple of 2 elements
+ /// pats: [false, "foo", _, true]
+ /// result: [(false, "foo"), _, true]
+ ///
+ /// ctor: Enum::Variant { a: (bool, &'static str), b: usize}
+ /// pats: [(false, "foo"), _, true]
+ /// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
+ /// ```
+ fn apply_constructor(&mut self, pcx: &PlaceCtxt<'_, '_, Cx>, ctor: &Constructor<Cx>) {
+ let len = self.0.len();
+ let arity = ctor.arity(pcx);
+ let fields = self.0.drain((len - arity)..).rev().collect();
+ let pat = WitnessPat::new(ctor.clone(), fields, pcx.ty);
+ self.0.push(pat);
+ }
+}
+
+/// Represents a set of pattern-tuples that are witnesses of non-exhaustiveness for error
+/// reporting. This has similar invariants as `Matrix` does.
+///
+/// The `WitnessMatrix` returned by [`compute_exhaustiveness_and_usefulness`] obeys the invariant
+/// that the union of the input `Matrix` and the output `WitnessMatrix` together matches the type
+/// exhaustively.
+///
+/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
+/// column, which contains the patterns that are missing for the match to be exhaustive.
+#[derive(Debug, Clone)]
+struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>);
+
+impl<Cx: TypeCx> WitnessMatrix<Cx> {
+ /// New matrix with no witnesses.
+ fn empty() -> Self {
+ WitnessMatrix(vec![])
+ }
+ /// New matrix with one `()` witness, i.e. with no columns.
+ fn unit_witness() -> Self {
+ WitnessMatrix(vec![WitnessStack(vec![])])
+ }
+
+ /// Whether this has any witnesses.
+ fn is_empty(&self) -> bool {
+ self.0.is_empty()
+ }
+ /// Asserts that there is a single column and returns the patterns in it.
+ fn single_column(self) -> Vec<WitnessPat<Cx>> {
+ self.0.into_iter().map(|w| w.single_pattern()).collect()
+ }
+
+ /// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
+ fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
+ for witness in self.0.iter_mut() {
+ witness.push_pattern(pat.clone())
+ }
+ }
+
+ /// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
+ fn apply_constructor(
+ &mut self,
+ pcx: &PlaceCtxt<'_, '_, Cx>,
+ missing_ctors: &[Constructor<Cx>],
+ ctor: &Constructor<Cx>,
+ report_individual_missing_ctors: bool,
+ ) {
+ if self.is_empty() {
+ return;
+ }
+ if matches!(ctor, Constructor::Missing) {
+ // We got the special `Missing` constructor that stands for the constructors not present
+ // in the match.
+ if missing_ctors.is_empty() {
+ // Nothing to report.
+ *self = Self::empty();
+ } else if !report_individual_missing_ctors {
+ // Report `_` as missing.
+ let pat = WitnessPat::wild_from_ctor(pcx, Constructor::Wildcard);
+ self.push_pattern(pat);
+ } else if missing_ctors.iter().any(|c| c.is_non_exhaustive()) {
+ // We need to report a `_` anyway, so listing other constructors would be redundant.
+ // `NonExhaustive` is displayed as `_` just like `Wildcard`, but it will be picked
+ // up by diagnostics to add a note about why `_` is required here.
+ let pat = WitnessPat::wild_from_ctor(pcx, Constructor::NonExhaustive);
+ self.push_pattern(pat);
+ } else {
+ // For each missing constructor `c`, we add a `c(_, _, _)` witness appropriately
+ // filled with wildcards.
+ let mut ret = Self::empty();
+ for ctor in missing_ctors {
+ let pat = WitnessPat::wild_from_ctor(pcx, ctor.clone());
+ // Clone `self` and add `c(_, _, _)` to each of its witnesses.
+ let mut wit_matrix = self.clone();
+ wit_matrix.push_pattern(pat);
+ ret.extend(wit_matrix);
+ }
+ *self = ret;
+ }
+ } else {
+ // Any other constructor we unspecialize as expected.
+ for witness in self.0.iter_mut() {
+ witness.apply_constructor(pcx, ctor)
+ }
+ }
+ }
+
+ /// Merges the witnesses of two matrices. Their column types must match.
+ fn extend(&mut self, other: Self) {
+ self.0.extend(other.0)
+ }
+}
+
+/// The core of the algorithm.
+///
+/// This recursively computes witnesses of the non-exhaustiveness of `matrix` (if any). Also tracks
+/// usefulness of each row in the matrix (in `row.useful`). We track usefulness of each
+/// subpattern using interior mutability in `DeconstructedPat`.
+///
+/// The input `Matrix` and the output `WitnessMatrix` together match the type exhaustively.
+///
+/// The key steps are:
+/// - specialization, where we dig into the rows that have a specific constructor and call ourselves
+/// recursively;
+/// - unspecialization, where we lift the results from the previous step into results for this step
+/// (using `apply_constructor` and by updating `row.useful` for each parent row).
+/// This is all explained at the top of the file.
+#[instrument(level = "debug", skip(mcx, is_top_level), ret)]
+fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
+ mcx: MatchCtxt<'a, 'p, Cx>,
+ matrix: &mut Matrix<'a, 'p, Cx>,
+ is_top_level: bool,
+) -> WitnessMatrix<Cx> {
+ debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));
+
+ if !matrix.wildcard_row.relevant && matrix.rows().all(|r| !r.pats.relevant) {
+ // Here we know that nothing will contribute further to exhaustiveness or usefulness. This
+ // is purely an optimization: skipping this check doesn't affect correctness. See the top of
+ // the file for details.
+ return WitnessMatrix::empty();
+ }
+
+ let Some(ty) = matrix.head_ty() else {
+ // The base case: there are no columns in the matrix. We are morally pattern-matching on ().
+ // A row is useful iff it has no (unguarded) rows above it.
+ for row in matrix.rows_mut() {
+ // All rows are useful until they're not.
+ row.useful = true;
+ // When there's an unguarded row, the match is exhaustive and any subsequent row is not
+ // useful.
+ if !row.is_under_guard {
+ return WitnessMatrix::empty();
+ }
+ }
+ // No (unguarded) rows, so the match is not exhaustive. We return a new witness unless
+ // irrelevant.
+ return if matrix.wildcard_row.relevant {
+ WitnessMatrix::unit_witness()
+ } else {
+ // We choose to not report anything here; see at the top for details.
+ WitnessMatrix::empty()
+ };
+ };
+
+ debug!("ty: {ty:?}");
+ let pcx = &PlaceCtxt { mcx, ty, is_scrutinee: is_top_level };
+
+ // Whether the place/column we are inspecting is known to contain valid data.
+ let place_validity = matrix.place_validity[0];
+ // For backwards compability we allow omitting some empty arms that we ideally shouldn't.
+ let place_validity = place_validity.allow_omitting_side_effecting_arms();
+
+ // Analyze the constructors present in this column.
+ let ctors = matrix.heads().map(|p| p.ctor());
+ let ctors_for_ty = pcx.ctors_for_ty();
+ let is_integers = matches!(ctors_for_ty, ConstructorSet::Integers { .. }); // For diagnostics.
+ let split_set = ctors_for_ty.split(pcx, ctors);
+ let all_missing = split_set.present.is_empty();
+
+ // Build the set of constructors we will specialize with. It must cover the whole type.
+ let mut split_ctors = split_set.present;
+ if !split_set.missing.is_empty() {
+ // We need to iterate over a full set of constructors, so we add `Missing` to represent the
+ // missing ones. This is explained under "Constructor Splitting" at the top of this file.
+ split_ctors.push(Constructor::Missing);
+ } else if !split_set.missing_empty.is_empty() && !place_validity.is_known_valid() {
+ // The missing empty constructors are reachable if the place can contain invalid data.
+ split_ctors.push(Constructor::Missing);
+ }
+
+ // Decide what constructors to report.
+ let always_report_all = is_top_level && !is_integers;
+ // Whether we should report "Enum::A and Enum::C are missing" or "_ is missing".
+ let report_individual_missing_ctors = always_report_all || !all_missing;
+ // Which constructors are considered missing. We ensure that `!missing_ctors.is_empty() =>
+ // split_ctors.contains(Missing)`. The converse usually holds except in the
+ // `MaybeInvalidButAllowOmittingArms` backwards-compatibility case.
+ let mut missing_ctors = split_set.missing;
+ if !place_validity.allows_omitting_empty_arms() {
+ missing_ctors.extend(split_set.missing_empty);
+ }
+
+ let mut ret = WitnessMatrix::empty();
+ for ctor in split_ctors {
+ // Dig into rows that match `ctor`.
+ debug!("specialize({:?})", ctor);
+ // `ctor` is *irrelevant* if there's another constructor in `split_ctors` that matches
+ // strictly fewer rows. In that case we can sometimes skip it. See the top of the file for
+ // details.
+ let ctor_is_relevant = matches!(ctor, Constructor::Missing) || missing_ctors.is_empty();
+ let mut spec_matrix = matrix.specialize_constructor(pcx, &ctor, ctor_is_relevant);
+ let mut witnesses = ensure_sufficient_stack(|| {
+ compute_exhaustiveness_and_usefulness(mcx, &mut spec_matrix, false)
+ });
+
+ // Transform witnesses for `spec_matrix` into witnesses for `matrix`.
+ witnesses.apply_constructor(pcx, &missing_ctors, &ctor, report_individual_missing_ctors);
+ // Accumulate the found witnesses.
+ ret.extend(witnesses);
+
+ // A parent row is useful if any of its children is.
+ for child_row in spec_matrix.rows() {
+ let parent_row = &mut matrix.rows[child_row.parent_row];
+ parent_row.useful = parent_row.useful || child_row.useful;
+ }
+ }
+
+ // Record usefulness in the patterns.
+ for row in matrix.rows() {
+ if row.useful {
+ row.head().set_useful();
+ }
+ }
+
+ ret
+}
+
+/// Indicates whether or not a given arm is useful.
+#[derive(Clone, Debug)]
+pub enum Usefulness<'p, Cx: TypeCx> {
+ /// The arm is useful. This additionally carries a set of or-pattern branches that have been
+ /// found to be redundant despite the overall arm being useful. Used only in the presence of
+ /// or-patterns, otherwise it stays empty.
+ Useful(Vec<&'p DeconstructedPat<'p, Cx>>),
+ /// The arm is redundant and can be removed without changing the behavior of the match
+ /// expression.
+ Redundant,
+}
+
+/// The output of checking a match for exhaustiveness and arm usefulness.
+pub struct UsefulnessReport<'p, Cx: TypeCx> {
+ /// For each arm of the input, whether that arm is useful after the arms above it.
+ pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
+ /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
+ /// exhaustiveness.
+ pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
+}
+
+/// Computes whether a match is exhaustive and which of its arms are useful.
+#[instrument(skip(cx, arms), level = "debug")]
+pub fn compute_match_usefulness<'p, Cx: TypeCx>(
+ cx: MatchCtxt<'_, 'p, Cx>,
+ arms: &[MatchArm<'p, Cx>],
+ scrut_ty: Cx::Ty,
+ scrut_validity: ValidityConstraint,
+) -> UsefulnessReport<'p, Cx> {
+ let mut matrix = Matrix::new(cx.wildcard_arena, arms, scrut_ty, scrut_validity);
+ let non_exhaustiveness_witnesses = compute_exhaustiveness_and_usefulness(cx, &mut matrix, true);
+
+ let non_exhaustiveness_witnesses: Vec<_> = non_exhaustiveness_witnesses.single_column();
+ let arm_usefulness: Vec<_> = arms
+ .iter()
+ .copied()
+ .map(|arm| {
+ debug!(?arm);
+ // We warn when a pattern is not useful.
+ let usefulness = if arm.pat.is_useful() {
+ Usefulness::Useful(arm.pat.redundant_subpatterns())
+ } else {
+ Usefulness::Redundant
+ };
+ (arm, usefulness)
+ })
+ .collect();
+ UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
+}