summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_type_ir
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /compiler/rustc_type_ir
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_type_ir')
-rw-r--r--compiler/rustc_type_ir/Cargo.toml15
-rw-r--r--compiler/rustc_type_ir/src/codec.rs64
-rw-r--r--compiler/rustc_type_ir/src/lib.rs856
-rw-r--r--compiler/rustc_type_ir/src/sty.rs1329
4 files changed, 2264 insertions, 0 deletions
diff --git a/compiler/rustc_type_ir/Cargo.toml b/compiler/rustc_type_ir/Cargo.toml
new file mode 100644
index 000000000..5aa3cf017
--- /dev/null
+++ b/compiler/rustc_type_ir/Cargo.toml
@@ -0,0 +1,15 @@
+[package]
+name = "rustc_type_ir"
+version = "0.0.0"
+edition = "2021"
+
+[lib]
+doctest = false
+
+[dependencies]
+bitflags = "1.2.1"
+rustc_index = { path = "../rustc_index" }
+rustc_serialize = { path = "../rustc_serialize" }
+rustc_data_structures = { path = "../rustc_data_structures" }
+rustc_macros = { path = "../rustc_macros" }
+smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
diff --git a/compiler/rustc_type_ir/src/codec.rs b/compiler/rustc_type_ir/src/codec.rs
new file mode 100644
index 000000000..ee249050c
--- /dev/null
+++ b/compiler/rustc_type_ir/src/codec.rs
@@ -0,0 +1,64 @@
+use crate::Interner;
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_serialize::{Decoder, Encoder};
+
+/// The shorthand encoding uses an enum's variant index `usize`
+/// and is offset by this value so it never matches a real variant.
+/// This offset is also chosen so that the first byte is never < 0x80.
+pub const SHORTHAND_OFFSET: usize = 0x80;
+
+/// Trait for decoding to a reference.
+///
+/// This is a separate trait from `Decodable` so that we can implement it for
+/// upstream types, such as `FxHashSet`.
+///
+/// The `TyDecodable` derive macro will use this trait for fields that are
+/// references (and don't use a type alias to hide that).
+///
+/// `Decodable` can still be implemented in cases where `Decodable` is required
+/// by a trait bound.
+pub trait RefDecodable<'tcx, D: TyDecoder> {
+ fn decode(d: &mut D) -> &'tcx Self;
+}
+
+pub trait TyEncoder: Encoder {
+ type I: Interner;
+ const CLEAR_CROSS_CRATE: bool;
+
+ fn position(&self) -> usize;
+ fn type_shorthands(&mut self) -> &mut FxHashMap<<Self::I as Interner>::Ty, usize>;
+ fn predicate_shorthands(
+ &mut self,
+ ) -> &mut FxHashMap<<Self::I as Interner>::PredicateKind, usize>;
+ fn encode_alloc_id(&mut self, alloc_id: &<Self::I as Interner>::AllocId);
+}
+
+pub trait TyDecoder: Decoder {
+ type I: Interner;
+ const CLEAR_CROSS_CRATE: bool;
+
+ fn interner(&self) -> Self::I;
+
+ fn peek_byte(&self) -> u8;
+
+ fn position(&self) -> usize;
+
+ fn cached_ty_for_shorthand<F>(
+ &mut self,
+ shorthand: usize,
+ or_insert_with: F,
+ ) -> <Self::I as Interner>::Ty
+ where
+ F: FnOnce(&mut Self) -> <Self::I as Interner>::Ty;
+
+ fn with_position<F, R>(&mut self, pos: usize, f: F) -> R
+ where
+ F: FnOnce(&mut Self) -> R;
+
+ fn positioned_at_shorthand(&self) -> bool {
+ (self.peek_byte() & (SHORTHAND_OFFSET as u8)) != 0
+ }
+
+ fn decode_alloc_id(&mut self) -> <Self::I as Interner>::AllocId;
+}
diff --git a/compiler/rustc_type_ir/src/lib.rs b/compiler/rustc_type_ir/src/lib.rs
new file mode 100644
index 000000000..791e9e0f5
--- /dev/null
+++ b/compiler/rustc_type_ir/src/lib.rs
@@ -0,0 +1,856 @@
+#![feature(fmt_helpers_for_derive)]
+#![feature(min_specialization)]
+#![feature(rustc_attrs)]
+
+#[macro_use]
+extern crate bitflags;
+#[macro_use]
+extern crate rustc_macros;
+
+use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
+use rustc_data_structures::unify::{EqUnifyValue, UnifyKey};
+use smallvec::SmallVec;
+use std::fmt;
+use std::fmt::Debug;
+use std::hash::Hash;
+use std::mem::discriminant;
+
+pub mod codec;
+pub mod sty;
+
+pub use codec::*;
+pub use sty::*;
+
+pub trait Interner {
+ type AdtDef: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type SubstsRef: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type DefId: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type Ty: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type Const: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type Region: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type TypeAndMut: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type Mutability: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type Movability: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type PolyFnSig: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type ListBinderExistentialPredicate: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type BinderListTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type ListTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type ProjectionTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type ParamTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type BoundTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type PlaceholderType: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type InferTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type DelaySpanBugEmitted: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type PredicateKind: Clone + Debug + Hash + PartialEq + Eq;
+ type AllocId: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+
+ type EarlyBoundRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type BoundRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type FreeRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type RegionVid: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+ type PlaceholderRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
+}
+
+pub trait InternAs<T: ?Sized, R> {
+ type Output;
+ fn intern_with<F>(self, f: F) -> Self::Output
+ where
+ F: FnOnce(&T) -> R;
+}
+
+impl<I, T, R, E> InternAs<[T], R> for I
+where
+ E: InternIteratorElement<T, R>,
+ I: Iterator<Item = E>,
+{
+ type Output = E::Output;
+ fn intern_with<F>(self, f: F) -> Self::Output
+ where
+ F: FnOnce(&[T]) -> R,
+ {
+ E::intern_with(self, f)
+ }
+}
+
+pub trait InternIteratorElement<T, R>: Sized {
+ type Output;
+ fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output;
+}
+
+impl<T, R> InternIteratorElement<T, R> for T {
+ type Output = R;
+ fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(
+ mut iter: I,
+ f: F,
+ ) -> Self::Output {
+ // This code is hot enough that it's worth specializing for the most
+ // common length lists, to avoid the overhead of `SmallVec` creation.
+ // Lengths 0, 1, and 2 typically account for ~95% of cases. If
+ // `size_hint` is incorrect a panic will occur via an `unwrap` or an
+ // `assert`.
+ match iter.size_hint() {
+ (0, Some(0)) => {
+ assert!(iter.next().is_none());
+ f(&[])
+ }
+ (1, Some(1)) => {
+ let t0 = iter.next().unwrap();
+ assert!(iter.next().is_none());
+ f(&[t0])
+ }
+ (2, Some(2)) => {
+ let t0 = iter.next().unwrap();
+ let t1 = iter.next().unwrap();
+ assert!(iter.next().is_none());
+ f(&[t0, t1])
+ }
+ _ => f(&iter.collect::<SmallVec<[_; 8]>>()),
+ }
+ }
+}
+
+impl<'a, T, R> InternIteratorElement<T, R> for &'a T
+where
+ T: Clone + 'a,
+{
+ type Output = R;
+ fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output {
+ // This code isn't hot.
+ f(&iter.cloned().collect::<SmallVec<[_; 8]>>())
+ }
+}
+
+impl<T, R, E> InternIteratorElement<T, R> for Result<T, E> {
+ type Output = Result<R, E>;
+ fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(
+ mut iter: I,
+ f: F,
+ ) -> Self::Output {
+ // This code is hot enough that it's worth specializing for the most
+ // common length lists, to avoid the overhead of `SmallVec` creation.
+ // Lengths 0, 1, and 2 typically account for ~95% of cases. If
+ // `size_hint` is incorrect a panic will occur via an `unwrap` or an
+ // `assert`, unless a failure happens first, in which case the result
+ // will be an error anyway.
+ Ok(match iter.size_hint() {
+ (0, Some(0)) => {
+ assert!(iter.next().is_none());
+ f(&[])
+ }
+ (1, Some(1)) => {
+ let t0 = iter.next().unwrap()?;
+ assert!(iter.next().is_none());
+ f(&[t0])
+ }
+ (2, Some(2)) => {
+ let t0 = iter.next().unwrap()?;
+ let t1 = iter.next().unwrap()?;
+ assert!(iter.next().is_none());
+ f(&[t0, t1])
+ }
+ _ => f(&iter.collect::<Result<SmallVec<[_; 8]>, _>>()?),
+ })
+ }
+}
+
+bitflags! {
+ /// Flags that we track on types. These flags are propagated upwards
+ /// through the type during type construction, so that we can quickly check
+ /// whether the type has various kinds of types in it without recursing
+ /// over the type itself.
+ pub struct TypeFlags: u32 {
+ // Does this have parameters? Used to determine whether substitution is
+ // required.
+ /// Does this have `Param`?
+ const HAS_TY_PARAM = 1 << 0;
+ /// Does this have `ReEarlyBound`?
+ const HAS_RE_PARAM = 1 << 1;
+ /// Does this have `ConstKind::Param`?
+ const HAS_CT_PARAM = 1 << 2;
+
+ const NEEDS_SUBST = TypeFlags::HAS_TY_PARAM.bits
+ | TypeFlags::HAS_RE_PARAM.bits
+ | TypeFlags::HAS_CT_PARAM.bits;
+
+ /// Does this have `Infer`?
+ const HAS_TY_INFER = 1 << 3;
+ /// Does this have `ReVar`?
+ const HAS_RE_INFER = 1 << 4;
+ /// Does this have `ConstKind::Infer`?
+ const HAS_CT_INFER = 1 << 5;
+
+ /// Does this have inference variables? Used to determine whether
+ /// inference is required.
+ const NEEDS_INFER = TypeFlags::HAS_TY_INFER.bits
+ | TypeFlags::HAS_RE_INFER.bits
+ | TypeFlags::HAS_CT_INFER.bits;
+
+ /// Does this have `Placeholder`?
+ const HAS_TY_PLACEHOLDER = 1 << 6;
+ /// Does this have `RePlaceholder`?
+ const HAS_RE_PLACEHOLDER = 1 << 7;
+ /// Does this have `ConstKind::Placeholder`?
+ const HAS_CT_PLACEHOLDER = 1 << 8;
+
+ /// `true` if there are "names" of regions and so forth
+ /// that are local to a particular fn/inferctxt
+ const HAS_FREE_LOCAL_REGIONS = 1 << 9;
+
+ /// `true` if there are "names" of types and regions and so forth
+ /// that are local to a particular fn
+ const HAS_FREE_LOCAL_NAMES = TypeFlags::HAS_TY_PARAM.bits
+ | TypeFlags::HAS_CT_PARAM.bits
+ | TypeFlags::HAS_TY_INFER.bits
+ | TypeFlags::HAS_CT_INFER.bits
+ | TypeFlags::HAS_TY_PLACEHOLDER.bits
+ | TypeFlags::HAS_CT_PLACEHOLDER.bits
+ // We consider 'freshened' types and constants
+ // to depend on a particular fn.
+ // The freshening process throws away information,
+ // which can make things unsuitable for use in a global
+ // cache. Note that there is no 'fresh lifetime' flag -
+ // freshening replaces all lifetimes with `ReErased`,
+ // which is different from how types/const are freshened.
+ | TypeFlags::HAS_TY_FRESH.bits
+ | TypeFlags::HAS_CT_FRESH.bits
+ | TypeFlags::HAS_FREE_LOCAL_REGIONS.bits;
+
+ /// Does this have `Projection`?
+ const HAS_TY_PROJECTION = 1 << 10;
+ /// Does this have `Opaque`?
+ const HAS_TY_OPAQUE = 1 << 11;
+ /// Does this have `ConstKind::Unevaluated`?
+ const HAS_CT_PROJECTION = 1 << 12;
+
+ /// Could this type be normalized further?
+ const HAS_PROJECTION = TypeFlags::HAS_TY_PROJECTION.bits
+ | TypeFlags::HAS_TY_OPAQUE.bits
+ | TypeFlags::HAS_CT_PROJECTION.bits;
+
+ /// Is an error type/const reachable?
+ const HAS_ERROR = 1 << 13;
+
+ /// Does this have any region that "appears free" in the type?
+ /// Basically anything but `ReLateBound` and `ReErased`.
+ const HAS_FREE_REGIONS = 1 << 14;
+
+ /// Does this have any `ReLateBound` regions? Used to check
+ /// if a global bound is safe to evaluate.
+ const HAS_RE_LATE_BOUND = 1 << 15;
+
+ /// Does this have any `ReErased` regions?
+ const HAS_RE_ERASED = 1 << 16;
+
+ /// Does this value have parameters/placeholders/inference variables which could be
+ /// replaced later, in a way that would change the results of `impl` specialization?
+ const STILL_FURTHER_SPECIALIZABLE = 1 << 17;
+
+ /// Does this value have `InferTy::FreshTy/FreshIntTy/FreshFloatTy`?
+ const HAS_TY_FRESH = 1 << 18;
+
+ /// Does this value have `InferConst::Fresh`?
+ const HAS_CT_FRESH = 1 << 19;
+ }
+}
+
+rustc_index::newtype_index! {
+ /// A [De Bruijn index][dbi] is a standard means of representing
+ /// regions (and perhaps later types) in a higher-ranked setting. In
+ /// particular, imagine a type like this:
+ /// ```ignore (illustrative)
+ /// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
+ /// // ^ ^ | | |
+ /// // | | | | |
+ /// // | +------------+ 0 | |
+ /// // | | |
+ /// // +----------------------------------+ 1 |
+ /// // | |
+ /// // +----------------------------------------------+ 0
+ /// ```
+ /// In this type, there are two binders (the outer fn and the inner
+ /// fn). We need to be able to determine, for any given region, which
+ /// fn type it is bound by, the inner or the outer one. There are
+ /// various ways you can do this, but a De Bruijn index is one of the
+ /// more convenient and has some nice properties. The basic idea is to
+ /// count the number of binders, inside out. Some examples should help
+ /// clarify what I mean.
+ ///
+ /// Let's start with the reference type `&'b isize` that is the first
+ /// argument to the inner function. This region `'b` is assigned a De
+ /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
+ /// fn). The region `'a` that appears in the second argument type (`&'a
+ /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
+ /// second-innermost binder". (These indices are written on the arrows
+ /// in the diagram).
+ ///
+ /// What is interesting is that De Bruijn index attached to a particular
+ /// variable will vary depending on where it appears. For example,
+ /// the final type `&'a char` also refers to the region `'a` declared on
+ /// the outermost fn. But this time, this reference is not nested within
+ /// any other binders (i.e., it is not an argument to the inner fn, but
+ /// rather the outer one). Therefore, in this case, it is assigned a
+ /// De Bruijn index of 0, because the innermost binder in that location
+ /// is the outer fn.
+ ///
+ /// [dbi]: https://en.wikipedia.org/wiki/De_Bruijn_index
+ pub struct DebruijnIndex {
+ DEBUG_FORMAT = "DebruijnIndex({})",
+ const INNERMOST = 0,
+ }
+}
+
+impl DebruijnIndex {
+ /// Returns the resulting index when this value is moved into
+ /// `amount` number of new binders. So, e.g., if you had
+ ///
+ /// for<'a> fn(&'a x)
+ ///
+ /// and you wanted to change it to
+ ///
+ /// for<'a> fn(for<'b> fn(&'a x))
+ ///
+ /// you would need to shift the index for `'a` into a new binder.
+ #[inline]
+ #[must_use]
+ pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
+ DebruijnIndex::from_u32(self.as_u32() + amount)
+ }
+
+ /// Update this index in place by shifting it "in" through
+ /// `amount` number of binders.
+ #[inline]
+ pub fn shift_in(&mut self, amount: u32) {
+ *self = self.shifted_in(amount);
+ }
+
+ /// Returns the resulting index when this value is moved out from
+ /// `amount` number of new binders.
+ #[inline]
+ #[must_use]
+ pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
+ DebruijnIndex::from_u32(self.as_u32() - amount)
+ }
+
+ /// Update in place by shifting out from `amount` binders.
+ #[inline]
+ pub fn shift_out(&mut self, amount: u32) {
+ *self = self.shifted_out(amount);
+ }
+
+ /// Adjusts any De Bruijn indices so as to make `to_binder` the
+ /// innermost binder. That is, if we have something bound at `to_binder`,
+ /// it will now be bound at INNERMOST. This is an appropriate thing to do
+ /// when moving a region out from inside binders:
+ ///
+ /// ```ignore (illustrative)
+ /// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
+ /// // Binder: D3 D2 D1 ^^
+ /// ```
+ ///
+ /// Here, the region `'a` would have the De Bruijn index D3,
+ /// because it is the bound 3 binders out. However, if we wanted
+ /// to refer to that region `'a` in the second argument (the `_`),
+ /// those two binders would not be in scope. In that case, we
+ /// might invoke `shift_out_to_binder(D3)`. This would adjust the
+ /// De Bruijn index of `'a` to D1 (the innermost binder).
+ ///
+ /// If we invoke `shift_out_to_binder` and the region is in fact
+ /// bound by one of the binders we are shifting out of, that is an
+ /// error (and should fail an assertion failure).
+ #[inline]
+ pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
+ self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
+ }
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
+#[derive(Encodable, Decodable)]
+pub enum IntTy {
+ Isize,
+ I8,
+ I16,
+ I32,
+ I64,
+ I128,
+}
+
+impl IntTy {
+ pub fn name_str(&self) -> &'static str {
+ match *self {
+ IntTy::Isize => "isize",
+ IntTy::I8 => "i8",
+ IntTy::I16 => "i16",
+ IntTy::I32 => "i32",
+ IntTy::I64 => "i64",
+ IntTy::I128 => "i128",
+ }
+ }
+
+ pub fn bit_width(&self) -> Option<u64> {
+ Some(match *self {
+ IntTy::Isize => return None,
+ IntTy::I8 => 8,
+ IntTy::I16 => 16,
+ IntTy::I32 => 32,
+ IntTy::I64 => 64,
+ IntTy::I128 => 128,
+ })
+ }
+
+ pub fn normalize(&self, target_width: u32) -> Self {
+ match self {
+ IntTy::Isize => match target_width {
+ 16 => IntTy::I16,
+ 32 => IntTy::I32,
+ 64 => IntTy::I64,
+ _ => unreachable!(),
+ },
+ _ => *self,
+ }
+ }
+}
+
+#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
+#[derive(Encodable, Decodable)]
+pub enum UintTy {
+ Usize,
+ U8,
+ U16,
+ U32,
+ U64,
+ U128,
+}
+
+impl UintTy {
+ pub fn name_str(&self) -> &'static str {
+ match *self {
+ UintTy::Usize => "usize",
+ UintTy::U8 => "u8",
+ UintTy::U16 => "u16",
+ UintTy::U32 => "u32",
+ UintTy::U64 => "u64",
+ UintTy::U128 => "u128",
+ }
+ }
+
+ pub fn bit_width(&self) -> Option<u64> {
+ Some(match *self {
+ UintTy::Usize => return None,
+ UintTy::U8 => 8,
+ UintTy::U16 => 16,
+ UintTy::U32 => 32,
+ UintTy::U64 => 64,
+ UintTy::U128 => 128,
+ })
+ }
+
+ pub fn normalize(&self, target_width: u32) -> Self {
+ match self {
+ UintTy::Usize => match target_width {
+ 16 => UintTy::U16,
+ 32 => UintTy::U32,
+ 64 => UintTy::U64,
+ _ => unreachable!(),
+ },
+ _ => *self,
+ }
+ }
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
+#[derive(Encodable, Decodable)]
+pub enum FloatTy {
+ F32,
+ F64,
+}
+
+impl FloatTy {
+ pub fn name_str(self) -> &'static str {
+ match self {
+ FloatTy::F32 => "f32",
+ FloatTy::F64 => "f64",
+ }
+ }
+
+ pub fn bit_width(self) -> u64 {
+ match self {
+ FloatTy::F32 => 32,
+ FloatTy::F64 => 64,
+ }
+ }
+}
+
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub enum IntVarValue {
+ IntType(IntTy),
+ UintType(UintTy),
+}
+
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub struct FloatVarValue(pub FloatTy);
+
+rustc_index::newtype_index! {
+ /// A **ty**pe **v**ariable **ID**.
+ pub struct TyVid {
+ DEBUG_FORMAT = "_#{}t"
+ }
+}
+
+/// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
+pub struct IntVid {
+ pub index: u32,
+}
+
+/// An **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
+pub struct FloatVid {
+ pub index: u32,
+}
+
+/// A placeholder for a type that hasn't been inferred yet.
+///
+/// E.g., if we have an empty array (`[]`), then we create a fresh
+/// type variable for the element type since we won't know until it's
+/// used what the element type is supposed to be.
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
+pub enum InferTy {
+ /// A type variable.
+ TyVar(TyVid),
+ /// An integral type variable (`{integer}`).
+ ///
+ /// These are created when the compiler sees an integer literal like
+ /// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
+ /// We don't know until it's used what type it's supposed to be, so
+ /// we create a fresh type variable.
+ IntVar(IntVid),
+ /// A floating-point type variable (`{float}`).
+ ///
+ /// These are created when the compiler sees an float literal like
+ /// `1.0` that could be either an `f32` or an `f64`.
+ /// We don't know until it's used what type it's supposed to be, so
+ /// we create a fresh type variable.
+ FloatVar(FloatVid),
+
+ /// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
+ /// for an unbound type variable. This is convenient for caching etc. See
+ /// `rustc_infer::infer::freshen` for more details.
+ ///
+ /// Compare with [`TyVar`][Self::TyVar].
+ FreshTy(u32),
+ /// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
+ FreshIntTy(u32),
+ /// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
+ FreshFloatTy(u32),
+}
+
+/// Raw `TyVid` are used as the unification key for `sub_relations`;
+/// they carry no values.
+impl UnifyKey for TyVid {
+ type Value = ();
+ #[inline]
+ fn index(&self) -> u32 {
+ self.as_u32()
+ }
+ #[inline]
+ fn from_index(i: u32) -> TyVid {
+ TyVid::from_u32(i)
+ }
+ fn tag() -> &'static str {
+ "TyVid"
+ }
+}
+
+impl EqUnifyValue for IntVarValue {}
+
+impl UnifyKey for IntVid {
+ type Value = Option<IntVarValue>;
+ #[inline] // make this function eligible for inlining - it is quite hot.
+ fn index(&self) -> u32 {
+ self.index
+ }
+ #[inline]
+ fn from_index(i: u32) -> IntVid {
+ IntVid { index: i }
+ }
+ fn tag() -> &'static str {
+ "IntVid"
+ }
+}
+
+impl EqUnifyValue for FloatVarValue {}
+
+impl UnifyKey for FloatVid {
+ type Value = Option<FloatVarValue>;
+ #[inline]
+ fn index(&self) -> u32 {
+ self.index
+ }
+ #[inline]
+ fn from_index(i: u32) -> FloatVid {
+ FloatVid { index: i }
+ }
+ fn tag() -> &'static str {
+ "FloatVid"
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Decodable, Encodable, Hash)]
+#[rustc_pass_by_value]
+pub enum Variance {
+ Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
+ Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
+ Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
+ Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
+}
+
+impl Variance {
+ /// `a.xform(b)` combines the variance of a context with the
+ /// variance of a type with the following meaning. If we are in a
+ /// context with variance `a`, and we encounter a type argument in
+ /// a position with variance `b`, then `a.xform(b)` is the new
+ /// variance with which the argument appears.
+ ///
+ /// Example 1:
+ /// ```ignore (illustrative)
+ /// *mut Vec<i32>
+ /// ```
+ /// Here, the "ambient" variance starts as covariant. `*mut T` is
+ /// invariant with respect to `T`, so the variance in which the
+ /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
+ /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
+ /// respect to its type argument `T`, and hence the variance of
+ /// the `i32` here is `Invariant.xform(Covariant)`, which results
+ /// (again) in `Invariant`.
+ ///
+ /// Example 2:
+ /// ```ignore (illustrative)
+ /// fn(*const Vec<i32>, *mut Vec<i32)
+ /// ```
+ /// The ambient variance is covariant. A `fn` type is
+ /// contravariant with respect to its parameters, so the variance
+ /// within which both pointer types appear is
+ /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
+ /// T` is covariant with respect to `T`, so the variance within
+ /// which the first `Vec<i32>` appears is
+ /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
+ /// is true for its `i32` argument. In the `*mut T` case, the
+ /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
+ /// and hence the outermost type is `Invariant` with respect to
+ /// `Vec<i32>` (and its `i32` argument).
+ ///
+ /// Source: Figure 1 of "Taming the Wildcards:
+ /// Combining Definition- and Use-Site Variance" published in PLDI'11.
+ pub fn xform(self, v: Variance) -> Variance {
+ match (self, v) {
+ // Figure 1, column 1.
+ (Variance::Covariant, Variance::Covariant) => Variance::Covariant,
+ (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
+ (Variance::Covariant, Variance::Invariant) => Variance::Invariant,
+ (Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,
+
+ // Figure 1, column 2.
+ (Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
+ (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
+ (Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
+ (Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,
+
+ // Figure 1, column 3.
+ (Variance::Invariant, _) => Variance::Invariant,
+
+ // Figure 1, column 4.
+ (Variance::Bivariant, _) => Variance::Bivariant,
+ }
+ }
+}
+
+impl<CTX> HashStable<CTX> for DebruijnIndex {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ self.as_u32().hash_stable(ctx, hasher);
+ }
+}
+
+impl<CTX> HashStable<CTX> for IntTy {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ discriminant(self).hash_stable(ctx, hasher);
+ }
+}
+
+impl<CTX> HashStable<CTX> for UintTy {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ discriminant(self).hash_stable(ctx, hasher);
+ }
+}
+
+impl<CTX> HashStable<CTX> for FloatTy {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ discriminant(self).hash_stable(ctx, hasher);
+ }
+}
+
+impl<CTX> HashStable<CTX> for InferTy {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ use InferTy::*;
+ discriminant(self).hash_stable(ctx, hasher);
+ match self {
+ TyVar(v) => v.as_u32().hash_stable(ctx, hasher),
+ IntVar(v) => v.index.hash_stable(ctx, hasher),
+ FloatVar(v) => v.index.hash_stable(ctx, hasher),
+ FreshTy(v) | FreshIntTy(v) | FreshFloatTy(v) => v.hash_stable(ctx, hasher),
+ }
+ }
+}
+
+impl<CTX> HashStable<CTX> for Variance {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ discriminant(self).hash_stable(ctx, hasher);
+ }
+}
+
+impl fmt::Debug for IntVarValue {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ IntVarValue::IntType(ref v) => v.fmt(f),
+ IntVarValue::UintType(ref v) => v.fmt(f),
+ }
+ }
+}
+
+impl fmt::Debug for FloatVarValue {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+impl fmt::Debug for IntVid {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "_#{}i", self.index)
+ }
+}
+
+impl fmt::Debug for FloatVid {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "_#{}f", self.index)
+ }
+}
+
+impl fmt::Debug for InferTy {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use InferTy::*;
+ match *self {
+ TyVar(ref v) => v.fmt(f),
+ IntVar(ref v) => v.fmt(f),
+ FloatVar(ref v) => v.fmt(f),
+ FreshTy(v) => write!(f, "FreshTy({:?})", v),
+ FreshIntTy(v) => write!(f, "FreshIntTy({:?})", v),
+ FreshFloatTy(v) => write!(f, "FreshFloatTy({:?})", v),
+ }
+ }
+}
+
+impl fmt::Debug for Variance {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str(match *self {
+ Variance::Covariant => "+",
+ Variance::Contravariant => "-",
+ Variance::Invariant => "o",
+ Variance::Bivariant => "*",
+ })
+ }
+}
+
+impl fmt::Display for InferTy {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use InferTy::*;
+ match *self {
+ TyVar(_) => write!(f, "_"),
+ IntVar(_) => write!(f, "{}", "{integer}"),
+ FloatVar(_) => write!(f, "{}", "{float}"),
+ FreshTy(v) => write!(f, "FreshTy({})", v),
+ FreshIntTy(v) => write!(f, "FreshIntTy({})", v),
+ FreshFloatTy(v) => write!(f, "FreshFloatTy({})", v),
+ }
+ }
+}
+
+rustc_index::newtype_index! {
+ /// "Universes" are used during type- and trait-checking in the
+ /// presence of `for<..>` binders to control what sets of names are
+ /// visible. Universes are arranged into a tree: the root universe
+ /// contains names that are always visible. Each child then adds a new
+ /// set of names that are visible, in addition to those of its parent.
+ /// We say that the child universe "extends" the parent universe with
+ /// new names.
+ ///
+ /// To make this more concrete, consider this program:
+ ///
+ /// ```ignore (illustrative)
+ /// struct Foo { }
+ /// fn bar<T>(x: T) {
+ /// let y: for<'a> fn(&'a u8, Foo) = ...;
+ /// }
+ /// ```
+ ///
+ /// The struct name `Foo` is in the root universe U0. But the type
+ /// parameter `T`, introduced on `bar`, is in an extended universe U1
+ /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
+ /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
+ /// region `'a` is in a universe U2 that extends U1, because we can
+ /// name it inside the fn type but not outside.
+ ///
+ /// Universes are used to do type- and trait-checking around these
+ /// "forall" binders (also called **universal quantification**). The
+ /// idea is that when, in the body of `bar`, we refer to `T` as a
+ /// type, we aren't referring to any type in particular, but rather a
+ /// kind of "fresh" type that is distinct from all other types we have
+ /// actually declared. This is called a **placeholder** type, and we
+ /// use universes to talk about this. In other words, a type name in
+ /// universe 0 always corresponds to some "ground" type that the user
+ /// declared, but a type name in a non-zero universe is a placeholder
+ /// type -- an idealized representative of "types in general" that we
+ /// use for checking generic functions.
+ pub struct UniverseIndex {
+ DEBUG_FORMAT = "U{}",
+ }
+}
+
+impl UniverseIndex {
+ pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);
+
+ /// Returns the "next" universe index in order -- this new index
+ /// is considered to extend all previous universes. This
+ /// corresponds to entering a `forall` quantifier. So, for
+ /// example, suppose we have this type in universe `U`:
+ ///
+ /// ```ignore (illustrative)
+ /// for<'a> fn(&'a u32)
+ /// ```
+ ///
+ /// Once we "enter" into this `for<'a>` quantifier, we are in a
+ /// new universe that extends `U` -- in this new universe, we can
+ /// name the region `'a`, but that region was not nameable from
+ /// `U` because it was not in scope there.
+ pub fn next_universe(self) -> UniverseIndex {
+ UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
+ }
+
+ /// Returns `true` if `self` can name a name from `other` -- in other words,
+ /// if the set of names in `self` is a superset of those in
+ /// `other` (`self >= other`).
+ pub fn can_name(self, other: UniverseIndex) -> bool {
+ self.private >= other.private
+ }
+
+ /// Returns `true` if `self` cannot name some names from `other` -- in other
+ /// words, if the set of names in `self` is a strict subset of
+ /// those in `other` (`self < other`).
+ pub fn cannot_name(self, other: UniverseIndex) -> bool {
+ self.private < other.private
+ }
+}
+
+impl<CTX> HashStable<CTX> for UniverseIndex {
+ fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
+ self.private.hash_stable(ctx, hasher);
+ }
+}
diff --git a/compiler/rustc_type_ir/src/sty.rs b/compiler/rustc_type_ir/src/sty.rs
new file mode 100644
index 000000000..74737e30b
--- /dev/null
+++ b/compiler/rustc_type_ir/src/sty.rs
@@ -0,0 +1,1329 @@
+#![allow(rustc::usage_of_ty_tykind)]
+
+use std::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
+use std::{fmt, hash};
+
+use crate::DebruijnIndex;
+use crate::FloatTy;
+use crate::IntTy;
+use crate::Interner;
+use crate::TyDecoder;
+use crate::TyEncoder;
+use crate::UintTy;
+use crate::UniverseIndex;
+
+use self::RegionKind::*;
+use self::TyKind::*;
+
+use rustc_data_structures::stable_hasher::HashStable;
+use rustc_serialize::{Decodable, Decoder, Encodable};
+
+/// Defines the kinds of types used by the type system.
+///
+/// Types written by the user start out as `hir::TyKind` and get
+/// converted to this representation using `AstConv::ast_ty_to_ty`.
+#[rustc_diagnostic_item = "IrTyKind"]
+pub enum TyKind<I: Interner> {
+ /// The primitive boolean type. Written as `bool`.
+ Bool,
+
+ /// The primitive character type; holds a Unicode scalar value
+ /// (a non-surrogate code point). Written as `char`.
+ Char,
+
+ /// A primitive signed integer type. For example, `i32`.
+ Int(IntTy),
+
+ /// A primitive unsigned integer type. For example, `u32`.
+ Uint(UintTy),
+
+ /// A primitive floating-point type. For example, `f64`.
+ Float(FloatTy),
+
+ /// Algebraic data types (ADT). For example: structures, enumerations and unions.
+ ///
+ /// For example, the type `List<i32>` would be represented using the `AdtDef`
+ /// for `struct List<T>` and the substs `[i32]`.
+ ///
+ /// Note that generic parameters in fields only get lazily substituted
+ /// by using something like `adt_def.all_fields().map(|field| field.ty(tcx, substs))`.
+ Adt(I::AdtDef, I::SubstsRef),
+
+ /// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
+ Foreign(I::DefId),
+
+ /// The pointee of a string slice. Written as `str`.
+ Str,
+
+ /// An array with the given length. Written as `[T; N]`.
+ Array(I::Ty, I::Const),
+
+ /// The pointee of an array slice. Written as `[T]`.
+ Slice(I::Ty),
+
+ /// A raw pointer. Written as `*mut T` or `*const T`
+ RawPtr(I::TypeAndMut),
+
+ /// A reference; a pointer with an associated lifetime. Written as
+ /// `&'a mut T` or `&'a T`.
+ Ref(I::Region, I::Ty, I::Mutability),
+
+ /// The anonymous type of a function declaration/definition. Each
+ /// function has a unique type.
+ ///
+ /// For the function `fn foo() -> i32 { 3 }` this type would be
+ /// shown to the user as `fn() -> i32 {foo}`.
+ ///
+ /// For example the type of `bar` here:
+ /// ```rust
+ /// fn foo() -> i32 { 1 }
+ /// let bar = foo; // bar: fn() -> i32 {foo}
+ /// ```
+ FnDef(I::DefId, I::SubstsRef),
+
+ /// A pointer to a function. Written as `fn() -> i32`.
+ ///
+ /// Note that both functions and closures start out as either
+ /// [FnDef] or [Closure] which can be then be coerced to this variant.
+ ///
+ /// For example the type of `bar` here:
+ ///
+ /// ```rust
+ /// fn foo() -> i32 { 1 }
+ /// let bar: fn() -> i32 = foo;
+ /// ```
+ FnPtr(I::PolyFnSig),
+
+ /// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
+ Dynamic(I::ListBinderExistentialPredicate, I::Region),
+
+ /// The anonymous type of a closure. Used to represent the type of `|a| a`.
+ ///
+ /// Closure substs contain both the - potentially substituted - generic parameters
+ /// of its parent and some synthetic parameters. See the documentation for
+ /// `ClosureSubsts` for more details.
+ Closure(I::DefId, I::SubstsRef),
+
+ /// The anonymous type of a generator. Used to represent the type of
+ /// `|a| yield a`.
+ ///
+ /// For more info about generator substs, visit the documentation for
+ /// `GeneratorSubsts`.
+ Generator(I::DefId, I::SubstsRef, I::Movability),
+
+ /// A type representing the types stored inside a generator.
+ /// This should only appear as part of the `GeneratorSubsts`.
+ ///
+ /// Note that the captured variables for generators are stored separately
+ /// using a tuple in the same way as for closures.
+ ///
+ /// Unlike upvars, the witness can reference lifetimes from
+ /// inside of the generator itself. To deal with them in
+ /// the type of the generator, we convert them to higher ranked
+ /// lifetimes bound by the witness itself.
+ ///
+ /// Looking at the following example, the witness for this generator
+ /// may end up as something like `for<'a> [Vec<i32>, &'a Vec<i32>]`:
+ ///
+ /// ```ignore UNSOLVED (ask @compiler-errors, should this error? can we just swap the yields?)
+ /// #![feature(generators)]
+ /// |a| {
+ /// let x = &vec![3];
+ /// yield a;
+ /// yield x[0];
+ /// }
+ /// # ;
+ /// ```
+ GeneratorWitness(I::BinderListTy),
+
+ /// The never type `!`.
+ Never,
+
+ /// A tuple type. For example, `(i32, bool)`.
+ Tuple(I::ListTy),
+
+ /// The projection of an associated type. For example,
+ /// `<T as Trait<..>>::N`.
+ Projection(I::ProjectionTy),
+
+ /// Opaque (`impl Trait`) type found in a return type.
+ ///
+ /// The `DefId` comes either from
+ /// * the `impl Trait` ast::Ty node,
+ /// * or the `type Foo = impl Trait` declaration
+ ///
+ /// For RPIT the substitutions are for the generics of the function,
+ /// while for TAIT it is used for the generic parameters of the alias.
+ ///
+ /// During codegen, `tcx.type_of(def_id)` can be used to get the underlying type.
+ Opaque(I::DefId, I::SubstsRef),
+
+ /// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
+ Param(I::ParamTy),
+
+ /// Bound type variable, used to represent the `'a` in `for<'a> fn(&'a ())`.
+ ///
+ /// For canonical queries, we replace inference variables with bound variables,
+ /// so e.g. when checking whether `&'_ (): Trait<_>` holds, we canonicalize that to
+ /// `for<'a, T> &'a (): Trait<T>` and then convert the introduced bound variables
+ /// back to inference variables in a new inference context when inside of the query.
+ ///
+ /// See the `rustc-dev-guide` for more details about
+ /// [higher-ranked trait bounds][1] and [canonical queries][2].
+ ///
+ /// [1]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
+ /// [2]: https://rustc-dev-guide.rust-lang.org/traits/canonical-queries.html
+ Bound(DebruijnIndex, I::BoundTy),
+
+ /// A placeholder type, used during higher ranked subtyping to instantiate
+ /// bound variables.
+ Placeholder(I::PlaceholderType),
+
+ /// A type variable used during type checking.
+ ///
+ /// Similar to placeholders, inference variables also live in a universe to
+ /// correctly deal with higher ranked types. Though unlike placeholders,
+ /// that universe is stored in the `InferCtxt` instead of directly
+ /// inside of the type.
+ Infer(I::InferTy),
+
+ /// A placeholder for a type which could not be computed; this is
+ /// propagated to avoid useless error messages.
+ Error(I::DelaySpanBugEmitted),
+}
+
+impl<I: Interner> TyKind<I> {
+ #[inline]
+ pub fn is_primitive(&self) -> bool {
+ matches!(self, Bool | Char | Int(_) | Uint(_) | Float(_))
+ }
+}
+
+// This is manually implemented for `TyKind` because `std::mem::discriminant`
+// returns an opaque value that is `PartialEq` but not `PartialOrd`
+#[inline]
+const fn tykind_discriminant<I: Interner>(value: &TyKind<I>) -> usize {
+ match value {
+ Bool => 0,
+ Char => 1,
+ Int(_) => 2,
+ Uint(_) => 3,
+ Float(_) => 4,
+ Adt(_, _) => 5,
+ Foreign(_) => 6,
+ Str => 7,
+ Array(_, _) => 8,
+ Slice(_) => 9,
+ RawPtr(_) => 10,
+ Ref(_, _, _) => 11,
+ FnDef(_, _) => 12,
+ FnPtr(_) => 13,
+ Dynamic(_, _) => 14,
+ Closure(_, _) => 15,
+ Generator(_, _, _) => 16,
+ GeneratorWitness(_) => 17,
+ Never => 18,
+ Tuple(_) => 19,
+ Projection(_) => 20,
+ Opaque(_, _) => 21,
+ Param(_) => 22,
+ Bound(_, _) => 23,
+ Placeholder(_) => 24,
+ Infer(_) => 25,
+ Error(_) => 26,
+ }
+}
+
+// This is manually implemented because a derive would require `I: Clone`
+impl<I: Interner> Clone for TyKind<I> {
+ fn clone(&self) -> Self {
+ match self {
+ Bool => Bool,
+ Char => Char,
+ Int(i) => Int(i.clone()),
+ Uint(u) => Uint(u.clone()),
+ Float(f) => Float(f.clone()),
+ Adt(d, s) => Adt(d.clone(), s.clone()),
+ Foreign(d) => Foreign(d.clone()),
+ Str => Str,
+ Array(t, c) => Array(t.clone(), c.clone()),
+ Slice(t) => Slice(t.clone()),
+ RawPtr(t) => RawPtr(t.clone()),
+ Ref(r, t, m) => Ref(r.clone(), t.clone(), m.clone()),
+ FnDef(d, s) => FnDef(d.clone(), s.clone()),
+ FnPtr(s) => FnPtr(s.clone()),
+ Dynamic(p, r) => Dynamic(p.clone(), r.clone()),
+ Closure(d, s) => Closure(d.clone(), s.clone()),
+ Generator(d, s, m) => Generator(d.clone(), s.clone(), m.clone()),
+ GeneratorWitness(g) => GeneratorWitness(g.clone()),
+ Never => Never,
+ Tuple(t) => Tuple(t.clone()),
+ Projection(p) => Projection(p.clone()),
+ Opaque(d, s) => Opaque(d.clone(), s.clone()),
+ Param(p) => Param(p.clone()),
+ Bound(d, b) => Bound(d.clone(), b.clone()),
+ Placeholder(p) => Placeholder(p.clone()),
+ Infer(t) => Infer(t.clone()),
+ Error(e) => Error(e.clone()),
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: PartialEq`
+impl<I: Interner> PartialEq for TyKind<I> {
+ #[inline]
+ fn eq(&self, other: &TyKind<I>) -> bool {
+ let __self_vi = tykind_discriminant(self);
+ let __arg_1_vi = tykind_discriminant(other);
+ if __self_vi == __arg_1_vi {
+ match (&*self, &*other) {
+ (&Int(ref __self_0), &Int(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Uint(ref __self_0), &Uint(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Float(ref __self_0), &Float(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Adt(ref __self_0, ref __self_1), &Adt(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (&Foreign(ref __self_0), &Foreign(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Array(ref __self_0, ref __self_1), &Array(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (&Slice(ref __self_0), &Slice(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&RawPtr(ref __self_0), &RawPtr(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (
+ &Ref(ref __self_0, ref __self_1, ref __self_2),
+ &Ref(ref __arg_1_0, ref __arg_1_1, ref __arg_1_2),
+ ) => __self_0 == __arg_1_0 && __self_1 == __arg_1_1 && __self_2 == __arg_1_2,
+ (&FnDef(ref __self_0, ref __self_1), &FnDef(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (&FnPtr(ref __self_0), &FnPtr(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Dynamic(ref __self_0, ref __self_1), &Dynamic(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (&Closure(ref __self_0, ref __self_1), &Closure(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (
+ &Generator(ref __self_0, ref __self_1, ref __self_2),
+ &Generator(ref __arg_1_0, ref __arg_1_1, ref __arg_1_2),
+ ) => __self_0 == __arg_1_0 && __self_1 == __arg_1_1 && __self_2 == __arg_1_2,
+ (&GeneratorWitness(ref __self_0), &GeneratorWitness(ref __arg_1_0)) => {
+ __self_0 == __arg_1_0
+ }
+ (&Tuple(ref __self_0), &Tuple(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Projection(ref __self_0), &Projection(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Opaque(ref __self_0, ref __self_1), &Opaque(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (&Param(ref __self_0), &Param(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Bound(ref __self_0, ref __self_1), &Bound(ref __arg_1_0, ref __arg_1_1)) => {
+ __self_0 == __arg_1_0 && __self_1 == __arg_1_1
+ }
+ (&Placeholder(ref __self_0), &Placeholder(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Infer(ref __self_0), &Infer(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&Error(ref __self_0), &Error(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ _ => true,
+ }
+ } else {
+ false
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Eq`
+impl<I: Interner> Eq for TyKind<I> {}
+
+// This is manually implemented because a derive would require `I: PartialOrd`
+impl<I: Interner> PartialOrd for TyKind<I> {
+ #[inline]
+ fn partial_cmp(&self, other: &TyKind<I>) -> Option<Ordering> {
+ Some(Ord::cmp(self, other))
+ }
+}
+
+// This is manually implemented because a derive would require `I: Ord`
+impl<I: Interner> Ord for TyKind<I> {
+ #[inline]
+ fn cmp(&self, other: &TyKind<I>) -> Ordering {
+ let __self_vi = tykind_discriminant(self);
+ let __arg_1_vi = tykind_discriminant(other);
+ if __self_vi == __arg_1_vi {
+ match (&*self, &*other) {
+ (&Int(ref __self_0), &Int(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Uint(ref __self_0), &Uint(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Float(ref __self_0), &Float(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Adt(ref __self_0, ref __self_1), &Adt(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (&Foreign(ref __self_0), &Foreign(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Array(ref __self_0, ref __self_1), &Array(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (&Slice(ref __self_0), &Slice(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&RawPtr(ref __self_0), &RawPtr(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (
+ &Ref(ref __self_0, ref __self_1, ref __self_2),
+ &Ref(ref __arg_1_0, ref __arg_1_1, ref __arg_1_2),
+ ) => match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => match Ord::cmp(__self_1, __arg_1_1) {
+ Ordering::Equal => Ord::cmp(__self_2, __arg_1_2),
+ cmp => cmp,
+ },
+ cmp => cmp,
+ },
+ (&FnDef(ref __self_0, ref __self_1), &FnDef(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (&FnPtr(ref __self_0), &FnPtr(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Dynamic(ref __self_0, ref __self_1), &Dynamic(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (&Closure(ref __self_0, ref __self_1), &Closure(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (
+ &Generator(ref __self_0, ref __self_1, ref __self_2),
+ &Generator(ref __arg_1_0, ref __arg_1_1, ref __arg_1_2),
+ ) => match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => match Ord::cmp(__self_1, __arg_1_1) {
+ Ordering::Equal => Ord::cmp(__self_2, __arg_1_2),
+ cmp => cmp,
+ },
+ cmp => cmp,
+ },
+ (&GeneratorWitness(ref __self_0), &GeneratorWitness(ref __arg_1_0)) => {
+ Ord::cmp(__self_0, __arg_1_0)
+ }
+ (&Tuple(ref __self_0), &Tuple(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Projection(ref __self_0), &Projection(ref __arg_1_0)) => {
+ Ord::cmp(__self_0, __arg_1_0)
+ }
+ (&Opaque(ref __self_0, ref __self_1), &Opaque(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (&Param(ref __self_0), &Param(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Bound(ref __self_0, ref __self_1), &Bound(ref __arg_1_0, ref __arg_1_1)) => {
+ match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ }
+ }
+ (&Placeholder(ref __self_0), &Placeholder(ref __arg_1_0)) => {
+ Ord::cmp(__self_0, __arg_1_0)
+ }
+ (&Infer(ref __self_0), &Infer(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&Error(ref __self_0), &Error(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ _ => Ordering::Equal,
+ }
+ } else {
+ Ord::cmp(&__self_vi, &__arg_1_vi)
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Hash`
+impl<I: Interner> hash::Hash for TyKind<I> {
+ fn hash<__H: hash::Hasher>(&self, state: &mut __H) -> () {
+ match (&*self,) {
+ (&Int(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Uint(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Float(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Adt(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&Foreign(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Array(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&Slice(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&RawPtr(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Ref(ref __self_0, ref __self_1, ref __self_2),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state);
+ hash::Hash::hash(__self_2, state)
+ }
+ (&FnDef(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&FnPtr(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Dynamic(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&Closure(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&Generator(ref __self_0, ref __self_1, ref __self_2),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state);
+ hash::Hash::hash(__self_2, state)
+ }
+ (&GeneratorWitness(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Tuple(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Projection(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Opaque(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&Param(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Bound(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&Placeholder(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Infer(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&Error(ref __self_0),) => {
+ hash::Hash::hash(&tykind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ _ => hash::Hash::hash(&tykind_discriminant(self), state),
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Debug`
+impl<I: Interner> fmt::Debug for TyKind<I> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use std::fmt::*;
+ match self {
+ Bool => Formatter::write_str(f, "Bool"),
+ Char => Formatter::write_str(f, "Char"),
+ Int(f0) => Formatter::debug_tuple_field1_finish(f, "Int", f0),
+ Uint(f0) => Formatter::debug_tuple_field1_finish(f, "Uint", f0),
+ Float(f0) => Formatter::debug_tuple_field1_finish(f, "Float", f0),
+ Adt(f0, f1) => Formatter::debug_tuple_field2_finish(f, "Adt", f0, f1),
+ Foreign(f0) => Formatter::debug_tuple_field1_finish(f, "Foreign", f0),
+ Str => Formatter::write_str(f, "Str"),
+ Array(f0, f1) => Formatter::debug_tuple_field2_finish(f, "Array", f0, f1),
+ Slice(f0) => Formatter::debug_tuple_field1_finish(f, "Slice", f0),
+ RawPtr(f0) => Formatter::debug_tuple_field1_finish(f, "RawPtr", f0),
+ Ref(f0, f1, f2) => Formatter::debug_tuple_field3_finish(f, "Ref", f0, f1, f2),
+ FnDef(f0, f1) => Formatter::debug_tuple_field2_finish(f, "FnDef", f0, f1),
+ FnPtr(f0) => Formatter::debug_tuple_field1_finish(f, "FnPtr", f0),
+ Dynamic(f0, f1) => Formatter::debug_tuple_field2_finish(f, "Dynamic", f0, f1),
+ Closure(f0, f1) => Formatter::debug_tuple_field2_finish(f, "Closure", f0, f1),
+ Generator(f0, f1, f2) => {
+ Formatter::debug_tuple_field3_finish(f, "Generator", f0, f1, f2)
+ }
+ GeneratorWitness(f0) => Formatter::debug_tuple_field1_finish(f, "GeneratorWitness", f0),
+ Never => Formatter::write_str(f, "Never"),
+ Tuple(f0) => Formatter::debug_tuple_field1_finish(f, "Tuple", f0),
+ Projection(f0) => Formatter::debug_tuple_field1_finish(f, "Projection", f0),
+ Opaque(f0, f1) => Formatter::debug_tuple_field2_finish(f, "Opaque", f0, f1),
+ Param(f0) => Formatter::debug_tuple_field1_finish(f, "Param", f0),
+ Bound(f0, f1) => Formatter::debug_tuple_field2_finish(f, "Bound", f0, f1),
+ Placeholder(f0) => Formatter::debug_tuple_field1_finish(f, "Placeholder", f0),
+ Infer(f0) => Formatter::debug_tuple_field1_finish(f, "Infer", f0),
+ TyKind::Error(f0) => Formatter::debug_tuple_field1_finish(f, "Error", f0),
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Encodable`
+impl<I: Interner, E: TyEncoder> Encodable<E> for TyKind<I>
+where
+ I::DelaySpanBugEmitted: Encodable<E>,
+ I::AdtDef: Encodable<E>,
+ I::SubstsRef: Encodable<E>,
+ I::DefId: Encodable<E>,
+ I::Ty: Encodable<E>,
+ I::Const: Encodable<E>,
+ I::Region: Encodable<E>,
+ I::TypeAndMut: Encodable<E>,
+ I::Mutability: Encodable<E>,
+ I::Movability: Encodable<E>,
+ I::PolyFnSig: Encodable<E>,
+ I::ListBinderExistentialPredicate: Encodable<E>,
+ I::BinderListTy: Encodable<E>,
+ I::ListTy: Encodable<E>,
+ I::ProjectionTy: Encodable<E>,
+ I::ParamTy: Encodable<E>,
+ I::BoundTy: Encodable<E>,
+ I::PlaceholderType: Encodable<E>,
+ I::InferTy: Encodable<E>,
+ I::DelaySpanBugEmitted: Encodable<E>,
+ I::PredicateKind: Encodable<E>,
+ I::AllocId: Encodable<E>,
+{
+ fn encode(&self, e: &mut E) {
+ let disc = tykind_discriminant(self);
+ match self {
+ Bool => e.emit_enum_variant(disc, |_| {}),
+ Char => e.emit_enum_variant(disc, |_| {}),
+ Int(i) => e.emit_enum_variant(disc, |e| {
+ i.encode(e);
+ }),
+ Uint(u) => e.emit_enum_variant(disc, |e| {
+ u.encode(e);
+ }),
+ Float(f) => e.emit_enum_variant(disc, |e| {
+ f.encode(e);
+ }),
+ Adt(adt, substs) => e.emit_enum_variant(disc, |e| {
+ adt.encode(e);
+ substs.encode(e);
+ }),
+ Foreign(def_id) => e.emit_enum_variant(disc, |e| {
+ def_id.encode(e);
+ }),
+ Str => e.emit_enum_variant(disc, |_| {}),
+ Array(t, c) => e.emit_enum_variant(disc, |e| {
+ t.encode(e);
+ c.encode(e);
+ }),
+ Slice(t) => e.emit_enum_variant(disc, |e| {
+ t.encode(e);
+ }),
+ RawPtr(tam) => e.emit_enum_variant(disc, |e| {
+ tam.encode(e);
+ }),
+ Ref(r, t, m) => e.emit_enum_variant(disc, |e| {
+ r.encode(e);
+ t.encode(e);
+ m.encode(e);
+ }),
+ FnDef(def_id, substs) => e.emit_enum_variant(disc, |e| {
+ def_id.encode(e);
+ substs.encode(e);
+ }),
+ FnPtr(polyfnsig) => e.emit_enum_variant(disc, |e| {
+ polyfnsig.encode(e);
+ }),
+ Dynamic(l, r) => e.emit_enum_variant(disc, |e| {
+ l.encode(e);
+ r.encode(e);
+ }),
+ Closure(def_id, substs) => e.emit_enum_variant(disc, |e| {
+ def_id.encode(e);
+ substs.encode(e);
+ }),
+ Generator(def_id, substs, m) => e.emit_enum_variant(disc, |e| {
+ def_id.encode(e);
+ substs.encode(e);
+ m.encode(e);
+ }),
+ GeneratorWitness(b) => e.emit_enum_variant(disc, |e| {
+ b.encode(e);
+ }),
+ Never => e.emit_enum_variant(disc, |_| {}),
+ Tuple(substs) => e.emit_enum_variant(disc, |e| {
+ substs.encode(e);
+ }),
+ Projection(p) => e.emit_enum_variant(disc, |e| {
+ p.encode(e);
+ }),
+ Opaque(def_id, substs) => e.emit_enum_variant(disc, |e| {
+ def_id.encode(e);
+ substs.encode(e);
+ }),
+ Param(p) => e.emit_enum_variant(disc, |e| {
+ p.encode(e);
+ }),
+ Bound(d, b) => e.emit_enum_variant(disc, |e| {
+ d.encode(e);
+ b.encode(e);
+ }),
+ Placeholder(p) => e.emit_enum_variant(disc, |e| {
+ p.encode(e);
+ }),
+ Infer(i) => e.emit_enum_variant(disc, |e| {
+ i.encode(e);
+ }),
+ Error(d) => e.emit_enum_variant(disc, |e| {
+ d.encode(e);
+ }),
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Decodable`
+impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for TyKind<I>
+where
+ I::DelaySpanBugEmitted: Decodable<D>,
+ I::AdtDef: Decodable<D>,
+ I::SubstsRef: Decodable<D>,
+ I::DefId: Decodable<D>,
+ I::Ty: Decodable<D>,
+ I::Const: Decodable<D>,
+ I::Region: Decodable<D>,
+ I::TypeAndMut: Decodable<D>,
+ I::Mutability: Decodable<D>,
+ I::Movability: Decodable<D>,
+ I::PolyFnSig: Decodable<D>,
+ I::ListBinderExistentialPredicate: Decodable<D>,
+ I::BinderListTy: Decodable<D>,
+ I::ListTy: Decodable<D>,
+ I::ProjectionTy: Decodable<D>,
+ I::ParamTy: Decodable<D>,
+ I::BoundTy: Decodable<D>,
+ I::PlaceholderType: Decodable<D>,
+ I::InferTy: Decodable<D>,
+ I::DelaySpanBugEmitted: Decodable<D>,
+ I::PredicateKind: Decodable<D>,
+ I::AllocId: Decodable<D>,
+{
+ fn decode(d: &mut D) -> Self {
+ match Decoder::read_usize(d) {
+ 0 => Bool,
+ 1 => Char,
+ 2 => Int(Decodable::decode(d)),
+ 3 => Uint(Decodable::decode(d)),
+ 4 => Float(Decodable::decode(d)),
+ 5 => Adt(Decodable::decode(d), Decodable::decode(d)),
+ 6 => Foreign(Decodable::decode(d)),
+ 7 => Str,
+ 8 => Array(Decodable::decode(d), Decodable::decode(d)),
+ 9 => Slice(Decodable::decode(d)),
+ 10 => RawPtr(Decodable::decode(d)),
+ 11 => Ref(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
+ 12 => FnDef(Decodable::decode(d), Decodable::decode(d)),
+ 13 => FnPtr(Decodable::decode(d)),
+ 14 => Dynamic(Decodable::decode(d), Decodable::decode(d)),
+ 15 => Closure(Decodable::decode(d), Decodable::decode(d)),
+ 16 => Generator(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
+ 17 => GeneratorWitness(Decodable::decode(d)),
+ 18 => Never,
+ 19 => Tuple(Decodable::decode(d)),
+ 20 => Projection(Decodable::decode(d)),
+ 21 => Opaque(Decodable::decode(d), Decodable::decode(d)),
+ 22 => Param(Decodable::decode(d)),
+ 23 => Bound(Decodable::decode(d), Decodable::decode(d)),
+ 24 => Placeholder(Decodable::decode(d)),
+ 25 => Infer(Decodable::decode(d)),
+ 26 => Error(Decodable::decode(d)),
+ _ => panic!(
+ "{}",
+ format!(
+ "invalid enum variant tag while decoding `{}`, expected 0..{}",
+ "TyKind", 27,
+ )
+ ),
+ }
+ }
+}
+
+// This is not a derived impl because a derive would require `I: HashStable`
+#[allow(rustc::usage_of_ty_tykind)]
+impl<CTX, I: Interner> HashStable<CTX> for TyKind<I>
+where
+ I::AdtDef: HashStable<CTX>,
+ I::DefId: HashStable<CTX>,
+ I::SubstsRef: HashStable<CTX>,
+ I::Ty: HashStable<CTX>,
+ I::Const: HashStable<CTX>,
+ I::TypeAndMut: HashStable<CTX>,
+ I::PolyFnSig: HashStable<CTX>,
+ I::ListBinderExistentialPredicate: HashStable<CTX>,
+ I::Region: HashStable<CTX>,
+ I::Movability: HashStable<CTX>,
+ I::Mutability: HashStable<CTX>,
+ I::BinderListTy: HashStable<CTX>,
+ I::ListTy: HashStable<CTX>,
+ I::ProjectionTy: HashStable<CTX>,
+ I::BoundTy: HashStable<CTX>,
+ I::ParamTy: HashStable<CTX>,
+ I::PlaceholderType: HashStable<CTX>,
+ I::InferTy: HashStable<CTX>,
+ I::DelaySpanBugEmitted: HashStable<CTX>,
+{
+ #[inline]
+ fn hash_stable(
+ &self,
+ __hcx: &mut CTX,
+ __hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
+ ) {
+ std::mem::discriminant(self).hash_stable(__hcx, __hasher);
+ match self {
+ Bool => {}
+ Char => {}
+ Int(i) => {
+ i.hash_stable(__hcx, __hasher);
+ }
+ Uint(u) => {
+ u.hash_stable(__hcx, __hasher);
+ }
+ Float(f) => {
+ f.hash_stable(__hcx, __hasher);
+ }
+ Adt(adt, substs) => {
+ adt.hash_stable(__hcx, __hasher);
+ substs.hash_stable(__hcx, __hasher);
+ }
+ Foreign(def_id) => {
+ def_id.hash_stable(__hcx, __hasher);
+ }
+ Str => {}
+ Array(t, c) => {
+ t.hash_stable(__hcx, __hasher);
+ c.hash_stable(__hcx, __hasher);
+ }
+ Slice(t) => {
+ t.hash_stable(__hcx, __hasher);
+ }
+ RawPtr(tam) => {
+ tam.hash_stable(__hcx, __hasher);
+ }
+ Ref(r, t, m) => {
+ r.hash_stable(__hcx, __hasher);
+ t.hash_stable(__hcx, __hasher);
+ m.hash_stable(__hcx, __hasher);
+ }
+ FnDef(def_id, substs) => {
+ def_id.hash_stable(__hcx, __hasher);
+ substs.hash_stable(__hcx, __hasher);
+ }
+ FnPtr(polyfnsig) => {
+ polyfnsig.hash_stable(__hcx, __hasher);
+ }
+ Dynamic(l, r) => {
+ l.hash_stable(__hcx, __hasher);
+ r.hash_stable(__hcx, __hasher);
+ }
+ Closure(def_id, substs) => {
+ def_id.hash_stable(__hcx, __hasher);
+ substs.hash_stable(__hcx, __hasher);
+ }
+ Generator(def_id, substs, m) => {
+ def_id.hash_stable(__hcx, __hasher);
+ substs.hash_stable(__hcx, __hasher);
+ m.hash_stable(__hcx, __hasher);
+ }
+ GeneratorWitness(b) => {
+ b.hash_stable(__hcx, __hasher);
+ }
+ Never => {}
+ Tuple(substs) => {
+ substs.hash_stable(__hcx, __hasher);
+ }
+ Projection(p) => {
+ p.hash_stable(__hcx, __hasher);
+ }
+ Opaque(def_id, substs) => {
+ def_id.hash_stable(__hcx, __hasher);
+ substs.hash_stable(__hcx, __hasher);
+ }
+ Param(p) => {
+ p.hash_stable(__hcx, __hasher);
+ }
+ Bound(d, b) => {
+ d.hash_stable(__hcx, __hasher);
+ b.hash_stable(__hcx, __hasher);
+ }
+ Placeholder(p) => {
+ p.hash_stable(__hcx, __hasher);
+ }
+ Infer(i) => {
+ i.hash_stable(__hcx, __hasher);
+ }
+ Error(d) => {
+ d.hash_stable(__hcx, __hasher);
+ }
+ }
+ }
+}
+
+/// Representation of regions. Note that the NLL checker uses a distinct
+/// representation of regions. For this reason, it internally replaces all the
+/// regions with inference variables -- the index of the variable is then used
+/// to index into internal NLL data structures. See `rustc_const_eval::borrow_check`
+/// module for more information.
+///
+/// Note: operations are on the wrapper `Region` type, which is interned,
+/// rather than this type.
+///
+/// ## The Region lattice within a given function
+///
+/// In general, the region lattice looks like
+///
+/// ```text
+/// static ----------+-----...------+ (greatest)
+/// | | |
+/// early-bound and | |
+/// free regions | |
+/// | | |
+/// | | |
+/// empty(root) placeholder(U1) |
+/// | / |
+/// | / placeholder(Un)
+/// empty(U1) -- /
+/// | /
+/// ... /
+/// | /
+/// empty(Un) -------- (smallest)
+/// ```
+///
+/// Early-bound/free regions are the named lifetimes in scope from the
+/// function declaration. They have relationships to one another
+/// determined based on the declared relationships from the
+/// function.
+///
+/// Note that inference variables and bound regions are not included
+/// in this diagram. In the case of inference variables, they should
+/// be inferred to some other region from the diagram. In the case of
+/// bound regions, they are excluded because they don't make sense to
+/// include -- the diagram indicates the relationship between free
+/// regions.
+///
+/// ## Inference variables
+///
+/// During region inference, we sometimes create inference variables,
+/// represented as `ReVar`. These will be inferred by the code in
+/// `infer::lexical_region_resolve` to some free region from the
+/// lattice above (the minimal region that meets the
+/// constraints).
+///
+/// During NLL checking, where regions are defined differently, we
+/// also use `ReVar` -- in that case, the index is used to index into
+/// the NLL region checker's data structures. The variable may in fact
+/// represent either a free region or an inference variable, in that
+/// case.
+///
+/// ## Bound Regions
+///
+/// These are regions that are stored behind a binder and must be substituted
+/// with some concrete region before being used. There are two kind of
+/// bound regions: early-bound, which are bound in an item's `Generics`,
+/// and are substituted by an `InternalSubsts`, and late-bound, which are part of
+/// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
+/// the likes of `liberate_late_bound_regions`. The distinction exists
+/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
+///
+/// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
+/// outside their binder, e.g., in types passed to type inference, and
+/// should first be substituted (by placeholder regions, free regions,
+/// or region variables).
+///
+/// ## Placeholder and Free Regions
+///
+/// One often wants to work with bound regions without knowing their precise
+/// identity. For example, when checking a function, the lifetime of a borrow
+/// can end up being assigned to some region parameter. In these cases,
+/// it must be ensured that bounds on the region can't be accidentally
+/// assumed without being checked.
+///
+/// To do this, we replace the bound regions with placeholder markers,
+/// which don't satisfy any relation not explicitly provided.
+///
+/// There are two kinds of placeholder regions in rustc: `ReFree` and
+/// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
+/// to be used. These also support explicit bounds: both the internally-stored
+/// *scope*, which the region is assumed to outlive, as well as other
+/// relations stored in the `FreeRegionMap`. Note that these relations
+/// aren't checked when you `make_subregion` (or `eq_types`), only by
+/// `resolve_regions_and_report_errors`.
+///
+/// When working with higher-ranked types, some region relations aren't
+/// yet known, so you can't just call `resolve_regions_and_report_errors`.
+/// `RePlaceholder` is designed for this purpose. In these contexts,
+/// there's also the risk that some inference variable laying around will
+/// get unified with your placeholder region: if you want to check whether
+/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
+/// with a placeholder region `'%a`, the variable `'_` would just be
+/// instantiated to the placeholder region `'%a`, which is wrong because
+/// the inference variable is supposed to satisfy the relation
+/// *for every value of the placeholder region*. To ensure that doesn't
+/// happen, you can use `leak_check`. This is more clearly explained
+/// by the [rustc dev guide].
+///
+/// [1]: https://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
+/// [2]: https://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
+/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
+pub enum RegionKind<I: Interner> {
+ /// Region bound in a type or fn declaration which will be
+ /// substituted 'early' -- that is, at the same time when type
+ /// parameters are substituted.
+ ReEarlyBound(I::EarlyBoundRegion),
+
+ /// Region bound in a function scope, which will be substituted when the
+ /// function is called.
+ ReLateBound(DebruijnIndex, I::BoundRegion),
+
+ /// When checking a function body, the types of all arguments and so forth
+ /// that refer to bound region parameters are modified to refer to free
+ /// region parameters.
+ ReFree(I::FreeRegion),
+
+ /// Static data that has an "infinite" lifetime. Top in the region lattice.
+ ReStatic,
+
+ /// A region variable. Should not exist outside of type inference.
+ ReVar(I::RegionVid),
+
+ /// A placeholder region -- basically, the higher-ranked version of `ReFree`.
+ /// Should not exist outside of type inference.
+ RePlaceholder(I::PlaceholderRegion),
+
+ /// Empty lifetime is for data that is never accessed. We tag the
+ /// empty lifetime with a universe -- the idea is that we don't
+ /// want `exists<'a> { forall<'b> { 'b: 'a } }` to be satisfiable.
+ /// Therefore, the `'empty` in a universe `U` is less than all
+ /// regions visible from `U`, but not less than regions not visible
+ /// from `U`.
+ ReEmpty(UniverseIndex),
+
+ /// Erased region, used by trait selection, in MIR and during codegen.
+ ReErased,
+}
+
+// This is manually implemented for `RegionKind` because `std::mem::discriminant`
+// returns an opaque value that is `PartialEq` but not `PartialOrd`
+#[inline]
+const fn regionkind_discriminant<I: Interner>(value: &RegionKind<I>) -> usize {
+ match value {
+ ReEarlyBound(_) => 0,
+ ReLateBound(_, _) => 1,
+ ReFree(_) => 2,
+ ReStatic => 3,
+ ReVar(_) => 4,
+ RePlaceholder(_) => 5,
+ ReEmpty(_) => 6,
+ ReErased => 7,
+ }
+}
+
+// This is manually implemented because a derive would require `I: Copy`
+impl<I: Interner> Copy for RegionKind<I>
+where
+ I::EarlyBoundRegion: Copy,
+ I::BoundRegion: Copy,
+ I::FreeRegion: Copy,
+ I::RegionVid: Copy,
+ I::PlaceholderRegion: Copy,
+{
+}
+
+// This is manually implemented because a derive would require `I: Clone`
+impl<I: Interner> Clone for RegionKind<I> {
+ fn clone(&self) -> Self {
+ match self {
+ ReEarlyBound(a) => ReEarlyBound(a.clone()),
+ ReLateBound(a, b) => ReLateBound(a.clone(), b.clone()),
+ ReFree(a) => ReFree(a.clone()),
+ ReStatic => ReStatic,
+ ReVar(a) => ReVar(a.clone()),
+ RePlaceholder(a) => RePlaceholder(a.clone()),
+ ReEmpty(a) => ReEmpty(a.clone()),
+ ReErased => ReErased,
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: PartialEq`
+impl<I: Interner> PartialEq for RegionKind<I> {
+ #[inline]
+ fn eq(&self, other: &RegionKind<I>) -> bool {
+ let __self_vi = regionkind_discriminant(self);
+ let __arg_1_vi = regionkind_discriminant(other);
+ if __self_vi == __arg_1_vi {
+ match (&*self, &*other) {
+ (&ReEarlyBound(ref __self_0), &ReEarlyBound(ref __arg_1_0)) => {
+ __self_0 == __arg_1_0
+ }
+ (
+ &ReLateBound(ref __self_0, ref __self_1),
+ &ReLateBound(ref __arg_1_0, ref __arg_1_1),
+ ) => __self_0 == __arg_1_0 && __self_1 == __arg_1_1,
+ (&ReFree(ref __self_0), &ReFree(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&ReStatic, &ReStatic) => true,
+ (&ReVar(ref __self_0), &ReVar(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&RePlaceholder(ref __self_0), &RePlaceholder(ref __arg_1_0)) => {
+ __self_0 == __arg_1_0
+ }
+ (&ReEmpty(ref __self_0), &ReEmpty(ref __arg_1_0)) => __self_0 == __arg_1_0,
+ (&ReErased, &ReErased) => true,
+ _ => true,
+ }
+ } else {
+ false
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Eq`
+impl<I: Interner> Eq for RegionKind<I> {}
+
+// This is manually implemented because a derive would require `I: PartialOrd`
+impl<I: Interner> PartialOrd for RegionKind<I> {
+ #[inline]
+ fn partial_cmp(&self, other: &RegionKind<I>) -> Option<Ordering> {
+ Some(Ord::cmp(self, other))
+ }
+}
+
+// This is manually implemented because a derive would require `I: Ord`
+impl<I: Interner> Ord for RegionKind<I> {
+ #[inline]
+ fn cmp(&self, other: &RegionKind<I>) -> Ordering {
+ let __self_vi = regionkind_discriminant(self);
+ let __arg_1_vi = regionkind_discriminant(other);
+ if __self_vi == __arg_1_vi {
+ match (&*self, &*other) {
+ (&ReEarlyBound(ref __self_0), &ReEarlyBound(ref __arg_1_0)) => {
+ Ord::cmp(__self_0, __arg_1_0)
+ }
+ (
+ &ReLateBound(ref __self_0, ref __self_1),
+ &ReLateBound(ref __arg_1_0, ref __arg_1_1),
+ ) => match Ord::cmp(__self_0, __arg_1_0) {
+ Ordering::Equal => Ord::cmp(__self_1, __arg_1_1),
+ cmp => cmp,
+ },
+ (&ReFree(ref __self_0), &ReFree(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&ReStatic, &ReStatic) => Ordering::Equal,
+ (&ReVar(ref __self_0), &ReVar(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&RePlaceholder(ref __self_0), &RePlaceholder(ref __arg_1_0)) => {
+ Ord::cmp(__self_0, __arg_1_0)
+ }
+ (&ReEmpty(ref __self_0), &ReEmpty(ref __arg_1_0)) => Ord::cmp(__self_0, __arg_1_0),
+ (&ReErased, &ReErased) => Ordering::Equal,
+ _ => Ordering::Equal,
+ }
+ } else {
+ Ord::cmp(&__self_vi, &__arg_1_vi)
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Hash`
+impl<I: Interner> hash::Hash for RegionKind<I> {
+ fn hash<__H: hash::Hasher>(&self, state: &mut __H) -> () {
+ match (&*self,) {
+ (&ReEarlyBound(ref __self_0),) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&ReLateBound(ref __self_0, ref __self_1),) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state);
+ hash::Hash::hash(__self_1, state)
+ }
+ (&ReFree(ref __self_0),) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&ReStatic,) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ }
+ (&ReVar(ref __self_0),) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&RePlaceholder(ref __self_0),) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&ReEmpty(ref __self_0),) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ hash::Hash::hash(__self_0, state)
+ }
+ (&ReErased,) => {
+ hash::Hash::hash(&regionkind_discriminant(self), state);
+ }
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Debug`
+impl<I: Interner> fmt::Debug for RegionKind<I> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self {
+ ReEarlyBound(ref data) => write!(f, "ReEarlyBound({:?})", data),
+
+ ReLateBound(binder_id, ref bound_region) => {
+ write!(f, "ReLateBound({:?}, {:?})", binder_id, bound_region)
+ }
+
+ ReFree(ref fr) => fr.fmt(f),
+
+ ReStatic => write!(f, "ReStatic"),
+
+ ReVar(ref vid) => vid.fmt(f),
+
+ RePlaceholder(placeholder) => write!(f, "RePlaceholder({:?})", placeholder),
+
+ ReEmpty(ui) => write!(f, "ReEmpty({:?})", ui),
+
+ ReErased => write!(f, "ReErased"),
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Encodable`
+impl<I: Interner, E: TyEncoder> Encodable<E> for RegionKind<I>
+where
+ I::EarlyBoundRegion: Encodable<E>,
+ I::BoundRegion: Encodable<E>,
+ I::FreeRegion: Encodable<E>,
+ I::RegionVid: Encodable<E>,
+ I::PlaceholderRegion: Encodable<E>,
+{
+ fn encode(&self, e: &mut E) {
+ let disc = regionkind_discriminant(self);
+ match self {
+ ReEarlyBound(a) => e.emit_enum_variant(disc, |e| {
+ a.encode(e);
+ }),
+ ReLateBound(a, b) => e.emit_enum_variant(disc, |e| {
+ a.encode(e);
+ b.encode(e);
+ }),
+ ReFree(a) => e.emit_enum_variant(disc, |e| {
+ a.encode(e);
+ }),
+ ReStatic => e.emit_enum_variant(disc, |_| {}),
+ ReVar(a) => e.emit_enum_variant(disc, |e| {
+ a.encode(e);
+ }),
+ RePlaceholder(a) => e.emit_enum_variant(disc, |e| {
+ a.encode(e);
+ }),
+ ReEmpty(a) => e.emit_enum_variant(disc, |e| {
+ a.encode(e);
+ }),
+ ReErased => e.emit_enum_variant(disc, |_| {}),
+ }
+ }
+}
+
+// This is manually implemented because a derive would require `I: Decodable`
+impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for RegionKind<I>
+where
+ I::EarlyBoundRegion: Decodable<D>,
+ I::BoundRegion: Decodable<D>,
+ I::FreeRegion: Decodable<D>,
+ I::RegionVid: Decodable<D>,
+ I::PlaceholderRegion: Decodable<D>,
+{
+ fn decode(d: &mut D) -> Self {
+ match Decoder::read_usize(d) {
+ 0 => ReEarlyBound(Decodable::decode(d)),
+ 1 => ReLateBound(Decodable::decode(d), Decodable::decode(d)),
+ 2 => ReFree(Decodable::decode(d)),
+ 3 => ReStatic,
+ 4 => ReVar(Decodable::decode(d)),
+ 5 => RePlaceholder(Decodable::decode(d)),
+ 6 => ReEmpty(Decodable::decode(d)),
+ 7 => ReErased,
+ _ => panic!(
+ "{}",
+ format!(
+ "invalid enum variant tag while decoding `{}`, expected 0..{}",
+ "RegionKind", 8,
+ )
+ ),
+ }
+ }
+}
+
+// This is not a derived impl because a derive would require `I: HashStable`
+impl<CTX, I: Interner> HashStable<CTX> for RegionKind<I>
+where
+ I::EarlyBoundRegion: HashStable<CTX>,
+ I::BoundRegion: HashStable<CTX>,
+ I::FreeRegion: HashStable<CTX>,
+ I::RegionVid: HashStable<CTX>,
+ I::PlaceholderRegion: HashStable<CTX>,
+{
+ #[inline]
+ fn hash_stable(
+ &self,
+ hcx: &mut CTX,
+ hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
+ ) {
+ std::mem::discriminant(self).hash_stable(hcx, hasher);
+ match self {
+ ReErased | ReStatic => {
+ // No variant fields to hash for these ...
+ }
+ ReEmpty(universe) => {
+ universe.hash_stable(hcx, hasher);
+ }
+ ReLateBound(db, br) => {
+ db.hash_stable(hcx, hasher);
+ br.hash_stable(hcx, hasher);
+ }
+ ReEarlyBound(eb) => {
+ eb.hash_stable(hcx, hasher);
+ }
+ ReFree(ref free_region) => {
+ free_region.hash_stable(hcx, hasher);
+ }
+ RePlaceholder(p) => {
+ p.hash_stable(hcx, hasher);
+ }
+ ReVar(reg) => {
+ reg.hash_stable(hcx, hasher);
+ }
+ }
+ }
+}