diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-30 03:57:31 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-30 03:57:31 +0000 |
commit | dc0db358abe19481e475e10c32149b53370f1a1c (patch) | |
tree | ab8ce99c4b255ce46f99ef402c27916055b899ee /vendor/allocator-api2/src/stable | |
parent | Releasing progress-linux version 1.71.1+dfsg1-2~progress7.99u1. (diff) | |
download | rustc-dc0db358abe19481e475e10c32149b53370f1a1c.tar.xz rustc-dc0db358abe19481e475e10c32149b53370f1a1c.zip |
Merging upstream version 1.72.1+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/allocator-api2/src/stable')
-rw-r--r-- | vendor/allocator-api2/src/stable/alloc/global.rs | 188 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/alloc/mod.rs | 416 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/alloc/system.rs | 172 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/boxed.rs | 2154 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/macros.rs | 83 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/mod.rs | 62 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/raw_vec.rs | 642 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/slice.rs | 171 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/vec/drain.rs | 242 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/vec/into_iter.rs | 198 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/vec/mod.rs | 3253 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/vec/partial_eq.rs | 43 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/vec/set_len_on_drop.rs | 31 | ||||
-rw-r--r-- | vendor/allocator-api2/src/stable/vec/splice.rs | 135 |
14 files changed, 7790 insertions, 0 deletions
diff --git a/vendor/allocator-api2/src/stable/alloc/global.rs b/vendor/allocator-api2/src/stable/alloc/global.rs new file mode 100644 index 000000000..e2dc27fa0 --- /dev/null +++ b/vendor/allocator-api2/src/stable/alloc/global.rs @@ -0,0 +1,188 @@ +use core::ptr::NonNull; + +#[doc(inline)] +pub use alloc_crate::alloc::{alloc, alloc_zeroed, dealloc, handle_alloc_error, realloc}; + +use crate::stable::{assume, invalid_mut}; + +use super::{AllocError, Allocator, Layout}; + +/// The global memory allocator. +/// +/// This type implements the [`Allocator`] trait by forwarding calls +/// to the allocator registered with the `#[global_allocator]` attribute +/// if there is one, or the `std` crate’s default. +/// +/// Note: while this type is unstable, the functionality it provides can be +/// accessed through the [free functions in `alloc`](crate#functions). +#[derive(Copy, Clone, Default, Debug)] +pub struct Global; + +impl Global { + #[inline(always)] + fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> { + match layout.size() { + 0 => Ok(unsafe { + NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + invalid_mut(layout.align()), + 0, + )) + }), + // SAFETY: `layout` is non-zero in size, + size => unsafe { + let raw_ptr = if zeroed { + alloc_zeroed(layout) + } else { + alloc(layout) + }; + let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + ptr.as_ptr(), + size, + ))) + }, + } + } + + // SAFETY: Same as `Allocator::grow` + #[inline(always)] + unsafe fn grow_impl( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + zeroed: bool, + ) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() >= old_layout.size(), + "`new_layout.size()` must be greater than or equal to `old_layout.size()`" + ); + + match old_layout.size() { + 0 => self.alloc_impl(new_layout, zeroed), + + // SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size` + // as required by safety conditions. Other conditions must be upheld by the caller + old_size if old_layout.align() == new_layout.align() => unsafe { + let new_size = new_layout.size(); + + // `realloc` probably checks for `new_size >= old_layout.size()` or something similar. + assume(new_size >= old_layout.size()); + + let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size); + let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; + if zeroed { + raw_ptr.add(old_size).write_bytes(0, new_size - old_size); + } + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + ptr.as_ptr(), + new_size, + ))) + }, + + // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`, + // both the old and new memory allocation are valid for reads and writes for `old_size` + // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap + // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract + // for `dealloc` must be upheld by the caller. + old_size => unsafe { + let new_ptr = self.alloc_impl(new_layout, zeroed)?; + core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_size); + self.deallocate(ptr, old_layout); + Ok(new_ptr) + }, + } + } +} + +unsafe impl Allocator for Global { + #[inline(always)] + fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + self.alloc_impl(layout, false) + } + + #[inline(always)] + fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + self.alloc_impl(layout, true) + } + + #[inline(always)] + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { + if layout.size() != 0 { + // SAFETY: `layout` is non-zero in size, + // other conditions must be upheld by the caller + unsafe { dealloc(ptr.as_ptr(), layout) } + } + } + + #[inline(always)] + unsafe fn grow( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: all conditions must be upheld by the caller + unsafe { self.grow_impl(ptr, old_layout, new_layout, false) } + } + + #[inline(always)] + unsafe fn grow_zeroed( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: all conditions must be upheld by the caller + unsafe { self.grow_impl(ptr, old_layout, new_layout, true) } + } + + #[inline(always)] + unsafe fn shrink( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() <= old_layout.size(), + "`new_layout.size()` must be smaller than or equal to `old_layout.size()`" + ); + + match new_layout.size() { + // SAFETY: conditions must be upheld by the caller + 0 => unsafe { + self.deallocate(ptr, old_layout); + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + invalid_mut(new_layout.align()), + 0, + ))) + }, + + // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller + new_size if old_layout.align() == new_layout.align() => unsafe { + // `realloc` probably checks for `new_size <= old_layout.size()` or something similar. + assume(new_size <= old_layout.size()); + + let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size); + let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + ptr.as_ptr(), + new_size, + ))) + }, + + // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`, + // both the old and new memory allocation are valid for reads and writes for `new_size` + // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap + // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract + // for `dealloc` must be upheld by the caller. + new_size => unsafe { + let new_ptr = self.allocate(new_layout)?; + core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_size); + self.deallocate(ptr, old_layout); + Ok(new_ptr) + }, + } + } +} diff --git a/vendor/allocator-api2/src/stable/alloc/mod.rs b/vendor/allocator-api2/src/stable/alloc/mod.rs new file mode 100644 index 000000000..6a50b4344 --- /dev/null +++ b/vendor/allocator-api2/src/stable/alloc/mod.rs @@ -0,0 +1,416 @@ +//! Memory allocation APIs + +use core::{ + fmt, + ptr::{self, NonNull}, +}; + +#[cfg(feature = "alloc")] +mod global; + +#[cfg(feature = "std")] +mod system; + +pub use core::alloc::{GlobalAlloc, Layout, LayoutError}; + +#[cfg(feature = "alloc")] +pub use self::global::Global; + +#[cfg(feature = "std")] +pub use self::system::System; + +#[cfg(feature = "alloc")] +pub use alloc_crate::alloc::{alloc, alloc_zeroed, dealloc, realloc}; + +#[cfg(all(feature = "alloc", not(no_global_oom_handling)))] +pub use alloc_crate::alloc::handle_alloc_error; + +/// The `AllocError` error indicates an allocation failure +/// that may be due to resource exhaustion or to +/// something wrong when combining the given input arguments with this +/// allocator. +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub struct AllocError; + +#[cfg(feature = "std")] +impl std::error::Error for AllocError {} + +// (we need this for downstream impl of trait Error) +impl fmt::Display for AllocError { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.write_str("memory allocation failed") + } +} + +/// An implementation of `Allocator` can allocate, grow, shrink, and deallocate arbitrary blocks of +/// data described via [`Layout`][]. +/// +/// `Allocator` is designed to be implemented on ZSTs, references, or smart pointers because having +/// an allocator like `MyAlloc([u8; N])` cannot be moved, without updating the pointers to the +/// allocated memory. +/// +/// Unlike [`GlobalAlloc`][], zero-sized allocations are allowed in `Allocator`. If an underlying +/// allocator does not support this (like jemalloc) or return a null pointer (such as +/// `libc::malloc`), this must be caught by the implementation. +/// +/// ### Currently allocated memory +/// +/// Some of the methods require that a memory block be *currently allocated* via an allocator. This +/// means that: +/// +/// * the starting address for that memory block was previously returned by [`allocate`], [`grow`], or +/// [`shrink`], and +/// +/// * the memory block has not been subsequently deallocated, where blocks are either deallocated +/// directly by being passed to [`deallocate`] or were changed by being passed to [`grow`] or +/// [`shrink`] that returns `Ok`. If `grow` or `shrink` have returned `Err`, the passed pointer +/// remains valid. +/// +/// [`allocate`]: Allocator::allocate +/// [`grow`]: Allocator::grow +/// [`shrink`]: Allocator::shrink +/// [`deallocate`]: Allocator::deallocate +/// +/// ### Memory fitting +/// +/// Some of the methods require that a layout *fit* a memory block. What it means for a layout to +/// "fit" a memory block means (or equivalently, for a memory block to "fit" a layout) is that the +/// following conditions must hold: +/// +/// * The block must be allocated with the same alignment as [`layout.align()`], and +/// +/// * The provided [`layout.size()`] must fall in the range `min ..= max`, where: +/// - `min` is the size of the layout most recently used to allocate the block, and +/// - `max` is the latest actual size returned from [`allocate`], [`grow`], or [`shrink`]. +/// +/// [`layout.align()`]: Layout::align +/// [`layout.size()`]: Layout::size +/// +/// # Safety +/// +/// * Memory blocks returned from an allocator must point to valid memory and retain their validity +/// until the instance and all of its clones are dropped, +/// +/// * cloning or moving the allocator must not invalidate memory blocks returned from this +/// allocator. A cloned allocator must behave like the same allocator, and +/// +/// * any pointer to a memory block which is [*currently allocated*] may be passed to any other +/// method of the allocator. +/// +/// [*currently allocated*]: #currently-allocated-memory +pub unsafe trait Allocator { + /// Attempts to allocate a block of memory. + /// + /// On success, returns a [`NonNull<[u8]>`][NonNull] meeting the size and alignment guarantees of `layout`. + /// + /// The returned block may have a larger size than specified by `layout.size()`, and may or may + /// not have its contents initialized. + /// + /// # Errors + /// + /// Returning `Err` indicates that either memory is exhausted or `layout` does not meet + /// allocator's size or alignment constraints. + /// + /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or + /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement + /// this trait atop an underlying native allocation library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to an allocation error are encouraged to + /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>; + + /// Behaves like `allocate`, but also ensures that the returned memory is zero-initialized. + /// + /// # Errors + /// + /// Returning `Err` indicates that either memory is exhausted or `layout` does not meet + /// allocator's size or alignment constraints. + /// + /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or + /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement + /// this trait atop an underlying native allocation library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to an allocation error are encouraged to + /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[inline(always)] + fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + let ptr = self.allocate(layout)?; + // SAFETY: `alloc` returns a valid memory block + unsafe { ptr.cast::<u8>().as_ptr().write_bytes(0, ptr.len()) } + Ok(ptr) + } + + /// Deallocates the memory referenced by `ptr`. + /// + /// # Safety + /// + /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator, and + /// * `layout` must [*fit*] that block of memory. + /// + /// [*currently allocated*]: #currently-allocated-memory + /// [*fit*]: #memory-fitting + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout); + + /// Attempts to extend the memory block. + /// + /// Returns a new [`NonNull<[u8]>`][NonNull] containing a pointer and the actual size of the allocated + /// memory. The pointer is suitable for holding data described by `new_layout`. To accomplish + /// this, the allocator may extend the allocation referenced by `ptr` to fit the new layout. + /// + /// If this returns `Ok`, then ownership of the memory block referenced by `ptr` has been + /// transferred to this allocator. Any access to the old `ptr` is Undefined Behavior, even if the + /// allocation was grown in-place. The newly returned pointer is the only valid pointer + /// for accessing this memory now. + /// + /// If this method returns `Err`, then ownership of the memory block has not been transferred to + /// this allocator, and the contents of the memory block are unaltered. + /// + /// # Safety + /// + /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator. + /// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.). + /// * `new_layout.size()` must be greater than or equal to `old_layout.size()`. + /// + /// Note that `new_layout.align()` need not be the same as `old_layout.align()`. + /// + /// [*currently allocated*]: #currently-allocated-memory + /// [*fit*]: #memory-fitting + /// + /// # Errors + /// + /// Returns `Err` if the new layout does not meet the allocator's size and alignment + /// constraints of the allocator, or if growing otherwise fails. + /// + /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or + /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement + /// this trait atop an underlying native allocation library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to an allocation error are encouraged to + /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[inline(always)] + unsafe fn grow( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() >= old_layout.size(), + "`new_layout.size()` must be greater than or equal to `old_layout.size()`" + ); + + let new_ptr = self.allocate(new_layout)?; + + // SAFETY: because `new_layout.size()` must be greater than or equal to + // `old_layout.size()`, both the old and new memory allocation are valid for reads and + // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet + // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is + // safe. The safety contract for `dealloc` must be upheld by the caller. + unsafe { + ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_layout.size()); + self.deallocate(ptr, old_layout); + } + + Ok(new_ptr) + } + + /// Behaves like `grow`, but also ensures that the new contents are set to zero before being + /// returned. + /// + /// The memory block will contain the following contents after a successful call to + /// `grow_zeroed`: + /// * Bytes `0..old_layout.size()` are preserved from the original allocation. + /// * Bytes `old_layout.size()..old_size` will either be preserved or zeroed, depending on + /// the allocator implementation. `old_size` refers to the size of the memory block prior + /// to the `grow_zeroed` call, which may be larger than the size that was originally + /// requested when it was allocated. + /// * Bytes `old_size..new_size` are zeroed. `new_size` refers to the size of the memory + /// block returned by the `grow_zeroed` call. + /// + /// # Safety + /// + /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator. + /// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.). + /// * `new_layout.size()` must be greater than or equal to `old_layout.size()`. + /// + /// Note that `new_layout.align()` need not be the same as `old_layout.align()`. + /// + /// [*currently allocated*]: #currently-allocated-memory + /// [*fit*]: #memory-fitting + /// + /// # Errors + /// + /// Returns `Err` if the new layout does not meet the allocator's size and alignment + /// constraints of the allocator, or if growing otherwise fails. + /// + /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or + /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement + /// this trait atop an underlying native allocation library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to an allocation error are encouraged to + /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[inline(always)] + unsafe fn grow_zeroed( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() >= old_layout.size(), + "`new_layout.size()` must be greater than or equal to `old_layout.size()`" + ); + + let new_ptr = self.allocate_zeroed(new_layout)?; + + // SAFETY: because `new_layout.size()` must be greater than or equal to + // `old_layout.size()`, both the old and new memory allocation are valid for reads and + // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet + // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is + // safe. The safety contract for `dealloc` must be upheld by the caller. + unsafe { + ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_layout.size()); + self.deallocate(ptr, old_layout); + } + + Ok(new_ptr) + } + + /// Attempts to shrink the memory block. + /// + /// Returns a new [`NonNull<[u8]>`][NonNull] containing a pointer and the actual size of the allocated + /// memory. The pointer is suitable for holding data described by `new_layout`. To accomplish + /// this, the allocator may shrink the allocation referenced by `ptr` to fit the new layout. + /// + /// If this returns `Ok`, then ownership of the memory block referenced by `ptr` has been + /// transferred to this allocator. Any access to the old `ptr` is Undefined Behavior, even if the + /// allocation was shrunk in-place. The newly returned pointer is the only valid pointer + /// for accessing this memory now. + /// + /// If this method returns `Err`, then ownership of the memory block has not been transferred to + /// this allocator, and the contents of the memory block are unaltered. + /// + /// # Safety + /// + /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator. + /// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.). + /// * `new_layout.size()` must be smaller than or equal to `old_layout.size()`. + /// + /// Note that `new_layout.align()` need not be the same as `old_layout.align()`. + /// + /// [*currently allocated*]: #currently-allocated-memory + /// [*fit*]: #memory-fitting + /// + /// # Errors + /// + /// Returns `Err` if the new layout does not meet the allocator's size and alignment + /// constraints of the allocator, or if shrinking otherwise fails. + /// + /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or + /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement + /// this trait atop an underlying native allocation library that aborts on memory exhaustion.) + /// + /// Clients wishing to abort computation in response to an allocation error are encouraged to + /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar. + /// + /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html + #[inline(always)] + unsafe fn shrink( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() <= old_layout.size(), + "`new_layout.size()` must be smaller than or equal to `old_layout.size()`" + ); + + let new_ptr = self.allocate(new_layout)?; + + // SAFETY: because `new_layout.size()` must be lower than or equal to + // `old_layout.size()`, both the old and new memory allocation are valid for reads and + // writes for `new_layout.size()` bytes. Also, because the old allocation wasn't yet + // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is + // safe. The safety contract for `dealloc` must be upheld by the caller. + unsafe { + ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_layout.size()); + self.deallocate(ptr, old_layout); + } + + Ok(new_ptr) + } + + /// Creates a "by reference" adapter for this instance of `Allocator`. + /// + /// The returned adapter also implements `Allocator` and will simply borrow this. + #[inline(always)] + fn by_ref(&self) -> &Self + where + Self: Sized, + { + self + } +} + +unsafe impl<A> Allocator for &A +where + A: Allocator + ?Sized, +{ + #[inline(always)] + fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + (**self).allocate(layout) + } + + #[inline(always)] + fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + (**self).allocate_zeroed(layout) + } + + #[inline(always)] + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { + // SAFETY: the safety contract must be upheld by the caller + unsafe { (**self).deallocate(ptr, layout) } + } + + #[inline(always)] + unsafe fn grow( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: the safety contract must be upheld by the caller + unsafe { (**self).grow(ptr, old_layout, new_layout) } + } + + #[inline(always)] + unsafe fn grow_zeroed( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: the safety contract must be upheld by the caller + unsafe { (**self).grow_zeroed(ptr, old_layout, new_layout) } + } + + #[inline(always)] + unsafe fn shrink( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: the safety contract must be upheld by the caller + unsafe { (**self).shrink(ptr, old_layout, new_layout) } + } +} diff --git a/vendor/allocator-api2/src/stable/alloc/system.rs b/vendor/allocator-api2/src/stable/alloc/system.rs new file mode 100644 index 000000000..e733d0f7f --- /dev/null +++ b/vendor/allocator-api2/src/stable/alloc/system.rs @@ -0,0 +1,172 @@ +use core::ptr::NonNull; +pub use std::alloc::System; + +use crate::stable::{assume, invalid_mut}; + +use super::{AllocError, Allocator, GlobalAlloc as _, Layout}; + +unsafe impl Allocator for System { + #[inline(always)] + fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + alloc_impl(layout, false) + } + + #[inline(always)] + fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { + alloc_impl(layout, true) + } + + #[inline(always)] + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { + if layout.size() != 0 { + // SAFETY: `layout` is non-zero in size, + // other conditions must be upheld by the caller + unsafe { System.dealloc(ptr.as_ptr(), layout) } + } + } + + #[inline(always)] + unsafe fn grow( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: all conditions must be upheld by the caller + unsafe { grow_impl(ptr, old_layout, new_layout, false) } + } + + #[inline(always)] + unsafe fn grow_zeroed( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: all conditions must be upheld by the caller + unsafe { grow_impl(ptr, old_layout, new_layout, true) } + } + + #[inline(always)] + unsafe fn shrink( + &self, + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + ) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() <= old_layout.size(), + "`new_layout.size()` must be smaller than or equal to `old_layout.size()`" + ); + + match new_layout.size() { + // SAFETY: conditions must be upheld by the caller + 0 => unsafe { + self.deallocate(ptr, old_layout); + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + invalid_mut(new_layout.align()), + 0, + ))) + }, + + // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller + new_size if old_layout.align() == new_layout.align() => unsafe { + // `realloc` probably checks for `new_size <= old_layout.size()` or something similar. + assume(new_size <= old_layout.size()); + + let raw_ptr = System.realloc(ptr.as_ptr(), old_layout, new_size); + let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + ptr.as_ptr(), + new_size, + ))) + }, + + // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`, + // both the old and new memory allocation are valid for reads and writes for `new_size` + // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap + // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract + // for `dealloc` must be upheld by the caller. + new_size => unsafe { + let new_ptr = self.allocate(new_layout)?; + core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_size); + self.deallocate(ptr, old_layout); + Ok(new_ptr) + }, + } + } +} + +#[inline(always)] +fn alloc_impl(layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> { + match layout.size() { + 0 => Ok(unsafe { + NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + invalid_mut(layout.align()), + 0, + )) + }), + // SAFETY: `layout` is non-zero in size, + size => unsafe { + let raw_ptr = if zeroed { + System.alloc_zeroed(layout) + } else { + System.alloc(layout) + }; + let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + ptr.as_ptr(), + size, + ))) + }, + } +} + +// SAFETY: Same as `Allocator::grow` +#[inline(always)] +unsafe fn grow_impl( + ptr: NonNull<u8>, + old_layout: Layout, + new_layout: Layout, + zeroed: bool, +) -> Result<NonNull<[u8]>, AllocError> { + debug_assert!( + new_layout.size() >= old_layout.size(), + "`new_layout.size()` must be greater than or equal to `old_layout.size()`" + ); + + match old_layout.size() { + 0 => alloc_impl(new_layout, zeroed), + + // SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size` + // as required by safety conditions. Other conditions must be upheld by the caller + old_size if old_layout.align() == new_layout.align() => unsafe { + let new_size = new_layout.size(); + + // `realloc` probably checks for `new_size >= old_layout.size()` or something similar. + assume(new_size >= old_layout.size()); + + let raw_ptr = System.realloc(ptr.as_ptr(), old_layout, new_size); + let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; + if zeroed { + raw_ptr.add(old_size).write_bytes(0, new_size - old_size); + } + Ok(NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut( + ptr.as_ptr(), + new_size, + ))) + }, + + // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`, + // both the old and new memory allocation are valid for reads and writes for `old_size` + // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap + // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract + // for `dealloc` must be upheld by the caller. + old_size => unsafe { + let new_ptr = alloc_impl(new_layout, zeroed)?; + core::ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_size); + System.deallocate(ptr, old_layout); + Ok(new_ptr) + }, + } +} diff --git a/vendor/allocator-api2/src/stable/boxed.rs b/vendor/allocator-api2/src/stable/boxed.rs new file mode 100644 index 000000000..3c342c54a --- /dev/null +++ b/vendor/allocator-api2/src/stable/boxed.rs @@ -0,0 +1,2154 @@ +//! The `Box<T>` type for heap allocation. +//! +//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of +//! heap allocation in Rust. Boxes provide ownership for this allocation, and +//! drop their contents when they go out of scope. Boxes also ensure that they +//! never allocate more than `isize::MAX` bytes. +//! +//! # Examples +//! +//! Move a value from the stack to the heap by creating a [`Box`]: +//! +//! ``` +//! let val: u8 = 5; +//! let boxed: Box<u8> = Box::new(val); +//! ``` +//! +//! Move a value from a [`Box`] back to the stack by [dereferencing]: +//! +//! ``` +//! let boxed: Box<u8> = Box::new(5); +//! let val: u8 = *boxed; +//! ``` +//! +//! Creating a recursive data structure: +//! +//! ``` +//! #[derive(Debug)] +//! enum List<T> { +//! Cons(T, Box<List<T>>), +//! Nil, +//! } +//! +//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); +//! println!("{list:?}"); +//! ``` +//! +//! This will print `Cons(1, Cons(2, Nil))`. +//! +//! Recursive structures must be boxed, because if the definition of `Cons` +//! looked like this: +//! +//! ```compile_fail,E0072 +//! # enum List<T> { +//! Cons(T, List<T>), +//! # } +//! ``` +//! +//! It wouldn't work. This is because the size of a `List` depends on how many +//! elements are in the list, and so we don't know how much memory to allocate +//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how +//! big `Cons` needs to be. +//! +//! # Memory layout +//! +//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for +//! its allocation. It is valid to convert both ways between a [`Box`] and a +//! raw pointer allocated with the [`Global`] allocator, given that the +//! [`Layout`] used with the allocator is correct for the type. More precisely, +//! a `value: *mut T` that has been allocated with the [`Global`] allocator +//! with `Layout::for_value(&*value)` may be converted into a box using +//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut +//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the +//! [`Global`] allocator with [`Layout::for_value(&*value)`]. +//! +//! For zero-sized values, the `Box` pointer still has to be [valid] for reads +//! and writes and sufficiently aligned. In particular, casting any aligned +//! non-zero integer literal to a raw pointer produces a valid pointer, but a +//! pointer pointing into previously allocated memory that since got freed is +//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot +//! be used is to use [`ptr::NonNull::dangling`]. +//! +//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented +//! as a single pointer and is also ABI-compatible with C pointers +//! (i.e. the C type `T*`). This means that if you have extern "C" +//! Rust functions that will be called from C, you can define those +//! Rust functions using `Box<T>` types, and use `T*` as corresponding +//! type on the C side. As an example, consider this C header which +//! declares functions that create and destroy some kind of `Foo` +//! value: +//! +//! ```c +//! /* C header */ +//! +//! /* Returns ownership to the caller */ +//! struct Foo* foo_new(void); +//! +//! /* Takes ownership from the caller; no-op when invoked with null */ +//! void foo_delete(struct Foo*); +//! ``` +//! +//! These two functions might be implemented in Rust as follows. Here, the +//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures +//! the ownership constraints. Note also that the nullable argument to +//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` +//! cannot be null. +//! +//! ``` +//! #[repr(C)] +//! pub struct Foo; +//! +//! #[no_mangle] +//! pub extern "C" fn foo_new() -> Box<Foo> { +//! Box::new(Foo) +//! } +//! +//! #[no_mangle] +//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} +//! ``` +//! +//! Even though `Box<T>` has the same representation and C ABI as a C pointer, +//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` +//! and expect things to work. `Box<T>` values will always be fully aligned, +//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to +//! free the value with the global allocator. In general, the best practice +//! is to only use `Box<T>` for pointers that originated from the global +//! allocator. +//! +//! **Important.** At least at present, you should avoid using +//! `Box<T>` types for functions that are defined in C but invoked +//! from Rust. In those cases, you should directly mirror the C types +//! as closely as possible. Using types like `Box<T>` where the C +//! definition is just using `T*` can lead to undefined behavior, as +//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. +//! +//! # Considerations for unsafe code +//! +//! **Warning: This section is not normative and is subject to change, possibly +//! being relaxed in the future! It is a simplified summary of the rules +//! currently implemented in the compiler.** +//! +//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` +//! asserts uniqueness over its content. Using raw pointers derived from a box +//! after that box has been mutated through, moved or borrowed as `&mut T` +//! is not allowed. For more guidance on working with box from unsafe code, see +//! [rust-lang/unsafe-code-guidelines#326][ucg#326]. +//! +//! +//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 +//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 +//! [dereferencing]: core::ops::Deref +//! [`Box::<T>::from_raw(value)`]: Box::from_raw +//! [`Global`]: crate::alloc::Global +//! [`Layout`]: crate::alloc::Layout +//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value +//! [valid]: ptr#safety + +use core::any::Any; +use core::borrow; +use core::cmp::Ordering; +use core::convert::{From, TryFrom}; + +// use core::error::Error; +use core::fmt; +use core::future::Future; +use core::hash::{Hash, Hasher}; +#[cfg(not(no_global_oom_handling))] +use core::iter::FromIterator; +use core::iter::{FusedIterator, Iterator}; +use core::marker::Unpin; +use core::mem; +use core::ops::{Deref, DerefMut}; +use core::pin::Pin; +use core::ptr::{self, NonNull}; +use core::task::{Context, Poll}; + +use super::alloc::{AllocError, Allocator, Global, Layout}; +use super::raw_vec::RawVec; +#[cfg(not(no_global_oom_handling))] +use super::vec::Vec; +#[cfg(not(no_global_oom_handling))] +use alloc_crate::alloc::handle_alloc_error; + +/// A pointer type for heap allocation. +/// +/// See the [module-level documentation](../../std/boxed/index.html) for more. +pub struct Box<T: ?Sized, A: Allocator = Global>(NonNull<T>, A); + +// Safety: Box owns both T and A, so sending is safe if +// sending is safe for T and A. +unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A> +where + T: Send, + A: Send, +{ +} + +// Safety: Box owns both T and A, so sharing is safe if +// sharing is safe for T and A. +unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A> +where + T: Sync, + A: Sync, +{ +} + +impl<T> Box<T> { + /// Allocates memory on the heap and then places `x` into it. + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// let five = Box::new(5); + /// ``` + #[cfg(all(not(no_global_oom_handling)))] + #[inline(always)] + #[must_use] + pub fn new(x: T) -> Self { + Self::new_in(x, Global) + } + + /// Constructs a new box with uninitialized contents. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut five = Box::<u32>::new_uninit(); + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { + Self::new_uninit_in(Global) + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let zero = Box::<u32>::new_zeroed(); + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { + Self::new_zeroed_in(Global) + } + + /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then + /// `x` will be pinned in memory and unable to be moved. + /// + /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` + /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using + /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to + /// construct a (pinned) `Box` in a different way than with [`Box::new`]. + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn pin(x: T) -> Pin<Box<T>> { + Box::new(x).into() + } + + /// Allocates memory on the heap then places `x` into it, + /// returning an error if the allocation fails + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// let five = Box::try_new(5)?; + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[inline(always)] + pub fn try_new(x: T) -> Result<Self, AllocError> { + Self::try_new_in(x, Global) + } + + /// Constructs a new box with uninitialized contents on the heap, + /// returning an error if the allocation fails + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let mut five = Box::<u32>::try_new_uninit()?; + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[inline(always)] + pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { + Box::try_new_uninit_in(Global) + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes on the heap + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let zero = Box::<u32>::try_new_zeroed()?; + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[inline(always)] + pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { + Box::try_new_zeroed_in(Global) + } +} + +impl<T, A: Allocator> Box<T, A> { + /// Allocates memory in the given allocator then places `x` into it. + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let five = Box::new_in(5, System); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_in(x: T, alloc: A) -> Self + where + A: Allocator, + { + let mut boxed = Self::new_uninit_in(alloc); + unsafe { + boxed.as_mut_ptr().write(x); + boxed.assume_init() + } + } + + /// Allocates memory in the given allocator then places `x` into it, + /// returning an error if the allocation fails + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let five = Box::try_new_in(5, System)?; + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[inline(always)] + pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> + where + A: Allocator, + { + let mut boxed = Self::try_new_uninit_in(alloc)?; + unsafe { + boxed.as_mut_ptr().write(x); + Ok(boxed.assume_init()) + } + } + + /// Constructs a new box with uninitialized contents in the provided allocator. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let mut five = Box::<u32, _>::new_uninit_in(System); + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[must_use] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[inline(always)] + pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> + where + A: Allocator, + { + let layout = Layout::new::<mem::MaybeUninit<T>>(); + // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. + // That would make code size bigger. + match Box::try_new_uninit_in(alloc) { + Ok(m) => m, + Err(_) => handle_alloc_error(layout), + } + } + + /// Constructs a new box with uninitialized contents in the provided allocator, + /// returning an error if the allocation fails + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[inline(always)] + pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> + where + A: Allocator, + { + let layout = Layout::new::<mem::MaybeUninit<T>>(); + let ptr = alloc.allocate(layout)?.cast(); + unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes in the provided allocator. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let zero = Box::<u32, _>::new_zeroed_in(System); + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + #[inline(always)] + pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> + where + A: Allocator, + { + let layout = Layout::new::<mem::MaybeUninit<T>>(); + // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. + // That would make code size bigger. + match Box::try_new_zeroed_in(alloc) { + Ok(m) => m, + Err(_) => handle_alloc_error(layout), + } + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes in the provided allocator, + /// returning an error if the allocation fails, + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[inline(always)] + pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> + where + A: Allocator, + { + let layout = Layout::new::<mem::MaybeUninit<T>>(); + let ptr = alloc.allocate_zeroed(layout)?.cast(); + unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } + } + + /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then + /// `x` will be pinned in memory and unable to be moved. + /// + /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` + /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using + /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to + /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn pin_in(x: T, alloc: A) -> Pin<Self> + where + A: 'static + Allocator, + { + Self::into_pin(Self::new_in(x, alloc)) + } + + /// Converts a `Box<T>` into a `Box<[T]>` + /// + /// This conversion does not allocate on the heap and happens in place. + #[inline(always)] + pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { + let (raw, alloc) = Box::into_raw_with_allocator(boxed); + unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } + } + + /// Consumes the `Box`, returning the wrapped value. + /// + /// # Examples + /// + /// ``` + /// #![feature(box_into_inner)] + /// + /// let c = Box::new(5); + /// + /// assert_eq!(Box::into_inner(c), 5); + /// ``` + #[inline(always)] + pub fn into_inner(boxed: Self) -> T { + let ptr = boxed.0; + let unboxed = unsafe { ptr.as_ptr().read() }; + unsafe { boxed.1.deallocate(ptr.cast(), Layout::new::<T>()) }; + unboxed + } +} + +impl<T> Box<[T]> { + /// Constructs a new boxed slice with uninitialized contents. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut values = Box::<[u32]>::new_uninit_slice(3); + /// + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { + unsafe { RawVec::with_capacity(len).into_box(len) } + } + + /// Constructs a new boxed slice with uninitialized contents, with the memory + /// being filled with `0` bytes. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let values = Box::<[u32]>::new_zeroed_slice(3); + /// let values = unsafe { values.assume_init() }; + /// + /// assert_eq!(*values, [0, 0, 0]) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { + unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } + } + + /// Constructs a new boxed slice with uninitialized contents. Returns an error if + /// the allocation fails + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[inline(always)] + pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { + unsafe { + let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { + Ok(l) => l, + Err(_) => return Err(AllocError), + }; + let ptr = Global.allocate(layout)?; + Ok(RawVec::from_raw_parts_in(ptr.as_ptr() as *mut _, len, Global).into_box(len)) + } + } + + /// Constructs a new boxed slice with uninitialized contents, with the memory + /// being filled with `0` bytes. Returns an error if the allocation fails + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; + /// let values = unsafe { values.assume_init() }; + /// + /// assert_eq!(*values, [0, 0, 0]); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[inline(always)] + pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { + unsafe { + let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { + Ok(l) => l, + Err(_) => return Err(AllocError), + }; + let ptr = Global.allocate_zeroed(layout)?; + Ok(RawVec::from_raw_parts_in(ptr.as_ptr() as *mut _, len, Global).into_box(len)) + } + } +} + +impl<T, A: Allocator> Box<[T], A> { + /// Constructs a new boxed slice with uninitialized contents in the provided allocator. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); + /// + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { + unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } + } + + /// Constructs a new boxed slice with uninitialized contents in the provided allocator, + /// with the memory being filled with `0` bytes. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); + /// let values = unsafe { values.assume_init() }; + /// + /// assert_eq!(*values, [0, 0, 0]) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { + unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } + } + + pub fn into_vec(self) -> Vec<T, A> + where + A: Allocator, + { + unsafe { + let len = self.len(); + let (b, alloc) = Box::into_raw_with_allocator(self); + Vec::from_raw_parts_in(b as *mut T, len, len, alloc) + } + } +} + +impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { + /// Converts to `Box<T, A>`. + /// + /// # Safety + /// + /// As with [`MaybeUninit::assume_init`], + /// it is up to the caller to guarantee that the value + /// really is in an initialized state. + /// Calling this when the content is not yet fully initialized + /// causes immediate undefined behavior. + /// + /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut five = Box::<u32>::new_uninit(); + /// + /// let five: Box<u32> = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5) + /// ``` + #[inline(always)] + pub unsafe fn assume_init(self) -> Box<T, A> { + let (raw, alloc) = Box::into_raw_with_allocator(self); + unsafe { Box::from_raw_in(raw as *mut T, alloc) } + } + + /// Writes the value and converts to `Box<T, A>`. + /// + /// This method converts the box similarly to [`Box::assume_init`] but + /// writes `value` into it before conversion thus guaranteeing safety. + /// In some scenarios use of this method may improve performance because + /// the compiler may be able to optimize copying from stack. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let big_box = Box::<[usize; 1024]>::new_uninit(); + /// + /// let mut array = [0; 1024]; + /// for (i, place) in array.iter_mut().enumerate() { + /// *place = i; + /// } + /// + /// // The optimizer may be able to elide this copy, so previous code writes + /// // to heap directly. + /// let big_box = Box::write(big_box, array); + /// + /// for (i, x) in big_box.iter().enumerate() { + /// assert_eq!(*x, i); + /// } + /// ``` + #[inline(always)] + pub fn write(mut boxed: Self, value: T) -> Box<T, A> { + unsafe { + (*boxed).write(value); + boxed.assume_init() + } + } +} + +impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { + /// Converts to `Box<[T], A>`. + /// + /// # Safety + /// + /// As with [`MaybeUninit::assume_init`], + /// it is up to the caller to guarantee that the values + /// really are in an initialized state. + /// Calling this when the content is not yet fully initialized + /// causes immediate undefined behavior. + /// + /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut values = Box::<[u32]>::new_uninit_slice(3); + /// + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]) + /// ``` + #[inline(always)] + pub unsafe fn assume_init(self) -> Box<[T], A> { + let (raw, alloc) = Box::into_raw_with_allocator(self); + unsafe { Box::from_raw_in(raw as *mut [T], alloc) } + } +} + +impl<T: ?Sized> Box<T> { + /// Constructs a box from a raw pointer. + /// + /// After calling this function, the raw pointer is owned by the + /// resulting `Box`. Specifically, the `Box` destructor will call + /// the destructor of `T` and free the allocated memory. For this + /// to be safe, the memory must have been allocated in accordance + /// with the [memory layout] used by `Box` . + /// + /// # Safety + /// + /// This function is unsafe because improper use may lead to + /// memory problems. For example, a double-free may occur if the + /// function is called twice on the same raw pointer. + /// + /// The safety conditions are described in the [memory layout] section. + /// + /// # Examples + /// + /// Recreate a `Box` which was previously converted to a raw pointer + /// using [`Box::into_raw`]: + /// ``` + /// let x = Box::new(5); + /// let ptr = Box::into_raw(x); + /// let x = unsafe { Box::from_raw(ptr) }; + /// ``` + /// Manually create a `Box` from scratch by using the global allocator: + /// ``` + /// use std::alloc::{alloc, Layout}; + /// + /// unsafe { + /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; + /// // In general .write is required to avoid attempting to destruct + /// // the (uninitialized) previous contents of `ptr`, though for this + /// // simple example `*ptr = 5` would have worked as well. + /// ptr.write(5); + /// let x = Box::from_raw(ptr); + /// } + /// ``` + /// + /// [memory layout]: self#memory-layout + /// [`Layout`]: crate::Layout + #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`"] + #[inline(always)] + pub unsafe fn from_raw(raw: *mut T) -> Self { + unsafe { Self::from_raw_in(raw, Global) } + } +} + +impl<T: ?Sized, A: Allocator> Box<T, A> { + /// Constructs a box from a raw pointer in the given allocator. + /// + /// After calling this function, the raw pointer is owned by the + /// resulting `Box`. Specifically, the `Box` destructor will call + /// the destructor of `T` and free the allocated memory. For this + /// to be safe, the memory must have been allocated in accordance + /// with the [memory layout] used by `Box` . + /// + /// # Safety + /// + /// This function is unsafe because improper use may lead to + /// memory problems. For example, a double-free may occur if the + /// function is called twice on the same raw pointer. + /// + /// + /// # Examples + /// + /// Recreate a `Box` which was previously converted to a raw pointer + /// using [`Box::into_raw_with_allocator`]: + /// ``` + /// use std::alloc::System; + /// # use allocator_api2::boxed::Box; + /// + /// let x = Box::new_in(5, System); + /// let (ptr, alloc) = Box::into_raw_with_allocator(x); + /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; + /// ``` + /// Manually create a `Box` from scratch by using the system allocator: + /// ``` + /// use allocator_api2::alloc::{Allocator, Layout, System}; + /// # use allocator_api2::boxed::Box; + /// + /// unsafe { + /// let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>(); + /// // In general .write is required to avoid attempting to destruct + /// // the (uninitialized) previous contents of `ptr`, though for this + /// // simple example `*ptr = 5` would have worked as well. + /// ptr.write(5); + /// let x = Box::from_raw_in(ptr, System); + /// } + /// # Ok::<(), allocator_api2::alloc::AllocError>(()) + /// ``` + /// + /// [memory layout]: self#memory-layout + /// [`Layout`]: crate::Layout + #[inline(always)] + pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { + Box(unsafe { NonNull::new_unchecked(raw) }, alloc) + } + + /// Consumes the `Box`, returning a wrapped raw pointer. + /// + /// The pointer will be properly aligned and non-null. + /// + /// After calling this function, the caller is responsible for the + /// memory previously managed by the `Box`. In particular, the + /// caller should properly destroy `T` and release the memory, taking + /// into account the [memory layout] used by `Box`. The easiest way to + /// do this is to convert the raw pointer back into a `Box` with the + /// [`Box::from_raw`] function, allowing the `Box` destructor to perform + /// the cleanup. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This + /// is so that there is no conflict with a method on the inner type. + /// + /// # Examples + /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] + /// for automatic cleanup: + /// ``` + /// let x = Box::new(String::from("Hello")); + /// let ptr = Box::into_raw(x); + /// let x = unsafe { Box::from_raw(ptr) }; + /// ``` + /// Manual cleanup by explicitly running the destructor and deallocating + /// the memory: + /// ``` + /// use std::alloc::{dealloc, Layout}; + /// use std::ptr; + /// + /// let x = Box::new(String::from("Hello")); + /// let p = Box::into_raw(x); + /// unsafe { + /// ptr::drop_in_place(p); + /// dealloc(p as *mut u8, Layout::new::<String>()); + /// } + /// ``` + /// + /// [memory layout]: self#memory-layout + #[inline(always)] + pub fn into_raw(b: Self) -> *mut T { + Self::into_raw_with_allocator(b).0 + } + + /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. + /// + /// The pointer will be properly aligned and non-null. + /// + /// After calling this function, the caller is responsible for the + /// memory previously managed by the `Box`. In particular, the + /// caller should properly destroy `T` and release the memory, taking + /// into account the [memory layout] used by `Box`. The easiest way to + /// do this is to convert the raw pointer back into a `Box` with the + /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform + /// the cleanup. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This + /// is so that there is no conflict with a method on the inner type. + /// + /// # Examples + /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] + /// for automatic cleanup: + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let x = Box::new_in(String::from("Hello"), System); + /// let (ptr, alloc) = Box::into_raw_with_allocator(x); + /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; + /// ``` + /// Manual cleanup by explicitly running the destructor and deallocating + /// the memory: + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::{Allocator, Layout, System}; + /// use std::ptr::{self, NonNull}; + /// + /// let x = Box::new_in(String::from("Hello"), System); + /// let (ptr, alloc) = Box::into_raw_with_allocator(x); + /// unsafe { + /// ptr::drop_in_place(ptr); + /// let non_null = NonNull::new_unchecked(ptr); + /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); + /// } + /// ``` + /// + /// [memory layout]: self#memory-layout + #[inline(always)] + pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { + let (leaked, alloc) = Box::into_non_null(b); + (leaked.as_ptr(), alloc) + } + + #[inline(always)] + pub fn into_non_null(b: Self) -> (NonNull<T>, A) { + // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a + // raw pointer for the type system. Turning it directly into a raw pointer would not be + // recognized as "releasing" the unique pointer to permit aliased raw accesses, + // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer + // behaves correctly. + let alloc = unsafe { ptr::read(&b.1) }; + (NonNull::from(Box::leak(b)), alloc) + } + + /// Returns a reference to the underlying allocator. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This + /// is so that there is no conflict with a method on the inner type. + #[inline(always)] + pub const fn allocator(b: &Self) -> &A { + &b.1 + } + + /// Consumes and leaks the `Box`, returning a mutable reference, + /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime + /// `'a`. If the type has only static references, or none at all, then this + /// may be chosen to be `'static`. + /// + /// This function is mainly useful for data that lives for the remainder of + /// the program's life. Dropping the returned reference will cause a memory + /// leak. If this is not acceptable, the reference should first be wrapped + /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can + /// then be dropped which will properly destroy `T` and release the + /// allocated memory. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::leak(b)` instead of `b.leak()`. This + /// is so that there is no conflict with a method on the inner type. + /// + /// # Examples + /// + /// Simple usage: + /// + /// ``` + /// let x = Box::new(41); + /// let static_ref: &'static mut usize = Box::leak(x); + /// *static_ref += 1; + /// assert_eq!(*static_ref, 42); + /// ``` + /// + /// Unsized data: + /// + /// ``` + /// let x = vec![1, 2, 3].into_boxed_slice(); + /// let static_ref = Box::leak(x); + /// static_ref[0] = 4; + /// assert_eq!(*static_ref, [4, 2, 3]); + /// ``` + #[inline(always)] + fn leak<'a>(b: Self) -> &'a mut T + where + A: 'a, + { + unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } + } + + /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then + /// `*boxed` will be pinned in memory and unable to be moved. + /// + /// This conversion does not allocate on the heap and happens in place. + /// + /// This is also available via [`From`]. + /// + /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> + /// can also be written more concisely using <code>[Box::pin]\(x)</code>. + /// This `into_pin` method is useful if you already have a `Box<T>`, or you are + /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. + /// + /// # Notes + /// + /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, + /// as it'll introduce an ambiguity when calling `Pin::from`. + /// A demonstration of such a poor impl is shown below. + /// + /// ```compile_fail + /// # use std::pin::Pin; + /// struct Foo; // A type defined in this crate. + /// impl From<Box<()>> for Pin<Foo> { + /// fn from(_: Box<()>) -> Pin<Foo> { + /// Pin::new(Foo) + /// } + /// } + /// + /// let foo = Box::new(()); + /// let bar = Pin::from(foo); + /// ``` + #[inline(always)] + pub fn into_pin(boxed: Self) -> Pin<Self> + where + A: 'static, + { + // It's not possible to move or replace the insides of a `Pin<Box<T>>` + // when `T: !Unpin`, so it's safe to pin it directly without any + // additional requirements. + unsafe { Pin::new_unchecked(boxed) } + } +} + +impl<T: ?Sized, A: Allocator> Drop for Box<T, A> { + #[inline(always)] + fn drop(&mut self) { + let layout = Layout::for_value::<T>(&**self); + unsafe { + self.1.deallocate(self.0.cast(), layout); + } + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Default> Default for Box<T> { + /// Creates a `Box<T>`, with the `Default` value for T. + #[inline(always)] + fn default() -> Self { + Box::new(T::default()) + } +} + +impl<T, A: Allocator + Default> Default for Box<[T], A> { + #[inline(always)] + fn default() -> Self { + let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling(); + Box(ptr, A::default()) + } +} + +impl<A: Allocator + Default> Default for Box<str, A> { + #[inline(always)] + fn default() -> Self { + // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. + let ptr: NonNull<str> = unsafe { + let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling(); + NonNull::new_unchecked(bytes.as_ptr() as *mut str) + }; + Box(ptr, A::default()) + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { + /// Returns a new box with a `clone()` of this box's contents. + /// + /// # Examples + /// + /// ``` + /// let x = Box::new(5); + /// let y = x.clone(); + /// + /// // The value is the same + /// assert_eq!(x, y); + /// + /// // But they are unique objects + /// assert_ne!(&*x as *const i32, &*y as *const i32); + /// ``` + #[inline(always)] + fn clone(&self) -> Self { + // Pre-allocate memory to allow writing the cloned value directly. + let mut boxed = Self::new_uninit_in(self.1.clone()); + unsafe { + boxed.write((**self).clone()); + boxed.assume_init() + } + } + + /// Copies `source`'s contents into `self` without creating a new allocation. + /// + /// # Examples + /// + /// ``` + /// let x = Box::new(5); + /// let mut y = Box::new(10); + /// let yp: *const i32 = &*y; + /// + /// y.clone_from(&x); + /// + /// // The value is the same + /// assert_eq!(x, y); + /// + /// // And no allocation occurred + /// assert_eq!(yp, &*y); + /// ``` + #[inline(always)] + fn clone_from(&mut self, source: &Self) { + (**self).clone_from(&(**source)); + } +} + +#[cfg(not(no_global_oom_handling))] +impl Clone for Box<str> { + #[inline(always)] + fn clone(&self) -> Self { + // this makes a copy of the data + let buf: Box<[u8]> = self.as_bytes().into(); + unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) } + } +} + +impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { + #[inline(always)] + fn eq(&self, other: &Self) -> bool { + PartialEq::eq(&**self, &**other) + } + #[inline(always)] + fn ne(&self, other: &Self) -> bool { + PartialEq::ne(&**self, &**other) + } +} + +impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { + #[inline(always)] + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + PartialOrd::partial_cmp(&**self, &**other) + } + #[inline(always)] + fn lt(&self, other: &Self) -> bool { + PartialOrd::lt(&**self, &**other) + } + #[inline(always)] + fn le(&self, other: &Self) -> bool { + PartialOrd::le(&**self, &**other) + } + #[inline(always)] + fn ge(&self, other: &Self) -> bool { + PartialOrd::ge(&**self, &**other) + } + #[inline(always)] + fn gt(&self, other: &Self) -> bool { + PartialOrd::gt(&**self, &**other) + } +} + +impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { + #[inline(always)] + fn cmp(&self, other: &Self) -> Ordering { + Ord::cmp(&**self, &**other) + } +} + +impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} + +impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { + #[inline(always)] + fn hash<H: Hasher>(&self, state: &mut H) { + (**self).hash(state); + } +} + +impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { + #[inline(always)] + fn finish(&self) -> u64 { + (**self).finish() + } + #[inline(always)] + fn write(&mut self, bytes: &[u8]) { + (**self).write(bytes) + } + #[inline(always)] + fn write_u8(&mut self, i: u8) { + (**self).write_u8(i) + } + #[inline(always)] + fn write_u16(&mut self, i: u16) { + (**self).write_u16(i) + } + #[inline(always)] + fn write_u32(&mut self, i: u32) { + (**self).write_u32(i) + } + #[inline(always)] + fn write_u64(&mut self, i: u64) { + (**self).write_u64(i) + } + #[inline(always)] + fn write_u128(&mut self, i: u128) { + (**self).write_u128(i) + } + #[inline(always)] + fn write_usize(&mut self, i: usize) { + (**self).write_usize(i) + } + #[inline(always)] + fn write_i8(&mut self, i: i8) { + (**self).write_i8(i) + } + #[inline(always)] + fn write_i16(&mut self, i: i16) { + (**self).write_i16(i) + } + #[inline(always)] + fn write_i32(&mut self, i: i32) { + (**self).write_i32(i) + } + #[inline(always)] + fn write_i64(&mut self, i: i64) { + (**self).write_i64(i) + } + #[inline(always)] + fn write_i128(&mut self, i: i128) { + (**self).write_i128(i) + } + #[inline(always)] + fn write_isize(&mut self, i: isize) { + (**self).write_isize(i) + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T> From<T> for Box<T> { + /// Converts a `T` into a `Box<T>` + /// + /// The conversion allocates on the heap and moves `t` + /// from the stack into it. + /// + /// # Examples + /// + /// ```rust + /// let x = 5; + /// let boxed = Box::new(5); + /// + /// assert_eq!(Box::from(x), boxed); + /// ``` + #[inline(always)] + fn from(t: T) -> Self { + Box::new(t) + } +} + +impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>> +where + A: 'static, +{ + /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then + /// `*boxed` will be pinned in memory and unable to be moved. + /// + /// This conversion does not allocate on the heap and happens in place. + /// + /// This is also available via [`Box::into_pin`]. + /// + /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> + /// can also be written more concisely using <code>[Box::pin]\(x)</code>. + /// This `From` implementation is useful if you already have a `Box<T>`, or you are + /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. + #[inline(always)] + fn from(boxed: Box<T, A>) -> Self { + Box::into_pin(boxed) + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> { + /// Converts a `&[T]` into a `Box<[T]>` + /// + /// This conversion allocates on the heap + /// and performs a copy of `slice` and its contents. + /// + /// # Examples + /// ```rust + /// // create a &[u8] which will be used to create a Box<[u8]> + /// let slice: &[u8] = &[104, 101, 108, 108, 111]; + /// let boxed_slice: Box<[u8]> = Box::from(slice); + /// + /// println!("{boxed_slice:?}"); + /// ``` + #[inline(always)] + fn from(slice: &[T]) -> Box<[T], A> { + let len = slice.len(); + let buf = RawVec::with_capacity_in(len, A::default()); + unsafe { + ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); + buf.into_box(slice.len()).assume_init() + } + } +} + +#[cfg(not(no_global_oom_handling))] +impl<A: Allocator + Default> From<&str> for Box<str, A> { + /// Converts a `&str` into a `Box<str>` + /// + /// This conversion allocates on the heap + /// and performs a copy of `s`. + /// + /// # Examples + /// + /// ```rust + /// let boxed: Box<str> = Box::from("hello"); + /// println!("{boxed}"); + /// ``` + #[inline(always)] + fn from(s: &str) -> Box<str, A> { + let (raw, alloc) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes())); + unsafe { Box::from_raw_in(raw as *mut str, alloc) } + } +} + +impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { + /// Converts a `Box<str>` into a `Box<[u8]>` + /// + /// This conversion does not allocate on the heap and happens in place. + /// + /// # Examples + /// ```rust + /// // create a Box<str> which will be used to create a Box<[u8]> + /// let boxed: Box<str> = Box::from("hello"); + /// let boxed_str: Box<[u8]> = Box::from(boxed); + /// + /// // create a &[u8] which will be used to create a Box<[u8]> + /// let slice: &[u8] = &[104, 101, 108, 108, 111]; + /// let boxed_slice = Box::from(slice); + /// + /// assert_eq!(boxed_slice, boxed_str); + /// ``` + #[inline(always)] + fn from(s: Box<str, A>) -> Self { + let (raw, alloc) = Box::into_raw_with_allocator(s); + unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } + } +} + +impl<T, A: Allocator, const N: usize> Box<[T; N], A> { + #[inline(always)] + pub fn slice(b: Self) -> Box<[T], A> { + let (ptr, alloc) = Box::into_raw_with_allocator(b); + unsafe { Box::from_raw_in(ptr, alloc) } + } + + pub fn into_vec(self) -> Vec<T, A> + where + A: Allocator, + { + unsafe { + let (b, alloc) = Box::into_raw_with_allocator(self); + Vec::from_raw_parts_in(b as *mut T, N, N, alloc) + } + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T, const N: usize> From<[T; N]> for Box<[T]> { + /// Converts a `[T; N]` into a `Box<[T]>` + /// + /// This conversion moves the array to newly heap-allocated memory. + /// + /// # Examples + /// + /// ```rust + /// let boxed: Box<[u8]> = Box::from([4, 2]); + /// println!("{boxed:?}"); + /// ``` + #[inline(always)] + fn from(array: [T; N]) -> Box<[T]> { + Box::slice(Box::new(array)) + } +} + +impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> { + type Error = Box<[T], A>; + + /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. + /// + /// The conversion occurs in-place and does not require a + /// new memory allocation. + /// + /// # Errors + /// + /// Returns the old `Box<[T]>` in the `Err` variant if + /// `boxed_slice.len()` does not equal `N`. + #[inline(always)] + fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> { + if boxed_slice.len() == N { + let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); + Ok(unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) }) + } else { + Err(boxed_slice) + } + } +} + +impl<A: Allocator> Box<dyn Any, A> { + /// Attempt to downcast the box to a concrete type. + /// + /// # Examples + /// + /// ``` + /// use std::any::Any; + /// + /// fn print_if_string(value: Box<dyn Any>) { + /// if let Ok(string) = value.downcast::<String>() { + /// println!("String ({}): {}", string.len(), string); + /// } + /// } + /// + /// let my_string = "Hello World".to_string(); + /// print_if_string(Box::new(my_string)); + /// print_if_string(Box::new(0i8)); + /// ``` + #[inline(always)] + pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { + if self.is::<T>() { + unsafe { Ok(self.downcast_unchecked::<T>()) } + } else { + Err(self) + } + } + + /// Downcasts the box to a concrete type. + /// + /// For a safe alternative see [`downcast`]. + /// + /// # Examples + /// + /// ``` + /// #![feature(downcast_unchecked)] + /// + /// use std::any::Any; + /// + /// let x: Box<dyn Any> = Box::new(1_usize); + /// + /// unsafe { + /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); + /// } + /// ``` + /// + /// # Safety + /// + /// The contained value must be of type `T`. Calling this method + /// with the incorrect type is *undefined behavior*. + /// + /// [`downcast`]: Self::downcast + #[inline(always)] + pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { + debug_assert!(self.is::<T>()); + unsafe { + let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); + Box::from_raw_in(raw as *mut T, alloc) + } + } +} + +impl<A: Allocator> Box<dyn Any + Send, A> { + /// Attempt to downcast the box to a concrete type. + /// + /// # Examples + /// + /// ``` + /// use std::any::Any; + /// + /// fn print_if_string(value: Box<dyn Any + Send>) { + /// if let Ok(string) = value.downcast::<String>() { + /// println!("String ({}): {}", string.len(), string); + /// } + /// } + /// + /// let my_string = "Hello World".to_string(); + /// print_if_string(Box::new(my_string)); + /// print_if_string(Box::new(0i8)); + /// ``` + #[inline(always)] + pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { + if self.is::<T>() { + unsafe { Ok(self.downcast_unchecked::<T>()) } + } else { + Err(self) + } + } + + /// Downcasts the box to a concrete type. + /// + /// For a safe alternative see [`downcast`]. + /// + /// # Examples + /// + /// ``` + /// #![feature(downcast_unchecked)] + /// + /// use std::any::Any; + /// + /// let x: Box<dyn Any + Send> = Box::new(1_usize); + /// + /// unsafe { + /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); + /// } + /// ``` + /// + /// # Safety + /// + /// The contained value must be of type `T`. Calling this method + /// with the incorrect type is *undefined behavior*. + /// + /// [`downcast`]: Self::downcast + #[inline(always)] + pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { + debug_assert!(self.is::<T>()); + unsafe { + let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); + Box::from_raw_in(raw as *mut T, alloc) + } + } +} + +impl<A: Allocator> Box<dyn Any + Send + Sync, A> { + /// Attempt to downcast the box to a concrete type. + /// + /// # Examples + /// + /// ``` + /// use std::any::Any; + /// + /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { + /// if let Ok(string) = value.downcast::<String>() { + /// println!("String ({}): {}", string.len(), string); + /// } + /// } + /// + /// let my_string = "Hello World".to_string(); + /// print_if_string(Box::new(my_string)); + /// print_if_string(Box::new(0i8)); + /// ``` + #[inline(always)] + pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { + if self.is::<T>() { + unsafe { Ok(self.downcast_unchecked::<T>()) } + } else { + Err(self) + } + } + + /// Downcasts the box to a concrete type. + /// + /// For a safe alternative see [`downcast`]. + /// + /// # Examples + /// + /// ``` + /// #![feature(downcast_unchecked)] + /// + /// use std::any::Any; + /// + /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); + /// + /// unsafe { + /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); + /// } + /// ``` + /// + /// # Safety + /// + /// The contained value must be of type `T`. Calling this method + /// with the incorrect type is *undefined behavior*. + /// + /// [`downcast`]: Self::downcast + #[inline(always)] + pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { + debug_assert!(self.is::<T>()); + unsafe { + let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = + Box::into_raw_with_allocator(self); + Box::from_raw_in(raw as *mut T, alloc) + } + } +} + +impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { + #[inline(always)] + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { + #[inline(always)] + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { + #[inline(always)] + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + // It's not possible to extract the inner Uniq directly from the Box, + // instead we cast it to a *const which aliases the Unique + let ptr: *const T = &**self; + fmt::Pointer::fmt(&ptr, f) + } +} + +impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { + type Target = T; + + #[inline(always)] + fn deref(&self) -> &T { + unsafe { self.0.as_ref() } + } +} + +impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { + #[inline(always)] + fn deref_mut(&mut self) -> &mut T { + unsafe { self.0.as_mut() } + } +} + +impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { + type Item = I::Item; + + #[inline(always)] + fn next(&mut self) -> Option<I::Item> { + (**self).next() + } + + #[inline(always)] + fn size_hint(&self) -> (usize, Option<usize>) { + (**self).size_hint() + } + + #[inline(always)] + fn nth(&mut self, n: usize) -> Option<I::Item> { + (**self).nth(n) + } + + #[inline(always)] + fn last(self) -> Option<I::Item> { + BoxIter::last(self) + } +} + +trait BoxIter { + type Item; + fn last(self) -> Option<Self::Item>; +} + +impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { + type Item = I::Item; + + #[inline(always)] + fn last(self) -> Option<I::Item> { + #[inline(always)] + fn some<T>(_: Option<T>, x: T) -> Option<T> { + Some(x) + } + + self.fold(None, some) + } +} + +impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { + #[inline(always)] + fn next_back(&mut self) -> Option<I::Item> { + (**self).next_back() + } + #[inline(always)] + fn nth_back(&mut self, n: usize) -> Option<I::Item> { + (**self).nth_back(n) + } +} + +impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { + #[inline(always)] + fn len(&self) -> usize { + (**self).len() + } +} + +impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} + +#[cfg(not(no_global_oom_handling))] +impl<I> FromIterator<I> for Box<[I]> { + #[inline(always)] + fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { + iter.into_iter().collect::<Vec<_>>().into_boxed_slice() + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { + #[inline(always)] + fn clone(&self) -> Self { + let alloc = Box::allocator(self).clone(); + let mut vec = Vec::with_capacity_in(self.len(), alloc); + vec.extend_from_slice(self); + vec.into_boxed_slice() + } + + #[inline(always)] + fn clone_from(&mut self, other: &Self) { + if self.len() == other.len() { + self.clone_from_slice(other); + } else { + *self = other.clone(); + } + } +} + +impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { + #[inline(always)] + fn borrow(&self) -> &T { + self + } +} + +impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { + #[inline(always)] + fn borrow_mut(&mut self) -> &mut T { + self + } +} + +impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { + #[inline(always)] + fn as_ref(&self) -> &T { + self + } +} + +impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { + #[inline(always)] + fn as_mut(&mut self) -> &mut T { + self + } +} + +/* Nota bene + * + * We could have chosen not to add this impl, and instead have written a + * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, + * because Box<T> implements Unpin even when T does not, as a result of + * this impl. + * + * We chose this API instead of the alternative for a few reasons: + * - Logically, it is helpful to understand pinning in regard to the + * memory region being pointed to. For this reason none of the + * standard library pointer types support projecting through a pin + * (Box<T> is the only pointer type in std for which this would be + * safe.) + * - It is in practice very useful to have Box<T> be unconditionally + * Unpin because of trait objects, for which the structural auto + * trait functionality does not apply (e.g., Box<dyn Foo> would + * otherwise not be Unpin). + * + * Another type with the same semantics as Box but only a conditional + * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and + * could have a method to project a Pin<T> from it. + */ +impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} + +impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> +where + A: 'static, +{ + type Output = F::Output; + + #[inline(always)] + fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { + F::poll(Pin::new(&mut *self), cx) + } +} + +#[cfg(feature = "std")] +mod error { + use std::error::Error; + + use super::Box; + + #[cfg(not(no_global_oom_handling))] + impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { + /// Converts a type of [`Error`] into a box of dyn [`Error`]. + /// + /// # Examples + /// + /// ``` + /// use std::error::Error; + /// use std::fmt; + /// use std::mem; + /// + /// #[derive(Debug)] + /// struct AnError; + /// + /// impl fmt::Display for AnError { + /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + /// write!(f, "An error") + /// } + /// } + /// + /// impl Error for AnError {} + /// + /// let an_error = AnError; + /// assert!(0 == mem::size_of_val(&an_error)); + /// let a_boxed_error = Box::<dyn Error>::from(an_error); + /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) + /// ``` + #[inline(always)] + fn from(err: E) -> Box<dyn Error + 'a> { + unsafe { Box::from_raw(Box::leak(Box::new(err))) } + } + } + + #[cfg(not(no_global_oom_handling))] + impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { + /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of + /// dyn [`Error`] + [`Send`] + [`Sync`]. + /// + /// # Examples + /// + /// ``` + /// use std::error::Error; + /// use std::fmt; + /// use std::mem; + /// + /// #[derive(Debug)] + /// struct AnError; + /// + /// impl fmt::Display for AnError { + /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + /// write!(f, "An error") + /// } + /// } + /// + /// impl Error for AnError {} + /// + /// unsafe impl Send for AnError {} + /// + /// unsafe impl Sync for AnError {} + /// + /// let an_error = AnError; + /// assert!(0 == mem::size_of_val(&an_error)); + /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); + /// assert!( + /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) + /// ``` + #[inline(always)] + fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { + unsafe { Box::from_raw(Box::leak(Box::new(err))) } + } + } + + impl<T: Error> Error for Box<T> { + #[inline(always)] + fn source(&self) -> Option<&(dyn Error + 'static)> { + Error::source(&**self) + } + } +} + +#[cfg(feature = "std")] +impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> { + #[inline] + fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> { + (**self).read(buf) + } + + #[inline] + fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> { + (**self).read_to_end(buf) + } + + #[inline] + fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> { + (**self).read_to_string(buf) + } + + #[inline] + fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> { + (**self).read_exact(buf) + } +} + +#[cfg(feature = "std")] +impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> { + #[inline] + fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> { + (**self).write(buf) + } + + #[inline] + fn flush(&mut self) -> std::io::Result<()> { + (**self).flush() + } + + #[inline] + fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> { + (**self).write_all(buf) + } + + #[inline] + fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> { + (**self).write_fmt(fmt) + } +} + +#[cfg(feature = "std")] +impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> { + #[inline] + fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> { + (**self).seek(pos) + } + + #[inline] + fn stream_position(&mut self) -> std::io::Result<u64> { + (**self).stream_position() + } +} + +#[cfg(feature = "std")] +impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> { + #[inline] + fn fill_buf(&mut self) -> std::io::Result<&[u8]> { + (**self).fill_buf() + } + + #[inline] + fn consume(&mut self, amt: usize) { + (**self).consume(amt) + } + + #[inline] + fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> { + (**self).read_until(byte, buf) + } + + #[inline] + fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> { + (**self).read_line(buf) + } +} + +#[cfg(feature = "alloc")] +impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String { + fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) { + iter.into_iter().for_each(move |s| self.push_str(&s)); + } +} + +#[cfg(not(no_global_oom_handling))] +impl Clone for Box<core::ffi::CStr> { + #[inline] + fn clone(&self) -> Self { + (**self).into() + } +} + +#[cfg(not(no_global_oom_handling))] +impl From<&core::ffi::CStr> for Box<core::ffi::CStr> { + /// Converts a `&CStr` into a `Box<CStr>`, + /// by copying the contents into a newly allocated [`Box`]. + fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> { + let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul()); + unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) } + } +} + +#[cfg(feature = "serde")] +impl<T, A> serde::Serialize for Box<T, A> +where + T: serde::Serialize, + A: Allocator, +{ + #[inline(always)] + fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { + (**self).serialize(serializer) + } +} + +#[cfg(feature = "serde")] +impl<'de, T, A> serde::Deserialize<'de> for Box<T, A> +where + T: serde::Deserialize<'de>, + A: Allocator + Default, +{ + #[inline(always)] + fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> { + let value = T::deserialize(deserializer)?; + Ok(Box::new_in(value, A::default())) + } +} diff --git a/vendor/allocator-api2/src/stable/macros.rs b/vendor/allocator-api2/src/stable/macros.rs new file mode 100644 index 000000000..29e59c696 --- /dev/null +++ b/vendor/allocator-api2/src/stable/macros.rs @@ -0,0 +1,83 @@ +/// Creates a [`Vec`] containing the arguments. +/// +/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions. +/// There are two forms of this macro: +/// +/// - Create a [`Vec`] containing a given list of elements: +/// +/// ``` +/// use allocator_api2::vec; +/// let v = vec![1, 2, 3]; +/// assert_eq!(v[0], 1); +/// assert_eq!(v[1], 2); +/// assert_eq!(v[2], 3); +/// ``` +/// +/// +/// ``` +/// use allocator_api2::{vec, alloc::Global}; +/// let v = vec![in Global; 1, 2, 3]; +/// assert_eq!(v[0], 1); +/// assert_eq!(v[1], 2); +/// assert_eq!(v[2], 3); +/// ``` +/// +/// - Create a [`Vec`] from a given element and size: +/// +/// ``` +/// use allocator_api2::vec; +/// let v = vec![1; 3]; +/// assert_eq!(v, [1, 1, 1]); +/// ``` +/// +/// ``` +/// use allocator_api2::{vec, alloc::Global}; +/// let v = vec![in Global; 1; 3]; +/// assert_eq!(v, [1, 1, 1]); +/// ``` +/// +/// Note that unlike array expressions this syntax supports all elements +/// which implement [`Clone`] and the number of elements doesn't have to be +/// a constant. +/// +/// This will use `clone` to duplicate an expression, so one should be careful +/// using this with types having a nonstandard `Clone` implementation. For +/// example, `vec![Rc::new(1); 5]` will create a vector of five references +/// to the same boxed integer value, not five references pointing to independently +/// boxed integers. +/// +/// Also, note that `vec![expr; 0]` is allowed, and produces an empty vector. +/// This will still evaluate `expr`, however, and immediately drop the resulting value, so +/// be mindful of side effects. +/// +/// [`Vec`]: crate::vec::Vec +#[cfg(not(no_global_oom_handling))] +#[macro_export] +macro_rules! vec { + (in $alloc:expr $(;)?) => ( + $crate::vec::Vec::new() + ); + (in $alloc:expr; $elem:expr; $n:expr) => ( + $crate::vec::from_elem_in($elem, $n, $alloc) + ); + (in $alloc:expr; $($x:expr),+ $(,)?) => ( + $crate::boxed::Box::<[_]>::into_vec( + $crate::boxed::Box::slice( + $crate::boxed::Box::new_in([$($x),+], $alloc) + ) + ) + ); + () => ( + $crate::vec::Vec::new() + ); + ($elem:expr; $n:expr) => ( + $crate::vec::from_elem($elem, $n) + ); + ($($x:expr),+ $(,)?) => ( + $crate::boxed::Box::<[_]>::into_vec( + $crate::boxed::Box::slice( + $crate::boxed::Box::new([$($x),+]) + ) + ) + ); +} diff --git a/vendor/allocator-api2/src/stable/mod.rs b/vendor/allocator-api2/src/stable/mod.rs new file mode 100644 index 000000000..709014d00 --- /dev/null +++ b/vendor/allocator-api2/src/stable/mod.rs @@ -0,0 +1,62 @@ +#![deny(unsafe_op_in_unsafe_fn)] +#![allow(clippy::needless_doctest_main, clippy::partialeq_ne_impl)] + +#[cfg(feature = "alloc")] +pub use self::slice::SliceExt; + +pub mod alloc; + +#[cfg(feature = "alloc")] +pub mod boxed; + +#[cfg(feature = "alloc")] +mod raw_vec; + +#[cfg(feature = "alloc")] +pub mod vec; + +#[cfg(feature = "alloc")] +mod macros; + +#[cfg(feature = "alloc")] +mod slice; + +#[cfg(feature = "alloc")] +#[track_caller] +#[inline(always)] +#[cfg(debug_assertions)] +unsafe fn assume(v: bool) { + if !v { + core::unreachable!() + } +} + +#[cfg(feature = "alloc")] +#[track_caller] +#[inline(always)] +#[cfg(not(debug_assertions))] +unsafe fn assume(v: bool) { + if !v { + unsafe { + core::hint::unreachable_unchecked(); + } + } +} + +#[cfg(feature = "alloc")] +#[inline(always)] +fn addr<T>(x: *const T) -> usize { + #[allow(clippy::useless_transmute, clippy::transmutes_expressible_as_ptr_casts)] + unsafe { + core::mem::transmute(x) + } +} + +#[cfg(feature = "alloc")] +#[inline(always)] +fn invalid_mut<T>(addr: usize) -> *mut T { + #[allow(clippy::useless_transmute, clippy::transmutes_expressible_as_ptr_casts)] + unsafe { + core::mem::transmute(addr) + } +} diff --git a/vendor/allocator-api2/src/stable/raw_vec.rs b/vendor/allocator-api2/src/stable/raw_vec.rs new file mode 100644 index 000000000..984de7f4f --- /dev/null +++ b/vendor/allocator-api2/src/stable/raw_vec.rs @@ -0,0 +1,642 @@ +use core::alloc::LayoutError; +use core::mem::{self, ManuallyDrop, MaybeUninit}; +use core::ops::Drop; +use core::ptr::{self, NonNull}; +use core::slice; +use core::{cmp, fmt}; + +use super::{ + alloc::{Allocator, Global, Layout}, + assume, + boxed::Box, +}; + +#[cfg(not(no_global_oom_handling))] +use super::alloc::handle_alloc_error; + +/// The error type for `try_reserve` methods. +#[derive(Clone, PartialEq, Eq, Debug)] +pub struct TryReserveError { + kind: TryReserveErrorKind, +} + +impl TryReserveError { + /// Details about the allocation that caused the error + pub fn kind(&self) -> TryReserveErrorKind { + self.kind.clone() + } +} + +/// Details of the allocation that caused a `TryReserveError` +#[derive(Clone, PartialEq, Eq, Debug)] +pub enum TryReserveErrorKind { + /// Error due to the computed capacity exceeding the collection's maximum + /// (usually `isize::MAX` bytes). + CapacityOverflow, + + /// The memory allocator returned an error + AllocError { + /// The layout of allocation request that failed + layout: Layout, + + #[doc(hidden)] + non_exhaustive: (), + }, +} + +use TryReserveErrorKind::*; + +impl From<TryReserveErrorKind> for TryReserveError { + #[inline(always)] + fn from(kind: TryReserveErrorKind) -> Self { + Self { kind } + } +} + +impl From<LayoutError> for TryReserveErrorKind { + /// Always evaluates to [`TryReserveErrorKind::CapacityOverflow`]. + #[inline(always)] + fn from(_: LayoutError) -> Self { + TryReserveErrorKind::CapacityOverflow + } +} + +impl fmt::Display for TryReserveError { + fn fmt( + &self, + fmt: &mut core::fmt::Formatter<'_>, + ) -> core::result::Result<(), core::fmt::Error> { + fmt.write_str("memory allocation failed")?; + let reason = match self.kind { + TryReserveErrorKind::CapacityOverflow => { + " because the computed capacity exceeded the collection's maximum" + } + TryReserveErrorKind::AllocError { .. } => { + " because the memory allocator returned an error" + } + }; + fmt.write_str(reason) + } +} + +#[cfg(feature = "std")] +impl std::error::Error for TryReserveError {} + +#[cfg(not(no_global_oom_handling))] +enum AllocInit { + /// The contents of the new memory are uninitialized. + Uninitialized, + /// The new memory is guaranteed to be zeroed. + Zeroed, +} + +/// A low-level utility for more ergonomically allocating, reallocating, and deallocating +/// a buffer of memory on the heap without having to worry about all the corner cases +/// involved. This type is excellent for building your own data structures like Vec and VecDeque. +/// In particular: +/// +/// * Produces `NonNull::dangling()` on zero-sized types. +/// * Produces `NonNull::dangling()` on zero-length allocations. +/// * Avoids freeing `NonNull::dangling()`. +/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). +/// * Guards against 32-bit systems allocating more than isize::MAX bytes. +/// * Guards against overflowing your length. +/// * Calls `handle_alloc_error` for fallible allocations. +/// * Contains a `ptr::NonNull` and thus endows the user with all related benefits. +/// * Uses the excess returned from the allocator to use the largest available capacity. +/// +/// This type does not in anyway inspect the memory that it manages. When dropped it *will* +/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` +/// to handle the actual things *stored* inside of a `RawVec`. +/// +/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns +/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a +/// `Box<[T]>`, since `capacity()` won't yield the length. +#[allow(missing_debug_implementations)] +pub(crate) struct RawVec<T, A: Allocator = Global> { + ptr: NonNull<T>, + cap: usize, + alloc: A, +} + +// Safety: RawVec owns both T and A, so sending is safe if +// sending is safe for T and A. +unsafe impl<T, A: Allocator> Send for RawVec<T, A> +where + T: Send, + A: Send, +{ +} + +// Safety: RawVec owns both T and A, so sharing is safe if +// sharing is safe for T and A. +unsafe impl<T, A: Allocator> Sync for RawVec<T, A> +where + T: Sync, + A: Sync, +{ +} + +impl<T> RawVec<T, Global> { + /// Creates the biggest possible `RawVec` (on the system heap) + /// without allocating. If `T` has positive size, then this makes a + /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a + /// `RawVec` with capacity `usize::MAX`. Useful for implementing + /// delayed allocation. + #[must_use] + pub const fn new() -> Self { + Self::new_in(Global) + } + + /// Creates a `RawVec` (on the system heap) with exactly the + /// capacity and alignment requirements for a `[T; capacity]`. This is + /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is + /// zero-sized. Note that if `T` is zero-sized this means you will + /// *not* get a `RawVec` with the requested capacity. + /// + /// # Panics + /// + /// Panics if the requested capacity exceeds `isize::MAX` bytes. + /// + /// # Aborts + /// + /// Aborts on OOM. + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn with_capacity(capacity: usize) -> Self { + Self::with_capacity_in(capacity, Global) + } + + /// Like `with_capacity`, but guarantees the buffer is zeroed. + #[cfg(not(no_global_oom_handling))] + #[must_use] + #[inline(always)] + pub fn with_capacity_zeroed(capacity: usize) -> Self { + Self::with_capacity_zeroed_in(capacity, Global) + } +} + +impl<T, A: Allocator> RawVec<T, A> { + // Tiny Vecs are dumb. Skip to: + // - 8 if the element size is 1, because any heap allocators is likely + // to round up a request of less than 8 bytes to at least 8 bytes. + // - 4 if elements are moderate-sized (<= 1 KiB). + // - 1 otherwise, to avoid wasting too much space for very short Vecs. + pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { + 8 + } else if mem::size_of::<T>() <= 1024 { + 4 + } else { + 1 + }; + + /// Like `new`, but parameterized over the choice of allocator for + /// the returned `RawVec`. + #[inline(always)] + pub const fn new_in(alloc: A) -> Self { + // `cap: 0` means "unallocated". zero-sized types are ignored. + Self { + ptr: NonNull::dangling(), + cap: 0, + alloc, + } + } + + /// Like `with_capacity`, but parameterized over the choice of + /// allocator for the returned `RawVec`. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { + Self::allocate_in(capacity, AllocInit::Uninitialized, alloc) + } + + /// Like `with_capacity_zeroed`, but parameterized over the choice + /// of allocator for the returned `RawVec`. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { + Self::allocate_in(capacity, AllocInit::Zeroed, alloc) + } + + /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. + /// + /// Note that this will correctly reconstitute any `cap` changes + /// that may have been performed. (See description of type for details.) + /// + /// # Safety + /// + /// * `len` must be greater than or equal to the most recently requested capacity, and + /// * `len` must be less than or equal to `self.capacity()`. + /// + /// Note, that the requested capacity and `self.capacity()` could differ, as + /// an allocator could overallocate and return a greater memory block than requested. + #[inline(always)] + pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { + // Sanity-check one half of the safety requirement (we cannot check the other half). + debug_assert!( + len <= self.capacity(), + "`len` must be smaller than or equal to `self.capacity()`" + ); + + let me = ManuallyDrop::new(self); + unsafe { + let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); + Box::from_raw_in(slice, ptr::read(&me.alloc)) + } + } + + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self { + // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. + if mem::size_of::<T>() == 0 || capacity == 0 { + Self::new_in(alloc) + } else { + // We avoid `unwrap_or_else` here because it bloats the amount of + // LLVM IR generated. + let layout = match Layout::array::<T>(capacity) { + Ok(layout) => layout, + Err(_) => capacity_overflow(), + }; + match alloc_guard(layout.size()) { + Ok(_) => {} + Err(_) => capacity_overflow(), + } + let result = match init { + AllocInit::Uninitialized => alloc.allocate(layout), + AllocInit::Zeroed => alloc.allocate_zeroed(layout), + }; + let ptr = match result { + Ok(ptr) => ptr, + Err(_) => handle_alloc_error(layout), + }; + + // Allocators currently return a `NonNull<[u8]>` whose length + // matches the size requested. If that ever changes, the capacity + // here should change to `ptr.len() / mem::size_of::<T>()`. + Self { + ptr: unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) }, + cap: capacity, + alloc, + } + } + } + + /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. + /// + /// # Safety + /// + /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given + /// `capacity`. + /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit + /// systems). ZST vectors may have a capacity up to `usize::MAX`. + /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is + /// guaranteed. + #[inline(always)] + pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { + Self { + ptr: unsafe { NonNull::new_unchecked(ptr) }, + cap: capacity, + alloc, + } + } + + /// Gets a raw pointer to the start of the allocation. Note that this is + /// `NonNull::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must + /// be careful. + #[inline(always)] + pub fn ptr(&self) -> *mut T { + self.ptr.as_ptr() + } + + /// Gets the capacity of the allocation. + /// + /// This will always be `usize::MAX` if `T` is zero-sized. + #[inline(always)] + pub fn capacity(&self) -> usize { + if mem::size_of::<T>() == 0 { + usize::MAX + } else { + self.cap + } + } + + /// Returns a shared reference to the allocator backing this `RawVec`. + #[inline(always)] + pub fn allocator(&self) -> &A { + &self.alloc + } + + #[inline(always)] + fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> { + if mem::size_of::<T>() == 0 || self.cap == 0 { + None + } else { + // We have an allocated chunk of memory, so we can bypass runtime + // checks to get our current layout. + unsafe { + let layout = Layout::array::<T>(self.cap).unwrap_unchecked(); + Some((self.ptr.cast(), layout)) + } + } + } + + /// Ensures that the buffer contains at least enough space to hold `len + + /// additional` elements. If it doesn't already have enough capacity, will + /// reallocate enough space plus comfortable slack space to get amortized + /// *O*(1) behavior. Will limit this behavior if it would needlessly cause + /// itself to panic. + /// + /// If `len` exceeds `self.capacity()`, this may fail to actually allocate + /// the requested space. This is not really unsafe, but the unsafe + /// code *you* write that relies on the behavior of this function may break. + /// + /// This is ideal for implementing a bulk-push operation like `extend`. + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Aborts + /// + /// Aborts on OOM. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn reserve(&mut self, len: usize, additional: usize) { + // Callers expect this function to be very cheap when there is already sufficient capacity. + // Therefore, we move all the resizing and error-handling logic from grow_amortized and + // handle_reserve behind a call, while making sure that this function is likely to be + // inlined as just a comparison and a call if the comparison fails. + #[cold] + #[inline(always)] + fn do_reserve_and_handle<T, A: Allocator>( + slf: &mut RawVec<T, A>, + len: usize, + additional: usize, + ) { + handle_reserve(slf.grow_amortized(len, additional)); + } + + if self.needs_to_grow(len, additional) { + do_reserve_and_handle(self, len, additional); + } + } + + /// A specialized version of `reserve()` used only by the hot and + /// oft-instantiated `Vec::push()`, which does its own capacity check. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn reserve_for_push(&mut self, len: usize) { + handle_reserve(self.grow_amortized(len, 1)); + } + + /// The same as `reserve`, but returns on errors instead of panicking or aborting. + #[inline(always)] + pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { + if self.needs_to_grow(len, additional) { + self.grow_amortized(len, additional) + } else { + Ok(()) + } + } + + /// Ensures that the buffer contains at least enough space to hold `len + + /// additional` elements. If it doesn't already, will reallocate the + /// minimum possible amount of memory necessary. Generally this will be + /// exactly the amount of memory necessary, but in principle the allocator + /// is free to give back more than we asked for. + /// + /// If `len` exceeds `self.capacity()`, this may fail to actually allocate + /// the requested space. This is not really unsafe, but the unsafe code + /// *you* write that relies on the behavior of this function may break. + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Aborts + /// + /// Aborts on OOM. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn reserve_exact(&mut self, len: usize, additional: usize) { + handle_reserve(self.try_reserve_exact(len, additional)); + } + + /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. + #[inline(always)] + pub fn try_reserve_exact( + &mut self, + len: usize, + additional: usize, + ) -> Result<(), TryReserveError> { + if self.needs_to_grow(len, additional) { + self.grow_exact(len, additional) + } else { + Ok(()) + } + } + + /// Shrinks the buffer down to the specified capacity. If the given amount + /// is 0, actually completely deallocates. + /// + /// # Panics + /// + /// Panics if the given amount is *larger* than the current capacity. + /// + /// # Aborts + /// + /// Aborts on OOM. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn shrink_to_fit(&mut self, cap: usize) { + handle_reserve(self.shrink(cap)); + } +} + +impl<T, A: Allocator> RawVec<T, A> { + /// Returns if the buffer needs to grow to fulfill the needed extra capacity. + /// Mainly used to make inlining reserve-calls possible without inlining `grow`. + #[inline(always)] + fn needs_to_grow(&self, len: usize, additional: usize) -> bool { + additional > self.capacity().wrapping_sub(len) + } + + #[inline(always)] + fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { + // Allocators currently return a `NonNull<[u8]>` whose length matches + // the size requested. If that ever changes, the capacity here should + // change to `ptr.len() / mem::size_of::<T>()`. + self.ptr = unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) }; + self.cap = cap; + } + + // This method is usually instantiated many times. So we want it to be as + // small as possible, to improve compile times. But we also want as much of + // its contents to be statically computable as possible, to make the + // generated code run faster. Therefore, this method is carefully written + // so that all of the code that depends on `T` is within it, while as much + // of the code that doesn't depend on `T` as possible is in functions that + // are non-generic over `T`. + #[inline(always)] + fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { + // This is ensured by the calling contexts. + debug_assert!(additional > 0); + + if mem::size_of::<T>() == 0 { + // Since we return a capacity of `usize::MAX` when `elem_size` is + // 0, getting to here necessarily means the `RawVec` is overfull. + return Err(CapacityOverflow.into()); + } + + // Nothing we can really do about these checks, sadly. + let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; + + // This guarantees exponential growth. The doubling cannot overflow + // because `cap <= isize::MAX` and the type of `cap` is `usize`. + let cap = cmp::max(self.cap * 2, required_cap); + let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); + + let new_layout = Layout::array::<T>(cap); + + // `finish_grow` is non-generic over `T`. + let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; + self.set_ptr_and_cap(ptr, cap); + Ok(()) + } + + // The constraints on this method are much the same as those on + // `grow_amortized`, but this method is usually instantiated less often so + // it's less critical. + #[inline(always)] + fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { + if mem::size_of::<T>() == 0 { + // Since we return a capacity of `usize::MAX` when the type size is + // 0, getting to here necessarily means the `RawVec` is overfull. + return Err(CapacityOverflow.into()); + } + + let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; + let new_layout = Layout::array::<T>(cap); + + // `finish_grow` is non-generic over `T`. + let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; + self.set_ptr_and_cap(ptr, cap); + Ok(()) + } + + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { + assert!( + cap <= self.capacity(), + "Tried to shrink to a larger capacity" + ); + + let (ptr, layout) = if let Some(mem) = self.current_memory() { + mem + } else { + return Ok(()); + }; + + let ptr = unsafe { + // `Layout::array` cannot overflow here because it would have + // overflowed earlier when capacity was larger. + let new_layout = Layout::array::<T>(cap).unwrap_unchecked(); + self.alloc + .shrink(ptr, layout, new_layout) + .map_err(|_| AllocError { + layout: new_layout, + non_exhaustive: (), + })? + }; + self.set_ptr_and_cap(ptr, cap); + Ok(()) + } +} + +// This function is outside `RawVec` to minimize compile times. See the comment +// above `RawVec::grow_amortized` for details. (The `A` parameter isn't +// significant, because the number of different `A` types seen in practice is +// much smaller than the number of `T` types.) +#[inline(always)] +fn finish_grow<A>( + new_layout: Result<Layout, LayoutError>, + current_memory: Option<(NonNull<u8>, Layout)>, + alloc: &mut A, +) -> Result<NonNull<[u8]>, TryReserveError> +where + A: Allocator, +{ + // Check for the error here to minimize the size of `RawVec::grow_*`. + let new_layout = new_layout.map_err(|_| CapacityOverflow)?; + + alloc_guard(new_layout.size())?; + + let memory = if let Some((ptr, old_layout)) = current_memory { + debug_assert_eq!(old_layout.align(), new_layout.align()); + unsafe { + // The allocator checks for alignment equality + assume(old_layout.align() == new_layout.align()); + alloc.grow(ptr, old_layout, new_layout) + } + } else { + alloc.allocate(new_layout) + }; + + memory.map_err(|_| { + AllocError { + layout: new_layout, + non_exhaustive: (), + } + .into() + }) +} + +impl<T, A: Allocator> Drop for RawVec<T, A> { + /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. + #[inline(always)] + fn drop(&mut self) { + if let Some((ptr, layout)) = self.current_memory() { + unsafe { self.alloc.deallocate(ptr, layout) } + } + } +} + +// Central function for reserve error handling. +#[cfg(not(no_global_oom_handling))] +#[inline(always)] +fn handle_reserve(result: Result<(), TryReserveError>) { + match result.map_err(|e| e.kind()) { + Err(CapacityOverflow) => capacity_overflow(), + Err(AllocError { layout, .. }) => handle_alloc_error(layout), + Ok(()) => { /* yay */ } + } +} + +// We need to guarantee the following: +// * We don't ever allocate `> isize::MAX` byte-size objects. +// * We don't overflow `usize::MAX` and actually allocate too little. +// +// On 64-bit we just need to check for overflow since trying to allocate +// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add +// an extra guard for this in case we're running on a platform which can use +// all 4GB in user-space, e.g., PAE or x32. + +#[inline(always)] +fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { + if usize::BITS < 64 && alloc_size > isize::MAX as usize { + Err(CapacityOverflow.into()) + } else { + Ok(()) + } +} + +// One central function responsible for reporting capacity overflows. This'll +// ensure that the code generation related to these panics is minimal as there's +// only one location which panics rather than a bunch throughout the module. +#[cfg(not(no_global_oom_handling))] +fn capacity_overflow() -> ! { + panic!("capacity overflow"); +} diff --git a/vendor/allocator-api2/src/stable/slice.rs b/vendor/allocator-api2/src/stable/slice.rs new file mode 100644 index 000000000..0883b72ad --- /dev/null +++ b/vendor/allocator-api2/src/stable/slice.rs @@ -0,0 +1,171 @@ +use crate::{ + alloc::{Allocator, Global}, + vec::Vec, +}; + +/// Slice methods that use `Box` and `Vec` from this crate. +pub trait SliceExt<T> { + /// Copies `self` into a new `Vec`. + /// + /// # Examples + /// + /// ``` + /// let s = [10, 40, 30]; + /// let x = s.to_vec(); + /// // Here, `s` and `x` can be modified independently. + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + fn to_vec(&self) -> Vec<T, Global> + where + T: Clone, + { + self.to_vec_in(Global) + } + + /// Copies `self` into a new `Vec` with an allocator. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let s = [10, 40, 30]; + /// let x = s.to_vec_in(System); + /// // Here, `s` and `x` can be modified independently. + /// ``` + #[cfg(not(no_global_oom_handling))] + fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> + where + T: Clone; + + /// Creates a vector by copying a slice `n` times. + /// + /// # Panics + /// + /// This function will panic if the capacity would overflow. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); + /// ``` + /// + /// A panic upon overflow: + /// + /// ```should_panic + /// // this will panic at runtime + /// b"0123456789abcdef".repeat(usize::MAX); + /// ``` + fn repeat(&self, n: usize) -> Vec<T, Global> + where + T: Copy; +} + +impl<T> SliceExt<T> for [T] { + #[cfg(not(no_global_oom_handling))] + #[inline] + fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> + where + T: Clone, + { + struct DropGuard<'a, T, A: Allocator> { + vec: &'a mut Vec<T, A>, + num_init: usize, + } + impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { + #[inline] + fn drop(&mut self) { + // SAFETY: + // items were marked initialized in the loop below + unsafe { + self.vec.set_len(self.num_init); + } + } + } + + let mut vec = Vec::with_capacity_in(self.len(), alloc); + let mut guard = DropGuard { + vec: &mut vec, + num_init: 0, + }; + let slots = guard.vec.spare_capacity_mut(); + // .take(slots.len()) is necessary for LLVM to remove bounds checks + // and has better codegen than zip. + for (i, b) in self.iter().enumerate().take(slots.len()) { + guard.num_init = i; + slots[i].write(b.clone()); + } + core::mem::forget(guard); + // SAFETY: + // the vec was allocated and initialized above to at least this length. + unsafe { + vec.set_len(self.len()); + } + vec + } + + #[cfg(not(no_global_oom_handling))] + #[inline] + fn repeat(&self, n: usize) -> Vec<T, Global> + where + T: Copy, + { + if n == 0 { + return Vec::new(); + } + + // If `n` is larger than zero, it can be split as + // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. + // `2^expn` is the number represented by the leftmost '1' bit of `n`, + // and `rem` is the remaining part of `n`. + + // Using `Vec` to access `set_len()`. + let capacity = self.len().checked_mul(n).expect("capacity overflow"); + let mut buf = Vec::with_capacity(capacity); + + // `2^expn` repetition is done by doubling `buf` `expn`-times. + buf.extend(self); + { + let mut m = n >> 1; + // If `m > 0`, there are remaining bits up to the leftmost '1'. + while m > 0 { + // `buf.extend(buf)`: + unsafe { + core::ptr::copy_nonoverlapping( + buf.as_ptr(), + (buf.as_mut_ptr() as *mut T).add(buf.len()), + buf.len(), + ); + // `buf` has capacity of `self.len() * n`. + let buf_len = buf.len(); + buf.set_len(buf_len * 2); + } + + m >>= 1; + } + } + + // `rem` (`= n - 2^expn`) repetition is done by copying + // first `rem` repetitions from `buf` itself. + let rem_len = capacity - buf.len(); // `self.len() * rem` + if rem_len > 0 { + // `buf.extend(buf[0 .. rem_len])`: + unsafe { + // This is non-overlapping since `2^expn > rem`. + core::ptr::copy_nonoverlapping( + buf.as_ptr(), + (buf.as_mut_ptr() as *mut T).add(buf.len()), + rem_len, + ); + // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). + buf.set_len(capacity); + } + } + buf + } +} diff --git a/vendor/allocator-api2/src/stable/vec/drain.rs b/vendor/allocator-api2/src/stable/vec/drain.rs new file mode 100644 index 000000000..de7e3906c --- /dev/null +++ b/vendor/allocator-api2/src/stable/vec/drain.rs @@ -0,0 +1,242 @@ +use core::fmt; +use core::iter::FusedIterator; +use core::mem::{self, size_of, ManuallyDrop}; +use core::ptr::{self, NonNull}; +use core::slice::{self}; + +use crate::stable::alloc::{Allocator, Global}; + +use super::Vec; + +/// A draining iterator for `Vec<T>`. +/// +/// This `struct` is created by [`Vec::drain`]. +/// See its documentation for more. +/// +/// # Example +/// +/// ``` +/// let mut v = vec![0, 1, 2]; +/// let iter: std::vec::Drain<_> = v.drain(..); +/// ``` +pub struct Drain<'a, T: 'a, A: Allocator + 'a = Global> { + /// Index of tail to preserve + pub(super) tail_start: usize, + /// Length of tail + pub(super) tail_len: usize, + /// Current remaining range to remove + pub(super) iter: slice::Iter<'a, T>, + pub(super) vec: NonNull<Vec<T, A>>, +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_tuple("Drain").field(&self.iter.as_slice()).finish() + } +} + +impl<'a, T, A: Allocator> Drain<'a, T, A> { + /// Returns the remaining items of this iterator as a slice. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec!['a', 'b', 'c']; + /// let mut drain = vec.drain(..); + /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']); + /// let _ = drain.next().unwrap(); + /// assert_eq!(drain.as_slice(), &['b', 'c']); + /// ``` + #[must_use] + #[inline(always)] + pub fn as_slice(&self) -> &[T] { + self.iter.as_slice() + } + + /// Returns a reference to the underlying allocator. + #[must_use] + #[inline(always)] + pub fn allocator(&self) -> &A { + unsafe { self.vec.as_ref().allocator() } + } + + /// Keep unyielded elements in the source `Vec`. + /// + /// # Examples + /// + /// ``` + /// #![feature(drain_keep_rest)] + /// + /// let mut vec = vec!['a', 'b', 'c']; + /// let mut drain = vec.drain(..); + /// + /// assert_eq!(drain.next().unwrap(), 'a'); + /// + /// // This call keeps 'b' and 'c' in the vec. + /// drain.keep_rest(); + /// + /// // If we wouldn't call `keep_rest()`, + /// // `vec` would be empty. + /// assert_eq!(vec, ['b', 'c']); + /// ``` + #[inline(always)] + pub fn keep_rest(self) { + // At this moment layout looks like this: + // + // [head] [yielded by next] [unyielded] [yielded by next_back] [tail] + // ^-- start \_________/-- unyielded_len \____/-- self.tail_len + // ^-- unyielded_ptr ^-- tail + // + // Normally `Drop` impl would drop [unyielded] and then move [tail] to the `start`. + // Here we want to + // 1. Move [unyielded] to `start` + // 2. Move [tail] to a new start at `start + len(unyielded)` + // 3. Update length of the original vec to `len(head) + len(unyielded) + len(tail)` + // a. In case of ZST, this is the only thing we want to do + // 4. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do + let mut this = ManuallyDrop::new(self); + + unsafe { + let source_vec = this.vec.as_mut(); + + let start = source_vec.len(); + let tail = this.tail_start; + + let unyielded_len = this.iter.len(); + let unyielded_ptr = this.iter.as_slice().as_ptr(); + + // ZSTs have no identity, so we don't need to move them around. + let needs_move = mem::size_of::<T>() != 0; + + if needs_move { + let start_ptr = source_vec.as_mut_ptr().add(start); + + // memmove back unyielded elements + if unyielded_ptr != start_ptr { + let src = unyielded_ptr; + let dst = start_ptr; + + ptr::copy(src, dst, unyielded_len); + } + + // memmove back untouched tail + if tail != (start + unyielded_len) { + let src = source_vec.as_ptr().add(tail); + let dst = start_ptr.add(unyielded_len); + ptr::copy(src, dst, this.tail_len); + } + } + + source_vec.set_len(start + unyielded_len + this.tail_len); + } + } +} + +impl<'a, T, A: Allocator> AsRef<[T]> for Drain<'a, T, A> { + #[inline(always)] + fn as_ref(&self) -> &[T] { + self.as_slice() + } +} + +unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {} + +unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {} + +impl<T, A: Allocator> Iterator for Drain<'_, T, A> { + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + self.iter + .next() + .map(|elt| unsafe { ptr::read(elt as *const _) }) + } + + #[inline(always)] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> { + #[inline(always)] + fn next_back(&mut self) -> Option<T> { + self.iter + .next_back() + .map(|elt| unsafe { ptr::read(elt as *const _) }) + } +} + +impl<T, A: Allocator> Drop for Drain<'_, T, A> { + #[inline] + fn drop(&mut self) { + /// Moves back the un-`Drain`ed elements to restore the original `Vec`. + struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>); + + impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> { + fn drop(&mut self) { + if self.0.tail_len > 0 { + unsafe { + let source_vec = self.0.vec.as_mut(); + // memmove back untouched tail, update to new length + let start = source_vec.len(); + let tail = self.0.tail_start; + if tail != start { + let src = source_vec.as_ptr().add(tail); + let dst = source_vec.as_mut_ptr().add(start); + ptr::copy(src, dst, self.0.tail_len); + } + source_vec.set_len(start + self.0.tail_len); + } + } + } + } + + let iter = mem::replace(&mut self.iter, [].iter()); + let drop_len = iter.len(); + + let mut vec = self.vec; + + if size_of::<T>() == 0 { + // ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount. + // this can be achieved by manipulating the Vec length instead of moving values out from `iter`. + unsafe { + let vec = vec.as_mut(); + let old_len = vec.len(); + vec.set_len(old_len + drop_len + self.tail_len); + vec.truncate(old_len + self.tail_len); + } + + return; + } + + // ensure elements are moved back into their appropriate places, even when drop_in_place panics + let _guard = DropGuard(self); + + if drop_len == 0 { + return; + } + + // as_slice() must only be called when iter.len() is > 0 because + // vec::Splice modifies vec::Drain fields and may grow the vec which would invalidate + // the iterator's internal pointers. Creating a reference to deallocated memory + // is invalid even when it is zero-length + let drop_ptr = iter.as_slice().as_ptr(); + + unsafe { + // drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place + // a pointer with mutable provenance is necessary. Therefore we must reconstruct + // it from the original vec but also avoid creating a &mut to the front since that could + // invalidate raw pointers to it which some unsafe code might rely on. + let vec_ptr = vec.as_mut().as_mut_ptr(); + let drop_offset = drop_ptr.offset_from(vec_ptr) as usize; + let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len); + ptr::drop_in_place(to_drop); + } + } +} + +impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {} + +impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {} diff --git a/vendor/allocator-api2/src/stable/vec/into_iter.rs b/vendor/allocator-api2/src/stable/vec/into_iter.rs new file mode 100644 index 000000000..464702afd --- /dev/null +++ b/vendor/allocator-api2/src/stable/vec/into_iter.rs @@ -0,0 +1,198 @@ +use core::fmt; +use core::iter::FusedIterator; +use core::marker::PhantomData; +use core::mem::{self, size_of, ManuallyDrop}; + +use core::ptr::{self, NonNull}; +use core::slice::{self}; + +use crate::stable::addr; + +use super::{Allocator, Global, RawVec}; + +#[cfg(not(no_global_oom_handling))] +use super::Vec; + +/// An iterator that moves out of a vector. +/// +/// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec) +/// (provided by the [`IntoIterator`] trait). +/// +/// # Example +/// +/// ``` +/// let v = vec![0, 1, 2]; +/// let iter: std::vec::IntoIter<_> = v.into_iter(); +/// ``` +pub struct IntoIter<T, A: Allocator = Global> { + pub(super) buf: NonNull<T>, + pub(super) phantom: PhantomData<T>, + pub(super) cap: usize, + // the drop impl reconstructs a RawVec from buf, cap and alloc + // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop + pub(super) alloc: ManuallyDrop<A>, + pub(super) ptr: *const T, + pub(super) end: *const T, +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_tuple("IntoIter").field(&self.as_slice()).finish() + } +} + +impl<T, A: Allocator> IntoIter<T, A> { + /// Returns the remaining items of this iterator as a slice. + /// + /// # Examples + /// + /// ``` + /// let vec = vec!['a', 'b', 'c']; + /// let mut into_iter = vec.into_iter(); + /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); + /// let _ = into_iter.next().unwrap(); + /// assert_eq!(into_iter.as_slice(), &['b', 'c']); + /// ``` + pub fn as_slice(&self) -> &[T] { + unsafe { slice::from_raw_parts(self.ptr, self.len()) } + } + + /// Returns the remaining items of this iterator as a mutable slice. + /// + /// # Examples + /// + /// ``` + /// let vec = vec!['a', 'b', 'c']; + /// let mut into_iter = vec.into_iter(); + /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); + /// into_iter.as_mut_slice()[2] = 'z'; + /// assert_eq!(into_iter.next().unwrap(), 'a'); + /// assert_eq!(into_iter.next().unwrap(), 'b'); + /// assert_eq!(into_iter.next().unwrap(), 'z'); + /// ``` + pub fn as_mut_slice(&mut self) -> &mut [T] { + unsafe { &mut *self.as_raw_mut_slice() } + } + + /// Returns a reference to the underlying allocator. + #[inline(always)] + pub fn allocator(&self) -> &A { + &self.alloc + } + + fn as_raw_mut_slice(&mut self) -> *mut [T] { + ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len()) + } +} + +impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> { + fn as_ref(&self) -> &[T] { + self.as_slice() + } +} + +unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {} + +unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {} + +impl<T, A: Allocator> Iterator for IntoIter<T, A> { + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + if self.ptr == self.end { + None + } else if size_of::<T>() == 0 { + // purposefully don't use 'ptr.offset' because for + // vectors with 0-size elements this would return the + // same pointer. + self.ptr = self.ptr.cast::<u8>().wrapping_add(1).cast(); + + // Make up a value of this ZST. + Some(unsafe { mem::zeroed() }) + } else { + let old = self.ptr; + self.ptr = unsafe { self.ptr.add(1) }; + + Some(unsafe { ptr::read(old) }) + } + } + + #[inline(always)] + fn size_hint(&self) -> (usize, Option<usize>) { + let exact = if size_of::<T>() == 0 { + addr(self.end).wrapping_sub(addr(self.ptr)) + } else { + unsafe { self.end.offset_from(self.ptr) as usize } + }; + (exact, Some(exact)) + } + + #[inline(always)] + fn count(self) -> usize { + self.len() + } +} + +impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { + #[inline(always)] + fn next_back(&mut self) -> Option<T> { + if self.end == self.ptr { + None + } else if size_of::<T>() == 0 { + // See above for why 'ptr.offset' isn't used + self.end = self.end.cast::<u8>().wrapping_add(1).cast(); + + // Make up a value of this ZST. + Some(unsafe { mem::zeroed() }) + } else { + self.end = unsafe { self.end.sub(1) }; + + Some(unsafe { ptr::read(self.end) }) + } + } +} + +impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {} + +impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} + +#[doc(hidden)] +pub trait NonDrop {} + +// T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr +// and thus we can't implement drop-handling +impl<T: Copy> NonDrop for T {} + +#[cfg(not(no_global_oom_handling))] +impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> { + fn clone(&self) -> Self { + let mut vec = Vec::<T, A>::with_capacity_in(self.len(), (*self.alloc).clone()); + vec.extend(self.as_slice().iter().cloned()); + vec.into_iter() + } +} + +impl<T, A: Allocator> Drop for IntoIter<T, A> { + fn drop(&mut self) { + struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>); + + impl<T, A: Allocator> Drop for DropGuard<'_, T, A> { + fn drop(&mut self) { + unsafe { + // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec + let alloc = ManuallyDrop::take(&mut self.0.alloc); + // RawVec handles deallocation + let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc); + } + } + } + + let guard = DropGuard(self); + // destroy the remaining elements + unsafe { + ptr::drop_in_place(guard.0.as_raw_mut_slice()); + } + // now `guard` will be dropped and do the rest + } +} diff --git a/vendor/allocator-api2/src/stable/vec/mod.rs b/vendor/allocator-api2/src/stable/vec/mod.rs new file mode 100644 index 000000000..8b7ab4b12 --- /dev/null +++ b/vendor/allocator-api2/src/stable/vec/mod.rs @@ -0,0 +1,3253 @@ +//! A contiguous growable array type with heap-allocated contents, written +//! `Vec<T>`. +//! +//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and +//! *O*(1) pop (from the end). +//! +//! Vectors ensure they never allocate more than `isize::MAX` bytes. +//! +//! # Examples +//! +//! You can explicitly create a [`Vec`] with [`Vec::new`]: +//! +//! ``` +//! let v: Vec<i32> = Vec::new(); +//! ``` +//! +//! ...or by using the [`vec!`] macro: +//! +//! ``` +//! let v: Vec<i32> = vec![]; +//! +//! let v = vec![1, 2, 3, 4, 5]; +//! +//! let v = vec![0; 10]; // ten zeroes +//! ``` +//! +//! You can [`push`] values onto the end of a vector (which will grow the vector +//! as needed): +//! +//! ``` +//! let mut v = vec![1, 2]; +//! +//! v.push(3); +//! ``` +//! +//! Popping values works in much the same way: +//! +//! ``` +//! let mut v = vec![1, 2]; +//! +//! let two = v.pop(); +//! ``` +//! +//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): +//! +//! ``` +//! let mut v = vec![1, 2, 3]; +//! let three = v[2]; +//! v[1] = v[1] + 5; +//! ``` +//! +//! [`push`]: Vec::push + +#[cfg(not(no_global_oom_handling))] +use core::cmp; +use core::cmp::Ordering; +use core::convert::TryFrom; +use core::fmt; +use core::hash::{Hash, Hasher}; +#[cfg(not(no_global_oom_handling))] +use core::iter; +#[cfg(not(no_global_oom_handling))] +use core::iter::FromIterator; +use core::marker::PhantomData; +use core::mem::{self, size_of, ManuallyDrop, MaybeUninit}; +use core::ops::{self, Bound, Index, IndexMut, Range, RangeBounds}; +use core::ptr::{self, NonNull}; +use core::slice::{self, SliceIndex}; + +use super::{ + alloc::{Allocator, Global}, + assume, + boxed::Box, + raw_vec::{RawVec, TryReserveError}, +}; + +#[cfg(not(no_global_oom_handling))] +pub use self::splice::Splice; + +#[cfg(not(no_global_oom_handling))] +mod splice; + +pub use self::drain::Drain; + +mod drain; + +pub use self::into_iter::IntoIter; + +mod into_iter; + +mod partial_eq; + +#[cfg(not(no_global_oom_handling))] +mod set_len_on_drop; + +#[cfg(not(no_global_oom_handling))] +use self::set_len_on_drop::SetLenOnDrop; + +/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'. +/// +/// # Examples +/// +/// ``` +/// let mut vec = Vec::new(); +/// vec.push(1); +/// vec.push(2); +/// +/// assert_eq!(vec.len(), 2); +/// assert_eq!(vec[0], 1); +/// +/// assert_eq!(vec.pop(), Some(2)); +/// assert_eq!(vec.len(), 1); +/// +/// vec[0] = 7; +/// assert_eq!(vec[0], 7); +/// +/// vec.extend([1, 2, 3].iter().copied()); +/// +/// for x in &vec { +/// println!("{x}"); +/// } +/// assert_eq!(vec, [7, 1, 2, 3]); +/// ``` +/// +/// The [`vec!`] macro is provided for convenient initialization: +/// +/// ``` +/// let mut vec1 = vec![1, 2, 3]; +/// vec1.push(4); +/// let vec2 = Vec::from([1, 2, 3, 4]); +/// assert_eq!(vec1, vec2); +/// ``` +/// +/// It can also initialize each element of a `Vec<T>` with a given value. +/// This may be more efficient than performing allocation and initialization +/// in separate steps, especially when initializing a vector of zeros: +/// +/// ``` +/// let vec = vec![0; 5]; +/// assert_eq!(vec, [0, 0, 0, 0, 0]); +/// +/// // The following is equivalent, but potentially slower: +/// let mut vec = Vec::with_capacity(5); +/// vec.resize(5, 0); +/// assert_eq!(vec, [0, 0, 0, 0, 0]); +/// ``` +/// +/// For more information, see +/// [Capacity and Reallocation](#capacity-and-reallocation). +/// +/// Use a `Vec<T>` as an efficient stack: +/// +/// ``` +/// let mut stack = Vec::new(); +/// +/// stack.push(1); +/// stack.push(2); +/// stack.push(3); +/// +/// while let Some(top) = stack.pop() { +/// // Prints 3, 2, 1 +/// println!("{top}"); +/// } +/// ``` +/// +/// # Indexing +/// +/// The `Vec` type allows to access values by index, because it implements the +/// [`Index`] trait. An example will be more explicit: +/// +/// ``` +/// let v = vec![0, 2, 4, 6]; +/// println!("{}", v[1]); // it will display '2' +/// ``` +/// +/// However be careful: if you try to access an index which isn't in the `Vec`, +/// your software will panic! You cannot do this: +/// +/// ```should_panic +/// let v = vec![0, 2, 4, 6]; +/// println!("{}", v[6]); // it will panic! +/// ``` +/// +/// Use [`get`] and [`get_mut`] if you want to check whether the index is in +/// the `Vec`. +/// +/// # Slicing +/// +/// A `Vec` can be mutable. On the other hand, slices are read-only objects. +/// To get a [slice][prim@slice], use [`&`]. Example: +/// +/// ``` +/// fn read_slice(slice: &[usize]) { +/// // ... +/// } +/// +/// let v = vec![0, 1]; +/// read_slice(&v); +/// +/// // ... and that's all! +/// // you can also do it like this: +/// let u: &[usize] = &v; +/// // or like this: +/// let u: &[_] = &v; +/// ``` +/// +/// In Rust, it's more common to pass slices as arguments rather than vectors +/// when you just want to provide read access. The same goes for [`String`] and +/// [`&str`]. +/// +/// # Capacity and reallocation +/// +/// The capacity of a vector is the amount of space allocated for any future +/// elements that will be added onto the vector. This is not to be confused with +/// the *length* of a vector, which specifies the number of actual elements +/// within the vector. If a vector's length exceeds its capacity, its capacity +/// will automatically be increased, but its elements will have to be +/// reallocated. +/// +/// For example, a vector with capacity 10 and length 0 would be an empty vector +/// with space for 10 more elements. Pushing 10 or fewer elements onto the +/// vector will not change its capacity or cause reallocation to occur. However, +/// if the vector's length is increased to 11, it will have to reallocate, which +/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`] +/// whenever possible to specify how big the vector is expected to get. +/// +/// # Guarantees +/// +/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees +/// about its design. This ensures that it's as low-overhead as possible in +/// the general case, and can be correctly manipulated in primitive ways +/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`. +/// If additional type parameters are added (e.g., to support custom allocators), +/// overriding their defaults may change the behavior. +/// +/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) +/// triplet. No more, no less. The order of these fields is completely +/// unspecified, and you should use the appropriate methods to modify these. +/// The pointer will never be null, so this type is null-pointer-optimized. +/// +/// However, the pointer might not actually point to allocated memory. In particular, +/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`], +/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`] +/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized +/// types inside a `Vec`, it will not allocate space for them. *Note that in this case +/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only +/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation +/// details are very subtle --- if you intend to allocate memory using a `Vec` +/// and use it for something else (either to pass to unsafe code, or to build your +/// own memory-backed collection), be sure to deallocate this memory by using +/// `from_raw_parts` to recover the `Vec` and then dropping it. +/// +/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap +/// (as defined by the allocator Rust is configured to use by default), and its +/// pointer points to [`len`] initialized, contiguous elements in order (what +/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code> +/// logically uninitialized, contiguous elements. +/// +/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be +/// visualized as below. The top part is the `Vec` struct, it contains a +/// pointer to the head of the allocation in the heap, length and capacity. +/// The bottom part is the allocation on the heap, a contiguous memory block. +/// +/// ```text +/// ptr len capacity +/// +--------+--------+--------+ +/// | 0x0123 | 2 | 4 | +/// +--------+--------+--------+ +/// | +/// v +/// Heap +--------+--------+--------+--------+ +/// | 'a' | 'b' | uninit | uninit | +/// +--------+--------+--------+--------+ +/// ``` +/// +/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`]. +/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory +/// layout (including the order of fields). +/// +/// `Vec` will never perform a "small optimization" where elements are actually +/// stored on the stack for two reasons: +/// +/// * It would make it more difficult for unsafe code to correctly manipulate +/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were +/// only moved, and it would be more difficult to determine if a `Vec` had +/// actually allocated memory. +/// +/// * It would penalize the general case, incurring an additional branch +/// on every access. +/// +/// `Vec` will never automatically shrink itself, even if completely empty. This +/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` +/// and then filling it back up to the same [`len`] should incur no calls to +/// the allocator. If you wish to free up unused memory, use +/// [`shrink_to_fit`] or [`shrink_to`]. +/// +/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is +/// sufficient. [`push`] and [`insert`] *will* (re)allocate if +/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely +/// accurate, and can be relied on. It can even be used to manually free the memory +/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even +/// when not necessary. +/// +/// `Vec` does not guarantee any particular growth strategy when reallocating +/// when full, nor when [`reserve`] is called. The current strategy is basic +/// and it may prove desirable to use a non-constant growth factor. Whatever +/// strategy is used will of course guarantee *O*(1) amortized [`push`]. +/// +/// `vec![x; n]`, `vec![a, b, c, d]`, and +/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec` +/// with exactly the requested capacity. If <code>[len] == [capacity]</code>, +/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to +/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements. +/// +/// `Vec` will not specifically overwrite any data that is removed from it, +/// but also won't specifically preserve it. Its uninitialized memory is +/// scratch space that it may use however it wants. It will generally just do +/// whatever is most efficient or otherwise easy to implement. Do not rely on +/// removed data to be erased for security purposes. Even if you drop a `Vec`, its +/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory +/// first, that might not actually happen because the optimizer does not consider +/// this a side-effect that must be preserved. There is one case which we will +/// not break, however: using `unsafe` code to write to the excess capacity, +/// and then increasing the length to match, is always valid. +/// +/// Currently, `Vec` does not guarantee the order in which elements are dropped. +/// The order has changed in the past and may change again. +/// +/// [`get`]: ../../std/vec/struct.Vec.html#method.get +/// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut +/// [`String`]: alloc_crate::string::String +/// [`&str`]: type@str +/// [`shrink_to_fit`]: Vec::shrink_to_fit +/// [`shrink_to`]: Vec::shrink_to +/// [capacity]: Vec::capacity +/// [`capacity`]: Vec::capacity +/// [mem::size_of::\<T>]: core::mem::size_of +/// [len]: Vec::len +/// [`len`]: Vec::len +/// [`push`]: Vec::push +/// [`insert`]: Vec::insert +/// [`reserve`]: Vec::reserve +/// [`MaybeUninit`]: core::mem::MaybeUninit +/// [owned slice]: Box +pub struct Vec<T, A: Allocator = Global> { + buf: RawVec<T, A>, + len: usize, +} + +//////////////////////////////////////////////////////////////////////////////// +// Inherent methods +//////////////////////////////////////////////////////////////////////////////// + +impl<T> Vec<T> { + /// Constructs a new, empty `Vec<T>`. + /// + /// The vector will not allocate until elements are pushed onto it. + /// + /// # Examples + /// + /// ``` + /// # #![allow(unused_mut)] + /// let mut vec: Vec<i32> = Vec::new(); + /// ``` + #[inline(always)] + #[must_use] + pub const fn new() -> Self { + Vec { + buf: RawVec::new(), + len: 0, + } + } + + /// Constructs a new, empty `Vec<T>` with at least the specified capacity. + /// + /// The vector will be able to hold at least `capacity` elements without + /// reallocating. This method is allowed to allocate for more elements than + /// `capacity`. If `capacity` is 0, the vector will not allocate. + /// + /// It is important to note that although the returned vector has the + /// minimum *capacity* specified, the vector will have a zero *length*. For + /// an explanation of the difference between length and capacity, see + /// *[Capacity and reallocation]*. + /// + /// If it is important to know the exact allocated capacity of a `Vec`, + /// always use the [`capacity`] method after construction. + /// + /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation + /// and the capacity will always be `usize::MAX`. + /// + /// [Capacity and reallocation]: #capacity-and-reallocation + /// [`capacity`]: Vec::capacity + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Examples + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// + /// // The vector contains no items, even though it has capacity for more + /// assert_eq!(vec.len(), 0); + /// assert!(vec.capacity() >= 10); + /// + /// // These are all done without reallocating... + /// for i in 0..10 { + /// vec.push(i); + /// } + /// assert_eq!(vec.len(), 10); + /// assert!(vec.capacity() >= 10); + /// + /// // ...but this may make the vector reallocate + /// vec.push(11); + /// assert_eq!(vec.len(), 11); + /// assert!(vec.capacity() >= 11); + /// + /// // A vector of a zero-sized type will always over-allocate, since no + /// // allocation is necessary + /// let vec_units = Vec::<()>::with_capacity(10); + /// assert_eq!(vec_units.capacity(), usize::MAX); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + #[must_use] + pub fn with_capacity(capacity: usize) -> Self { + Self::with_capacity_in(capacity, Global) + } + + /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length. + /// + /// # Safety + /// + /// This is highly unsafe, due to the number of invariants that aren't + /// checked: + /// + /// * `T` needs to have the same alignment as what `ptr` was allocated with. + /// (`T` having a less strict alignment is not sufficient, the alignment really + /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be + /// allocated and deallocated with the same layout.) + /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs + /// to be the same size as the pointer was allocated with. (Because similar to + /// alignment, [`dealloc`] must be called with the same layout `size`.) + /// * `length` needs to be less than or equal to `capacity`. + /// * The first `length` values must be properly initialized values of type `T`. + /// * `capacity` needs to be the capacity that the pointer was allocated with. + /// * The allocated size in bytes must be no larger than `isize::MAX`. + /// See the safety documentation of [`pointer::offset`](https://doc.rust-lang.org/nightly/std/primitive.pointer.html#method.offset). + /// + /// These requirements are always upheld by any `ptr` that has been allocated + /// via `Vec<T>`. Other allocation sources are allowed if the invariants are + /// upheld. + /// + /// Violating these may cause problems like corrupting the allocator's + /// internal data structures. For example it is normally **not** safe + /// to build a `Vec<u8>` from a pointer to a C `char` array with length + /// `size_t`, doing so is only safe if the array was initially allocated by + /// a `Vec` or `String`. + /// It's also not safe to build one from a `Vec<u16>` and its length, because + /// the allocator cares about the alignment, and these two types have different + /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after + /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid + /// these issues, it is often preferable to do casting/transmuting using + /// [`slice::from_raw_parts`] instead. + /// + /// The ownership of `ptr` is effectively transferred to the + /// `Vec<T>` which may then deallocate, reallocate or change the + /// contents of memory pointed to by the pointer at will. Ensure + /// that nothing else uses the pointer after calling this + /// function. + /// + /// [`String`]: alloc_crate::string::String + /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc + /// + /// # Examples + /// + /// ``` + /// use std::ptr; + /// use std::mem; + /// + /// let v = vec![1, 2, 3]; + /// + // FIXME Update this when vec_into_raw_parts is stabilized + /// // Prevent running `v`'s destructor so we are in complete control + /// // of the allocation. + /// let mut v = mem::ManuallyDrop::new(v); + /// + /// // Pull out the various important pieces of information about `v` + /// let p = v.as_mut_ptr(); + /// let len = v.len(); + /// let cap = v.capacity(); + /// + /// unsafe { + /// // Overwrite memory with 4, 5, 6 + /// for i in 0..len { + /// ptr::write(p.add(i), 4 + i); + /// } + /// + /// // Put everything back together into a Vec + /// let rebuilt = Vec::from_raw_parts(p, len, cap); + /// assert_eq!(rebuilt, [4, 5, 6]); + /// } + /// ``` + /// + /// Using memory that was allocated elsewhere: + /// + /// ```rust + /// #![feature(allocator_api)] + /// + /// use std::alloc::{AllocError, Allocator, Global, Layout}; + /// + /// fn main() { + /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen"); + /// + /// let vec = unsafe { + /// let mem = match Global.allocate(layout) { + /// Ok(mem) => mem.cast::<u32>().as_ptr(), + /// Err(AllocError) => return, + /// }; + /// + /// mem.write(1_000_000); + /// + /// Vec::from_raw_parts_in(mem, 1, 16, Global) + /// }; + /// + /// assert_eq!(vec, &[1_000_000]); + /// assert_eq!(vec.capacity(), 16); + /// } + /// ``` + #[inline(always)] + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { + unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) } + } +} + +impl<T, A: Allocator> Vec<T, A> { + /// Constructs a new, empty `Vec<T, A>`. + /// + /// The vector will not allocate until elements are pushed onto it. + /// + /// # Examples + /// + /// ``` + /// use std::alloc::System; + /// + /// # #[allow(unused_mut)] + /// let mut vec: Vec<i32, _> = Vec::new_in(System); + /// ``` + #[inline(always)] + pub const fn new_in(alloc: A) -> Self { + Vec { + buf: RawVec::new_in(alloc), + len: 0, + } + } + + /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity + /// with the provided allocator. + /// + /// The vector will be able to hold at least `capacity` elements without + /// reallocating. This method is allowed to allocate for more elements than + /// `capacity`. If `capacity` is 0, the vector will not allocate. + /// + /// It is important to note that although the returned vector has the + /// minimum *capacity* specified, the vector will have a zero *length*. For + /// an explanation of the difference between length and capacity, see + /// *[Capacity and reallocation]*. + /// + /// If it is important to know the exact allocated capacity of a `Vec`, + /// always use the [`capacity`] method after construction. + /// + /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation + /// and the capacity will always be `usize::MAX`. + /// + /// [Capacity and reallocation]: #capacity-and-reallocation + /// [`capacity`]: Vec::capacity + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Examples + /// + /// ``` + /// use std::alloc::System; + /// + /// let mut vec = Vec::with_capacity_in(10, System); + /// + /// // The vector contains no items, even though it has capacity for more + /// assert_eq!(vec.len(), 0); + /// assert_eq!(vec.capacity(), 10); + /// + /// // These are all done without reallocating... + /// for i in 0..10 { + /// vec.push(i); + /// } + /// assert_eq!(vec.len(), 10); + /// assert_eq!(vec.capacity(), 10); + /// + /// // ...but this may make the vector reallocate + /// vec.push(11); + /// assert_eq!(vec.len(), 11); + /// assert!(vec.capacity() >= 11); + /// + /// // A vector of a zero-sized type will always over-allocate, since no + /// // allocation is necessary + /// let vec_units = Vec::<(), System>::with_capacity_in(10, System); + /// assert_eq!(vec_units.capacity(), usize::MAX); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { + Vec { + buf: RawVec::with_capacity_in(capacity, alloc), + len: 0, + } + } + + /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length, + /// and an allocator. + /// + /// # Safety + /// + /// This is highly unsafe, due to the number of invariants that aren't + /// checked: + /// + /// * `T` needs to have the same alignment as what `ptr` was allocated with. + /// (`T` having a less strict alignment is not sufficient, the alignment really + /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be + /// allocated and deallocated with the same layout.) + /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs + /// to be the same size as the pointer was allocated with. (Because similar to + /// alignment, [`dealloc`] must be called with the same layout `size`.) + /// * `length` needs to be less than or equal to `capacity`. + /// * The first `length` values must be properly initialized values of type `T`. + /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with. + /// * The allocated size in bytes must be no larger than `isize::MAX`. + /// See the safety documentation of [`pointer::offset`](https://doc.rust-lang.org/nightly/std/primitive.pointer.html#method.offset). + /// + /// These requirements are always upheld by any `ptr` that has been allocated + /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are + /// upheld. + /// + /// Violating these may cause problems like corrupting the allocator's + /// internal data structures. For example it is **not** safe + /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`. + /// It's also not safe to build one from a `Vec<u16>` and its length, because + /// the allocator cares about the alignment, and these two types have different + /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after + /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. + /// + /// The ownership of `ptr` is effectively transferred to the + /// `Vec<T>` which may then deallocate, reallocate or change the + /// contents of memory pointed to by the pointer at will. Ensure + /// that nothing else uses the pointer after calling this + /// function. + /// + /// [`String`]: alloc_crate::string::String + /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc + /// [*fit*]: crate::alloc::Allocator#memory-fitting + /// + /// # Examples + /// + /// ``` + /// use std::alloc::System; + /// + /// use std::ptr; + /// use std::mem; + /// + /// + /// # use allocator_api2::vec::Vec; + /// let mut v = Vec::with_capacity_in(3, System); + /// v.push(1); + /// v.push(2); + /// v.push(3); + /// + // FIXME Update this when vec_into_raw_parts is stabilized + /// // Prevent running `v`'s destructor so we are in complete control + /// // of the allocation. + /// let mut v = mem::ManuallyDrop::new(v); + /// + /// // Pull out the various important pieces of information about `v` + /// let p = v.as_mut_ptr(); + /// let len = v.len(); + /// let cap = v.capacity(); + /// let alloc = v.allocator(); + /// + /// unsafe { + /// // Overwrite memory with 4, 5, 6 + /// for i in 0..len { + /// ptr::write(p.add(i), 4 + i); + /// } + /// + /// // Put everything back together into a Vec + /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone()); + /// assert_eq!(rebuilt, [4, 5, 6]); + /// } + /// ``` + /// + /// Using memory that was allocated elsewhere: + /// + /// ```rust + /// use std::alloc::{alloc, Layout}; + /// + /// fn main() { + /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen"); + /// let vec = unsafe { + /// let mem = alloc(layout).cast::<u32>(); + /// if mem.is_null() { + /// return; + /// } + /// + /// mem.write(1_000_000); + /// + /// Vec::from_raw_parts(mem, 1, 16) + /// }; + /// + /// assert_eq!(vec, &[1_000_000]); + /// assert_eq!(vec.capacity(), 16); + /// } + /// ``` + #[inline(always)] + pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self { + unsafe { + Vec { + buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), + len: length, + } + } + } + + /// Decomposes a `Vec<T>` into its raw components. + /// + /// Returns the raw pointer to the underlying data, the length of + /// the vector (in elements), and the allocated capacity of the + /// data (in elements). These are the same arguments in the same + /// order as the arguments to [`from_raw_parts`]. + /// + /// After calling this function, the caller is responsible for the + /// memory previously managed by the `Vec`. The only way to do + /// this is to convert the raw pointer, length, and capacity back + /// into a `Vec` with the [`from_raw_parts`] function, allowing + /// the destructor to perform the cleanup. + /// + /// [`from_raw_parts`]: Vec::from_raw_parts + /// + /// # Examples + /// + /// ``` + /// #![feature(vec_into_raw_parts)] + /// let v: Vec<i32> = vec![-1, 0, 1]; + /// + /// let (ptr, len, cap) = v.into_raw_parts(); + /// + /// let rebuilt = unsafe { + /// // We can now make changes to the components, such as + /// // transmuting the raw pointer to a compatible type. + /// let ptr = ptr as *mut u32; + /// + /// Vec::from_raw_parts(ptr, len, cap) + /// }; + /// assert_eq!(rebuilt, [4294967295, 0, 1]); + /// ``` + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { + let mut me = ManuallyDrop::new(self); + (me.as_mut_ptr(), me.len(), me.capacity()) + } + + /// Decomposes a `Vec<T>` into its raw components. + /// + /// Returns the raw pointer to the underlying data, the length of the vector (in elements), + /// the allocated capacity of the data (in elements), and the allocator. These are the same + /// arguments in the same order as the arguments to [`from_raw_parts_in`]. + /// + /// After calling this function, the caller is responsible for the + /// memory previously managed by the `Vec`. The only way to do + /// this is to convert the raw pointer, length, and capacity back + /// into a `Vec` with the [`from_raw_parts_in`] function, allowing + /// the destructor to perform the cleanup. + /// + /// [`from_raw_parts_in`]: Vec::from_raw_parts_in + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, vec_into_raw_parts)] + /// + /// use std::alloc::System; + /// + /// let mut v: Vec<i32, System> = Vec::new_in(System); + /// v.push(-1); + /// v.push(0); + /// v.push(1); + /// + /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); + /// + /// let rebuilt = unsafe { + /// // We can now make changes to the components, such as + /// // transmuting the raw pointer to a compatible type. + /// let ptr = ptr as *mut u32; + /// + /// Vec::from_raw_parts_in(ptr, len, cap, alloc) + /// }; + /// assert_eq!(rebuilt, [4294967295, 0, 1]); + /// ``` + // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] + pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) { + let mut me = ManuallyDrop::new(self); + let len = me.len(); + let capacity = me.capacity(); + let ptr = me.as_mut_ptr(); + let alloc = unsafe { ptr::read(me.allocator()) }; + (ptr, len, capacity, alloc) + } + + /// Returns the total number of elements the vector can hold without + /// reallocating. + /// + /// # Examples + /// + /// ``` + /// let mut vec: Vec<i32> = Vec::with_capacity(10); + /// vec.push(42); + /// assert_eq!(vec.capacity(), 10); + /// ``` + #[inline(always)] + pub fn capacity(&self) -> usize { + self.buf.capacity() + } + + /// Reserves capacity for at least `additional` more elements to be inserted + /// in the given `Vec<T>`. The collection may reserve more space to + /// speculatively avoid frequent reallocations. After calling `reserve`, + /// capacity will be greater than or equal to `self.len() + additional`. + /// Does nothing if capacity is already sufficient. + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1]; + /// vec.reserve(10); + /// assert!(vec.capacity() >= 11); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn reserve(&mut self, additional: usize) { + self.buf.reserve(self.len, additional); + } + + /// Reserves the minimum capacity for at least `additional` more elements to + /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not + /// deliberately over-allocate to speculatively avoid frequent allocations. + /// After calling `reserve_exact`, capacity will be greater than or equal to + /// `self.len() + additional`. Does nothing if the capacity is already + /// sufficient. + /// + /// Note that the allocator may give the collection more space than it + /// requests. Therefore, capacity can not be relied upon to be precisely + /// minimal. Prefer [`reserve`] if future insertions are expected. + /// + /// [`reserve`]: Vec::reserve + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1]; + /// vec.reserve_exact(10); + /// assert!(vec.capacity() >= 11); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn reserve_exact(&mut self, additional: usize) { + self.buf.reserve_exact(self.len, additional); + } + + /// Tries to reserve capacity for at least `additional` more elements to be inserted + /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid + /// frequent reallocations. After calling `try_reserve`, capacity will be + /// greater than or equal to `self.len() + additional` if it returns + /// `Ok(())`. Does nothing if capacity is already sufficient. This method + /// preserves the contents even if an error occurs. + /// + /// # Errors + /// + /// If the capacity overflows, or the allocator reports a failure, then an error + /// is returned. + /// + /// # Examples + /// + /// ``` + /// use std::collections::TryReserveError; + /// + /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { + /// let mut output = Vec::new(); + /// + /// // Pre-reserve the memory, exiting if we can't + /// output.try_reserve(data.len())?; + /// + /// // Now we know this can't OOM in the middle of our complex work + /// output.extend(data.iter().map(|&val| { + /// val * 2 + 5 // very complicated + /// })); + /// + /// Ok(output) + /// } + /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); + /// ``` + #[inline(always)] + pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { + self.buf.try_reserve(self.len, additional) + } + + /// Tries to reserve the minimum capacity for at least `additional` + /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`], + /// this will not deliberately over-allocate to speculatively avoid frequent + /// allocations. After calling `try_reserve_exact`, capacity will be greater + /// than or equal to `self.len() + additional` if it returns `Ok(())`. + /// Does nothing if the capacity is already sufficient. + /// + /// Note that the allocator may give the collection more space than it + /// requests. Therefore, capacity can not be relied upon to be precisely + /// minimal. Prefer [`try_reserve`] if future insertions are expected. + /// + /// [`try_reserve`]: Vec::try_reserve + /// + /// # Errors + /// + /// If the capacity overflows, or the allocator reports a failure, then an error + /// is returned. + /// + /// # Examples + /// + /// ``` + /// use std::collections::TryReserveError; + /// + /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { + /// let mut output = Vec::new(); + /// + /// // Pre-reserve the memory, exiting if we can't + /// output.try_reserve_exact(data.len())?; + /// + /// // Now we know this can't OOM in the middle of our complex work + /// output.extend(data.iter().map(|&val| { + /// val * 2 + 5 // very complicated + /// })); + /// + /// Ok(output) + /// } + /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); + /// ``` + #[inline(always)] + pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { + self.buf.try_reserve_exact(self.len, additional) + } + + /// Shrinks the capacity of the vector as much as possible. + /// + /// It will drop down as close as possible to the length but the allocator + /// may still inform the vector that there is space for a few more elements. + /// + /// # Examples + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// vec.extend([1, 2, 3]); + /// assert_eq!(vec.capacity(), 10); + /// vec.shrink_to_fit(); + /// assert!(vec.capacity() >= 3); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn shrink_to_fit(&mut self) { + // The capacity is never less than the length, and there's nothing to do when + // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit` + // by only calling it with a greater capacity. + if self.capacity() > self.len { + self.buf.shrink_to_fit(self.len); + } + } + + /// Shrinks the capacity of the vector with a lower bound. + /// + /// The capacity will remain at least as large as both the length + /// and the supplied value. + /// + /// If the current capacity is less than the lower limit, this is a no-op. + /// + /// # Examples + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// vec.extend([1, 2, 3]); + /// assert_eq!(vec.capacity(), 10); + /// vec.shrink_to(4); + /// assert!(vec.capacity() >= 4); + /// vec.shrink_to(0); + /// assert!(vec.capacity() >= 3); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn shrink_to(&mut self, min_capacity: usize) { + if self.capacity() > min_capacity { + self.buf.shrink_to_fit(cmp::max(self.len, min_capacity)); + } + } + + /// Converts the vector into [`Box<[T]>`][owned slice]. + /// + /// If the vector has excess capacity, its items will be moved into a + /// newly-allocated buffer with exactly the right capacity. + /// + /// [owned slice]: Box + /// + /// # Examples + /// + /// ``` + /// let v = vec![1, 2, 3]; + /// + /// let slice = v.into_boxed_slice(); + /// ``` + /// + /// Any excess capacity is removed: + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// vec.extend([1, 2, 3]); + /// + /// assert_eq!(vec.capacity(), 10); + /// let slice = vec.into_boxed_slice(); + /// assert_eq!(slice.into_vec().capacity(), 3); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn into_boxed_slice(mut self) -> Box<[T], A> { + unsafe { + self.shrink_to_fit(); + let me = ManuallyDrop::new(self); + let buf = ptr::read(&me.buf); + let len = me.len(); + buf.into_box(len).assume_init() + } + } + + /// Shortens the vector, keeping the first `len` elements and dropping + /// the rest. + /// + /// If `len` is greater than the vector's current length, this has no + /// effect. + /// + /// The [`drain`] method can emulate `truncate`, but causes the excess + /// elements to be returned instead of dropped. + /// + /// Note that this method has no effect on the allocated capacity + /// of the vector. + /// + /// # Examples + /// + /// Truncating a five element vector to two elements: + /// + /// ``` + /// let mut vec = vec![1, 2, 3, 4, 5]; + /// vec.truncate(2); + /// assert_eq!(vec, [1, 2]); + /// ``` + /// + /// No truncation occurs when `len` is greater than the vector's current + /// length: + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.truncate(8); + /// assert_eq!(vec, [1, 2, 3]); + /// ``` + /// + /// Truncating when `len == 0` is equivalent to calling the [`clear`] + /// method. + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.truncate(0); + /// assert_eq!(vec, []); + /// ``` + /// + /// [`clear`]: Vec::clear + /// [`drain`]: Vec::drain + #[inline(always)] + pub fn truncate(&mut self, len: usize) { + // This is safe because: + // + // * the slice passed to `drop_in_place` is valid; the `len > self.len` + // case avoids creating an invalid slice, and + // * the `len` of the vector is shrunk before calling `drop_in_place`, + // such that no value will be dropped twice in case `drop_in_place` + // were to panic once (if it panics twice, the program aborts). + unsafe { + // Note: It's intentional that this is `>` and not `>=`. + // Changing it to `>=` has negative performance + // implications in some cases. See #78884 for more. + if len > self.len { + return; + } + let remaining_len = self.len - len; + let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len); + self.len = len; + ptr::drop_in_place(s); + } + } + + /// Extracts a slice containing the entire vector. + /// + /// Equivalent to `&s[..]`. + /// + /// # Examples + /// + /// ``` + /// use std::io::{self, Write}; + /// let buffer = vec![1, 2, 3, 5, 8]; + /// io::sink().write(buffer.as_slice()).unwrap(); + /// ``` + #[inline(always)] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Extracts a mutable slice of the entire vector. + /// + /// Equivalent to `&mut s[..]`. + /// + /// # Examples + /// + /// ``` + /// use std::io::{self, Read}; + /// let mut buffer = vec![0; 3]; + /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); + /// ``` + #[inline(always)] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer + /// valid for zero sized reads if the vector didn't allocate. + /// + /// The caller must ensure that the vector outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// Modifying the vector may cause its buffer to be reallocated, + /// which would also make any pointers to it invalid. + /// + /// The caller must also ensure that the memory the pointer (non-transitively) points to + /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer + /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`]. + /// + /// # Examples + /// + /// ``` + /// let x = vec![1, 2, 4]; + /// let x_ptr = x.as_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// assert_eq!(*x_ptr.add(i), 1 << i); + /// } + /// } + /// ``` + /// + /// [`as_mut_ptr`]: Vec::as_mut_ptr + #[inline(always)] + pub fn as_ptr(&self) -> *const T { + // We shadow the slice method of the same name to avoid going through + // `deref`, which creates an intermediate reference. + let ptr = self.buf.ptr(); + unsafe { + assume(!ptr.is_null()); + } + ptr + } + + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling + /// raw pointer valid for zero sized reads if the vector didn't allocate. + /// + /// The caller must ensure that the vector outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// Modifying the vector may cause its buffer to be reallocated, + /// which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// // Allocate vector big enough for 4 elements. + /// let size = 4; + /// let mut x: Vec<i32> = Vec::with_capacity(size); + /// let x_ptr = x.as_mut_ptr(); + /// + /// // Initialize elements via raw pointer writes, then set length. + /// unsafe { + /// for i in 0..size { + /// *x_ptr.add(i) = i as i32; + /// } + /// x.set_len(size); + /// } + /// assert_eq!(&*x, &[0, 1, 2, 3]); + /// ``` + #[inline(always)] + pub fn as_mut_ptr(&mut self) -> *mut T { + // We shadow the slice method of the same name to avoid going through + // `deref_mut`, which creates an intermediate reference. + let ptr = self.buf.ptr(); + unsafe { + assume(!ptr.is_null()); + } + ptr + } + + /// Returns a reference to the underlying allocator. + #[inline(always)] + pub fn allocator(&self) -> &A { + self.buf.allocator() + } + + /// Forces the length of the vector to `new_len`. + /// + /// This is a low-level operation that maintains none of the normal + /// invariants of the type. Normally changing the length of a vector + /// is done using one of the safe operations instead, such as + /// [`truncate`], [`resize`], [`extend`], or [`clear`]. + /// + /// [`truncate`]: Vec::truncate + /// [`resize`]: Vec::resize + /// [`extend`]: Extend::extend + /// [`clear`]: Vec::clear + /// + /// # Safety + /// + /// - `new_len` must be less than or equal to [`capacity()`]. + /// - The elements at `old_len..new_len` must be initialized. + /// + /// [`capacity()`]: Vec::capacity + /// + /// # Examples + /// + /// This method can be useful for situations in which the vector + /// is serving as a buffer for other code, particularly over FFI: + /// + /// ```no_run + /// # #![allow(dead_code)] + /// # // This is just a minimal skeleton for the doc example; + /// # // don't use this as a starting point for a real library. + /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void } + /// # const Z_OK: i32 = 0; + /// # extern "C" { + /// # fn deflateGetDictionary( + /// # strm: *mut std::ffi::c_void, + /// # dictionary: *mut u8, + /// # dictLength: *mut usize, + /// # ) -> i32; + /// # } + /// # impl StreamWrapper { + /// pub fn get_dictionary(&self) -> Option<Vec<u8>> { + /// // Per the FFI method's docs, "32768 bytes is always enough". + /// let mut dict = Vec::with_capacity(32_768); + /// let mut dict_length = 0; + /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that: + /// // 1. `dict_length` elements were initialized. + /// // 2. `dict_length` <= the capacity (32_768) + /// // which makes `set_len` safe to call. + /// unsafe { + /// // Make the FFI call... + /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length); + /// if r == Z_OK { + /// // ...and update the length to what was initialized. + /// dict.set_len(dict_length); + /// Some(dict) + /// } else { + /// None + /// } + /// } + /// } + /// # } + /// ``` + /// + /// While the following example is sound, there is a memory leak since + /// the inner vectors were not freed prior to the `set_len` call: + /// + /// ``` + /// let mut vec = vec![vec![1, 0, 0], + /// vec![0, 1, 0], + /// vec![0, 0, 1]]; + /// // SAFETY: + /// // 1. `old_len..0` is empty so no elements need to be initialized. + /// // 2. `0 <= capacity` always holds whatever `capacity` is. + /// unsafe { + /// vec.set_len(0); + /// } + /// ``` + /// + /// Normally, here, one would use [`clear`] instead to correctly drop + /// the contents and thus not leak memory. + #[inline(always)] + pub unsafe fn set_len(&mut self, new_len: usize) { + debug_assert!(new_len <= self.capacity()); + + self.len = new_len; + } + + /// Removes an element from the vector and returns it. + /// + /// The removed element is replaced by the last element of the vector. + /// + /// This does not preserve ordering, but is *O*(1). + /// If you need to preserve the element order, use [`remove`] instead. + /// + /// [`remove`]: Vec::remove + /// + /// # Panics + /// + /// Panics if `index` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec!["foo", "bar", "baz", "qux"]; + /// + /// assert_eq!(v.swap_remove(1), "bar"); + /// assert_eq!(v, ["foo", "qux", "baz"]); + /// + /// assert_eq!(v.swap_remove(0), "foo"); + /// assert_eq!(v, ["baz", "qux"]); + /// ``` + #[inline(always)] + pub fn swap_remove(&mut self, index: usize) -> T { + #[cold] + #[inline(never)] + fn assert_failed(index: usize, len: usize) -> ! { + panic!( + "swap_remove index (is {}) should be < len (is {})", + index, len + ); + } + + let len = self.len(); + if index >= len { + assert_failed(index, len); + } + unsafe { + // We replace self[index] with the last element. Note that if the + // bounds check above succeeds there must be a last element (which + // can be self[index] itself). + let value = ptr::read(self.as_ptr().add(index)); + let base_ptr = self.as_mut_ptr(); + ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1); + self.set_len(len - 1); + value + } + } + + /// Inserts an element at position `index` within the vector, shifting all + /// elements after it to the right. + /// + /// # Panics + /// + /// Panics if `index > len`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.insert(1, 4); + /// assert_eq!(vec, [1, 4, 2, 3]); + /// vec.insert(4, 5); + /// assert_eq!(vec, [1, 4, 2, 3, 5]); + /// ``` + #[cfg(not(no_global_oom_handling))] + pub fn insert(&mut self, index: usize, element: T) { + #[cold] + #[inline(never)] + fn assert_failed(index: usize, len: usize) -> ! { + panic!( + "insertion index (is {}) should be <= len (is {})", + index, len + ); + } + + let len = self.len(); + + // space for the new element + if len == self.buf.capacity() { + self.reserve(1); + } + + unsafe { + // infallible + // The spot to put the new value + { + let p = self.as_mut_ptr().add(index); + match cmp::Ord::cmp(&index, &len) { + Ordering::Less => { + // Shift everything over to make space. (Duplicating the + // `index`th element into two consecutive places.) + ptr::copy(p, p.add(1), len - index); + } + Ordering::Equal => { + // No elements need shifting. + } + Ordering::Greater => { + assert_failed(index, len); + } + } + // Write it in, overwriting the first copy of the `index`th + // element. + ptr::write(p, element); + } + self.set_len(len + 1); + } + } + + /// Removes and returns the element at position `index` within the vector, + /// shifting all elements after it to the left. + /// + /// Note: Because this shifts over the remaining elements, it has a + /// worst-case performance of *O*(*n*). If you don't need the order of elements + /// to be preserved, use [`swap_remove`] instead. If you'd like to remove + /// elements from the beginning of the `Vec`, consider using + /// [`VecDeque::pop_front`] instead. + /// + /// [`swap_remove`]: Vec::swap_remove + /// [`VecDeque::pop_front`]: alloc_crate::collections::VecDeque::pop_front + /// + /// # Panics + /// + /// Panics if `index` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3]; + /// assert_eq!(v.remove(1), 2); + /// assert_eq!(v, [1, 3]); + /// ``` + #[track_caller] + #[inline(always)] + pub fn remove(&mut self, index: usize) -> T { + #[cold] + #[inline(never)] + #[track_caller] + fn assert_failed(index: usize, len: usize) -> ! { + panic!("removal index (is {}) should be < len (is {})", index, len); + } + + let len = self.len(); + if index >= len { + assert_failed(index, len); + } + unsafe { + // infallible + let ret; + { + // the place we are taking from. + let ptr = self.as_mut_ptr().add(index); + // copy it out, unsafely having a copy of the value on + // the stack and in the vector at the same time. + ret = ptr::read(ptr); + + // Shift everything down to fill in that spot. + ptr::copy(ptr.add(1), ptr, len - index - 1); + } + self.set_len(len - 1); + ret + } + } + + /// Retains only the elements specified by the predicate. + /// + /// In other words, remove all elements `e` for which `f(&e)` returns `false`. + /// This method operates in place, visiting each element exactly once in the + /// original order, and preserves the order of the retained elements. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3, 4]; + /// vec.retain(|&x| x % 2 == 0); + /// assert_eq!(vec, [2, 4]); + /// ``` + /// + /// Because the elements are visited exactly once in the original order, + /// external state may be used to decide which elements to keep. + /// + /// ``` + /// let mut vec = vec![1, 2, 3, 4, 5]; + /// let keep = [false, true, true, false, true]; + /// let mut iter = keep.iter(); + /// vec.retain(|_| *iter.next().unwrap()); + /// assert_eq!(vec, [2, 3, 5]); + /// ``` + #[inline(always)] + pub fn retain<F>(&mut self, mut f: F) + where + F: FnMut(&T) -> bool, + { + self.retain_mut(|elem| f(elem)); + } + + /// Retains only the elements specified by the predicate, passing a mutable reference to it. + /// + /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`. + /// This method operates in place, visiting each element exactly once in the + /// original order, and preserves the order of the retained elements. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3, 4]; + /// vec.retain_mut(|x| if *x <= 3 { + /// *x += 1; + /// true + /// } else { + /// false + /// }); + /// assert_eq!(vec, [2, 3, 4]); + /// ``` + #[inline] + pub fn retain_mut<F>(&mut self, mut f: F) + where + F: FnMut(&mut T) -> bool, + { + let original_len = self.len(); + // Avoid double drop if the drop guard is not executed, + // since we may make some holes during the process. + unsafe { self.set_len(0) }; + + // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked] + // |<- processed len ->| ^- next to check + // |<- deleted cnt ->| + // |<- original_len ->| + // Kept: Elements which predicate returns true on. + // Hole: Moved or dropped element slot. + // Unchecked: Unchecked valid elements. + // + // This drop guard will be invoked when predicate or `drop` of element panicked. + // It shifts unchecked elements to cover holes and `set_len` to the correct length. + // In cases when predicate and `drop` never panick, it will be optimized out. + struct BackshiftOnDrop<'a, T, A: Allocator> { + v: &'a mut Vec<T, A>, + processed_len: usize, + deleted_cnt: usize, + original_len: usize, + } + + impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> { + fn drop(&mut self) { + if self.deleted_cnt > 0 { + // SAFETY: Trailing unchecked items must be valid since we never touch them. + unsafe { + ptr::copy( + self.v.as_ptr().add(self.processed_len), + self.v + .as_mut_ptr() + .add(self.processed_len - self.deleted_cnt), + self.original_len - self.processed_len, + ); + } + } + // SAFETY: After filling holes, all items are in contiguous memory. + unsafe { + self.v.set_len(self.original_len - self.deleted_cnt); + } + } + } + + let mut g = BackshiftOnDrop { + v: self, + processed_len: 0, + deleted_cnt: 0, + original_len, + }; + + fn process_loop<F, T, A: Allocator, const DELETED: bool>( + original_len: usize, + f: &mut F, + g: &mut BackshiftOnDrop<'_, T, A>, + ) where + F: FnMut(&mut T) -> bool, + { + while g.processed_len != original_len { + // SAFETY: Unchecked element must be valid. + let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) }; + if !f(cur) { + // Advance early to avoid double drop if `drop_in_place` panicked. + g.processed_len += 1; + g.deleted_cnt += 1; + // SAFETY: We never touch this element again after dropped. + unsafe { ptr::drop_in_place(cur) }; + // We already advanced the counter. + if DELETED { + continue; + } else { + break; + } + } + if DELETED { + // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element. + // We use copy for move, and never touch this element again. + unsafe { + let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt); + ptr::copy_nonoverlapping(cur, hole_slot, 1); + } + } + g.processed_len += 1; + } + } + + // Stage 1: Nothing was deleted. + process_loop::<F, T, A, false>(original_len, &mut f, &mut g); + + // Stage 2: Some elements were deleted. + process_loop::<F, T, A, true>(original_len, &mut f, &mut g); + + // All item are processed. This can be optimized to `set_len` by LLVM. + drop(g); + } + + /// Removes all but the first of consecutive elements in the vector that resolve to the same + /// key. + /// + /// If the vector is sorted, this removes all duplicates. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![10, 20, 21, 30, 20]; + /// + /// vec.dedup_by_key(|i| *i / 10); + /// + /// assert_eq!(vec, [10, 20, 30, 20]); + /// ``` + #[inline(always)] + pub fn dedup_by_key<F, K>(&mut self, mut key: F) + where + F: FnMut(&mut T) -> K, + K: PartialEq, + { + self.dedup_by(|a, b| key(a) == key(b)) + } + + /// Removes all but the first of consecutive elements in the vector satisfying a given equality + /// relation. + /// + /// The `same_bucket` function is passed references to two elements from the vector and + /// must determine if the elements compare equal. The elements are passed in opposite order + /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed. + /// + /// If the vector is sorted, this removes all duplicates. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; + /// + /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); + /// + /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]); + /// ``` + #[inline] + pub fn dedup_by<F>(&mut self, mut same_bucket: F) + where + F: FnMut(&mut T, &mut T) -> bool, + { + let len = self.len(); + if len <= 1 { + return; + } + + /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */ + struct FillGapOnDrop<'a, T, A: Allocator> { + /* Offset of the element we want to check if it is duplicate */ + read: usize, + + /* Offset of the place where we want to place the non-duplicate + * when we find it. */ + write: usize, + + /* The Vec that would need correction if `same_bucket` panicked */ + vec: &'a mut Vec<T, A>, + } + + impl<'a, T, A: Allocator> Drop for FillGapOnDrop<'a, T, A> { + fn drop(&mut self) { + /* This code gets executed when `same_bucket` panics */ + + /* SAFETY: invariant guarantees that `read - write` + * and `len - read` never overflow and that the copy is always + * in-bounds. */ + unsafe { + let ptr = self.vec.as_mut_ptr(); + let len = self.vec.len(); + + /* How many items were left when `same_bucket` panicked. + * Basically vec[read..].len() */ + let items_left = len.wrapping_sub(self.read); + + /* Pointer to first item in vec[write..write+items_left] slice */ + let dropped_ptr = ptr.add(self.write); + /* Pointer to first item in vec[read..] slice */ + let valid_ptr = ptr.add(self.read); + + /* Copy `vec[read..]` to `vec[write..write+items_left]`. + * The slices can overlap, so `copy_nonoverlapping` cannot be used */ + ptr::copy(valid_ptr, dropped_ptr, items_left); + + /* How many items have been already dropped + * Basically vec[read..write].len() */ + let dropped = self.read.wrapping_sub(self.write); + + self.vec.set_len(len - dropped); + } + } + } + + let mut gap = FillGapOnDrop { + read: 1, + write: 1, + vec: self, + }; + let ptr = gap.vec.as_mut_ptr(); + + /* Drop items while going through Vec, it should be more efficient than + * doing slice partition_dedup + truncate */ + + /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr + * are always in-bounds and read_ptr never aliases prev_ptr */ + unsafe { + while gap.read < len { + let read_ptr = ptr.add(gap.read); + let prev_ptr = ptr.add(gap.write.wrapping_sub(1)); + + if same_bucket(&mut *read_ptr, &mut *prev_ptr) { + // Increase `gap.read` now since the drop may panic. + gap.read += 1; + /* We have found duplicate, drop it in-place */ + ptr::drop_in_place(read_ptr); + } else { + let write_ptr = ptr.add(gap.write); + + /* Because `read_ptr` can be equal to `write_ptr`, we either + * have to use `copy` or conditional `copy_nonoverlapping`. + * Looks like the first option is faster. */ + ptr::copy(read_ptr, write_ptr, 1); + + /* We have filled that place, so go further */ + gap.write += 1; + gap.read += 1; + } + } + + /* Technically we could let `gap` clean up with its Drop, but + * when `same_bucket` is guaranteed to not panic, this bloats a little + * the codegen, so we just do it manually */ + gap.vec.set_len(gap.write); + mem::forget(gap); + } + } + + /// Appends an element to the back of a collection. + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2]; + /// vec.push(3); + /// assert_eq!(vec, [1, 2, 3]); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn push(&mut self, value: T) { + // This will panic or abort if we would allocate > isize::MAX bytes + // or if the length increment would overflow for zero-sized types. + if self.len == self.buf.capacity() { + self.buf.reserve_for_push(self.len); + } + unsafe { + let end = self.as_mut_ptr().add(self.len); + ptr::write(end, value); + self.len += 1; + } + } + + /// Appends an element if there is sufficient spare capacity, otherwise an error is returned + /// with the element. + /// + /// Unlike [`push`] this method will not reallocate when there's insufficient capacity. + /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity. + /// + /// [`push`]: Vec::push + /// [`reserve`]: Vec::reserve + /// [`try_reserve`]: Vec::try_reserve + /// + /// # Examples + /// + /// A manual, panic-free alternative to [`FromIterator`]: + /// + /// ``` + /// #![feature(vec_push_within_capacity)] + /// + /// use std::collections::TryReserveError; + /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> { + /// let mut vec = Vec::new(); + /// for value in iter { + /// if let Err(value) = vec.push_within_capacity(value) { + /// vec.try_reserve(1)?; + /// // this cannot fail, the previous line either returned or added at least 1 free slot + /// let _ = vec.push_within_capacity(value); + /// } + /// } + /// Ok(vec) + /// } + /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100))); + /// ``` + #[inline(always)] + pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> { + if self.len == self.buf.capacity() { + return Err(value); + } + unsafe { + let end = self.as_mut_ptr().add(self.len); + ptr::write(end, value); + self.len += 1; + } + Ok(()) + } + + /// Removes the last element from a vector and returns it, or [`None`] if it + /// is empty. + /// + /// If you'd like to pop the first element, consider using + /// [`VecDeque::pop_front`] instead. + /// + /// [`VecDeque::pop_front`]: alloc_crate::collections::VecDeque::pop_front + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// assert_eq!(vec.pop(), Some(3)); + /// assert_eq!(vec, [1, 2]); + /// ``` + #[inline(always)] + pub fn pop(&mut self) -> Option<T> { + if self.len == 0 { + None + } else { + unsafe { + self.len -= 1; + Some(ptr::read(self.as_ptr().add(self.len()))) + } + } + } + + /// Moves all the elements of `other` into `self`, leaving `other` empty. + /// + /// # Panics + /// + /// Panics if the new capacity exceeds `isize::MAX` bytes. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// let mut vec2 = vec![4, 5, 6]; + /// vec.append(&mut vec2); + /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); + /// assert_eq!(vec2, []); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn append(&mut self, other: &mut Self) { + unsafe { + self.append_elements(other.as_slice() as _); + other.set_len(0); + } + } + + /// Appends elements to `self` from other buffer. + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + unsafe fn append_elements(&mut self, other: *const [T]) { + let count = unsafe { (*other).len() }; + self.reserve(count); + let len = self.len(); + unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) }; + self.len += count; + } + + /// Removes the specified range from the vector in bulk, returning all + /// removed elements as an iterator. If the iterator is dropped before + /// being fully consumed, it drops the remaining removed elements. + /// + /// The returned iterator keeps a mutable borrow on the vector to optimize + /// its implementation. + /// + /// # Panics + /// + /// Panics if the starting point is greater than the end point or if + /// the end point is greater than the length of the vector. + /// + /// # Leaking + /// + /// If the returned iterator goes out of scope without being dropped (due to + /// [`mem::forget`], for example), the vector may have lost and leaked + /// elements arbitrarily, including elements outside the range. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3]; + /// let u: Vec<_> = v.drain(1..).collect(); + /// assert_eq!(v, &[1]); + /// assert_eq!(u, &[2, 3]); + /// + /// // A full range clears the vector, like `clear()` does + /// v.drain(..); + /// assert_eq!(v, &[]); + /// ``` + #[inline(always)] + pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A> + where + R: RangeBounds<usize>, + { + // Memory safety + // + // When the Drain is first created, it shortens the length of + // the source vector to make sure no uninitialized or moved-from elements + // are accessible at all if the Drain's destructor never gets to run. + // + // Drain will ptr::read out the values to remove. + // When finished, remaining tail of the vec is copied back to cover + // the hole, and the vector length is restored to the new length. + // + let len = self.len(); + + // Replaced by code below + // let Range { start, end } = slice::range(range, ..len); + + // Panics if range is out of bounds + let _ = &self.as_slice()[(range.start_bound().cloned(), range.end_bound().cloned())]; + + let start = match range.start_bound() { + Bound::Included(&n) => n, + Bound::Excluded(&n) => n + 1, + Bound::Unbounded => 0, + }; + let end = match range.end_bound() { + Bound::Included(&n) => n + 1, + Bound::Excluded(&n) => n, + Bound::Unbounded => len, + }; + + unsafe { + // set self.vec length's to start, to be safe in case Drain is leaked + self.set_len(start); + let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start); + Drain { + tail_start: end, + tail_len: len - end, + iter: range_slice.iter(), + vec: NonNull::from(self), + } + } + } + + /// Clears the vector, removing all values. + /// + /// Note that this method has no effect on the allocated capacity + /// of the vector. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3]; + /// + /// v.clear(); + /// + /// assert!(v.is_empty()); + /// ``` + #[inline(always)] + pub fn clear(&mut self) { + let elems: *mut [T] = self.as_mut_slice(); + + // SAFETY: + // - `elems` comes directly from `as_mut_slice` and is therefore valid. + // - Setting `self.len` before calling `drop_in_place` means that, + // if an element's `Drop` impl panics, the vector's `Drop` impl will + // do nothing (leaking the rest of the elements) instead of dropping + // some twice. + unsafe { + self.len = 0; + ptr::drop_in_place(elems); + } + } + + /// Returns the number of elements in the vector, also referred to + /// as its 'length'. + /// + /// # Examples + /// + /// ``` + /// let a = vec![1, 2, 3]; + /// assert_eq!(a.len(), 3); + /// ``` + #[inline(always)] + pub fn len(&self) -> usize { + self.len + } + + /// Returns `true` if the vector contains no elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = Vec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1); + /// assert!(!v.is_empty()); + /// ``` + #[inline(always)] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Splits the collection into two at the given index. + /// + /// Returns a newly allocated vector containing the elements in the range + /// `[at, len)`. After the call, the original vector will be left containing + /// the elements `[0, at)` with its previous capacity unchanged. + /// + /// # Panics + /// + /// Panics if `at > len`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// let vec2 = vec.split_off(1); + /// assert_eq!(vec, [1]); + /// assert_eq!(vec2, [2, 3]); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + #[must_use = "use `.truncate()` if you don't need the other half"] + pub fn split_off(&mut self, at: usize) -> Self + where + A: Clone, + { + #[cold] + #[inline(never)] + fn assert_failed(at: usize, len: usize) -> ! { + panic!("`at` split index (is {}) should be <= len (is {})", at, len); + } + + if at > self.len() { + assert_failed(at, self.len()); + } + + if at == 0 { + // the new vector can take over the original buffer and avoid the copy + return mem::replace( + self, + Vec::with_capacity_in(self.capacity(), self.allocator().clone()), + ); + } + + let other_len = self.len - at; + let mut other = Vec::with_capacity_in(other_len, self.allocator().clone()); + + // Unsafely `set_len` and copy items to `other`. + unsafe { + self.set_len(at); + other.set_len(other_len); + + ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len()); + } + other + } + + /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. + /// + /// If `new_len` is greater than `len`, the `Vec` is extended by the + /// difference, with each additional slot filled with the result of + /// calling the closure `f`. The return values from `f` will end up + /// in the `Vec` in the order they have been generated. + /// + /// If `new_len` is less than `len`, the `Vec` is simply truncated. + /// + /// This method uses a closure to create new values on every push. If + /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you + /// want to use the [`Default`] trait to generate values, you can + /// pass [`Default::default`] as the second argument. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.resize_with(5, Default::default); + /// assert_eq!(vec, [1, 2, 3, 0, 0]); + /// + /// let mut vec = vec![]; + /// let mut p = 1; + /// vec.resize_with(4, || { p *= 2; p }); + /// assert_eq!(vec, [2, 4, 8, 16]); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn resize_with<F>(&mut self, new_len: usize, f: F) + where + F: FnMut() -> T, + { + let len = self.len(); + if new_len > len { + self.extend(iter::repeat_with(f).take(new_len - len)); + } else { + self.truncate(new_len); + } + } + + /// Consumes and leaks the `Vec`, returning a mutable reference to the contents, + /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime + /// `'a`. If the type has only static references, or none at all, then this + /// may be chosen to be `'static`. + /// + /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`, + /// so the leaked allocation may include unused capacity that is not part + /// of the returned slice. + /// + /// This function is mainly useful for data that lives for the remainder of + /// the program's life. Dropping the returned reference will cause a memory + /// leak. + /// + /// # Examples + /// + /// Simple usage: + /// + /// ``` + /// let x = vec![1, 2, 3]; + /// let static_ref: &'static mut [usize] = x.leak(); + /// static_ref[0] += 1; + /// assert_eq!(static_ref, &[2, 2, 3]); + /// ``` + #[inline(always)] + pub fn leak<'a>(self) -> &'a mut [T] + where + A: 'a, + { + let mut me = ManuallyDrop::new(self); + unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) } + } + + /// Returns the remaining spare capacity of the vector as a slice of + /// `MaybeUninit<T>`. + /// + /// The returned slice can be used to fill the vector with data (e.g. by + /// reading from a file) before marking the data as initialized using the + /// [`set_len`] method. + /// + /// [`set_len`]: Vec::set_len + /// + /// # Examples + /// + /// ``` + /// // Allocate vector big enough for 10 elements. + /// let mut v = Vec::with_capacity(10); + /// + /// // Fill in the first 3 elements. + /// let uninit = v.spare_capacity_mut(); + /// uninit[0].write(0); + /// uninit[1].write(1); + /// uninit[2].write(2); + /// + /// // Mark the first 3 elements of the vector as being initialized. + /// unsafe { + /// v.set_len(3); + /// } + /// + /// assert_eq!(&v, &[0, 1, 2]); + /// ``` + #[inline(always)] + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { + // Note: + // This method is not implemented in terms of `split_at_spare_mut`, + // to prevent invalidation of pointers to the buffer. + unsafe { + slice::from_raw_parts_mut( + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, + self.buf.capacity() - self.len, + ) + } + } + + /// Returns vector content as a slice of `T`, along with the remaining spare + /// capacity of the vector as a slice of `MaybeUninit<T>`. + /// + /// The returned spare capacity slice can be used to fill the vector with data + /// (e.g. by reading from a file) before marking the data as initialized using + /// the [`set_len`] method. + /// + /// [`set_len`]: Vec::set_len + /// + /// Note that this is a low-level API, which should be used with care for + /// optimization purposes. If you need to append data to a `Vec` + /// you can use [`push`], [`extend`], [`extend_from_slice`], + /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or + /// [`resize_with`], depending on your exact needs. + /// + /// [`push`]: Vec::push + /// [`extend`]: Vec::extend + /// [`extend_from_slice`]: Vec::extend_from_slice + /// [`extend_from_within`]: Vec::extend_from_within + /// [`insert`]: Vec::insert + /// [`append`]: Vec::append + /// [`resize`]: Vec::resize + /// [`resize_with`]: Vec::resize_with + /// + /// # Examples + /// + /// ``` + /// #![feature(vec_split_at_spare)] + /// + /// let mut v = vec![1, 1, 2]; + /// + /// // Reserve additional space big enough for 10 elements. + /// v.reserve(10); + /// + /// let (init, uninit) = v.split_at_spare_mut(); + /// let sum = init.iter().copied().sum::<u32>(); + /// + /// // Fill in the next 4 elements. + /// uninit[0].write(sum); + /// uninit[1].write(sum * 2); + /// uninit[2].write(sum * 3); + /// uninit[3].write(sum * 4); + /// + /// // Mark the 4 elements of the vector as being initialized. + /// unsafe { + /// let len = v.len(); + /// v.set_len(len + 4); + /// } + /// + /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]); + /// ``` + #[inline(always)] + pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) { + // SAFETY: + // - len is ignored and so never changed + let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() }; + (init, spare) + } + + /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`. + /// + /// This method provides unique access to all vec parts at once in `extend_from_within`. + unsafe fn split_at_spare_mut_with_len( + &mut self, + ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) { + let ptr = self.as_mut_ptr(); + // SAFETY: + // - `ptr` is guaranteed to be valid for `self.len` elements + // - but the allocation extends out to `self.buf.capacity()` elements, possibly + // uninitialized + let spare_ptr = unsafe { ptr.add(self.len) }; + let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>(); + let spare_len = self.buf.capacity() - self.len; + + // SAFETY: + // - `ptr` is guaranteed to be valid for `self.len` elements + // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized` + unsafe { + let initialized = slice::from_raw_parts_mut(ptr, self.len); + let spare = slice::from_raw_parts_mut(spare_ptr, spare_len); + + (initialized, spare, &mut self.len) + } + } +} + +impl<T: Clone, A: Allocator> Vec<T, A> { + /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. + /// + /// If `new_len` is greater than `len`, the `Vec` is extended by the + /// difference, with each additional slot filled with `value`. + /// If `new_len` is less than `len`, the `Vec` is simply truncated. + /// + /// This method requires `T` to implement [`Clone`], + /// in order to be able to clone the passed value. + /// If you need more flexibility (or want to rely on [`Default`] instead of + /// [`Clone`]), use [`Vec::resize_with`]. + /// If you only need to resize to a smaller size, use [`Vec::truncate`]. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec!["hello"]; + /// vec.resize(3, "world"); + /// assert_eq!(vec, ["hello", "world", "world"]); + /// + /// let mut vec = vec![1, 2, 3, 4]; + /// vec.resize(2, 0); + /// assert_eq!(vec, [1, 2]); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn resize(&mut self, new_len: usize, value: T) { + let len = self.len(); + + if new_len > len { + self.extend_with(new_len - len, ExtendElement(value)) + } else { + self.truncate(new_len); + } + } + + /// Clones and appends all elements in a slice to the `Vec`. + /// + /// Iterates over the slice `other`, clones each element, and then appends + /// it to this `Vec`. The `other` slice is traversed in-order. + /// + /// Note that this function is same as [`extend`] except that it is + /// specialized to work with slices instead. If and when Rust gets + /// specialization this function will likely be deprecated (but still + /// available). + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1]; + /// vec.extend_from_slice(&[2, 3, 4]); + /// assert_eq!(vec, [1, 2, 3, 4]); + /// ``` + /// + /// [`extend`]: Vec::extend + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn extend_from_slice(&mut self, other: &[T]) { + self.extend(other.iter().cloned()) + } + + /// Copies elements from `src` range to the end of the vector. + /// + /// # Panics + /// + /// Panics if the starting point is greater than the end point or if + /// the end point is greater than the length of the vector. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![0, 1, 2, 3, 4]; + /// + /// vec.extend_from_within(2..); + /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]); + /// + /// vec.extend_from_within(..2); + /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]); + /// + /// vec.extend_from_within(4..8); + /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn extend_from_within<R>(&mut self, src: R) + where + R: RangeBounds<usize>, + { + // let range = slice::range(src, ..self.len()); + + let _ = &self.as_slice()[(src.start_bound().cloned(), src.end_bound().cloned())]; + + let len = self.len(); + + let start: ops::Bound<&usize> = src.start_bound(); + let start = match start { + ops::Bound::Included(&start) => start, + ops::Bound::Excluded(start) => start + 1, + ops::Bound::Unbounded => 0, + }; + + let end: ops::Bound<&usize> = src.end_bound(); + let end = match end { + ops::Bound::Included(end) => end + 1, + ops::Bound::Excluded(&end) => end, + ops::Bound::Unbounded => len, + }; + + let range = start..end; + + self.reserve(range.len()); + + // SAFETY: + // - len is increased only after initializing elements + let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() }; + + // SAFETY: + // - caller guarantees that src is a valid index + let to_clone = unsafe { this.get_unchecked(range) }; + + iter::zip(to_clone, spare) + .map(|(src, dst)| dst.write(src.clone())) + // Note: + // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len + // - len is increased after each element to prevent leaks (see issue #82533) + .for_each(|_| *len += 1); + } +} + +impl<T, A: Allocator, const N: usize> Vec<[T; N], A> { + /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`. + /// + /// # Panics + /// + /// Panics if the length of the resulting vector would overflow a `usize`. + /// + /// This is only possible when flattening a vector of arrays of zero-sized + /// types, and thus tends to be irrelevant in practice. If + /// `size_of::<T>() > 0`, this will never panic. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_flatten)] + /// + /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]]; + /// assert_eq!(vec.pop(), Some([7, 8, 9])); + /// + /// let mut flattened = vec.into_flattened(); + /// assert_eq!(flattened.pop(), Some(6)); + /// ``` + #[inline(always)] + pub fn into_flattened(self) -> Vec<T, A> { + let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc(); + let (new_len, new_cap) = if size_of::<T>() == 0 { + (len.checked_mul(N).expect("vec len overflow"), usize::MAX) + } else { + // SAFETY: + // - `cap * N` cannot overflow because the allocation is already in + // the address space. + // - Each `[T; N]` has `N` valid elements, so there are `len * N` + // valid elements in the allocation. + (len * N, cap * N) + }; + // SAFETY: + // - `ptr` was allocated by `self` + // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`. + // - `new_cap` refers to the same sized allocation as `cap` because + // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()` + // - `len` <= `cap`, so `len * N` <= `cap * N`. + unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) } + } +} + +// This code generalizes `extend_with_{element,default}`. +trait ExtendWith<T> { + fn next(&mut self) -> T; + fn last(self) -> T; +} + +struct ExtendElement<T>(T); +impl<T: Clone> ExtendWith<T> for ExtendElement<T> { + #[inline(always)] + fn next(&mut self) -> T { + self.0.clone() + } + + #[inline(always)] + fn last(self) -> T { + self.0 + } +} + +impl<T, A: Allocator> Vec<T, A> { + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + /// Extend the vector by `n` values, using the given generator. + fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) { + self.reserve(n); + + unsafe { + let mut ptr = self.as_mut_ptr().add(self.len()); + // Use SetLenOnDrop to work around bug where compiler + // might not realize the store through `ptr` through self.set_len() + // don't alias. + let mut local_len = SetLenOnDrop::new(&mut self.len); + + // Write all elements except the last one + for _ in 1..n { + ptr::write(ptr, value.next()); + ptr = ptr.add(1); + // Increment the length in every step in case next() panics + local_len.increment_len(1); + } + + if n > 0 { + // We can write the last element directly without cloning needlessly + ptr::write(ptr, value.last()); + local_len.increment_len(1); + } + + // len set by scope guard + } + } +} + +impl<T: PartialEq, A: Allocator> Vec<T, A> { + /// Removes consecutive repeated elements in the vector according to the + /// [`PartialEq`] trait implementation. + /// + /// If the vector is sorted, this removes all duplicates. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 2, 3, 2]; + /// + /// vec.dedup(); + /// + /// assert_eq!(vec, [1, 2, 3, 2]); + /// ``` + #[inline(always)] + pub fn dedup(&mut self) { + self.dedup_by(|a, b| a == b) + } +} + +trait ExtendFromWithinSpec { + /// # Safety + /// + /// - `src` needs to be valid index + /// - `self.capacity() - self.len()` must be `>= src.len()` + unsafe fn spec_extend_from_within(&mut self, src: Range<usize>); +} + +// impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { +// default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { +// // SAFETY: +// // - len is increased only after initializing elements +// let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() }; + +// // SAFETY: +// // - caller guarantees that src is a valid index +// let to_clone = unsafe { this.get_unchecked(src) }; + +// iter::zip(to_clone, spare) +// .map(|(src, dst)| dst.write(src.clone())) +// // Note: +// // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len +// // - len is increased after each element to prevent leaks (see issue #82533) +// .for_each(|_| *len += 1); +// } +// } + +impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { + #[inline(always)] + unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { + let count = src.len(); + { + let (init, spare) = self.split_at_spare_mut(); + + // SAFETY: + // - caller guarantees that `src` is a valid index + let source = unsafe { init.get_unchecked(src) }; + + // SAFETY: + // - Both pointers are created from unique slice references (`&mut [_]`) + // so they are valid and do not overlap. + // - Elements are :Copy so it's OK to copy them, without doing + // anything with the original values + // - `count` is equal to the len of `source`, so source is valid for + // `count` reads + // - `.reserve(count)` guarantees that `spare.len() >= count` so spare + // is valid for `count` writes + unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) }; + } + + // SAFETY: + // - The elements were just initialized by `copy_nonoverlapping` + self.len += count; + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Common trait implementations for Vec +//////////////////////////////////////////////////////////////////////////////// + +impl<T, A: Allocator> ops::Deref for Vec<T, A> { + type Target = [T]; + + #[inline(always)] + fn deref(&self) -> &[T] { + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } + } +} + +impl<T, A: Allocator> ops::DerefMut for Vec<T, A> { + #[inline(always)] + fn deref_mut(&mut self) -> &mut [T] { + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> { + #[inline(always)] + fn clone(&self) -> Self { + let alloc = self.allocator().clone(); + let mut vec = Vec::with_capacity_in(self.len(), alloc); + vec.extend_from_slice(self); + vec + } + + #[inline(always)] + fn clone_from(&mut self, other: &Self) { + // drop anything that will not be overwritten + self.truncate(other.len()); + + // self.len <= other.len due to the truncate above, so the + // slices here are always in-bounds. + let (init, tail) = other.split_at(self.len()); + + // reuse the contained values' allocations/resources. + self.clone_from_slice(init); + self.extend_from_slice(tail); + } +} + +/// The hash of a vector is the same as that of the corresponding slice, +/// as required by the `core::borrow::Borrow` implementation. +/// +/// ``` +/// #![feature(build_hasher_simple_hash_one)] +/// use std::hash::BuildHasher; +/// +/// let b = std::collections::hash_map::RandomState::new(); +/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09]; +/// let s: &[u8] = &[0xa8, 0x3c, 0x09]; +/// assert_eq!(b.hash_one(v), b.hash_one(s)); +/// ``` +impl<T: Hash, A: Allocator> Hash for Vec<T, A> { + #[inline(always)] + fn hash<H: Hasher>(&self, state: &mut H) { + Hash::hash(&**self, state) + } +} + +impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> { + type Output = I::Output; + + #[inline(always)] + fn index(&self, index: I) -> &Self::Output { + Index::index(&**self, index) + } +} + +impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> { + #[inline(always)] + fn index_mut(&mut self, index: I) -> &mut Self::Output { + IndexMut::index_mut(&mut **self, index) + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T> FromIterator<T> for Vec<T> { + #[inline(always)] + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> { + let mut vec = Vec::new(); + vec.extend(iter); + vec + } +} + +impl<T, A: Allocator> IntoIterator for Vec<T, A> { + type Item = T; + type IntoIter = IntoIter<T, A>; + + /// Creates a consuming iterator, that is, one that moves each value out of + /// the vector (from start to end). The vector cannot be used after calling + /// this. + /// + /// # Examples + /// + /// ``` + /// let v = vec!["a".to_string(), "b".to_string()]; + /// let mut v_iter = v.into_iter(); + /// + /// let first_element: Option<String> = v_iter.next(); + /// + /// assert_eq!(first_element, Some("a".to_string())); + /// assert_eq!(v_iter.next(), Some("b".to_string())); + /// assert_eq!(v_iter.next(), None); + /// ``` + #[inline(always)] + fn into_iter(self) -> Self::IntoIter { + unsafe { + let mut me = ManuallyDrop::new(self); + let alloc = ManuallyDrop::new(ptr::read(me.allocator())); + let begin = me.as_mut_ptr(); + let end = if size_of::<T>() == 0 { + begin.cast::<u8>().wrapping_add(me.len()).cast() + } else { + begin.add(me.len()) as *const T + }; + let cap = me.buf.capacity(); + IntoIter { + buf: NonNull::new_unchecked(begin), + phantom: PhantomData, + cap, + alloc, + ptr: begin, + end, + } + } + } +} + +impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> { + type Item = &'a T; + type IntoIter = slice::Iter<'a, T>; + + #[inline(always)] + fn into_iter(self) -> Self::IntoIter { + self.iter() + } +} + +impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> { + type Item = &'a mut T; + type IntoIter = slice::IterMut<'a, T>; + + fn into_iter(self) -> Self::IntoIter { + self.iter_mut() + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T, A: Allocator> Extend<T> for Vec<T, A> { + #[inline(always)] + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + // This is the case for a general iter. + // + // This function should be the moral equivalent of: + // + // for item in iter { + // self.push(item); + // } + + let mut iter = iter.into_iter(); + while let Some(element) = iter.next() { + let len = self.len(); + if len == self.capacity() { + let (lower, _) = iter.size_hint(); + self.reserve(lower.saturating_add(1)); + } + unsafe { + ptr::write(self.as_mut_ptr().add(len), element); + // Since next() executes user code which can panic we have to bump the length + // after each step. + // NB can't overflow since we would have had to alloc the address space + self.set_len(len + 1); + } + } + } +} + +impl<T, A: Allocator> Vec<T, A> { + /// Creates a splicing iterator that replaces the specified range in the vector + /// with the given `replace_with` iterator and yields the removed items. + /// `replace_with` does not need to be the same length as `range`. + /// + /// `range` is removed even if the iterator is not consumed until the end. + /// + /// It is unspecified how many elements are removed from the vector + /// if the `Splice` value is leaked. + /// + /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped. + /// + /// This is optimal if: + /// + /// * The tail (elements in the vector after `range`) is empty, + /// * or `replace_with` yields fewer or equal elements than `range`’s length + /// * or the lower bound of its `size_hint()` is exact. + /// + /// Otherwise, a temporary vector is allocated and the tail is moved twice. + /// + /// # Panics + /// + /// Panics if the starting point is greater than the end point or if + /// the end point is greater than the length of the vector. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3, 4]; + /// let new = [7, 8, 9]; + /// let u: Vec<_> = v.splice(1..3, new).collect(); + /// assert_eq!(v, &[1, 7, 8, 9, 4]); + /// assert_eq!(u, &[2, 3]); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> + where + R: RangeBounds<usize>, + I: IntoIterator<Item = T>, + { + Splice { + drain: self.drain(range), + replace_with: replace_with.into_iter(), + } + } +} + +/// Extend implementation that copies elements out of references before pushing them onto the Vec. +/// +/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to +/// append the entire slice at once. +/// +/// [`copy_from_slice`]: slice::copy_from_slice +#[cfg(not(no_global_oom_handling))] +impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> { + #[inline(always)] + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + let mut iter = iter.into_iter(); + while let Some(element) = iter.next() { + let len = self.len(); + if len == self.capacity() { + let (lower, _) = iter.size_hint(); + self.reserve(lower.saturating_add(1)); + } + unsafe { + ptr::write(self.as_mut_ptr().add(len), *element); + // Since next() executes user code which can panic we have to bump the length + // after each step. + // NB can't overflow since we would have had to alloc the address space + self.set_len(len + 1); + } + } + } +} + +/// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison). +impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> { + #[inline(always)] + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + PartialOrd::partial_cmp(&**self, &**other) + } +} + +impl<T: Eq, A: Allocator> Eq for Vec<T, A> {} + +/// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison). +impl<T: Ord, A: Allocator> Ord for Vec<T, A> { + #[inline(always)] + fn cmp(&self, other: &Self) -> Ordering { + Ord::cmp(&**self, &**other) + } +} + +impl<T, A: Allocator> Drop for Vec<T, A> { + #[inline(always)] + fn drop(&mut self) { + unsafe { + // use drop for [T] + // use a raw slice to refer to the elements of the vector as weakest necessary type; + // could avoid questions of validity in certain cases + ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len)) + } + // RawVec handles deallocation + } +} + +impl<T> Default for Vec<T> { + /// Creates an empty `Vec<T>`. + /// + /// The vector will not allocate until elements are pushed onto it. + #[inline(always)] + fn default() -> Vec<T> { + Vec::new() + } +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { + #[inline(always)] + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> { + #[inline(always)] + fn as_ref(&self) -> &Vec<T, A> { + self + } +} + +impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> { + #[inline(always)] + fn as_mut(&mut self) -> &mut Vec<T, A> { + self + } +} + +impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> { + #[inline(always)] + fn as_ref(&self) -> &[T] { + self + } +} + +impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> { + #[inline(always)] + fn as_mut(&mut self) -> &mut [T] { + self + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Clone> From<&[T]> for Vec<T> { + /// Allocate a `Vec<T>` and fill it by cloning `s`'s items. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]); + /// ``` + #[inline(always)] + fn from(s: &[T]) -> Vec<T> { + let mut vec = Vec::with_capacity(s.len()); + vec.extend_from_slice(s); + vec + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T: Clone> From<&mut [T]> for Vec<T> { + /// Allocate a `Vec<T>` and fill it by cloning `s`'s items. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]); + /// ``` + #[inline(always)] + fn from(s: &mut [T]) -> Vec<T> { + let mut vec = Vec::with_capacity(s.len()); + vec.extend_from_slice(s); + vec + } +} + +#[cfg(not(no_global_oom_handling))] +impl<T, const N: usize> From<[T; N]> for Vec<T> { + #[inline(always)] + fn from(s: [T; N]) -> Vec<T> { + Box::slice(Box::new(s)).into_vec() + } +} + +impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> { + /// Convert a boxed slice into a vector by transferring ownership of + /// the existing heap allocation. + /// + /// # Examples + /// + /// ``` + /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice(); + /// assert_eq!(Vec::from(b), vec![1, 2, 3]); + /// ``` + #[inline(always)] + fn from(s: Box<[T], A>) -> Self { + s.into_vec() + } +} + +impl<T, A: Allocator, const N: usize> From<Box<[T; N], A>> for Vec<T, A> { + /// Convert a boxed array into a vector by transferring ownership of + /// the existing heap allocation. + /// + /// # Examples + /// + /// ``` + /// let b: Box<[i32; 3]> = Box::new([1, 2, 3]); + /// assert_eq!(Vec::from(b), vec![1, 2, 3]); + /// ``` + #[inline(always)] + fn from(s: Box<[T; N], A>) -> Self { + s.into_vec() + } +} + +// note: test pulls in libstd, which causes errors here +#[cfg(not(no_global_oom_handling))] +impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> { + /// Convert a vector into a boxed slice. + /// + /// If `v` has excess capacity, its items will be moved into a + /// newly-allocated buffer with exactly the right capacity. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice()); + /// ``` + /// + /// Any excess capacity is removed: + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// vec.extend([1, 2, 3]); + /// + /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice()); + /// ``` + #[inline(always)] + fn from(v: Vec<T, A>) -> Self { + v.into_boxed_slice() + } +} + +#[cfg(not(no_global_oom_handling))] +impl From<&str> for Vec<u8> { + /// Allocate a `Vec<u8>` and fill it with a UTF-8 string. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']); + /// ``` + #[inline(always)] + fn from(s: &str) -> Vec<u8> { + From::from(s.as_bytes()) + } +} + +impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] { + type Error = Vec<T, A>; + + /// Gets the entire contents of the `Vec<T>` as an array, + /// if its size exactly matches that of the requested array. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3])); + /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([])); + /// ``` + /// + /// If the length doesn't match, the input comes back in `Err`: + /// ``` + /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into(); + /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9])); + /// ``` + /// + /// If you're fine with just getting a prefix of the `Vec<T>`, + /// you can call [`.truncate(N)`](Vec::truncate) first. + /// ``` + /// let mut v = String::from("hello world").into_bytes(); + /// v.sort(); + /// v.truncate(2); + /// let [a, b]: [_; 2] = v.try_into().unwrap(); + /// assert_eq!(a, b' '); + /// assert_eq!(b, b'd'); + /// ``` + #[inline(always)] + fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> { + if vec.len() != N { + return Err(vec); + } + + // SAFETY: `.set_len(0)` is always sound. + unsafe { vec.set_len(0) }; + + // SAFETY: A `Vec`'s pointer is always aligned properly, and + // the alignment the array needs is the same as the items. + // We checked earlier that we have sufficient items. + // The items will not double-drop as the `set_len` + // tells the `Vec` not to also drop them. + let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) }; + Ok(array) + } +} + +#[inline(always)] +#[cfg(not(no_global_oom_handling))] +#[doc(hidden)] +pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> { + let mut v = Vec::with_capacity_in(n, alloc); + v.extend_with(n, ExtendElement(elem)); + v +} + +#[inline(always)] +#[cfg(not(no_global_oom_handling))] +#[doc(hidden)] +pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> { + let mut v = Vec::with_capacity(n); + v.extend_with(n, ExtendElement(elem)); + v +} + +#[cfg(feature = "serde")] +impl<T, A> serde::Serialize for Vec<T, A> +where + T: serde::Serialize, + A: Allocator, +{ + #[inline(always)] + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where + S: serde::ser::Serializer, + { + serializer.collect_seq(self) + } +} + +#[cfg(feature = "serde")] +impl<'de, T, A> serde::de::Deserialize<'de> for Vec<T, A> +where + T: serde::de::Deserialize<'de>, + A: Allocator + Default, +{ + #[inline(always)] + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where + D: serde::de::Deserializer<'de>, + { + struct VecVisitor<T, A> { + marker: PhantomData<(T, A)>, + } + + impl<'de, T, A> serde::de::Visitor<'de> for VecVisitor<T, A> + where + T: serde::de::Deserialize<'de>, + A: Allocator + Default, + { + type Value = Vec<T, A>; + + fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { + formatter.write_str("a sequence") + } + + fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error> + where + S: serde::de::SeqAccess<'de>, + { + let mut values = Vec::with_capacity_in(cautious(seq.size_hint()), A::default()); + + while let Some(value) = seq.next_element()? { + values.push(value); + } + + Ok(values) + } + } + + let visitor = VecVisitor { + marker: PhantomData, + }; + deserializer.deserialize_seq(visitor) + } + + #[inline(always)] + fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error> + where + D: serde::de::Deserializer<'de>, + { + struct VecInPlaceVisitor<'a, T: 'a, A: Allocator + 'a>(&'a mut Vec<T, A>); + + impl<'a, 'de, T, A> serde::de::Visitor<'de> for VecInPlaceVisitor<'a, T, A> + where + T: serde::de::Deserialize<'de>, + A: Allocator + Default, + { + type Value = (); + + fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { + formatter.write_str("a sequence") + } + + fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error> + where + S: serde::de::SeqAccess<'de>, + { + let hint = cautious(seq.size_hint()); + if let Some(additional) = hint.checked_sub(self.0.len()) { + self.0.reserve(additional); + } + + for i in 0..self.0.len() { + let next = { + let next_place = InPlaceSeed(&mut self.0[i]); + seq.next_element_seed(next_place)? + }; + if next.is_none() { + self.0.truncate(i); + return Ok(()); + } + } + + while let Some(value) = seq.next_element()? { + self.0.push(value); + } + + Ok(()) + } + } + + deserializer.deserialize_seq(VecInPlaceVisitor(place)) + } +} + +#[cfg(feature = "serde")] +pub fn cautious(hint: Option<usize>) -> usize { + cmp::min(hint.unwrap_or(0), 4096) +} + +/// A DeserializeSeed helper for implementing deserialize_in_place Visitors. +/// +/// Wraps a mutable reference and calls deserialize_in_place on it. + +#[cfg(feature = "serde")] +pub struct InPlaceSeed<'a, T: 'a>(pub &'a mut T); + +#[cfg(feature = "serde")] +impl<'a, 'de, T> serde::de::DeserializeSeed<'de> for InPlaceSeed<'a, T> +where + T: serde::de::Deserialize<'de>, +{ + type Value = (); + fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error> + where + D: serde::de::Deserializer<'de>, + { + T::deserialize_in_place(deserializer, self.0) + } +} diff --git a/vendor/allocator-api2/src/stable/vec/partial_eq.rs b/vendor/allocator-api2/src/stable/vec/partial_eq.rs new file mode 100644 index 000000000..157d9c0b9 --- /dev/null +++ b/vendor/allocator-api2/src/stable/vec/partial_eq.rs @@ -0,0 +1,43 @@ +#[cfg(not(no_global_oom_handling))] +use alloc_crate::borrow::Cow; + +use crate::stable::alloc::Allocator; + +use super::Vec; + +macro_rules! __impl_slice_eq1 { + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs + where + T: PartialEq<U>, + $($ty: $bound)? + { + #[inline(always)] + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } + #[inline(always)] + fn ne(&self, other: &$rhs) -> bool { self[..] != other[..] } + } + } +} + +__impl_slice_eq1! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } +__impl_slice_eq1! { [A: Allocator] Vec<T, A>, &[U] } +__impl_slice_eq1! { [A: Allocator] Vec<T, A>, &mut [U] } +__impl_slice_eq1! { [A: Allocator] &[T], Vec<U, A> } +__impl_slice_eq1! { [A: Allocator] &mut [T], Vec<U, A> } +__impl_slice_eq1! { [A: Allocator] Vec<T, A>, [U] } +__impl_slice_eq1! { [A: Allocator] [T], Vec<U, A> } +#[cfg(not(no_global_oom_handling))] +__impl_slice_eq1! { [A: Allocator] Cow<'_, [T]>, Vec<U, A> where T: Clone } +__impl_slice_eq1! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } +__impl_slice_eq1! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } + +// NOTE: some less important impls are omitted to reduce code bloat +// FIXME(Centril): Reconsider this? +//__impl_slice_eq1! { [const N: usize] Vec<A>, &mut [B; N], } +//__impl_slice_eq1! { [const N: usize] [A; N], Vec<B>, } +//__impl_slice_eq1! { [const N: usize] &[A; N], Vec<B>, } +//__impl_slice_eq1! { [const N: usize] &mut [A; N], Vec<B>, } +//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, [B; N], } +//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &[B; N], } +//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &mut [B; N], } diff --git a/vendor/allocator-api2/src/stable/vec/set_len_on_drop.rs b/vendor/allocator-api2/src/stable/vec/set_len_on_drop.rs new file mode 100644 index 000000000..c6f831321 --- /dev/null +++ b/vendor/allocator-api2/src/stable/vec/set_len_on_drop.rs @@ -0,0 +1,31 @@ +// Set the length of the vec when the `SetLenOnDrop` value goes out of scope. +// +// The idea is: The length field in SetLenOnDrop is a local variable +// that the optimizer will see does not alias with any stores through the Vec's data +// pointer. This is a workaround for alias analysis issue #32155 +pub(super) struct SetLenOnDrop<'a> { + len: &'a mut usize, + local_len: usize, +} + +impl<'a> SetLenOnDrop<'a> { + #[inline(always)] + pub(super) fn new(len: &'a mut usize) -> Self { + SetLenOnDrop { + local_len: *len, + len, + } + } + + #[inline(always)] + pub(super) fn increment_len(&mut self, increment: usize) { + self.local_len += increment; + } +} + +impl Drop for SetLenOnDrop<'_> { + #[inline(always)] + fn drop(&mut self) { + *self.len = self.local_len; + } +} diff --git a/vendor/allocator-api2/src/stable/vec/splice.rs b/vendor/allocator-api2/src/stable/vec/splice.rs new file mode 100644 index 000000000..0f64c87af --- /dev/null +++ b/vendor/allocator-api2/src/stable/vec/splice.rs @@ -0,0 +1,135 @@ +use core::ptr::{self}; +use core::slice::{self}; + +use crate::stable::alloc::{Allocator, Global}; + +use super::{Drain, Vec}; + +/// A splicing iterator for `Vec`. +/// +/// This struct is created by [`Vec::splice()`]. +/// See its documentation for more. +/// +/// # Example +/// +/// ``` +/// let mut v = vec![0, 1, 2]; +/// let new = [7, 8]; +/// let iter: std::vec::Splice<_> = v.splice(1.., new); +/// ``` +#[derive(Debug)] +pub struct Splice<'a, I: Iterator + 'a, A: Allocator + 'a = Global> { + pub(super) drain: Drain<'a, I::Item, A>, + pub(super) replace_with: I, +} + +impl<I: Iterator, A: Allocator> Iterator for Splice<'_, I, A> { + type Item = I::Item; + + #[inline(always)] + fn next(&mut self) -> Option<Self::Item> { + self.drain.next() + } + + #[inline(always)] + fn size_hint(&self) -> (usize, Option<usize>) { + self.drain.size_hint() + } +} + +impl<I: Iterator, A: Allocator> DoubleEndedIterator for Splice<'_, I, A> { + #[inline(always)] + fn next_back(&mut self) -> Option<Self::Item> { + self.drain.next_back() + } +} + +impl<I: Iterator, A: Allocator> ExactSizeIterator for Splice<'_, I, A> {} + +impl<I: Iterator, A: Allocator> Drop for Splice<'_, I, A> { + #[inline] + fn drop(&mut self) { + self.drain.by_ref().for_each(drop); + + unsafe { + if self.drain.tail_len == 0 { + self.drain.vec.as_mut().extend(self.replace_with.by_ref()); + return; + } + + // First fill the range left by drain(). + if !self.drain.fill(&mut self.replace_with) { + return; + } + + // There may be more elements. Use the lower bound as an estimate. + // FIXME: Is the upper bound a better guess? Or something else? + let (lower_bound, _upper_bound) = self.replace_with.size_hint(); + if lower_bound > 0 { + self.drain.move_tail(lower_bound); + if !self.drain.fill(&mut self.replace_with) { + return; + } + } + + // Collect any remaining elements. + // This is a zero-length vector which does not allocate if `lower_bound` was exact. + let mut collected = self + .replace_with + .by_ref() + .collect::<Vec<I::Item>>() + .into_iter(); + // Now we have an exact count. + if collected.len() > 0 { + self.drain.move_tail(collected.len()); + let filled = self.drain.fill(&mut collected); + debug_assert!(filled); + debug_assert_eq!(collected.len(), 0); + } + } + // Let `Drain::drop` move the tail back if necessary and restore `vec.len`. + } +} + +/// Private helper methods for `Splice::drop` +impl<T, A: Allocator> Drain<'_, T, A> { + /// The range from `self.vec.len` to `self.tail_start` contains elements + /// that have been moved out. + /// Fill that range as much as possible with new elements from the `replace_with` iterator. + /// Returns `true` if we filled the entire range. (`replace_with.next()` didn’t return `None`.) + #[inline(always)] + unsafe fn fill<I: Iterator<Item = T>>(&mut self, replace_with: &mut I) -> bool { + let vec = unsafe { self.vec.as_mut() }; + let range_start = vec.len; + let range_end = self.tail_start; + let range_slice = unsafe { + slice::from_raw_parts_mut(vec.as_mut_ptr().add(range_start), range_end - range_start) + }; + + for place in range_slice { + if let Some(new_item) = replace_with.next() { + unsafe { ptr::write(place, new_item) }; + vec.len += 1; + } else { + return false; + } + } + true + } + + /// Makes room for inserting more elements before the tail. + #[inline(always)] + unsafe fn move_tail(&mut self, additional: usize) { + let vec = unsafe { self.vec.as_mut() }; + let len = self.tail_start + self.tail_len; + vec.buf.reserve(len, additional); + + let new_tail_start = self.tail_start + additional; + unsafe { + let src = vec.as_ptr().add(self.tail_start); + let dst = vec.as_mut_ptr().add(new_tail_start); + ptr::copy(src, dst, self.tail_len); + } + self.tail_start = new_tail_start; + } +} |