diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-18 02:49:50 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-18 02:49:50 +0000 |
commit | 9835e2ae736235810b4ea1c162ca5e65c547e770 (patch) | |
tree | 3fcebf40ed70e581d776a8a4c65923e8ec20e026 /vendor/half/src/binary16 | |
parent | Releasing progress-linux version 1.70.0+dfsg2-1~progress7.99u1. (diff) | |
download | rustc-9835e2ae736235810b4ea1c162ca5e65c547e770.tar.xz rustc-9835e2ae736235810b4ea1c162ca5e65c547e770.zip |
Merging upstream version 1.71.1+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/half/src/binary16')
-rw-r--r-- | vendor/half/src/binary16/convert.rs | 491 |
1 files changed, 491 insertions, 0 deletions
diff --git a/vendor/half/src/binary16/convert.rs b/vendor/half/src/binary16/convert.rs new file mode 100644 index 000000000..c2521d8d2 --- /dev/null +++ b/vendor/half/src/binary16/convert.rs @@ -0,0 +1,491 @@ +#![allow(dead_code, unused_imports)] + +macro_rules! convert_fn { + (fn $name:ident($var:ident : $vartype:ty) -> $restype:ty { + if feature("f16c") { $f16c:expr } + else { $fallback:expr }}) => { + #[inline] + pub(crate) fn $name($var: $vartype) -> $restype { + // Use CPU feature detection if using std + #[cfg(all( + feature = "use-intrinsics", + feature = "std", + any(target_arch = "x86", target_arch = "x86_64"), + not(target_feature = "f16c") + ))] + { + if is_x86_feature_detected!("f16c") { + $f16c + } else { + $fallback + } + } + // Use intrinsics directly when a compile target or using no_std + #[cfg(all( + feature = "use-intrinsics", + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "f16c" + ))] + { + $f16c + } + // Fallback to software + #[cfg(any( + not(feature = "use-intrinsics"), + not(any(target_arch = "x86", target_arch = "x86_64")), + all(not(feature = "std"), not(target_feature = "f16c")) + ))] + { + $fallback + } + } + }; +} + +convert_fn! { + fn f32_to_f16(f: f32) -> u16 { + if feature("f16c") { + unsafe { x86::f32_to_f16_x86_f16c(f) } + } else { + f32_to_f16_fallback(f) + } + } +} + +convert_fn! { + fn f64_to_f16(f: f64) -> u16 { + if feature("f16c") { + unsafe { x86::f32_to_f16_x86_f16c(f as f32) } + } else { + f64_to_f16_fallback(f) + } + } +} + +convert_fn! { + fn f16_to_f32(i: u16) -> f32 { + if feature("f16c") { + unsafe { x86::f16_to_f32_x86_f16c(i) } + } else { + f16_to_f32_fallback(i) + } + } +} + +convert_fn! { + fn f16_to_f64(i: u16) -> f64 { + if feature("f16c") { + unsafe { x86::f16_to_f32_x86_f16c(i) as f64 } + } else { + f16_to_f64_fallback(i) + } + } +} + +// TODO: While SIMD versions are faster, further improvements can be made by doing runtime feature +// detection once at beginning of convert slice method, rather than per chunk + +convert_fn! { + fn f32x4_to_f16x4(f: &[f32]) -> [u16; 4] { + if feature("f16c") { + unsafe { x86::f32x4_to_f16x4_x86_f16c(f) } + } else { + f32x4_to_f16x4_fallback(f) + } + } +} + +convert_fn! { + fn f16x4_to_f32x4(i: &[u16]) -> [f32; 4] { + if feature("f16c") { + unsafe { x86::f16x4_to_f32x4_x86_f16c(i) } + } else { + f16x4_to_f32x4_fallback(i) + } + } +} + +convert_fn! { + fn f64x4_to_f16x4(f: &[f64]) -> [u16; 4] { + if feature("f16c") { + unsafe { x86::f64x4_to_f16x4_x86_f16c(f) } + } else { + f64x4_to_f16x4_fallback(f) + } + } +} + +convert_fn! { + fn f16x4_to_f64x4(i: &[u16]) -> [f64; 4] { + if feature("f16c") { + unsafe { x86::f16x4_to_f64x4_x86_f16c(i) } + } else { + f16x4_to_f64x4_fallback(i) + } + } +} + +/////////////// Fallbacks //////////////// + +// In the below functions, round to nearest, with ties to even. +// Let us call the most significant bit that will be shifted out the round_bit. +// +// Round up if either +// a) Removed part > tie. +// (mantissa & round_bit) != 0 && (mantissa & (round_bit - 1)) != 0 +// b) Removed part == tie, and retained part is odd. +// (mantissa & round_bit) != 0 && (mantissa & (2 * round_bit)) != 0 +// (If removed part == tie and retained part is even, do not round up.) +// These two conditions can be combined into one: +// (mantissa & round_bit) != 0 && (mantissa & ((round_bit - 1) | (2 * round_bit))) != 0 +// which can be simplified into +// (mantissa & round_bit) != 0 && (mantissa & (3 * round_bit - 1)) != 0 + +fn f32_to_f16_fallback(value: f32) -> u16 { + // Convert to raw bytes + let x = value.to_bits(); + + // Extract IEEE754 components + let sign = x & 0x8000_0000u32; + let exp = x & 0x7F80_0000u32; + let man = x & 0x007F_FFFFu32; + + // Check for all exponent bits being set, which is Infinity or NaN + if exp == 0x7F80_0000u32 { + // Set mantissa MSB for NaN (and also keep shifted mantissa bits) + let nan_bit = if man == 0 { 0 } else { 0x0200u32 }; + return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 13)) as u16; + } + + // The number is normalized, start assembling half precision version + let half_sign = sign >> 16; + // Unbias the exponent, then bias for half precision + let unbiased_exp = ((exp >> 23) as i32) - 127; + let half_exp = unbiased_exp + 15; + + // Check for exponent overflow, return +infinity + if half_exp >= 0x1F { + return (half_sign | 0x7C00u32) as u16; + } + + // Check for underflow + if half_exp <= 0 { + // Check mantissa for what we can do + if 14 - half_exp > 24 { + // No rounding possibility, so this is a full underflow, return signed zero + return half_sign as u16; + } + // Don't forget about hidden leading mantissa bit when assembling mantissa + let man = man | 0x0080_0000u32; + let mut half_man = man >> (14 - half_exp); + // Check for rounding (see comment above functions) + let round_bit = 1 << (13 - half_exp); + if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { + half_man += 1; + } + // No exponent for subnormals + return (half_sign | half_man) as u16; + } + + // Rebias the exponent + let half_exp = (half_exp as u32) << 10; + let half_man = man >> 13; + // Check for rounding (see comment above functions) + let round_bit = 0x0000_1000u32; + if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { + // Round it + ((half_sign | half_exp | half_man) + 1) as u16 + } else { + (half_sign | half_exp | half_man) as u16 + } +} + +fn f64_to_f16_fallback(value: f64) -> u16 { + // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always + // be lost on half-precision. + let val = value.to_bits(); + let x = (val >> 32) as u32; + + // Extract IEEE754 components + let sign = x & 0x8000_0000u32; + let exp = x & 0x7FF0_0000u32; + let man = x & 0x000F_FFFFu32; + + // Check for all exponent bits being set, which is Infinity or NaN + if exp == 0x7FF0_0000u32 { + // Set mantissa MSB for NaN (and also keep shifted mantissa bits). + // We also have to check the last 32 bits. + let nan_bit = if man == 0 && (val as u32 == 0) { + 0 + } else { + 0x0200u32 + }; + return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 10)) as u16; + } + + // The number is normalized, start assembling half precision version + let half_sign = sign >> 16; + // Unbias the exponent, then bias for half precision + let unbiased_exp = ((exp >> 20) as i64) - 1023; + let half_exp = unbiased_exp + 15; + + // Check for exponent overflow, return +infinity + if half_exp >= 0x1F { + return (half_sign | 0x7C00u32) as u16; + } + + // Check for underflow + if half_exp <= 0 { + // Check mantissa for what we can do + if 10 - half_exp > 21 { + // No rounding possibility, so this is a full underflow, return signed zero + return half_sign as u16; + } + // Don't forget about hidden leading mantissa bit when assembling mantissa + let man = man | 0x0010_0000u32; + let mut half_man = man >> (11 - half_exp); + // Check for rounding (see comment above functions) + let round_bit = 1 << (10 - half_exp); + if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { + half_man += 1; + } + // No exponent for subnormals + return (half_sign | half_man) as u16; + } + + // Rebias the exponent + let half_exp = (half_exp as u32) << 10; + let half_man = man >> 10; + // Check for rounding (see comment above functions) + let round_bit = 0x0000_0200u32; + if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { + // Round it + ((half_sign | half_exp | half_man) + 1) as u16 + } else { + (half_sign | half_exp | half_man) as u16 + } +} + +fn f16_to_f32_fallback(i: u16) -> f32 { + // Check for signed zero + if i & 0x7FFFu16 == 0 { + return f32::from_bits((i as u32) << 16); + } + + let half_sign = (i & 0x8000u16) as u32; + let half_exp = (i & 0x7C00u16) as u32; + let half_man = (i & 0x03FFu16) as u32; + + // Check for an infinity or NaN when all exponent bits set + if half_exp == 0x7C00u32 { + // Check for signed infinity if mantissa is zero + if half_man == 0 { + return f32::from_bits((half_sign << 16) | 0x7F80_0000u32); + } else { + // NaN, keep current mantissa but also set most significiant mantissa bit + return f32::from_bits((half_sign << 16) | 0x7FC0_0000u32 | (half_man << 13)); + } + } + + // Calculate single-precision components with adjusted exponent + let sign = half_sign << 16; + // Unbias exponent + let unbiased_exp = ((half_exp as i32) >> 10) - 15; + + // Check for subnormals, which will be normalized by adjusting exponent + if half_exp == 0 { + // Calculate how much to adjust the exponent by + let e = (half_man as u16).leading_zeros() - 6; + + // Rebias and adjust exponent + let exp = (127 - 15 - e) << 23; + let man = (half_man << (14 + e)) & 0x7F_FF_FFu32; + return f32::from_bits(sign | exp | man); + } + + // Rebias exponent for a normalized normal + let exp = ((unbiased_exp + 127) as u32) << 23; + let man = (half_man & 0x03FFu32) << 13; + f32::from_bits(sign | exp | man) +} + +fn f16_to_f64_fallback(i: u16) -> f64 { + // Check for signed zero + if i & 0x7FFFu16 == 0 { + return f64::from_bits((i as u64) << 48); + } + + let half_sign = (i & 0x8000u16) as u64; + let half_exp = (i & 0x7C00u16) as u64; + let half_man = (i & 0x03FFu16) as u64; + + // Check for an infinity or NaN when all exponent bits set + if half_exp == 0x7C00u64 { + // Check for signed infinity if mantissa is zero + if half_man == 0 { + return f64::from_bits((half_sign << 48) | 0x7FF0_0000_0000_0000u64); + } else { + // NaN, keep current mantissa but also set most significiant mantissa bit + return f64::from_bits((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 42)); + } + } + + // Calculate double-precision components with adjusted exponent + let sign = half_sign << 48; + // Unbias exponent + let unbiased_exp = ((half_exp as i64) >> 10) - 15; + + // Check for subnormals, which will be normalized by adjusting exponent + if half_exp == 0 { + // Calculate how much to adjust the exponent by + let e = (half_man as u16).leading_zeros() - 6; + + // Rebias and adjust exponent + let exp = ((1023 - 15 - e) as u64) << 52; + let man = (half_man << (43 + e)) & 0xF_FFFF_FFFF_FFFFu64; + return f64::from_bits(sign | exp | man); + } + + // Rebias exponent for a normalized normal + let exp = ((unbiased_exp + 1023) as u64) << 52; + let man = (half_man & 0x03FFu64) << 42; + f64::from_bits(sign | exp | man) +} + +#[inline] +fn f16x4_to_f32x4_fallback(v: &[u16]) -> [f32; 4] { + debug_assert!(v.len() >= 4); + + [ + f16_to_f32_fallback(v[0]), + f16_to_f32_fallback(v[1]), + f16_to_f32_fallback(v[2]), + f16_to_f32_fallback(v[3]), + ] +} + +#[inline] +fn f32x4_to_f16x4_fallback(v: &[f32]) -> [u16; 4] { + debug_assert!(v.len() >= 4); + + [ + f32_to_f16_fallback(v[0]), + f32_to_f16_fallback(v[1]), + f32_to_f16_fallback(v[2]), + f32_to_f16_fallback(v[3]), + ] +} + +#[inline] +fn f16x4_to_f64x4_fallback(v: &[u16]) -> [f64; 4] { + debug_assert!(v.len() >= 4); + + [ + f16_to_f64_fallback(v[0]), + f16_to_f64_fallback(v[1]), + f16_to_f64_fallback(v[2]), + f16_to_f64_fallback(v[3]), + ] +} + +#[inline] +fn f64x4_to_f16x4_fallback(v: &[f64]) -> [u16; 4] { + debug_assert!(v.len() >= 4); + + [ + f64_to_f16_fallback(v[0]), + f64_to_f16_fallback(v[1]), + f64_to_f16_fallback(v[2]), + f64_to_f16_fallback(v[3]), + ] +} + +/////////////// x86/x86_64 f16c //////////////// +#[cfg(all( + feature = "use-intrinsics", + any(target_arch = "x86", target_arch = "x86_64") +))] +mod x86 { + use core::{mem::MaybeUninit, ptr}; + + #[cfg(target_arch = "x86")] + use core::arch::x86::{__m128, __m128i, _mm_cvtph_ps, _mm_cvtps_ph, _MM_FROUND_TO_NEAREST_INT}; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::{ + __m128, __m128i, _mm_cvtph_ps, _mm_cvtps_ph, _MM_FROUND_TO_NEAREST_INT, + }; + + #[target_feature(enable = "f16c")] + #[inline] + pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 { + let mut vec = MaybeUninit::<__m128i>::zeroed(); + vec.as_mut_ptr().cast::<u16>().write(i); + let retval = _mm_cvtph_ps(vec.assume_init()); + *(&retval as *const __m128).cast() + } + + #[target_feature(enable = "f16c")] + #[inline] + pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 { + let mut vec = MaybeUninit::<__m128>::zeroed(); + vec.as_mut_ptr().cast::<f32>().write(f); + let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); + *(&retval as *const __m128i).cast() + } + + #[target_feature(enable = "f16c")] + #[inline] + pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16]) -> [f32; 4] { + debug_assert!(v.len() >= 4); + + let mut vec = MaybeUninit::<__m128i>::zeroed(); + ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); + let retval = _mm_cvtph_ps(vec.assume_init()); + *(&retval as *const __m128).cast() + } + + #[target_feature(enable = "f16c")] + #[inline] + pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32]) -> [u16; 4] { + debug_assert!(v.len() >= 4); + + let mut vec = MaybeUninit::<__m128>::uninit(); + ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); + let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); + *(&retval as *const __m128i).cast() + } + + #[target_feature(enable = "f16c")] + #[inline] + pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16]) -> [f64; 4] { + debug_assert!(v.len() >= 4); + + let mut vec = MaybeUninit::<__m128i>::zeroed(); + ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); + let retval = _mm_cvtph_ps(vec.assume_init()); + let array = *(&retval as *const __m128).cast::<[f32; 4]>(); + // Let compiler vectorize this regular cast for now. + // TODO: investigate auto-detecting sse2/avx convert features + [ + array[0] as f64, + array[1] as f64, + array[2] as f64, + array[3] as f64, + ] + } + + #[target_feature(enable = "f16c")] + #[inline] + pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64]) -> [u16; 4] { + debug_assert!(v.len() >= 4); + + // Let compiler vectorize this regular cast for now. + // TODO: investigate auto-detecting sse2/avx convert features + let v = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32]; + + let mut vec = MaybeUninit::<__m128>::uninit(); + ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); + let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); + *(&retval as *const __m128i).cast() + } +} |