diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-30 03:59:35 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-30 03:59:35 +0000 |
commit | d1b2d29528b7794b41e66fc2136e395a02f8529b (patch) | |
tree | a4a17504b260206dec3cf55b2dca82929a348ac2 /vendor/ipnet/src/ipnet.rs | |
parent | Releasing progress-linux version 1.72.1+dfsg1-1~progress7.99u1. (diff) | |
download | rustc-d1b2d29528b7794b41e66fc2136e395a02f8529b.tar.xz rustc-d1b2d29528b7794b41e66fc2136e395a02f8529b.zip |
Merging upstream version 1.73.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/ipnet/src/ipnet.rs')
-rw-r--r-- | vendor/ipnet/src/ipnet.rs | 1872 |
1 files changed, 1872 insertions, 0 deletions
diff --git a/vendor/ipnet/src/ipnet.rs b/vendor/ipnet/src/ipnet.rs new file mode 100644 index 000000000..e190f0669 --- /dev/null +++ b/vendor/ipnet/src/ipnet.rs @@ -0,0 +1,1872 @@ +use std::cmp::{min, max}; +use std::cmp::Ordering::{Less, Equal}; +use std::convert::From; +use std::error::Error; +use std::fmt; +use std::iter::FusedIterator; +use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; +use std::option::Option::{Some, None}; + +use crate::ipext::{IpAdd, IpSub, IpStep, IpAddrRange, Ipv4AddrRange, Ipv6AddrRange}; +use crate::mask::{ip_mask_to_prefix, ipv4_mask_to_prefix, ipv6_mask_to_prefix}; + +/// An IP network address, either IPv4 or IPv6. +/// +/// This enum can contain either an [`Ipv4Net`] or an [`Ipv6Net`]. A +/// [`From`] implementation is provided to convert these into an +/// `IpNet`. +/// +/// # Textual representation +/// +/// `IpNet` provides a [`FromStr`] implementation for parsing network +/// addresses represented in CIDR notation. See [IETF RFC 4632] for the +/// CIDR notation. +/// +/// [`Ipv4Net`]: struct.Ipv4Net.html +/// [`Ipv6Net`]: struct.Ipv6Net.html +/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html +/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html +/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 +/// +/// # Examples +/// +/// ``` +/// use std::net::IpAddr; +/// use ipnet::IpNet; +/// +/// let net: IpNet = "10.1.1.0/24".parse().unwrap(); +/// assert_eq!(Ok(net.network()), "10.1.1.0".parse()); +/// +/// let net: IpNet = "fd00::/32".parse().unwrap(); +/// assert_eq!(Ok(net.network()), "fd00::".parse()); +/// ``` +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] +pub enum IpNet { + V4(Ipv4Net), + V6(Ipv6Net), +} + +/// An IPv4 network address. +/// +/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network +/// addresses. +/// +/// # Textual representation +/// +/// `Ipv4Net` provides a [`FromStr`] implementation for parsing network +/// addresses represented in CIDR notation. See [IETF RFC 4632] for the +/// CIDR notation. +/// +/// [`IpNet`]: enum.IpNet.html +/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html +/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 +/// +/// # Examples +/// +/// ``` +/// use std::net::Ipv4Addr; +/// use ipnet::Ipv4Net; +/// +/// let net: Ipv4Net = "10.1.1.0/24".parse().unwrap(); +/// assert_eq!(Ok(net.network()), "10.1.1.0".parse()); +/// ``` +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] +pub struct Ipv4Net { + addr: Ipv4Addr, + prefix_len: u8, +} + +/// An IPv6 network address. +/// +/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network +/// addresses. +/// +/// # Textual representation +/// +/// `Ipv6Net` provides a [`FromStr`] implementation for parsing network +/// addresses represented in CIDR notation. See [IETF RFC 4632] for the +/// CIDR notation. +/// +/// [`IpNet`]: enum.IpNet.html +/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html +/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 +/// +/// # Examples +/// +/// ``` +/// use std::net::Ipv6Addr; +/// use ipnet::Ipv6Net; +/// +/// let net: Ipv6Net = "fd00::/32".parse().unwrap(); +/// assert_eq!(Ok(net.network()), "fd00::".parse()); +/// ``` +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] +pub struct Ipv6Net { + addr: Ipv6Addr, + prefix_len: u8, +} + +/// An error which can be returned when the prefix length is invalid. +/// +/// Valid prefix lengths are 0 to 32 for IPv4 and 0 to 128 for IPv6. +#[derive(Debug, Clone, PartialEq, Eq)] +pub struct PrefixLenError; + +impl fmt::Display for PrefixLenError { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt.write_str("invalid IP prefix length") + } +} + +impl Error for PrefixLenError {} + +impl IpNet { + /// Creates a new IP network address from an `IpAddr` and prefix + /// length. + /// + /// # Examples + /// + /// ``` + /// use std::net::Ipv6Addr; + /// use ipnet::{IpNet, PrefixLenError}; + /// + /// let net = IpNet::new(Ipv6Addr::LOCALHOST.into(), 48); + /// assert!(net.is_ok()); + /// + /// let bad_prefix_len = IpNet::new(Ipv6Addr::LOCALHOST.into(), 129); + /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); + /// ``` + pub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError> { + Ok(match ip { + IpAddr::V4(a) => Ipv4Net::new(a, prefix_len)?.into(), + IpAddr::V6(a) => Ipv6Net::new(a, prefix_len)?.into(), + }) + } + + /// Creates a new IP network address from an `IpAddr` and netmask. + /// + /// # Examples + /// + /// ``` + /// use std::net::Ipv6Addr; + /// use ipnet::{IpNet, PrefixLenError}; + /// + /// let net = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0000_0000_0000_0000).into()); + /// assert!(net.is_ok()); + /// + /// let bad_prefix_len = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0001_0000_0000_0000).into()); + /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); + /// ``` + pub fn with_netmask(ip: IpAddr, netmask: IpAddr) -> Result<IpNet, PrefixLenError> { + let prefix = ip_mask_to_prefix(netmask)?; + Self::new(ip, prefix) + } + + /// Returns a copy of the network with the address truncated to the + /// prefix length. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::IpNet; + /// # + /// assert_eq!( + /// "192.168.12.34/16".parse::<IpNet>().unwrap().trunc(), + /// "192.168.0.0/16".parse().unwrap() + /// ); + /// + /// assert_eq!( + /// "fd00::1:2:3:4/16".parse::<IpNet>().unwrap().trunc(), + /// "fd00::/16".parse().unwrap() + /// ); + /// ``` + pub fn trunc(&self) -> IpNet { + match *self { + IpNet::V4(ref a) => IpNet::V4(a.trunc()), + IpNet::V6(ref a) => IpNet::V6(a.trunc()), + } + } + + /// Returns the address. + pub fn addr(&self) -> IpAddr { + match *self { + IpNet::V4(ref a) => IpAddr::V4(a.addr), + IpNet::V6(ref a) => IpAddr::V6(a.addr), + } + } + + /// Returns the prefix length. + pub fn prefix_len(&self) -> u8 { + match *self { + IpNet::V4(ref a) => a.prefix_len(), + IpNet::V6(ref a) => a.prefix_len(), + } + } + + /// Returns the maximum valid prefix length. + pub fn max_prefix_len(&self) -> u8 { + match *self { + IpNet::V4(ref a) => a.max_prefix_len(), + IpNet::V6(ref a) => a.max_prefix_len(), + } + } + + /// Returns the network mask. + /// + /// # Examples + /// + /// ``` + /// # use std::net::IpAddr; + /// # use ipnet::IpNet; + /// # + /// let net: IpNet = "10.1.0.0/20".parse().unwrap(); + /// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse()); + /// + /// let net: IpNet = "fd00::/24".parse().unwrap(); + /// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse()); + /// ``` + pub fn netmask(&self) -> IpAddr { + match *self { + IpNet::V4(ref a) => IpAddr::V4(a.netmask()), + IpNet::V6(ref a) => IpAddr::V6(a.netmask()), + } + } + + /// Returns the host mask. + /// + /// # Examples + /// + /// ``` + /// # use std::net::IpAddr; + /// # use ipnet::IpNet; + /// # + /// let net: IpNet = "10.1.0.0/20".parse().unwrap(); + /// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse()); + /// + /// let net: IpNet = "fd00::/24".parse().unwrap(); + /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); + /// ``` + pub fn hostmask(&self) -> IpAddr { + match *self { + IpNet::V4(ref a) => IpAddr::V4(a.hostmask()), + IpNet::V6(ref a) => IpAddr::V6(a.hostmask()), + } + } + + /// Returns the network address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::IpAddr; + /// # use ipnet::IpNet; + /// # + /// let net: IpNet = "172.16.123.123/16".parse().unwrap(); + /// assert_eq!(Ok(net.network()), "172.16.0.0".parse()); + /// + /// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap(); + /// assert_eq!(Ok(net.network()), "fd00:1200::".parse()); + /// ``` + pub fn network(&self) -> IpAddr { + match *self { + IpNet::V4(ref a) => IpAddr::V4(a.network()), + IpNet::V6(ref a) => IpAddr::V6(a.network()), + } + } + + /// Returns the broadcast address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::IpAddr; + /// # use ipnet::IpNet; + /// # + /// let net: IpNet = "172.16.0.0/22".parse().unwrap(); + /// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse()); + /// + /// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap(); + /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); + /// ``` + pub fn broadcast(&self) -> IpAddr { + match *self { + IpNet::V4(ref a) => IpAddr::V4(a.broadcast()), + IpNet::V6(ref a) => IpAddr::V6(a.broadcast()), + } + } + + /// Returns the `IpNet` that contains this one. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::IpNet; + /// # + /// let n1: IpNet = "172.16.1.0/24".parse().unwrap(); + /// let n2: IpNet = "172.16.0.0/23".parse().unwrap(); + /// let n3: IpNet = "172.16.0.0/0".parse().unwrap(); + /// + /// assert_eq!(n1.supernet().unwrap(), n2); + /// assert_eq!(n3.supernet(), None); + /// + /// let n1: IpNet = "fd00:ff00::/24".parse().unwrap(); + /// let n2: IpNet = "fd00:fe00::/23".parse().unwrap(); + /// let n3: IpNet = "fd00:fe00::/0".parse().unwrap(); + /// + /// assert_eq!(n1.supernet().unwrap(), n2); + /// assert_eq!(n3.supernet(), None); + /// ``` + pub fn supernet(&self) -> Option<IpNet> { + match *self { + IpNet::V4(ref a) => a.supernet().map(IpNet::V4), + IpNet::V6(ref a) => a.supernet().map(IpNet::V6), + } + } + + /// Returns `true` if this network and the given network are + /// children of the same supernet. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::IpNet; + /// # + /// let n4_1: IpNet = "10.1.0.0/24".parse().unwrap(); + /// let n4_2: IpNet = "10.1.1.0/24".parse().unwrap(); + /// let n4_3: IpNet = "10.1.2.0/24".parse().unwrap(); + /// let n6_1: IpNet = "fd00::/18".parse().unwrap(); + /// let n6_2: IpNet = "fd00:4000::/18".parse().unwrap(); + /// let n6_3: IpNet = "fd00:8000::/18".parse().unwrap(); + /// + /// assert!( n4_1.is_sibling(&n4_2)); + /// assert!(!n4_2.is_sibling(&n4_3)); + /// assert!( n6_1.is_sibling(&n6_2)); + /// assert!(!n6_2.is_sibling(&n6_3)); + /// assert!(!n4_1.is_sibling(&n6_2)); + /// ``` + pub fn is_sibling(&self, other: &IpNet) -> bool { + match (*self, *other) { + (IpNet::V4(ref a), IpNet::V4(ref b)) => a.is_sibling(b), + (IpNet::V6(ref a), IpNet::V6(ref b)) => a.is_sibling(b), + _ => false, + } + } + + /// Return an `Iterator` over the host addresses in this network. + /// + /// # Examples + /// + /// ``` + /// # use std::net::IpAddr; + /// # use ipnet::IpNet; + /// # + /// let net: IpNet = "10.0.0.0/30".parse().unwrap(); + /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ + /// "10.0.0.1".parse::<IpAddr>().unwrap(), + /// "10.0.0.2".parse().unwrap(), + /// ]); + /// + /// let net: IpNet = "10.0.0.0/31".parse().unwrap(); + /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ + /// "10.0.0.0".parse::<IpAddr>().unwrap(), + /// "10.0.0.1".parse().unwrap(), + /// ]); + /// + /// let net: IpNet = "fd00::/126".parse().unwrap(); + /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ + /// "fd00::".parse::<IpAddr>().unwrap(), + /// "fd00::1".parse().unwrap(), + /// "fd00::2".parse().unwrap(), + /// "fd00::3".parse().unwrap(), + /// ]); + /// ``` + pub fn hosts(&self) -> IpAddrRange { + match *self { + IpNet::V4(ref a) => IpAddrRange::V4(a.hosts()), + IpNet::V6(ref a) => IpAddrRange::V6(a.hosts()), + } + } + + /// Returns an `Iterator` over the subnets of this network with the + /// given prefix length. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::{IpNet, PrefixLenError}; + /// # + /// let net: IpNet = "10.0.0.0/24".parse().unwrap(); + /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<IpNet>>(), vec![ + /// "10.0.0.0/26".parse::<IpNet>().unwrap(), + /// "10.0.0.64/26".parse().unwrap(), + /// "10.0.0.128/26".parse().unwrap(), + /// "10.0.0.192/26".parse().unwrap(), + /// ]); + /// + /// let net: IpNet = "fd00::/16".parse().unwrap(); + /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<IpNet>>(), vec![ + /// "fd00::/18".parse::<IpNet>().unwrap(), + /// "fd00:4000::/18".parse().unwrap(), + /// "fd00:8000::/18".parse().unwrap(), + /// "fd00:c000::/18".parse().unwrap(), + /// ]); + /// + /// let net: IpNet = "10.0.0.0/24".parse().unwrap(); + /// assert_eq!(net.subnets(23), Err(PrefixLenError)); + /// + /// let net: IpNet = "10.0.0.0/24".parse().unwrap(); + /// assert_eq!(net.subnets(33), Err(PrefixLenError)); + /// + /// let net: IpNet = "fd00::/16".parse().unwrap(); + /// assert_eq!(net.subnets(15), Err(PrefixLenError)); + /// + /// let net: IpNet = "fd00::/16".parse().unwrap(); + /// assert_eq!(net.subnets(129), Err(PrefixLenError)); + /// ``` + pub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError> { + match *self { + IpNet::V4(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V4), + IpNet::V6(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V6), + } + } + + /// Test if a network address contains either another network + /// address or an IP address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::IpAddr; + /// # use ipnet::IpNet; + /// # + /// let net4: IpNet = "192.168.0.0/24".parse().unwrap(); + /// let net4_yes: IpNet = "192.168.0.0/25".parse().unwrap(); + /// let net4_no: IpNet = "192.168.0.0/23".parse().unwrap(); + /// let ip4_yes: IpAddr = "192.168.0.1".parse().unwrap(); + /// let ip4_no: IpAddr = "192.168.1.0".parse().unwrap(); + /// + /// assert!(net4.contains(&net4)); + /// assert!(net4.contains(&net4_yes)); + /// assert!(!net4.contains(&net4_no)); + /// assert!(net4.contains(&ip4_yes)); + /// assert!(!net4.contains(&ip4_no)); + /// + /// + /// let net6: IpNet = "fd00::/16".parse().unwrap(); + /// let net6_yes: IpNet = "fd00::/17".parse().unwrap(); + /// let net6_no: IpNet = "fd00::/15".parse().unwrap(); + /// let ip6_yes: IpAddr = "fd00::1".parse().unwrap(); + /// let ip6_no: IpAddr = "fd01::".parse().unwrap(); + /// + /// assert!(net6.contains(&net6)); + /// assert!(net6.contains(&net6_yes)); + /// assert!(!net6.contains(&net6_no)); + /// assert!(net6.contains(&ip6_yes)); + /// assert!(!net6.contains(&ip6_no)); + /// + /// assert!(!net4.contains(&net6)); + /// assert!(!net6.contains(&net4)); + /// assert!(!net4.contains(&ip6_no)); + /// assert!(!net6.contains(&ip4_no)); + /// ``` + pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { + Contains::contains(self, other) + } + + /// Aggregate a `Vec` of `IpNet`s and return the result as a new + /// `Vec`. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::IpNet; + /// # + /// let nets = vec![ + /// "10.0.0.0/24".parse::<IpNet>().unwrap(), + /// "10.0.1.0/24".parse().unwrap(), + /// "10.0.2.0/24".parse().unwrap(), + /// "fd00::/18".parse().unwrap(), + /// "fd00:4000::/18".parse().unwrap(), + /// "fd00:8000::/18".parse().unwrap(), + /// ]; + /// + /// assert_eq!(IpNet::aggregate(&nets), vec![ + /// "10.0.0.0/23".parse::<IpNet>().unwrap(), + /// "10.0.2.0/24".parse().unwrap(), + /// "fd00::/17".parse().unwrap(), + /// "fd00:8000::/18".parse().unwrap(), + /// ]); + /// ``` + pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet> { + // It's 2.5x faster to split the input up and run them using the + // specific IPv4 and IPV6 implementations. merge_intervals() and + // the comparisons are much faster running over integers. + let mut ipv4nets: Vec<Ipv4Net> = Vec::new(); + let mut ipv6nets: Vec<Ipv6Net> = Vec::new(); + + for n in networks { + match *n { + IpNet::V4(x) => ipv4nets.push(x), + IpNet::V6(x) => ipv6nets.push(x), + } + } + + let mut res: Vec<IpNet> = Vec::new(); + let ipv4aggs = Ipv4Net::aggregate(&ipv4nets); + let ipv6aggs = Ipv6Net::aggregate(&ipv6nets); + res.extend::<Vec<IpNet>>(ipv4aggs.into_iter().map(IpNet::V4).collect::<Vec<IpNet>>()); + res.extend::<Vec<IpNet>>(ipv6aggs.into_iter().map(IpNet::V6).collect::<Vec<IpNet>>()); + res + } +} + +impl Default for IpNet { + fn default() -> Self { + Self::V4(Ipv4Net::default()) + } +} + +impl fmt::Debug for IpNet { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(self, fmt) + } +} + +impl fmt::Display for IpNet { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + match *self { + IpNet::V4(ref a) => a.fmt(fmt), + IpNet::V6(ref a) => a.fmt(fmt), + } + } +} + +impl From<Ipv4Net> for IpNet { + fn from(net: Ipv4Net) -> IpNet { + IpNet::V4(net) + } +} + +impl From<Ipv6Net> for IpNet { + fn from(net: Ipv6Net) -> IpNet { + IpNet::V6(net) + } +} + +impl From<IpAddr> for IpNet { + fn from(addr: IpAddr) -> IpNet { + match addr { + IpAddr::V4(a) => IpNet::V4(a.into()), + IpAddr::V6(a) => IpNet::V6(a.into()), + } + } +} + +impl Ipv4Net { + /// Creates a new IPv4 network address from an `Ipv4Addr` and prefix + /// length. + /// + /// # Examples + /// + /// ``` + /// use std::net::Ipv4Addr; + /// use ipnet::{Ipv4Net, PrefixLenError}; + /// + /// let net = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 24); + /// assert!(net.is_ok()); + /// + /// let bad_prefix_len = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 33); + /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); + /// ``` + #[inline] + pub const fn new(ip: Ipv4Addr, prefix_len: u8) -> Result<Ipv4Net, PrefixLenError> { + if prefix_len > 32 { + return Err(PrefixLenError); + } + Ok(Ipv4Net { addr: ip, prefix_len: prefix_len }) + } + + /// Creates a new IPv4 network address from an `Ipv4Addr` and netmask. + /// + /// # Examples + /// + /// ``` + /// use std::net::Ipv4Addr; + /// use ipnet::{Ipv4Net, PrefixLenError}; + /// + /// let net = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 255, 0)); + /// assert!(net.is_ok()); + /// + /// let bad_prefix_len = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 0, 1)); + /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); + /// ``` + pub fn with_netmask(ip: Ipv4Addr, netmask: Ipv4Addr) -> Result<Ipv4Net, PrefixLenError> { + let prefix = ipv4_mask_to_prefix(netmask)?; + Self::new(ip, prefix) + } + + /// Returns a copy of the network with the address truncated to the + /// prefix length. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv4Net; + /// # + /// assert_eq!( + /// "192.168.12.34/16".parse::<Ipv4Net>().unwrap().trunc(), + /// "192.168.0.0/16".parse().unwrap() + /// ); + /// ``` + pub fn trunc(&self) -> Ipv4Net { + Ipv4Net::new(self.network(), self.prefix_len).unwrap() + } + + /// Returns the address. + #[inline] + pub const fn addr(&self) -> Ipv4Addr { + self.addr + } + + /// Returns the prefix length. + #[inline] + pub const fn prefix_len(&self) -> u8 { + self.prefix_len + } + + /// Returns the maximum valid prefix length. + #[inline] + pub const fn max_prefix_len(&self) -> u8 { + 32 + } + + /// Returns the network mask. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv4Addr; + /// # use ipnet::Ipv4Net; + /// # + /// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap(); + /// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse()); + /// ``` + pub fn netmask(&self) -> Ipv4Addr { + Ipv4Addr::from(self.netmask_u32()) + } + + fn netmask_u32(&self) -> u32 { + u32::max_value().checked_shl(32 - self.prefix_len as u32).unwrap_or(0) + } + + /// Returns the host mask. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv4Addr; + /// # use ipnet::Ipv4Net; + /// # + /// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap(); + /// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse()); + /// ``` + pub fn hostmask(&self) -> Ipv4Addr { + Ipv4Addr::from(self.hostmask_u32()) + } + + fn hostmask_u32(&self) -> u32 { + u32::max_value().checked_shr(self.prefix_len as u32).unwrap_or(0) + } + + /// Returns the network address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv4Addr; + /// # use ipnet::Ipv4Net; + /// # + /// let net: Ipv4Net = "172.16.123.123/16".parse().unwrap(); + /// assert_eq!(Ok(net.network()), "172.16.0.0".parse()); + /// ``` + pub fn network(&self) -> Ipv4Addr { + Ipv4Addr::from(u32::from(self.addr) & self.netmask_u32()) + } + + /// Returns the broadcast address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv4Addr; + /// # use ipnet::Ipv4Net; + /// # + /// let net: Ipv4Net = "172.16.0.0/22".parse().unwrap(); + /// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse()); + /// ``` + pub fn broadcast(&self) -> Ipv4Addr { + Ipv4Addr::from(u32::from(self.addr) | self.hostmask_u32()) + } + + /// Returns the `Ipv4Net` that contains this one. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv4Net; + /// # + /// let n1: Ipv4Net = "172.16.1.0/24".parse().unwrap(); + /// let n2: Ipv4Net = "172.16.0.0/23".parse().unwrap(); + /// let n3: Ipv4Net = "172.16.0.0/0".parse().unwrap(); + /// + /// assert_eq!(n1.supernet().unwrap(), n2); + /// assert_eq!(n3.supernet(), None); + /// ``` + pub fn supernet(&self) -> Option<Ipv4Net> { + Ipv4Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok() + } + + /// Returns `true` if this network and the given network are + /// children of the same supernet. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv4Net; + /// # + /// let n1: Ipv4Net = "10.1.0.0/24".parse().unwrap(); + /// let n2: Ipv4Net = "10.1.1.0/24".parse().unwrap(); + /// let n3: Ipv4Net = "10.1.2.0/24".parse().unwrap(); + /// + /// assert!(n1.is_sibling(&n2)); + /// assert!(!n2.is_sibling(&n3)); + /// ``` + pub fn is_sibling(&self, other: &Ipv4Net) -> bool { + self.prefix_len > 0 && + self.prefix_len == other.prefix_len && + self.supernet().unwrap().contains(other) + } + + /// Return an `Iterator` over the host addresses in this network. + /// + /// If the prefix length is less than 31 both the network address + /// and broadcast address are excluded. These are only valid host + /// addresses when the prefix length is 31. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv4Addr; + /// # use ipnet::Ipv4Net; + /// # + /// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap(); + /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![ + /// "10.0.0.1".parse::<Ipv4Addr>().unwrap(), + /// "10.0.0.2".parse().unwrap(), + /// ]); + /// + /// let net: Ipv4Net = "10.0.0.0/31".parse().unwrap(); + /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![ + /// "10.0.0.0".parse::<Ipv4Addr>().unwrap(), + /// "10.0.0.1".parse().unwrap(), + /// ]); + /// ``` + pub fn hosts(&self) -> Ipv4AddrRange { + let mut start = self.network(); + let mut end = self.broadcast(); + + if self.prefix_len < 31 { + start = start.saturating_add(1); + end = end.saturating_sub(1); + } + + Ipv4AddrRange::new(start, end) + } + + /// Returns an `Iterator` over the subnets of this network with the + /// given prefix length. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::{Ipv4Net, PrefixLenError}; + /// # + /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap(); + /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<Ipv4Net>>(), vec![ + /// "10.0.0.0/26".parse::<Ipv4Net>().unwrap(), + /// "10.0.0.64/26".parse().unwrap(), + /// "10.0.0.128/26".parse().unwrap(), + /// "10.0.0.192/26".parse().unwrap(), + /// ]); + /// + /// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap(); + /// assert_eq!(net.subnets(32).unwrap().collect::<Vec<Ipv4Net>>(), vec![ + /// "10.0.0.0/32".parse::<Ipv4Net>().unwrap(), + /// "10.0.0.1/32".parse().unwrap(), + /// "10.0.0.2/32".parse().unwrap(), + /// "10.0.0.3/32".parse().unwrap(), + /// ]); + /// + /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap(); + /// assert_eq!(net.subnets(23), Err(PrefixLenError)); + /// + /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap(); + /// assert_eq!(net.subnets(33), Err(PrefixLenError)); + /// ``` + pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv4Subnets, PrefixLenError> { + if self.prefix_len > new_prefix_len || new_prefix_len > 32 { + return Err(PrefixLenError); + } + + Ok(Ipv4Subnets::new( + self.network(), + self.broadcast(), + new_prefix_len, + )) + } + + /// Test if a network address contains either another network + /// address or an IP address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv4Addr; + /// # use ipnet::Ipv4Net; + /// # + /// let net: Ipv4Net = "192.168.0.0/24".parse().unwrap(); + /// let net_yes: Ipv4Net = "192.168.0.0/25".parse().unwrap(); + /// let net_no: Ipv4Net = "192.168.0.0/23".parse().unwrap(); + /// let ip_yes: Ipv4Addr = "192.168.0.1".parse().unwrap(); + /// let ip_no: Ipv4Addr = "192.168.1.0".parse().unwrap(); + /// + /// assert!(net.contains(&net)); + /// assert!(net.contains(&net_yes)); + /// assert!(!net.contains(&net_no)); + /// assert!(net.contains(&ip_yes)); + /// assert!(!net.contains(&ip_no)); + /// ``` + pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { + Contains::contains(self, other) + } + + // It is significantly faster to work on u32 than Ipv4Addr. + fn interval(&self) -> (u32, u32) { + ( + u32::from(self.network()), + u32::from(self.broadcast()).saturating_add(1), + ) + } + + /// Aggregate a `Vec` of `Ipv4Net`s and return the result as a new + /// `Vec`. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv4Net; + /// # + /// let nets = vec![ + /// "10.0.0.0/24".parse::<Ipv4Net>().unwrap(), + /// "10.0.1.0/24".parse().unwrap(), + /// "10.0.2.0/24".parse().unwrap(), + /// ]; + /// + /// assert_eq!(Ipv4Net::aggregate(&nets), vec![ + /// "10.0.0.0/23".parse::<Ipv4Net>().unwrap(), + /// "10.0.2.0/24".parse().unwrap(), + /// ]); + pub fn aggregate(networks: &Vec<Ipv4Net>) -> Vec<Ipv4Net> { + let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect(); + intervals = merge_intervals(intervals); + let mut res: Vec<Ipv4Net> = Vec::new(); + + for (start, mut end) in intervals { + if end != std::u32::MAX { + end = end.saturating_sub(1) + } + let iter = Ipv4Subnets::new(start.into(), end.into(), 0); + res.extend(iter); + } + res + } +} + +impl Default for Ipv4Net { + fn default() -> Self { + Self { + addr: Ipv4Addr::from(0), + prefix_len: 0, + } + } +} + +impl fmt::Debug for Ipv4Net { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(self, fmt) + } +} + +impl fmt::Display for Ipv4Net { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + write!(fmt, "{}/{}", self.addr, self.prefix_len) + } +} + +impl From<Ipv4Addr> for Ipv4Net { + fn from(addr: Ipv4Addr) -> Ipv4Net { + Ipv4Net { addr, prefix_len: 32 } + } +} + +impl Ipv6Net { + /// Creates a new IPv6 network address from an `Ipv6Addr` and prefix + /// length. + /// + /// # Examples + /// + /// ``` + /// use std::net::Ipv6Addr; + /// use ipnet::{Ipv6Net, PrefixLenError}; + /// + /// let net = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); + /// assert!(net.is_ok()); + /// + /// let bad_prefix_len = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); + /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); + /// ``` + #[inline] + pub const fn new(ip: Ipv6Addr, prefix_len: u8) -> Result<Ipv6Net, PrefixLenError> { + if prefix_len > 128 { + return Err(PrefixLenError); + } + Ok(Ipv6Net { addr: ip, prefix_len: prefix_len }) + } + + /// Creates a new IPv6 network address from an `Ipv6Addr` and netmask. + /// + /// # Examples + /// + /// ``` + /// use std::net::Ipv6Addr; + /// use ipnet::{Ipv6Net, PrefixLenError}; + /// + /// let net = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0000_0000_0000_0000)); + /// assert!(net.is_ok()); + /// + /// let bad_prefix_len = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0001_0000_0000_0000)); + /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); + /// ``` + pub fn with_netmask(ip: Ipv6Addr, netmask: Ipv6Addr) -> Result<Ipv6Net, PrefixLenError> { + let prefix = ipv6_mask_to_prefix(netmask)?; + Self::new(ip, prefix) + } + + /// Returns a copy of the network with the address truncated to the + /// prefix length. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv6Net; + /// # + /// assert_eq!( + /// "fd00::1:2:3:4/16".parse::<Ipv6Net>().unwrap().trunc(), + /// "fd00::/16".parse().unwrap() + /// ); + /// ``` + pub fn trunc(&self) -> Ipv6Net { + Ipv6Net::new(self.network(), self.prefix_len).unwrap() + } + + /// Returns the address. + #[inline] + pub const fn addr(&self) -> Ipv6Addr { + self.addr + } + + /// Returns the prefix length. + #[inline] + pub const fn prefix_len(&self) -> u8 { + self.prefix_len + } + + /// Returns the maximum valid prefix length. + #[inline] + pub const fn max_prefix_len(&self) -> u8 { + 128 + } + + /// Returns the network mask. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv6Addr; + /// # use ipnet::Ipv6Net; + /// # + /// let net: Ipv6Net = "fd00::/24".parse().unwrap(); + /// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse()); + /// ``` + pub fn netmask(&self) -> Ipv6Addr { + self.netmask_u128().into() + } + + fn netmask_u128(&self) -> u128 { + u128::max_value().checked_shl((128 - self.prefix_len) as u32).unwrap_or(u128::min_value()) + } + + /// Returns the host mask. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv6Addr; + /// # use ipnet::Ipv6Net; + /// # + /// let net: Ipv6Net = "fd00::/24".parse().unwrap(); + /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); + /// ``` + pub fn hostmask(&self) -> Ipv6Addr { + self.hostmask_u128().into() + } + + fn hostmask_u128(&self) -> u128 { + u128::max_value().checked_shr(self.prefix_len as u32).unwrap_or(u128::min_value()) + } + + /// Returns the network address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv6Addr; + /// # use ipnet::Ipv6Net; + /// # + /// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap(); + /// assert_eq!(Ok(net.network()), "fd00:1200::".parse()); + /// ``` + pub fn network(&self) -> Ipv6Addr { + (u128::from(self.addr) & self.netmask_u128()).into() + } + + /// Returns the last address. + /// + /// Technically there is no such thing as a broadcast address for + /// IPv6. The name is used for consistency with colloquial usage. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv6Addr; + /// # use ipnet::Ipv6Net; + /// # + /// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap(); + /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); + /// ``` + pub fn broadcast(&self) -> Ipv6Addr { + (u128::from(self.addr) | self.hostmask_u128()).into() + } + + /// Returns the `Ipv6Net` that contains this one. + /// + /// # Examples + /// + /// ``` + /// # use std::str::FromStr; + /// # use ipnet::Ipv6Net; + /// # + /// let n1: Ipv6Net = "fd00:ff00::/24".parse().unwrap(); + /// let n2: Ipv6Net = "fd00:fe00::/23".parse().unwrap(); + /// let n3: Ipv6Net = "fd00:fe00::/0".parse().unwrap(); + /// + /// assert_eq!(n1.supernet().unwrap(), n2); + /// assert_eq!(n3.supernet(), None); + /// ``` + pub fn supernet(&self) -> Option<Ipv6Net> { + Ipv6Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok() + } + + /// Returns `true` if this network and the given network are + /// children of the same supernet. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv6Net; + /// # + /// let n1: Ipv6Net = "fd00::/18".parse().unwrap(); + /// let n2: Ipv6Net = "fd00:4000::/18".parse().unwrap(); + /// let n3: Ipv6Net = "fd00:8000::/18".parse().unwrap(); + /// + /// assert!(n1.is_sibling(&n2)); + /// assert!(!n2.is_sibling(&n3)); + /// ``` + pub fn is_sibling(&self, other: &Ipv6Net) -> bool { + self.prefix_len > 0 && + self.prefix_len == other.prefix_len && + self.supernet().unwrap().contains(other) + } + + /// Return an `Iterator` over the host addresses in this network. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv6Addr; + /// # use ipnet::Ipv6Net; + /// # + /// let net: Ipv6Net = "fd00::/126".parse().unwrap(); + /// assert_eq!(net.hosts().collect::<Vec<Ipv6Addr>>(), vec![ + /// "fd00::".parse::<Ipv6Addr>().unwrap(), + /// "fd00::1".parse().unwrap(), + /// "fd00::2".parse().unwrap(), + /// "fd00::3".parse().unwrap(), + /// ]); + /// ``` + pub fn hosts(&self) -> Ipv6AddrRange { + Ipv6AddrRange::new(self.network(), self.broadcast()) + } + + /// Returns an `Iterator` over the subnets of this network with the + /// given prefix length. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::{Ipv6Net, PrefixLenError}; + /// # + /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); + /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<Ipv6Net>>(), vec![ + /// "fd00::/18".parse::<Ipv6Net>().unwrap(), + /// "fd00:4000::/18".parse().unwrap(), + /// "fd00:8000::/18".parse().unwrap(), + /// "fd00:c000::/18".parse().unwrap(), + /// ]); + /// + /// let net: Ipv6Net = "fd00::/126".parse().unwrap(); + /// assert_eq!(net.subnets(128).unwrap().collect::<Vec<Ipv6Net>>(), vec![ + /// "fd00::/128".parse::<Ipv6Net>().unwrap(), + /// "fd00::1/128".parse().unwrap(), + /// "fd00::2/128".parse().unwrap(), + /// "fd00::3/128".parse().unwrap(), + /// ]); + /// + /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); + /// assert_eq!(net.subnets(15), Err(PrefixLenError)); + /// + /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); + /// assert_eq!(net.subnets(129), Err(PrefixLenError)); + /// ``` + pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv6Subnets, PrefixLenError> { + if self.prefix_len > new_prefix_len || new_prefix_len > 128 { + return Err(PrefixLenError); + } + + Ok(Ipv6Subnets::new( + self.network(), + self.broadcast(), + new_prefix_len, + )) + } + + /// Test if a network address contains either another network + /// address or an IP address. + /// + /// # Examples + /// + /// ``` + /// # use std::net::Ipv6Addr; + /// # use ipnet::Ipv6Net; + /// # + /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); + /// let net_yes: Ipv6Net = "fd00::/17".parse().unwrap(); + /// let net_no: Ipv6Net = "fd00::/15".parse().unwrap(); + /// let ip_yes: Ipv6Addr = "fd00::1".parse().unwrap(); + /// let ip_no: Ipv6Addr = "fd01::".parse().unwrap(); + /// + /// assert!(net.contains(&net)); + /// assert!(net.contains(&net_yes)); + /// assert!(!net.contains(&net_no)); + /// assert!(net.contains(&ip_yes)); + /// assert!(!net.contains(&ip_no)); + /// ``` + pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { + Contains::contains(self, other) + } + + // It is significantly faster to work on u128 that Ipv6Addr. + fn interval(&self) -> (u128, u128) { + ( + u128::from(self.network()), + u128::from(self.broadcast()).saturating_add(1), + ) + } + + /// Aggregate a `Vec` of `Ipv6Net`s and return the result as a new + /// `Vec`. + /// + /// # Examples + /// + /// ``` + /// # use ipnet::Ipv6Net; + /// # + /// let nets = vec![ + /// "fd00::/18".parse::<Ipv6Net>().unwrap(), + /// "fd00:4000::/18".parse().unwrap(), + /// "fd00:8000::/18".parse().unwrap(), + /// ]; + /// assert_eq!(Ipv6Net::aggregate(&nets), vec![ + /// "fd00::/17".parse::<Ipv6Net>().unwrap(), + /// "fd00:8000::/18".parse().unwrap(), + /// ]); + /// ``` + pub fn aggregate(networks: &Vec<Ipv6Net>) -> Vec<Ipv6Net> { + let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect(); + intervals = merge_intervals(intervals); + let mut res: Vec<Ipv6Net> = Vec::new(); + + for (start, mut end) in intervals { + if end != std::u128::MAX { + end = end.saturating_sub(1) + } + let iter = Ipv6Subnets::new(start.into(), end.into(), 0); + res.extend(iter); + } + res + } +} + +impl Default for Ipv6Net { + fn default() -> Self { + Self { + addr: Ipv6Addr::from(0), + prefix_len: 0, + } + } +} + +impl fmt::Debug for Ipv6Net { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(self, fmt) + } +} + +impl fmt::Display for Ipv6Net { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + write!(fmt, "{}/{}", self.addr, self.prefix_len) + } +} + +impl From<Ipv6Addr> for Ipv6Net { + fn from(addr: Ipv6Addr) -> Ipv6Net { + Ipv6Net { addr, prefix_len: 128 } + } +} + +/// Provides a method to test if a network address contains either +/// another network address or an IP address. +/// +/// # Examples +/// +/// ``` +/// # use std::net::IpAddr; +/// # use ipnet::IpNet; +/// # +/// let n4_1: IpNet = "10.1.1.0/24".parse().unwrap(); +/// let n4_2: IpNet = "10.1.1.0/26".parse().unwrap(); +/// let n4_3: IpNet = "10.1.2.0/26".parse().unwrap(); +/// let ip4_1: IpAddr = "10.1.1.1".parse().unwrap(); +/// let ip4_2: IpAddr = "10.1.2.1".parse().unwrap(); +/// +/// let n6_1: IpNet = "fd00::/16".parse().unwrap(); +/// let n6_2: IpNet = "fd00::/17".parse().unwrap(); +/// let n6_3: IpNet = "fd01::/17".parse().unwrap(); +/// let ip6_1: IpAddr = "fd00::1".parse().unwrap(); +/// let ip6_2: IpAddr = "fd01::1".parse().unwrap(); +/// +/// assert!(n4_1.contains(&n4_2)); +/// assert!(!n4_1.contains(&n4_3)); +/// assert!(n4_1.contains(&ip4_1)); +/// assert!(!n4_1.contains(&ip4_2)); +/// +/// assert!(n6_1.contains(&n6_2)); +/// assert!(!n6_1.contains(&n6_3)); +/// assert!(n6_1.contains(&ip6_1)); +/// assert!(!n6_1.contains(&ip6_2)); +/// +/// assert!(!n4_1.contains(&n6_1) && !n6_1.contains(&n4_1)); +/// assert!(!n4_1.contains(&ip6_1) && !n6_1.contains(&ip4_1)); +/// ``` +pub trait Contains<T> { + fn contains(&self, other: T) -> bool; +} + +impl<'a> Contains<&'a IpNet> for IpNet { + fn contains(&self, other: &IpNet) -> bool { + match (*self, *other) { + (IpNet::V4(ref a), IpNet::V4(ref b)) => a.contains(b), + (IpNet::V6(ref a), IpNet::V6(ref b)) => a.contains(b), + _ => false, + } + } +} + +impl<'a> Contains<&'a IpAddr> for IpNet { + fn contains(&self, other: &IpAddr) -> bool { + match (*self, *other) { + (IpNet::V4(ref a), IpAddr::V4(ref b)) => a.contains(b), + (IpNet::V6(ref a), IpAddr::V6(ref b)) => a.contains(b), + _ => false, + } + } +} + +impl<'a> Contains<&'a Ipv4Net> for Ipv4Net { + fn contains(&self, other: &'a Ipv4Net) -> bool { + self.network() <= other.network() && other.broadcast() <= self.broadcast() + } +} + +impl<'a> Contains<&'a Ipv4Addr> for Ipv4Net { + fn contains(&self, other: &'a Ipv4Addr) -> bool { + self.network() <= *other && *other <= self.broadcast() + } +} + +impl<'a> Contains<&'a Ipv6Net> for Ipv6Net { + fn contains(&self, other: &'a Ipv6Net) -> bool { + self.network() <= other.network() && other.broadcast() <= self.broadcast() + } +} + +impl<'a> Contains<&'a Ipv6Addr> for Ipv6Net { + fn contains(&self, other: &'a Ipv6Addr) -> bool { + self.network() <= *other && *other <= self.broadcast() + } +} + +/// An `Iterator` that generates IP network addresses, either IPv4 or +/// IPv6. +/// +/// Generates the subnets between the provided `start` and `end` IP +/// addresses inclusive of `end`. Each iteration generates the next +/// network address of the largest valid size it can, while using a +/// prefix length not less than `min_prefix_len`. +/// +/// # Examples +/// +/// ``` +/// # use std::net::{Ipv4Addr, Ipv6Addr}; +/// # use std::str::FromStr; +/// # use ipnet::{IpNet, IpSubnets, Ipv4Subnets, Ipv6Subnets}; +/// let subnets = IpSubnets::from(Ipv4Subnets::new( +/// "10.0.0.0".parse().unwrap(), +/// "10.0.0.239".parse().unwrap(), +/// 26, +/// )); +/// +/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![ +/// "10.0.0.0/26".parse().unwrap(), +/// "10.0.0.64/26".parse().unwrap(), +/// "10.0.0.128/26".parse().unwrap(), +/// "10.0.0.192/27".parse().unwrap(), +/// "10.0.0.224/28".parse().unwrap(), +/// ]); +/// +/// let subnets = IpSubnets::from(Ipv6Subnets::new( +/// "fd00::".parse().unwrap(), +/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(), +/// 26, +/// )); +/// +/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![ +/// "fd00::/26".parse().unwrap(), +/// "fd00:40::/26".parse().unwrap(), +/// "fd00:80::/26".parse().unwrap(), +/// "fd00:c0::/27".parse().unwrap(), +/// "fd00:e0::/28".parse().unwrap(), +/// ]); +/// ``` +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] +pub enum IpSubnets { + V4(Ipv4Subnets), + V6(Ipv6Subnets), +} + +/// An `Iterator` that generates IPv4 network addresses. +/// +/// Generates the subnets between the provided `start` and `end` IP +/// addresses inclusive of `end`. Each iteration generates the next +/// network address of the largest valid size it can, while using a +/// prefix length not less than `min_prefix_len`. +/// +/// # Examples +/// +/// ``` +/// # use std::net::Ipv4Addr; +/// # use std::str::FromStr; +/// # use ipnet::{Ipv4Net, Ipv4Subnets}; +/// let subnets = Ipv4Subnets::new( +/// "10.0.0.0".parse().unwrap(), +/// "10.0.0.239".parse().unwrap(), +/// 26, +/// ); +/// +/// assert_eq!(subnets.collect::<Vec<Ipv4Net>>(), vec![ +/// "10.0.0.0/26".parse().unwrap(), +/// "10.0.0.64/26".parse().unwrap(), +/// "10.0.0.128/26".parse().unwrap(), +/// "10.0.0.192/27".parse().unwrap(), +/// "10.0.0.224/28".parse().unwrap(), +/// ]); +/// ``` +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] +pub struct Ipv4Subnets { + start: Ipv4Addr, + end: Ipv4Addr, // end is inclusive + min_prefix_len: u8, +} + +/// An `Iterator` that generates IPv6 network addresses. +/// +/// Generates the subnets between the provided `start` and `end` IP +/// addresses inclusive of `end`. Each iteration generates the next +/// network address of the largest valid size it can, while using a +/// prefix length not less than `min_prefix_len`. +/// +/// # Examples +/// +/// ``` +/// # use std::net::Ipv6Addr; +/// # use std::str::FromStr; +/// # use ipnet::{Ipv6Net, Ipv6Subnets}; +/// let subnets = Ipv6Subnets::new( +/// "fd00::".parse().unwrap(), +/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(), +/// 26, +/// ); +/// +/// assert_eq!(subnets.collect::<Vec<Ipv6Net>>(), vec![ +/// "fd00::/26".parse().unwrap(), +/// "fd00:40::/26".parse().unwrap(), +/// "fd00:80::/26".parse().unwrap(), +/// "fd00:c0::/27".parse().unwrap(), +/// "fd00:e0::/28".parse().unwrap(), +/// ]); +/// ``` +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] +pub struct Ipv6Subnets { + start: Ipv6Addr, + end: Ipv6Addr, // end is inclusive + min_prefix_len: u8, +} + +impl Ipv4Subnets { + pub fn new(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Self { + Ipv4Subnets { + start: start, + end: end, + min_prefix_len: min_prefix_len, + } + } +} + +impl Ipv6Subnets { + pub fn new(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Self { + Ipv6Subnets { + start: start, + end: end, + min_prefix_len: min_prefix_len, + } + } +} + +impl From<Ipv4Subnets> for IpSubnets { + fn from(i: Ipv4Subnets) -> IpSubnets { + IpSubnets::V4(i) + } +} + +impl From<Ipv6Subnets> for IpSubnets { + fn from(i: Ipv6Subnets) -> IpSubnets { + IpSubnets::V6(i) + } +} + +impl Iterator for IpSubnets { + type Item = IpNet; + + fn next(&mut self) -> Option<Self::Item> { + match *self { + IpSubnets::V4(ref mut a) => a.next().map(IpNet::V4), + IpSubnets::V6(ref mut a) => a.next().map(IpNet::V6), + } + } +} + +fn next_ipv4_subnet(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Ipv4Net { + let range = end.saturating_sub(start).saturating_add(1); + if range == std::u32::MAX && min_prefix_len == 0 { + Ipv4Net::new(start, min_prefix_len).unwrap() + } + else { + let range_bits = 32u32.saturating_sub(range.leading_zeros()).saturating_sub(1); + let start_tz = u32::from(start).trailing_zeros(); + let new_prefix_len = 32 - min(range_bits, start_tz); + let next_prefix_len = max(new_prefix_len as u8, min_prefix_len); + Ipv4Net::new(start, next_prefix_len).unwrap() + } +} + +fn next_ipv6_subnet(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Ipv6Net { + let range = end.saturating_sub(start).saturating_add(1); + if range == std::u128::MAX && min_prefix_len == 0 { + Ipv6Net::new(start, min_prefix_len).unwrap() + } + else { + let range = end.saturating_sub(start).saturating_add(1); + let range_bits = 128u32.saturating_sub(range.leading_zeros()).saturating_sub(1); + let start_tz = u128::from(start).trailing_zeros(); + let new_prefix_len = 128 - min(range_bits, start_tz); + let next_prefix_len = max(new_prefix_len as u8, min_prefix_len); + Ipv6Net::new(start, next_prefix_len).unwrap() + } +} + +impl Iterator for Ipv4Subnets { + type Item = Ipv4Net; + + fn next(&mut self) -> Option<Self::Item> { + match self.start.partial_cmp(&self.end) { + Some(Less) => { + let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len); + self.start = next.broadcast().saturating_add(1); + + // Stop the iterator if we saturated self.start. This + // check worsens performance slightly but overall this + // approach of operating on Ipv4Addr types is faster + // than what we were doing before using Ipv4Net. + if self.start == next.broadcast() { + self.end.replace_zero(); + } + Some(next) + }, + Some(Equal) => { + let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len); + self.start = next.broadcast().saturating_add(1); + self.end.replace_zero(); + Some(next) + }, + _ => None, + } + } +} + +impl Iterator for Ipv6Subnets { + type Item = Ipv6Net; + + fn next(&mut self) -> Option<Self::Item> { + match self.start.partial_cmp(&self.end) { + Some(Less) => { + let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len); + self.start = next.broadcast().saturating_add(1); + + // Stop the iterator if we saturated self.start. This + // check worsens performance slightly but overall this + // approach of operating on Ipv6Addr types is faster + // than what we were doing before using Ipv6Net. + if self.start == next.broadcast() { + self.end.replace_zero(); + } + Some(next) + }, + Some(Equal) => { + let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len); + self.start = next.broadcast().saturating_add(1); + self.end.replace_zero(); + Some(next) + }, + _ => None, + } + } +} + +impl FusedIterator for IpSubnets {} +impl FusedIterator for Ipv4Subnets {} +impl FusedIterator for Ipv6Subnets {} + +// Generic function for merging a vector of intervals. +fn merge_intervals<T: Copy + Ord>(mut intervals: Vec<(T, T)>) -> Vec<(T, T)> { + if intervals.len() == 0 { + return intervals; + } + + intervals.sort(); + let mut res: Vec<(T, T)> = Vec::new(); + let (mut start, mut end) = intervals[0]; + + let mut i = 1; + let len = intervals.len(); + while i < len { + let (next_start, next_end) = intervals[i]; + if end >= next_start { + start = min(start, next_start); + end = max(end, next_end); + } + else { + res.push((start, end)); + start = next_start; + end = next_end; + } + i += 1; + } + + res.push((start, end)); + res +} + +#[cfg(test)] +mod tests { + use super::*; + + macro_rules! make_ipnet_vec { + ($($x:expr),*) => ( vec![$($x.parse::<IpNet>().unwrap(),)*] ); + ($($x:expr,)*) => ( make_ipnet_vec![$($x),*] ); + } + + #[test] + fn test_make_ipnet_vec() { + assert_eq!( + make_ipnet_vec![ + "10.1.1.1/32", "10.2.2.2/24", "10.3.3.3/16", + "fd00::1/128", "fd00::2/127", "fd00::3/126", + ], + vec![ + "10.1.1.1/32".parse().unwrap(), + "10.2.2.2/24".parse().unwrap(), + "10.3.3.3/16".parse().unwrap(), + "fd00::1/128".parse().unwrap(), + "fd00::2/127".parse().unwrap(), + "fd00::3/126".parse().unwrap(), + ] + ); + } + + #[test] + fn test_merge_intervals() { + let v = vec![ + (0, 1), (1, 2), (2, 3), + (11, 12), (13, 14), (10, 15), (11, 13), + (20, 25), (24, 29), + ]; + + let v_ok = vec![ + (0, 3), + (10, 15), + (20, 29), + ]; + + let vv = vec![ + ([0, 1], [0, 2]), ([0, 2], [0, 3]), ([0, 0], [0, 1]), + ([10, 15], [11, 0]), ([10, 0], [10, 16]), + ]; + + let vv_ok = vec![ + ([0, 0], [0, 3]), + ([10, 0], [11, 0]), + ]; + + assert_eq!(merge_intervals(v), v_ok); + assert_eq!(merge_intervals(vv), vv_ok); + } + + macro_rules! make_ipv4_subnets_test { + ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => ( + #[test] + fn $name() { + let subnets = IpSubnets::from(Ipv4Subnets::new( + $start.parse().unwrap(), + $end.parse().unwrap(), + $min_prefix_len, + )); + let results = make_ipnet_vec![$($x),*]; + assert_eq!(subnets.collect::<Vec<IpNet>>(), results); + } + ); + ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => ( + make_ipv4_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*); + ); + } + + macro_rules! make_ipv6_subnets_test { + ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => ( + #[test] + fn $name() { + let subnets = IpSubnets::from(Ipv6Subnets::new( + $start.parse().unwrap(), + $end.parse().unwrap(), + $min_prefix_len, + )); + let results = make_ipnet_vec![$($x),*]; + assert_eq!(subnets.collect::<Vec<IpNet>>(), results); + } + ); + ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => ( + make_ipv6_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*); + ); + } + + make_ipv4_subnets_test!( + test_ipv4_subnets_zero_zero, + "0.0.0.0", "0.0.0.0", 0, + "0.0.0.0/32", + ); + + make_ipv4_subnets_test!( + test_ipv4_subnets_zero_max, + "0.0.0.0", "255.255.255.255", 0, + "0.0.0.0/0", + ); + + make_ipv4_subnets_test!( + test_ipv4_subnets_max_max, + "255.255.255.255", "255.255.255.255", 0, + "255.255.255.255/32", + ); + + make_ipv4_subnets_test!( + test_ipv4_subnets_none, + "0.0.0.1", "0.0.0.0", 0, + ); + + make_ipv4_subnets_test!( + test_ipv4_subnets_one, + "0.0.0.0", "0.0.0.1", 0, + "0.0.0.0/31", + ); + + make_ipv4_subnets_test!( + test_ipv4_subnets_two, + "0.0.0.0", "0.0.0.2", 0, + "0.0.0.0/31", + "0.0.0.2/32", + ); + + make_ipv4_subnets_test!( + test_ipv4_subnets_taper, + "0.0.0.0", "0.0.0.10", 30, + "0.0.0.0/30", + "0.0.0.4/30", + "0.0.0.8/31", + "0.0.0.10/32", + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_zero_zero, + "::", "::", 0, + "::/128", + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_zero_max, + "::", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0, + "::/0", + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_max_max, + "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0, + "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128", + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_none, + "::1", "::", 0, + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_one, + "::", "::1", 0, + "::/127", + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_two, + "::", "::2", 0, + "::/127", + "::2/128", + ); + + make_ipv6_subnets_test!( + test_ipv6_subnets_taper, + "::", "::a", 126, + "::/126", + "::4/126", + "::8/127", + "::a/128", + ); + + #[test] + fn test_aggregate() { + let ip_nets = make_ipnet_vec![ + "10.0.0.0/24", "10.0.1.0/24", "10.0.1.1/24", "10.0.1.2/24", + "10.0.2.0/24", + "10.1.0.0/24", "10.1.1.0/24", + "192.168.0.0/24", "192.168.1.0/24", "192.168.2.0/24", "192.168.3.0/24", + "fd00::/32", "fd00:1::/32", + "fd00:2::/32", + ]; + + let ip_aggs = make_ipnet_vec![ + "10.0.0.0/23", + "10.0.2.0/24", + "10.1.0.0/23", + "192.168.0.0/22", + "fd00::/31", + "fd00:2::/32", + ]; + + let ipv4_nets: Vec<Ipv4Net> = ip_nets.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect(); + let ipv4_aggs: Vec<Ipv4Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect(); + let ipv6_nets: Vec<Ipv6Net> = ip_nets.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect(); + let ipv6_aggs: Vec<Ipv6Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect(); + + assert_eq!(IpNet::aggregate(&ip_nets), ip_aggs); + assert_eq!(Ipv4Net::aggregate(&ipv4_nets), ipv4_aggs); + assert_eq!(Ipv6Net::aggregate(&ipv6_nets), ipv6_aggs); + } + + #[test] + fn test_aggregate_issue44() { + let nets: Vec<Ipv4Net> = vec!["128.0.0.0/1".parse().unwrap()]; + assert_eq!(Ipv4Net::aggregate(&nets), nets); + + let nets: Vec<Ipv4Net> = vec!["0.0.0.0/1".parse().unwrap(), "128.0.0.0/1".parse().unwrap()]; + assert_eq!(Ipv4Net::aggregate(&nets), vec!["0.0.0.0/0".parse().unwrap()]); + + let nets: Vec<Ipv6Net> = vec!["8000::/1".parse().unwrap()]; + assert_eq!(Ipv6Net::aggregate(&nets), nets); + + let nets: Vec<Ipv6Net> = vec!["::/1".parse().unwrap(), "8000::/1".parse().unwrap()]; + assert_eq!(Ipv6Net::aggregate(&nets), vec!["::/0".parse().unwrap()]); + } + + #[test] + fn ipnet_default() { + let ipnet: IpNet = "0.0.0.0/0".parse().unwrap(); + assert_eq!(ipnet, IpNet::default()); + } + + #[test] + fn ipv4net_default() { + let ipnet: Ipv4Net = "0.0.0.0/0".parse().unwrap(); + assert_eq!(ipnet, Ipv4Net::default()); + } + + #[test] + fn ipv6net_default() { + let ipnet: Ipv6Net = "::/0".parse().unwrap(); + assert_eq!(ipnet, Ipv6Net::default()); + } +} |