summaryrefslogtreecommitdiffstats
path: root/vendor/ipnet/src/ipnet.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-30 03:59:35 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-30 03:59:35 +0000
commitd1b2d29528b7794b41e66fc2136e395a02f8529b (patch)
treea4a17504b260206dec3cf55b2dca82929a348ac2 /vendor/ipnet/src/ipnet.rs
parentReleasing progress-linux version 1.72.1+dfsg1-1~progress7.99u1. (diff)
downloadrustc-d1b2d29528b7794b41e66fc2136e395a02f8529b.tar.xz
rustc-d1b2d29528b7794b41e66fc2136e395a02f8529b.zip
Merging upstream version 1.73.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/ipnet/src/ipnet.rs')
-rw-r--r--vendor/ipnet/src/ipnet.rs1872
1 files changed, 1872 insertions, 0 deletions
diff --git a/vendor/ipnet/src/ipnet.rs b/vendor/ipnet/src/ipnet.rs
new file mode 100644
index 000000000..e190f0669
--- /dev/null
+++ b/vendor/ipnet/src/ipnet.rs
@@ -0,0 +1,1872 @@
+use std::cmp::{min, max};
+use std::cmp::Ordering::{Less, Equal};
+use std::convert::From;
+use std::error::Error;
+use std::fmt;
+use std::iter::FusedIterator;
+use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
+use std::option::Option::{Some, None};
+
+use crate::ipext::{IpAdd, IpSub, IpStep, IpAddrRange, Ipv4AddrRange, Ipv6AddrRange};
+use crate::mask::{ip_mask_to_prefix, ipv4_mask_to_prefix, ipv6_mask_to_prefix};
+
+/// An IP network address, either IPv4 or IPv6.
+///
+/// This enum can contain either an [`Ipv4Net`] or an [`Ipv6Net`]. A
+/// [`From`] implementation is provided to convert these into an
+/// `IpNet`.
+///
+/// # Textual representation
+///
+/// `IpNet` provides a [`FromStr`] implementation for parsing network
+/// addresses represented in CIDR notation. See [IETF RFC 4632] for the
+/// CIDR notation.
+///
+/// [`Ipv4Net`]: struct.Ipv4Net.html
+/// [`Ipv6Net`]: struct.Ipv6Net.html
+/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
+/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
+/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632
+///
+/// # Examples
+///
+/// ```
+/// use std::net::IpAddr;
+/// use ipnet::IpNet;
+///
+/// let net: IpNet = "10.1.1.0/24".parse().unwrap();
+/// assert_eq!(Ok(net.network()), "10.1.1.0".parse());
+///
+/// let net: IpNet = "fd00::/32".parse().unwrap();
+/// assert_eq!(Ok(net.network()), "fd00::".parse());
+/// ```
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
+pub enum IpNet {
+ V4(Ipv4Net),
+ V6(Ipv6Net),
+}
+
+/// An IPv4 network address.
+///
+/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network
+/// addresses.
+///
+/// # Textual representation
+///
+/// `Ipv4Net` provides a [`FromStr`] implementation for parsing network
+/// addresses represented in CIDR notation. See [IETF RFC 4632] for the
+/// CIDR notation.
+///
+/// [`IpNet`]: enum.IpNet.html
+/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
+/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632
+///
+/// # Examples
+///
+/// ```
+/// use std::net::Ipv4Addr;
+/// use ipnet::Ipv4Net;
+///
+/// let net: Ipv4Net = "10.1.1.0/24".parse().unwrap();
+/// assert_eq!(Ok(net.network()), "10.1.1.0".parse());
+/// ```
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
+pub struct Ipv4Net {
+ addr: Ipv4Addr,
+ prefix_len: u8,
+}
+
+/// An IPv6 network address.
+///
+/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network
+/// addresses.
+///
+/// # Textual representation
+///
+/// `Ipv6Net` provides a [`FromStr`] implementation for parsing network
+/// addresses represented in CIDR notation. See [IETF RFC 4632] for the
+/// CIDR notation.
+///
+/// [`IpNet`]: enum.IpNet.html
+/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
+/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632
+///
+/// # Examples
+///
+/// ```
+/// use std::net::Ipv6Addr;
+/// use ipnet::Ipv6Net;
+///
+/// let net: Ipv6Net = "fd00::/32".parse().unwrap();
+/// assert_eq!(Ok(net.network()), "fd00::".parse());
+/// ```
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
+pub struct Ipv6Net {
+ addr: Ipv6Addr,
+ prefix_len: u8,
+}
+
+/// An error which can be returned when the prefix length is invalid.
+///
+/// Valid prefix lengths are 0 to 32 for IPv4 and 0 to 128 for IPv6.
+#[derive(Debug, Clone, PartialEq, Eq)]
+pub struct PrefixLenError;
+
+impl fmt::Display for PrefixLenError {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.write_str("invalid IP prefix length")
+ }
+}
+
+impl Error for PrefixLenError {}
+
+impl IpNet {
+ /// Creates a new IP network address from an `IpAddr` and prefix
+ /// length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::net::Ipv6Addr;
+ /// use ipnet::{IpNet, PrefixLenError};
+ ///
+ /// let net = IpNet::new(Ipv6Addr::LOCALHOST.into(), 48);
+ /// assert!(net.is_ok());
+ ///
+ /// let bad_prefix_len = IpNet::new(Ipv6Addr::LOCALHOST.into(), 129);
+ /// assert_eq!(bad_prefix_len, Err(PrefixLenError));
+ /// ```
+ pub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError> {
+ Ok(match ip {
+ IpAddr::V4(a) => Ipv4Net::new(a, prefix_len)?.into(),
+ IpAddr::V6(a) => Ipv6Net::new(a, prefix_len)?.into(),
+ })
+ }
+
+ /// Creates a new IP network address from an `IpAddr` and netmask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::net::Ipv6Addr;
+ /// use ipnet::{IpNet, PrefixLenError};
+ ///
+ /// let net = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0000_0000_0000_0000).into());
+ /// assert!(net.is_ok());
+ ///
+ /// let bad_prefix_len = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0001_0000_0000_0000).into());
+ /// assert_eq!(bad_prefix_len, Err(PrefixLenError));
+ /// ```
+ pub fn with_netmask(ip: IpAddr, netmask: IpAddr) -> Result<IpNet, PrefixLenError> {
+ let prefix = ip_mask_to_prefix(netmask)?;
+ Self::new(ip, prefix)
+ }
+
+ /// Returns a copy of the network with the address truncated to the
+ /// prefix length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::IpNet;
+ /// #
+ /// assert_eq!(
+ /// "192.168.12.34/16".parse::<IpNet>().unwrap().trunc(),
+ /// "192.168.0.0/16".parse().unwrap()
+ /// );
+ ///
+ /// assert_eq!(
+ /// "fd00::1:2:3:4/16".parse::<IpNet>().unwrap().trunc(),
+ /// "fd00::/16".parse().unwrap()
+ /// );
+ /// ```
+ pub fn trunc(&self) -> IpNet {
+ match *self {
+ IpNet::V4(ref a) => IpNet::V4(a.trunc()),
+ IpNet::V6(ref a) => IpNet::V6(a.trunc()),
+ }
+ }
+
+ /// Returns the address.
+ pub fn addr(&self) -> IpAddr {
+ match *self {
+ IpNet::V4(ref a) => IpAddr::V4(a.addr),
+ IpNet::V6(ref a) => IpAddr::V6(a.addr),
+ }
+ }
+
+ /// Returns the prefix length.
+ pub fn prefix_len(&self) -> u8 {
+ match *self {
+ IpNet::V4(ref a) => a.prefix_len(),
+ IpNet::V6(ref a) => a.prefix_len(),
+ }
+ }
+
+ /// Returns the maximum valid prefix length.
+ pub fn max_prefix_len(&self) -> u8 {
+ match *self {
+ IpNet::V4(ref a) => a.max_prefix_len(),
+ IpNet::V6(ref a) => a.max_prefix_len(),
+ }
+ }
+
+ /// Returns the network mask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::IpAddr;
+ /// # use ipnet::IpNet;
+ /// #
+ /// let net: IpNet = "10.1.0.0/20".parse().unwrap();
+ /// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse());
+ ///
+ /// let net: IpNet = "fd00::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse());
+ /// ```
+ pub fn netmask(&self) -> IpAddr {
+ match *self {
+ IpNet::V4(ref a) => IpAddr::V4(a.netmask()),
+ IpNet::V6(ref a) => IpAddr::V6(a.netmask()),
+ }
+ }
+
+ /// Returns the host mask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::IpAddr;
+ /// # use ipnet::IpNet;
+ /// #
+ /// let net: IpNet = "10.1.0.0/20".parse().unwrap();
+ /// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse());
+ ///
+ /// let net: IpNet = "fd00::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
+ /// ```
+ pub fn hostmask(&self) -> IpAddr {
+ match *self {
+ IpNet::V4(ref a) => IpAddr::V4(a.hostmask()),
+ IpNet::V6(ref a) => IpAddr::V6(a.hostmask()),
+ }
+ }
+
+ /// Returns the network address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::IpAddr;
+ /// # use ipnet::IpNet;
+ /// #
+ /// let net: IpNet = "172.16.123.123/16".parse().unwrap();
+ /// assert_eq!(Ok(net.network()), "172.16.0.0".parse());
+ ///
+ /// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.network()), "fd00:1200::".parse());
+ /// ```
+ pub fn network(&self) -> IpAddr {
+ match *self {
+ IpNet::V4(ref a) => IpAddr::V4(a.network()),
+ IpNet::V6(ref a) => IpAddr::V6(a.network()),
+ }
+ }
+
+ /// Returns the broadcast address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::IpAddr;
+ /// # use ipnet::IpNet;
+ /// #
+ /// let net: IpNet = "172.16.0.0/22".parse().unwrap();
+ /// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse());
+ ///
+ /// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
+ /// ```
+ pub fn broadcast(&self) -> IpAddr {
+ match *self {
+ IpNet::V4(ref a) => IpAddr::V4(a.broadcast()),
+ IpNet::V6(ref a) => IpAddr::V6(a.broadcast()),
+ }
+ }
+
+ /// Returns the `IpNet` that contains this one.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::IpNet;
+ /// #
+ /// let n1: IpNet = "172.16.1.0/24".parse().unwrap();
+ /// let n2: IpNet = "172.16.0.0/23".parse().unwrap();
+ /// let n3: IpNet = "172.16.0.0/0".parse().unwrap();
+ ///
+ /// assert_eq!(n1.supernet().unwrap(), n2);
+ /// assert_eq!(n3.supernet(), None);
+ ///
+ /// let n1: IpNet = "fd00:ff00::/24".parse().unwrap();
+ /// let n2: IpNet = "fd00:fe00::/23".parse().unwrap();
+ /// let n3: IpNet = "fd00:fe00::/0".parse().unwrap();
+ ///
+ /// assert_eq!(n1.supernet().unwrap(), n2);
+ /// assert_eq!(n3.supernet(), None);
+ /// ```
+ pub fn supernet(&self) -> Option<IpNet> {
+ match *self {
+ IpNet::V4(ref a) => a.supernet().map(IpNet::V4),
+ IpNet::V6(ref a) => a.supernet().map(IpNet::V6),
+ }
+ }
+
+ /// Returns `true` if this network and the given network are
+ /// children of the same supernet.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::IpNet;
+ /// #
+ /// let n4_1: IpNet = "10.1.0.0/24".parse().unwrap();
+ /// let n4_2: IpNet = "10.1.1.0/24".parse().unwrap();
+ /// let n4_3: IpNet = "10.1.2.0/24".parse().unwrap();
+ /// let n6_1: IpNet = "fd00::/18".parse().unwrap();
+ /// let n6_2: IpNet = "fd00:4000::/18".parse().unwrap();
+ /// let n6_3: IpNet = "fd00:8000::/18".parse().unwrap();
+ ///
+ /// assert!( n4_1.is_sibling(&n4_2));
+ /// assert!(!n4_2.is_sibling(&n4_3));
+ /// assert!( n6_1.is_sibling(&n6_2));
+ /// assert!(!n6_2.is_sibling(&n6_3));
+ /// assert!(!n4_1.is_sibling(&n6_2));
+ /// ```
+ pub fn is_sibling(&self, other: &IpNet) -> bool {
+ match (*self, *other) {
+ (IpNet::V4(ref a), IpNet::V4(ref b)) => a.is_sibling(b),
+ (IpNet::V6(ref a), IpNet::V6(ref b)) => a.is_sibling(b),
+ _ => false,
+ }
+ }
+
+ /// Return an `Iterator` over the host addresses in this network.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::IpAddr;
+ /// # use ipnet::IpNet;
+ /// #
+ /// let net: IpNet = "10.0.0.0/30".parse().unwrap();
+ /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
+ /// "10.0.0.1".parse::<IpAddr>().unwrap(),
+ /// "10.0.0.2".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: IpNet = "10.0.0.0/31".parse().unwrap();
+ /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
+ /// "10.0.0.0".parse::<IpAddr>().unwrap(),
+ /// "10.0.0.1".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: IpNet = "fd00::/126".parse().unwrap();
+ /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
+ /// "fd00::".parse::<IpAddr>().unwrap(),
+ /// "fd00::1".parse().unwrap(),
+ /// "fd00::2".parse().unwrap(),
+ /// "fd00::3".parse().unwrap(),
+ /// ]);
+ /// ```
+ pub fn hosts(&self) -> IpAddrRange {
+ match *self {
+ IpNet::V4(ref a) => IpAddrRange::V4(a.hosts()),
+ IpNet::V6(ref a) => IpAddrRange::V6(a.hosts()),
+ }
+ }
+
+ /// Returns an `Iterator` over the subnets of this network with the
+ /// given prefix length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::{IpNet, PrefixLenError};
+ /// #
+ /// let net: IpNet = "10.0.0.0/24".parse().unwrap();
+ /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<IpNet>>(), vec![
+ /// "10.0.0.0/26".parse::<IpNet>().unwrap(),
+ /// "10.0.0.64/26".parse().unwrap(),
+ /// "10.0.0.128/26".parse().unwrap(),
+ /// "10.0.0.192/26".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: IpNet = "fd00::/16".parse().unwrap();
+ /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<IpNet>>(), vec![
+ /// "fd00::/18".parse::<IpNet>().unwrap(),
+ /// "fd00:4000::/18".parse().unwrap(),
+ /// "fd00:8000::/18".parse().unwrap(),
+ /// "fd00:c000::/18".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: IpNet = "10.0.0.0/24".parse().unwrap();
+ /// assert_eq!(net.subnets(23), Err(PrefixLenError));
+ ///
+ /// let net: IpNet = "10.0.0.0/24".parse().unwrap();
+ /// assert_eq!(net.subnets(33), Err(PrefixLenError));
+ ///
+ /// let net: IpNet = "fd00::/16".parse().unwrap();
+ /// assert_eq!(net.subnets(15), Err(PrefixLenError));
+ ///
+ /// let net: IpNet = "fd00::/16".parse().unwrap();
+ /// assert_eq!(net.subnets(129), Err(PrefixLenError));
+ /// ```
+ pub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError> {
+ match *self {
+ IpNet::V4(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V4),
+ IpNet::V6(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V6),
+ }
+ }
+
+ /// Test if a network address contains either another network
+ /// address or an IP address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::IpAddr;
+ /// # use ipnet::IpNet;
+ /// #
+ /// let net4: IpNet = "192.168.0.0/24".parse().unwrap();
+ /// let net4_yes: IpNet = "192.168.0.0/25".parse().unwrap();
+ /// let net4_no: IpNet = "192.168.0.0/23".parse().unwrap();
+ /// let ip4_yes: IpAddr = "192.168.0.1".parse().unwrap();
+ /// let ip4_no: IpAddr = "192.168.1.0".parse().unwrap();
+ ///
+ /// assert!(net4.contains(&net4));
+ /// assert!(net4.contains(&net4_yes));
+ /// assert!(!net4.contains(&net4_no));
+ /// assert!(net4.contains(&ip4_yes));
+ /// assert!(!net4.contains(&ip4_no));
+ ///
+ ///
+ /// let net6: IpNet = "fd00::/16".parse().unwrap();
+ /// let net6_yes: IpNet = "fd00::/17".parse().unwrap();
+ /// let net6_no: IpNet = "fd00::/15".parse().unwrap();
+ /// let ip6_yes: IpAddr = "fd00::1".parse().unwrap();
+ /// let ip6_no: IpAddr = "fd01::".parse().unwrap();
+ ///
+ /// assert!(net6.contains(&net6));
+ /// assert!(net6.contains(&net6_yes));
+ /// assert!(!net6.contains(&net6_no));
+ /// assert!(net6.contains(&ip6_yes));
+ /// assert!(!net6.contains(&ip6_no));
+ ///
+ /// assert!(!net4.contains(&net6));
+ /// assert!(!net6.contains(&net4));
+ /// assert!(!net4.contains(&ip6_no));
+ /// assert!(!net6.contains(&ip4_no));
+ /// ```
+ pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> {
+ Contains::contains(self, other)
+ }
+
+ /// Aggregate a `Vec` of `IpNet`s and return the result as a new
+ /// `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::IpNet;
+ /// #
+ /// let nets = vec![
+ /// "10.0.0.0/24".parse::<IpNet>().unwrap(),
+ /// "10.0.1.0/24".parse().unwrap(),
+ /// "10.0.2.0/24".parse().unwrap(),
+ /// "fd00::/18".parse().unwrap(),
+ /// "fd00:4000::/18".parse().unwrap(),
+ /// "fd00:8000::/18".parse().unwrap(),
+ /// ];
+ ///
+ /// assert_eq!(IpNet::aggregate(&nets), vec![
+ /// "10.0.0.0/23".parse::<IpNet>().unwrap(),
+ /// "10.0.2.0/24".parse().unwrap(),
+ /// "fd00::/17".parse().unwrap(),
+ /// "fd00:8000::/18".parse().unwrap(),
+ /// ]);
+ /// ```
+ pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet> {
+ // It's 2.5x faster to split the input up and run them using the
+ // specific IPv4 and IPV6 implementations. merge_intervals() and
+ // the comparisons are much faster running over integers.
+ let mut ipv4nets: Vec<Ipv4Net> = Vec::new();
+ let mut ipv6nets: Vec<Ipv6Net> = Vec::new();
+
+ for n in networks {
+ match *n {
+ IpNet::V4(x) => ipv4nets.push(x),
+ IpNet::V6(x) => ipv6nets.push(x),
+ }
+ }
+
+ let mut res: Vec<IpNet> = Vec::new();
+ let ipv4aggs = Ipv4Net::aggregate(&ipv4nets);
+ let ipv6aggs = Ipv6Net::aggregate(&ipv6nets);
+ res.extend::<Vec<IpNet>>(ipv4aggs.into_iter().map(IpNet::V4).collect::<Vec<IpNet>>());
+ res.extend::<Vec<IpNet>>(ipv6aggs.into_iter().map(IpNet::V6).collect::<Vec<IpNet>>());
+ res
+ }
+}
+
+impl Default for IpNet {
+ fn default() -> Self {
+ Self::V4(Ipv4Net::default())
+ }
+}
+
+impl fmt::Debug for IpNet {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(self, fmt)
+ }
+}
+
+impl fmt::Display for IpNet {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ match *self {
+ IpNet::V4(ref a) => a.fmt(fmt),
+ IpNet::V6(ref a) => a.fmt(fmt),
+ }
+ }
+}
+
+impl From<Ipv4Net> for IpNet {
+ fn from(net: Ipv4Net) -> IpNet {
+ IpNet::V4(net)
+ }
+}
+
+impl From<Ipv6Net> for IpNet {
+ fn from(net: Ipv6Net) -> IpNet {
+ IpNet::V6(net)
+ }
+}
+
+impl From<IpAddr> for IpNet {
+ fn from(addr: IpAddr) -> IpNet {
+ match addr {
+ IpAddr::V4(a) => IpNet::V4(a.into()),
+ IpAddr::V6(a) => IpNet::V6(a.into()),
+ }
+ }
+}
+
+impl Ipv4Net {
+ /// Creates a new IPv4 network address from an `Ipv4Addr` and prefix
+ /// length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::net::Ipv4Addr;
+ /// use ipnet::{Ipv4Net, PrefixLenError};
+ ///
+ /// let net = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 24);
+ /// assert!(net.is_ok());
+ ///
+ /// let bad_prefix_len = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 33);
+ /// assert_eq!(bad_prefix_len, Err(PrefixLenError));
+ /// ```
+ #[inline]
+ pub const fn new(ip: Ipv4Addr, prefix_len: u8) -> Result<Ipv4Net, PrefixLenError> {
+ if prefix_len > 32 {
+ return Err(PrefixLenError);
+ }
+ Ok(Ipv4Net { addr: ip, prefix_len: prefix_len })
+ }
+
+ /// Creates a new IPv4 network address from an `Ipv4Addr` and netmask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::net::Ipv4Addr;
+ /// use ipnet::{Ipv4Net, PrefixLenError};
+ ///
+ /// let net = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 255, 0));
+ /// assert!(net.is_ok());
+ ///
+ /// let bad_prefix_len = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 0, 1));
+ /// assert_eq!(bad_prefix_len, Err(PrefixLenError));
+ /// ```
+ pub fn with_netmask(ip: Ipv4Addr, netmask: Ipv4Addr) -> Result<Ipv4Net, PrefixLenError> {
+ let prefix = ipv4_mask_to_prefix(netmask)?;
+ Self::new(ip, prefix)
+ }
+
+ /// Returns a copy of the network with the address truncated to the
+ /// prefix length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// assert_eq!(
+ /// "192.168.12.34/16".parse::<Ipv4Net>().unwrap().trunc(),
+ /// "192.168.0.0/16".parse().unwrap()
+ /// );
+ /// ```
+ pub fn trunc(&self) -> Ipv4Net {
+ Ipv4Net::new(self.network(), self.prefix_len).unwrap()
+ }
+
+ /// Returns the address.
+ #[inline]
+ pub const fn addr(&self) -> Ipv4Addr {
+ self.addr
+ }
+
+ /// Returns the prefix length.
+ #[inline]
+ pub const fn prefix_len(&self) -> u8 {
+ self.prefix_len
+ }
+
+ /// Returns the maximum valid prefix length.
+ #[inline]
+ pub const fn max_prefix_len(&self) -> u8 {
+ 32
+ }
+
+ /// Returns the network mask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv4Addr;
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap();
+ /// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse());
+ /// ```
+ pub fn netmask(&self) -> Ipv4Addr {
+ Ipv4Addr::from(self.netmask_u32())
+ }
+
+ fn netmask_u32(&self) -> u32 {
+ u32::max_value().checked_shl(32 - self.prefix_len as u32).unwrap_or(0)
+ }
+
+ /// Returns the host mask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv4Addr;
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap();
+ /// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse());
+ /// ```
+ pub fn hostmask(&self) -> Ipv4Addr {
+ Ipv4Addr::from(self.hostmask_u32())
+ }
+
+ fn hostmask_u32(&self) -> u32 {
+ u32::max_value().checked_shr(self.prefix_len as u32).unwrap_or(0)
+ }
+
+ /// Returns the network address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv4Addr;
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let net: Ipv4Net = "172.16.123.123/16".parse().unwrap();
+ /// assert_eq!(Ok(net.network()), "172.16.0.0".parse());
+ /// ```
+ pub fn network(&self) -> Ipv4Addr {
+ Ipv4Addr::from(u32::from(self.addr) & self.netmask_u32())
+ }
+
+ /// Returns the broadcast address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv4Addr;
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let net: Ipv4Net = "172.16.0.0/22".parse().unwrap();
+ /// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse());
+ /// ```
+ pub fn broadcast(&self) -> Ipv4Addr {
+ Ipv4Addr::from(u32::from(self.addr) | self.hostmask_u32())
+ }
+
+ /// Returns the `Ipv4Net` that contains this one.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let n1: Ipv4Net = "172.16.1.0/24".parse().unwrap();
+ /// let n2: Ipv4Net = "172.16.0.0/23".parse().unwrap();
+ /// let n3: Ipv4Net = "172.16.0.0/0".parse().unwrap();
+ ///
+ /// assert_eq!(n1.supernet().unwrap(), n2);
+ /// assert_eq!(n3.supernet(), None);
+ /// ```
+ pub fn supernet(&self) -> Option<Ipv4Net> {
+ Ipv4Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok()
+ }
+
+ /// Returns `true` if this network and the given network are
+ /// children of the same supernet.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let n1: Ipv4Net = "10.1.0.0/24".parse().unwrap();
+ /// let n2: Ipv4Net = "10.1.1.0/24".parse().unwrap();
+ /// let n3: Ipv4Net = "10.1.2.0/24".parse().unwrap();
+ ///
+ /// assert!(n1.is_sibling(&n2));
+ /// assert!(!n2.is_sibling(&n3));
+ /// ```
+ pub fn is_sibling(&self, other: &Ipv4Net) -> bool {
+ self.prefix_len > 0 &&
+ self.prefix_len == other.prefix_len &&
+ self.supernet().unwrap().contains(other)
+ }
+
+ /// Return an `Iterator` over the host addresses in this network.
+ ///
+ /// If the prefix length is less than 31 both the network address
+ /// and broadcast address are excluded. These are only valid host
+ /// addresses when the prefix length is 31.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv4Addr;
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap();
+ /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![
+ /// "10.0.0.1".parse::<Ipv4Addr>().unwrap(),
+ /// "10.0.0.2".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: Ipv4Net = "10.0.0.0/31".parse().unwrap();
+ /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![
+ /// "10.0.0.0".parse::<Ipv4Addr>().unwrap(),
+ /// "10.0.0.1".parse().unwrap(),
+ /// ]);
+ /// ```
+ pub fn hosts(&self) -> Ipv4AddrRange {
+ let mut start = self.network();
+ let mut end = self.broadcast();
+
+ if self.prefix_len < 31 {
+ start = start.saturating_add(1);
+ end = end.saturating_sub(1);
+ }
+
+ Ipv4AddrRange::new(start, end)
+ }
+
+ /// Returns an `Iterator` over the subnets of this network with the
+ /// given prefix length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::{Ipv4Net, PrefixLenError};
+ /// #
+ /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap();
+ /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<Ipv4Net>>(), vec![
+ /// "10.0.0.0/26".parse::<Ipv4Net>().unwrap(),
+ /// "10.0.0.64/26".parse().unwrap(),
+ /// "10.0.0.128/26".parse().unwrap(),
+ /// "10.0.0.192/26".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap();
+ /// assert_eq!(net.subnets(32).unwrap().collect::<Vec<Ipv4Net>>(), vec![
+ /// "10.0.0.0/32".parse::<Ipv4Net>().unwrap(),
+ /// "10.0.0.1/32".parse().unwrap(),
+ /// "10.0.0.2/32".parse().unwrap(),
+ /// "10.0.0.3/32".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap();
+ /// assert_eq!(net.subnets(23), Err(PrefixLenError));
+ ///
+ /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap();
+ /// assert_eq!(net.subnets(33), Err(PrefixLenError));
+ /// ```
+ pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv4Subnets, PrefixLenError> {
+ if self.prefix_len > new_prefix_len || new_prefix_len > 32 {
+ return Err(PrefixLenError);
+ }
+
+ Ok(Ipv4Subnets::new(
+ self.network(),
+ self.broadcast(),
+ new_prefix_len,
+ ))
+ }
+
+ /// Test if a network address contains either another network
+ /// address or an IP address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv4Addr;
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let net: Ipv4Net = "192.168.0.0/24".parse().unwrap();
+ /// let net_yes: Ipv4Net = "192.168.0.0/25".parse().unwrap();
+ /// let net_no: Ipv4Net = "192.168.0.0/23".parse().unwrap();
+ /// let ip_yes: Ipv4Addr = "192.168.0.1".parse().unwrap();
+ /// let ip_no: Ipv4Addr = "192.168.1.0".parse().unwrap();
+ ///
+ /// assert!(net.contains(&net));
+ /// assert!(net.contains(&net_yes));
+ /// assert!(!net.contains(&net_no));
+ /// assert!(net.contains(&ip_yes));
+ /// assert!(!net.contains(&ip_no));
+ /// ```
+ pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> {
+ Contains::contains(self, other)
+ }
+
+ // It is significantly faster to work on u32 than Ipv4Addr.
+ fn interval(&self) -> (u32, u32) {
+ (
+ u32::from(self.network()),
+ u32::from(self.broadcast()).saturating_add(1),
+ )
+ }
+
+ /// Aggregate a `Vec` of `Ipv4Net`s and return the result as a new
+ /// `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv4Net;
+ /// #
+ /// let nets = vec![
+ /// "10.0.0.0/24".parse::<Ipv4Net>().unwrap(),
+ /// "10.0.1.0/24".parse().unwrap(),
+ /// "10.0.2.0/24".parse().unwrap(),
+ /// ];
+ ///
+ /// assert_eq!(Ipv4Net::aggregate(&nets), vec![
+ /// "10.0.0.0/23".parse::<Ipv4Net>().unwrap(),
+ /// "10.0.2.0/24".parse().unwrap(),
+ /// ]);
+ pub fn aggregate(networks: &Vec<Ipv4Net>) -> Vec<Ipv4Net> {
+ let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect();
+ intervals = merge_intervals(intervals);
+ let mut res: Vec<Ipv4Net> = Vec::new();
+
+ for (start, mut end) in intervals {
+ if end != std::u32::MAX {
+ end = end.saturating_sub(1)
+ }
+ let iter = Ipv4Subnets::new(start.into(), end.into(), 0);
+ res.extend(iter);
+ }
+ res
+ }
+}
+
+impl Default for Ipv4Net {
+ fn default() -> Self {
+ Self {
+ addr: Ipv4Addr::from(0),
+ prefix_len: 0,
+ }
+ }
+}
+
+impl fmt::Debug for Ipv4Net {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(self, fmt)
+ }
+}
+
+impl fmt::Display for Ipv4Net {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(fmt, "{}/{}", self.addr, self.prefix_len)
+ }
+}
+
+impl From<Ipv4Addr> for Ipv4Net {
+ fn from(addr: Ipv4Addr) -> Ipv4Net {
+ Ipv4Net { addr, prefix_len: 32 }
+ }
+}
+
+impl Ipv6Net {
+ /// Creates a new IPv6 network address from an `Ipv6Addr` and prefix
+ /// length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::net::Ipv6Addr;
+ /// use ipnet::{Ipv6Net, PrefixLenError};
+ ///
+ /// let net = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24);
+ /// assert!(net.is_ok());
+ ///
+ /// let bad_prefix_len = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129);
+ /// assert_eq!(bad_prefix_len, Err(PrefixLenError));
+ /// ```
+ #[inline]
+ pub const fn new(ip: Ipv6Addr, prefix_len: u8) -> Result<Ipv6Net, PrefixLenError> {
+ if prefix_len > 128 {
+ return Err(PrefixLenError);
+ }
+ Ok(Ipv6Net { addr: ip, prefix_len: prefix_len })
+ }
+
+ /// Creates a new IPv6 network address from an `Ipv6Addr` and netmask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::net::Ipv6Addr;
+ /// use ipnet::{Ipv6Net, PrefixLenError};
+ ///
+ /// let net = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0000_0000_0000_0000));
+ /// assert!(net.is_ok());
+ ///
+ /// let bad_prefix_len = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0001_0000_0000_0000));
+ /// assert_eq!(bad_prefix_len, Err(PrefixLenError));
+ /// ```
+ pub fn with_netmask(ip: Ipv6Addr, netmask: Ipv6Addr) -> Result<Ipv6Net, PrefixLenError> {
+ let prefix = ipv6_mask_to_prefix(netmask)?;
+ Self::new(ip, prefix)
+ }
+
+ /// Returns a copy of the network with the address truncated to the
+ /// prefix length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// assert_eq!(
+ /// "fd00::1:2:3:4/16".parse::<Ipv6Net>().unwrap().trunc(),
+ /// "fd00::/16".parse().unwrap()
+ /// );
+ /// ```
+ pub fn trunc(&self) -> Ipv6Net {
+ Ipv6Net::new(self.network(), self.prefix_len).unwrap()
+ }
+
+ /// Returns the address.
+ #[inline]
+ pub const fn addr(&self) -> Ipv6Addr {
+ self.addr
+ }
+
+ /// Returns the prefix length.
+ #[inline]
+ pub const fn prefix_len(&self) -> u8 {
+ self.prefix_len
+ }
+
+ /// Returns the maximum valid prefix length.
+ #[inline]
+ pub const fn max_prefix_len(&self) -> u8 {
+ 128
+ }
+
+ /// Returns the network mask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv6Addr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let net: Ipv6Net = "fd00::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse());
+ /// ```
+ pub fn netmask(&self) -> Ipv6Addr {
+ self.netmask_u128().into()
+ }
+
+ fn netmask_u128(&self) -> u128 {
+ u128::max_value().checked_shl((128 - self.prefix_len) as u32).unwrap_or(u128::min_value())
+ }
+
+ /// Returns the host mask.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv6Addr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let net: Ipv6Net = "fd00::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
+ /// ```
+ pub fn hostmask(&self) -> Ipv6Addr {
+ self.hostmask_u128().into()
+ }
+
+ fn hostmask_u128(&self) -> u128 {
+ u128::max_value().checked_shr(self.prefix_len as u32).unwrap_or(u128::min_value())
+ }
+
+ /// Returns the network address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv6Addr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.network()), "fd00:1200::".parse());
+ /// ```
+ pub fn network(&self) -> Ipv6Addr {
+ (u128::from(self.addr) & self.netmask_u128()).into()
+ }
+
+ /// Returns the last address.
+ ///
+ /// Technically there is no such thing as a broadcast address for
+ /// IPv6. The name is used for consistency with colloquial usage.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv6Addr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap();
+ /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
+ /// ```
+ pub fn broadcast(&self) -> Ipv6Addr {
+ (u128::from(self.addr) | self.hostmask_u128()).into()
+ }
+
+ /// Returns the `Ipv6Net` that contains this one.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::str::FromStr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let n1: Ipv6Net = "fd00:ff00::/24".parse().unwrap();
+ /// let n2: Ipv6Net = "fd00:fe00::/23".parse().unwrap();
+ /// let n3: Ipv6Net = "fd00:fe00::/0".parse().unwrap();
+ ///
+ /// assert_eq!(n1.supernet().unwrap(), n2);
+ /// assert_eq!(n3.supernet(), None);
+ /// ```
+ pub fn supernet(&self) -> Option<Ipv6Net> {
+ Ipv6Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok()
+ }
+
+ /// Returns `true` if this network and the given network are
+ /// children of the same supernet.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let n1: Ipv6Net = "fd00::/18".parse().unwrap();
+ /// let n2: Ipv6Net = "fd00:4000::/18".parse().unwrap();
+ /// let n3: Ipv6Net = "fd00:8000::/18".parse().unwrap();
+ ///
+ /// assert!(n1.is_sibling(&n2));
+ /// assert!(!n2.is_sibling(&n3));
+ /// ```
+ pub fn is_sibling(&self, other: &Ipv6Net) -> bool {
+ self.prefix_len > 0 &&
+ self.prefix_len == other.prefix_len &&
+ self.supernet().unwrap().contains(other)
+ }
+
+ /// Return an `Iterator` over the host addresses in this network.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv6Addr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let net: Ipv6Net = "fd00::/126".parse().unwrap();
+ /// assert_eq!(net.hosts().collect::<Vec<Ipv6Addr>>(), vec![
+ /// "fd00::".parse::<Ipv6Addr>().unwrap(),
+ /// "fd00::1".parse().unwrap(),
+ /// "fd00::2".parse().unwrap(),
+ /// "fd00::3".parse().unwrap(),
+ /// ]);
+ /// ```
+ pub fn hosts(&self) -> Ipv6AddrRange {
+ Ipv6AddrRange::new(self.network(), self.broadcast())
+ }
+
+ /// Returns an `Iterator` over the subnets of this network with the
+ /// given prefix length.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::{Ipv6Net, PrefixLenError};
+ /// #
+ /// let net: Ipv6Net = "fd00::/16".parse().unwrap();
+ /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<Ipv6Net>>(), vec![
+ /// "fd00::/18".parse::<Ipv6Net>().unwrap(),
+ /// "fd00:4000::/18".parse().unwrap(),
+ /// "fd00:8000::/18".parse().unwrap(),
+ /// "fd00:c000::/18".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: Ipv6Net = "fd00::/126".parse().unwrap();
+ /// assert_eq!(net.subnets(128).unwrap().collect::<Vec<Ipv6Net>>(), vec![
+ /// "fd00::/128".parse::<Ipv6Net>().unwrap(),
+ /// "fd00::1/128".parse().unwrap(),
+ /// "fd00::2/128".parse().unwrap(),
+ /// "fd00::3/128".parse().unwrap(),
+ /// ]);
+ ///
+ /// let net: Ipv6Net = "fd00::/16".parse().unwrap();
+ /// assert_eq!(net.subnets(15), Err(PrefixLenError));
+ ///
+ /// let net: Ipv6Net = "fd00::/16".parse().unwrap();
+ /// assert_eq!(net.subnets(129), Err(PrefixLenError));
+ /// ```
+ pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv6Subnets, PrefixLenError> {
+ if self.prefix_len > new_prefix_len || new_prefix_len > 128 {
+ return Err(PrefixLenError);
+ }
+
+ Ok(Ipv6Subnets::new(
+ self.network(),
+ self.broadcast(),
+ new_prefix_len,
+ ))
+ }
+
+ /// Test if a network address contains either another network
+ /// address or an IP address.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::net::Ipv6Addr;
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let net: Ipv6Net = "fd00::/16".parse().unwrap();
+ /// let net_yes: Ipv6Net = "fd00::/17".parse().unwrap();
+ /// let net_no: Ipv6Net = "fd00::/15".parse().unwrap();
+ /// let ip_yes: Ipv6Addr = "fd00::1".parse().unwrap();
+ /// let ip_no: Ipv6Addr = "fd01::".parse().unwrap();
+ ///
+ /// assert!(net.contains(&net));
+ /// assert!(net.contains(&net_yes));
+ /// assert!(!net.contains(&net_no));
+ /// assert!(net.contains(&ip_yes));
+ /// assert!(!net.contains(&ip_no));
+ /// ```
+ pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> {
+ Contains::contains(self, other)
+ }
+
+ // It is significantly faster to work on u128 that Ipv6Addr.
+ fn interval(&self) -> (u128, u128) {
+ (
+ u128::from(self.network()),
+ u128::from(self.broadcast()).saturating_add(1),
+ )
+ }
+
+ /// Aggregate a `Vec` of `Ipv6Net`s and return the result as a new
+ /// `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use ipnet::Ipv6Net;
+ /// #
+ /// let nets = vec![
+ /// "fd00::/18".parse::<Ipv6Net>().unwrap(),
+ /// "fd00:4000::/18".parse().unwrap(),
+ /// "fd00:8000::/18".parse().unwrap(),
+ /// ];
+ /// assert_eq!(Ipv6Net::aggregate(&nets), vec![
+ /// "fd00::/17".parse::<Ipv6Net>().unwrap(),
+ /// "fd00:8000::/18".parse().unwrap(),
+ /// ]);
+ /// ```
+ pub fn aggregate(networks: &Vec<Ipv6Net>) -> Vec<Ipv6Net> {
+ let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect();
+ intervals = merge_intervals(intervals);
+ let mut res: Vec<Ipv6Net> = Vec::new();
+
+ for (start, mut end) in intervals {
+ if end != std::u128::MAX {
+ end = end.saturating_sub(1)
+ }
+ let iter = Ipv6Subnets::new(start.into(), end.into(), 0);
+ res.extend(iter);
+ }
+ res
+ }
+}
+
+impl Default for Ipv6Net {
+ fn default() -> Self {
+ Self {
+ addr: Ipv6Addr::from(0),
+ prefix_len: 0,
+ }
+ }
+}
+
+impl fmt::Debug for Ipv6Net {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Display::fmt(self, fmt)
+ }
+}
+
+impl fmt::Display for Ipv6Net {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(fmt, "{}/{}", self.addr, self.prefix_len)
+ }
+}
+
+impl From<Ipv6Addr> for Ipv6Net {
+ fn from(addr: Ipv6Addr) -> Ipv6Net {
+ Ipv6Net { addr, prefix_len: 128 }
+ }
+}
+
+/// Provides a method to test if a network address contains either
+/// another network address or an IP address.
+///
+/// # Examples
+///
+/// ```
+/// # use std::net::IpAddr;
+/// # use ipnet::IpNet;
+/// #
+/// let n4_1: IpNet = "10.1.1.0/24".parse().unwrap();
+/// let n4_2: IpNet = "10.1.1.0/26".parse().unwrap();
+/// let n4_3: IpNet = "10.1.2.0/26".parse().unwrap();
+/// let ip4_1: IpAddr = "10.1.1.1".parse().unwrap();
+/// let ip4_2: IpAddr = "10.1.2.1".parse().unwrap();
+///
+/// let n6_1: IpNet = "fd00::/16".parse().unwrap();
+/// let n6_2: IpNet = "fd00::/17".parse().unwrap();
+/// let n6_3: IpNet = "fd01::/17".parse().unwrap();
+/// let ip6_1: IpAddr = "fd00::1".parse().unwrap();
+/// let ip6_2: IpAddr = "fd01::1".parse().unwrap();
+///
+/// assert!(n4_1.contains(&n4_2));
+/// assert!(!n4_1.contains(&n4_3));
+/// assert!(n4_1.contains(&ip4_1));
+/// assert!(!n4_1.contains(&ip4_2));
+///
+/// assert!(n6_1.contains(&n6_2));
+/// assert!(!n6_1.contains(&n6_3));
+/// assert!(n6_1.contains(&ip6_1));
+/// assert!(!n6_1.contains(&ip6_2));
+///
+/// assert!(!n4_1.contains(&n6_1) && !n6_1.contains(&n4_1));
+/// assert!(!n4_1.contains(&ip6_1) && !n6_1.contains(&ip4_1));
+/// ```
+pub trait Contains<T> {
+ fn contains(&self, other: T) -> bool;
+}
+
+impl<'a> Contains<&'a IpNet> for IpNet {
+ fn contains(&self, other: &IpNet) -> bool {
+ match (*self, *other) {
+ (IpNet::V4(ref a), IpNet::V4(ref b)) => a.contains(b),
+ (IpNet::V6(ref a), IpNet::V6(ref b)) => a.contains(b),
+ _ => false,
+ }
+ }
+}
+
+impl<'a> Contains<&'a IpAddr> for IpNet {
+ fn contains(&self, other: &IpAddr) -> bool {
+ match (*self, *other) {
+ (IpNet::V4(ref a), IpAddr::V4(ref b)) => a.contains(b),
+ (IpNet::V6(ref a), IpAddr::V6(ref b)) => a.contains(b),
+ _ => false,
+ }
+ }
+}
+
+impl<'a> Contains<&'a Ipv4Net> for Ipv4Net {
+ fn contains(&self, other: &'a Ipv4Net) -> bool {
+ self.network() <= other.network() && other.broadcast() <= self.broadcast()
+ }
+}
+
+impl<'a> Contains<&'a Ipv4Addr> for Ipv4Net {
+ fn contains(&self, other: &'a Ipv4Addr) -> bool {
+ self.network() <= *other && *other <= self.broadcast()
+ }
+}
+
+impl<'a> Contains<&'a Ipv6Net> for Ipv6Net {
+ fn contains(&self, other: &'a Ipv6Net) -> bool {
+ self.network() <= other.network() && other.broadcast() <= self.broadcast()
+ }
+}
+
+impl<'a> Contains<&'a Ipv6Addr> for Ipv6Net {
+ fn contains(&self, other: &'a Ipv6Addr) -> bool {
+ self.network() <= *other && *other <= self.broadcast()
+ }
+}
+
+/// An `Iterator` that generates IP network addresses, either IPv4 or
+/// IPv6.
+///
+/// Generates the subnets between the provided `start` and `end` IP
+/// addresses inclusive of `end`. Each iteration generates the next
+/// network address of the largest valid size it can, while using a
+/// prefix length not less than `min_prefix_len`.
+///
+/// # Examples
+///
+/// ```
+/// # use std::net::{Ipv4Addr, Ipv6Addr};
+/// # use std::str::FromStr;
+/// # use ipnet::{IpNet, IpSubnets, Ipv4Subnets, Ipv6Subnets};
+/// let subnets = IpSubnets::from(Ipv4Subnets::new(
+/// "10.0.0.0".parse().unwrap(),
+/// "10.0.0.239".parse().unwrap(),
+/// 26,
+/// ));
+///
+/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![
+/// "10.0.0.0/26".parse().unwrap(),
+/// "10.0.0.64/26".parse().unwrap(),
+/// "10.0.0.128/26".parse().unwrap(),
+/// "10.0.0.192/27".parse().unwrap(),
+/// "10.0.0.224/28".parse().unwrap(),
+/// ]);
+///
+/// let subnets = IpSubnets::from(Ipv6Subnets::new(
+/// "fd00::".parse().unwrap(),
+/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(),
+/// 26,
+/// ));
+///
+/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![
+/// "fd00::/26".parse().unwrap(),
+/// "fd00:40::/26".parse().unwrap(),
+/// "fd00:80::/26".parse().unwrap(),
+/// "fd00:c0::/27".parse().unwrap(),
+/// "fd00:e0::/28".parse().unwrap(),
+/// ]);
+/// ```
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
+pub enum IpSubnets {
+ V4(Ipv4Subnets),
+ V6(Ipv6Subnets),
+}
+
+/// An `Iterator` that generates IPv4 network addresses.
+///
+/// Generates the subnets between the provided `start` and `end` IP
+/// addresses inclusive of `end`. Each iteration generates the next
+/// network address of the largest valid size it can, while using a
+/// prefix length not less than `min_prefix_len`.
+///
+/// # Examples
+///
+/// ```
+/// # use std::net::Ipv4Addr;
+/// # use std::str::FromStr;
+/// # use ipnet::{Ipv4Net, Ipv4Subnets};
+/// let subnets = Ipv4Subnets::new(
+/// "10.0.0.0".parse().unwrap(),
+/// "10.0.0.239".parse().unwrap(),
+/// 26,
+/// );
+///
+/// assert_eq!(subnets.collect::<Vec<Ipv4Net>>(), vec![
+/// "10.0.0.0/26".parse().unwrap(),
+/// "10.0.0.64/26".parse().unwrap(),
+/// "10.0.0.128/26".parse().unwrap(),
+/// "10.0.0.192/27".parse().unwrap(),
+/// "10.0.0.224/28".parse().unwrap(),
+/// ]);
+/// ```
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
+pub struct Ipv4Subnets {
+ start: Ipv4Addr,
+ end: Ipv4Addr, // end is inclusive
+ min_prefix_len: u8,
+}
+
+/// An `Iterator` that generates IPv6 network addresses.
+///
+/// Generates the subnets between the provided `start` and `end` IP
+/// addresses inclusive of `end`. Each iteration generates the next
+/// network address of the largest valid size it can, while using a
+/// prefix length not less than `min_prefix_len`.
+///
+/// # Examples
+///
+/// ```
+/// # use std::net::Ipv6Addr;
+/// # use std::str::FromStr;
+/// # use ipnet::{Ipv6Net, Ipv6Subnets};
+/// let subnets = Ipv6Subnets::new(
+/// "fd00::".parse().unwrap(),
+/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(),
+/// 26,
+/// );
+///
+/// assert_eq!(subnets.collect::<Vec<Ipv6Net>>(), vec![
+/// "fd00::/26".parse().unwrap(),
+/// "fd00:40::/26".parse().unwrap(),
+/// "fd00:80::/26".parse().unwrap(),
+/// "fd00:c0::/27".parse().unwrap(),
+/// "fd00:e0::/28".parse().unwrap(),
+/// ]);
+/// ```
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
+pub struct Ipv6Subnets {
+ start: Ipv6Addr,
+ end: Ipv6Addr, // end is inclusive
+ min_prefix_len: u8,
+}
+
+impl Ipv4Subnets {
+ pub fn new(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Self {
+ Ipv4Subnets {
+ start: start,
+ end: end,
+ min_prefix_len: min_prefix_len,
+ }
+ }
+}
+
+impl Ipv6Subnets {
+ pub fn new(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Self {
+ Ipv6Subnets {
+ start: start,
+ end: end,
+ min_prefix_len: min_prefix_len,
+ }
+ }
+}
+
+impl From<Ipv4Subnets> for IpSubnets {
+ fn from(i: Ipv4Subnets) -> IpSubnets {
+ IpSubnets::V4(i)
+ }
+}
+
+impl From<Ipv6Subnets> for IpSubnets {
+ fn from(i: Ipv6Subnets) -> IpSubnets {
+ IpSubnets::V6(i)
+ }
+}
+
+impl Iterator for IpSubnets {
+ type Item = IpNet;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match *self {
+ IpSubnets::V4(ref mut a) => a.next().map(IpNet::V4),
+ IpSubnets::V6(ref mut a) => a.next().map(IpNet::V6),
+ }
+ }
+}
+
+fn next_ipv4_subnet(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Ipv4Net {
+ let range = end.saturating_sub(start).saturating_add(1);
+ if range == std::u32::MAX && min_prefix_len == 0 {
+ Ipv4Net::new(start, min_prefix_len).unwrap()
+ }
+ else {
+ let range_bits = 32u32.saturating_sub(range.leading_zeros()).saturating_sub(1);
+ let start_tz = u32::from(start).trailing_zeros();
+ let new_prefix_len = 32 - min(range_bits, start_tz);
+ let next_prefix_len = max(new_prefix_len as u8, min_prefix_len);
+ Ipv4Net::new(start, next_prefix_len).unwrap()
+ }
+}
+
+fn next_ipv6_subnet(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Ipv6Net {
+ let range = end.saturating_sub(start).saturating_add(1);
+ if range == std::u128::MAX && min_prefix_len == 0 {
+ Ipv6Net::new(start, min_prefix_len).unwrap()
+ }
+ else {
+ let range = end.saturating_sub(start).saturating_add(1);
+ let range_bits = 128u32.saturating_sub(range.leading_zeros()).saturating_sub(1);
+ let start_tz = u128::from(start).trailing_zeros();
+ let new_prefix_len = 128 - min(range_bits, start_tz);
+ let next_prefix_len = max(new_prefix_len as u8, min_prefix_len);
+ Ipv6Net::new(start, next_prefix_len).unwrap()
+ }
+}
+
+impl Iterator for Ipv4Subnets {
+ type Item = Ipv4Net;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match self.start.partial_cmp(&self.end) {
+ Some(Less) => {
+ let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len);
+ self.start = next.broadcast().saturating_add(1);
+
+ // Stop the iterator if we saturated self.start. This
+ // check worsens performance slightly but overall this
+ // approach of operating on Ipv4Addr types is faster
+ // than what we were doing before using Ipv4Net.
+ if self.start == next.broadcast() {
+ self.end.replace_zero();
+ }
+ Some(next)
+ },
+ Some(Equal) => {
+ let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len);
+ self.start = next.broadcast().saturating_add(1);
+ self.end.replace_zero();
+ Some(next)
+ },
+ _ => None,
+ }
+ }
+}
+
+impl Iterator for Ipv6Subnets {
+ type Item = Ipv6Net;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match self.start.partial_cmp(&self.end) {
+ Some(Less) => {
+ let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len);
+ self.start = next.broadcast().saturating_add(1);
+
+ // Stop the iterator if we saturated self.start. This
+ // check worsens performance slightly but overall this
+ // approach of operating on Ipv6Addr types is faster
+ // than what we were doing before using Ipv6Net.
+ if self.start == next.broadcast() {
+ self.end.replace_zero();
+ }
+ Some(next)
+ },
+ Some(Equal) => {
+ let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len);
+ self.start = next.broadcast().saturating_add(1);
+ self.end.replace_zero();
+ Some(next)
+ },
+ _ => None,
+ }
+ }
+}
+
+impl FusedIterator for IpSubnets {}
+impl FusedIterator for Ipv4Subnets {}
+impl FusedIterator for Ipv6Subnets {}
+
+// Generic function for merging a vector of intervals.
+fn merge_intervals<T: Copy + Ord>(mut intervals: Vec<(T, T)>) -> Vec<(T, T)> {
+ if intervals.len() == 0 {
+ return intervals;
+ }
+
+ intervals.sort();
+ let mut res: Vec<(T, T)> = Vec::new();
+ let (mut start, mut end) = intervals[0];
+
+ let mut i = 1;
+ let len = intervals.len();
+ while i < len {
+ let (next_start, next_end) = intervals[i];
+ if end >= next_start {
+ start = min(start, next_start);
+ end = max(end, next_end);
+ }
+ else {
+ res.push((start, end));
+ start = next_start;
+ end = next_end;
+ }
+ i += 1;
+ }
+
+ res.push((start, end));
+ res
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ macro_rules! make_ipnet_vec {
+ ($($x:expr),*) => ( vec![$($x.parse::<IpNet>().unwrap(),)*] );
+ ($($x:expr,)*) => ( make_ipnet_vec![$($x),*] );
+ }
+
+ #[test]
+ fn test_make_ipnet_vec() {
+ assert_eq!(
+ make_ipnet_vec![
+ "10.1.1.1/32", "10.2.2.2/24", "10.3.3.3/16",
+ "fd00::1/128", "fd00::2/127", "fd00::3/126",
+ ],
+ vec![
+ "10.1.1.1/32".parse().unwrap(),
+ "10.2.2.2/24".parse().unwrap(),
+ "10.3.3.3/16".parse().unwrap(),
+ "fd00::1/128".parse().unwrap(),
+ "fd00::2/127".parse().unwrap(),
+ "fd00::3/126".parse().unwrap(),
+ ]
+ );
+ }
+
+ #[test]
+ fn test_merge_intervals() {
+ let v = vec![
+ (0, 1), (1, 2), (2, 3),
+ (11, 12), (13, 14), (10, 15), (11, 13),
+ (20, 25), (24, 29),
+ ];
+
+ let v_ok = vec![
+ (0, 3),
+ (10, 15),
+ (20, 29),
+ ];
+
+ let vv = vec![
+ ([0, 1], [0, 2]), ([0, 2], [0, 3]), ([0, 0], [0, 1]),
+ ([10, 15], [11, 0]), ([10, 0], [10, 16]),
+ ];
+
+ let vv_ok = vec![
+ ([0, 0], [0, 3]),
+ ([10, 0], [11, 0]),
+ ];
+
+ assert_eq!(merge_intervals(v), v_ok);
+ assert_eq!(merge_intervals(vv), vv_ok);
+ }
+
+ macro_rules! make_ipv4_subnets_test {
+ ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => (
+ #[test]
+ fn $name() {
+ let subnets = IpSubnets::from(Ipv4Subnets::new(
+ $start.parse().unwrap(),
+ $end.parse().unwrap(),
+ $min_prefix_len,
+ ));
+ let results = make_ipnet_vec![$($x),*];
+ assert_eq!(subnets.collect::<Vec<IpNet>>(), results);
+ }
+ );
+ ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => (
+ make_ipv4_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*);
+ );
+ }
+
+ macro_rules! make_ipv6_subnets_test {
+ ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => (
+ #[test]
+ fn $name() {
+ let subnets = IpSubnets::from(Ipv6Subnets::new(
+ $start.parse().unwrap(),
+ $end.parse().unwrap(),
+ $min_prefix_len,
+ ));
+ let results = make_ipnet_vec![$($x),*];
+ assert_eq!(subnets.collect::<Vec<IpNet>>(), results);
+ }
+ );
+ ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => (
+ make_ipv6_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*);
+ );
+ }
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_zero_zero,
+ "0.0.0.0", "0.0.0.0", 0,
+ "0.0.0.0/32",
+ );
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_zero_max,
+ "0.0.0.0", "255.255.255.255", 0,
+ "0.0.0.0/0",
+ );
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_max_max,
+ "255.255.255.255", "255.255.255.255", 0,
+ "255.255.255.255/32",
+ );
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_none,
+ "0.0.0.1", "0.0.0.0", 0,
+ );
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_one,
+ "0.0.0.0", "0.0.0.1", 0,
+ "0.0.0.0/31",
+ );
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_two,
+ "0.0.0.0", "0.0.0.2", 0,
+ "0.0.0.0/31",
+ "0.0.0.2/32",
+ );
+
+ make_ipv4_subnets_test!(
+ test_ipv4_subnets_taper,
+ "0.0.0.0", "0.0.0.10", 30,
+ "0.0.0.0/30",
+ "0.0.0.4/30",
+ "0.0.0.8/31",
+ "0.0.0.10/32",
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_zero_zero,
+ "::", "::", 0,
+ "::/128",
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_zero_max,
+ "::", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0,
+ "::/0",
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_max_max,
+ "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0,
+ "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128",
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_none,
+ "::1", "::", 0,
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_one,
+ "::", "::1", 0,
+ "::/127",
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_two,
+ "::", "::2", 0,
+ "::/127",
+ "::2/128",
+ );
+
+ make_ipv6_subnets_test!(
+ test_ipv6_subnets_taper,
+ "::", "::a", 126,
+ "::/126",
+ "::4/126",
+ "::8/127",
+ "::a/128",
+ );
+
+ #[test]
+ fn test_aggregate() {
+ let ip_nets = make_ipnet_vec![
+ "10.0.0.0/24", "10.0.1.0/24", "10.0.1.1/24", "10.0.1.2/24",
+ "10.0.2.0/24",
+ "10.1.0.0/24", "10.1.1.0/24",
+ "192.168.0.0/24", "192.168.1.0/24", "192.168.2.0/24", "192.168.3.0/24",
+ "fd00::/32", "fd00:1::/32",
+ "fd00:2::/32",
+ ];
+
+ let ip_aggs = make_ipnet_vec![
+ "10.0.0.0/23",
+ "10.0.2.0/24",
+ "10.1.0.0/23",
+ "192.168.0.0/22",
+ "fd00::/31",
+ "fd00:2::/32",
+ ];
+
+ let ipv4_nets: Vec<Ipv4Net> = ip_nets.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect();
+ let ipv4_aggs: Vec<Ipv4Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect();
+ let ipv6_nets: Vec<Ipv6Net> = ip_nets.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect();
+ let ipv6_aggs: Vec<Ipv6Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect();
+
+ assert_eq!(IpNet::aggregate(&ip_nets), ip_aggs);
+ assert_eq!(Ipv4Net::aggregate(&ipv4_nets), ipv4_aggs);
+ assert_eq!(Ipv6Net::aggregate(&ipv6_nets), ipv6_aggs);
+ }
+
+ #[test]
+ fn test_aggregate_issue44() {
+ let nets: Vec<Ipv4Net> = vec!["128.0.0.0/1".parse().unwrap()];
+ assert_eq!(Ipv4Net::aggregate(&nets), nets);
+
+ let nets: Vec<Ipv4Net> = vec!["0.0.0.0/1".parse().unwrap(), "128.0.0.0/1".parse().unwrap()];
+ assert_eq!(Ipv4Net::aggregate(&nets), vec!["0.0.0.0/0".parse().unwrap()]);
+
+ let nets: Vec<Ipv6Net> = vec!["8000::/1".parse().unwrap()];
+ assert_eq!(Ipv6Net::aggregate(&nets), nets);
+
+ let nets: Vec<Ipv6Net> = vec!["::/1".parse().unwrap(), "8000::/1".parse().unwrap()];
+ assert_eq!(Ipv6Net::aggregate(&nets), vec!["::/0".parse().unwrap()]);
+ }
+
+ #[test]
+ fn ipnet_default() {
+ let ipnet: IpNet = "0.0.0.0/0".parse().unwrap();
+ assert_eq!(ipnet, IpNet::default());
+ }
+
+ #[test]
+ fn ipv4net_default() {
+ let ipnet: Ipv4Net = "0.0.0.0/0".parse().unwrap();
+ assert_eq!(ipnet, Ipv4Net::default());
+ }
+
+ #[test]
+ fn ipv6net_default() {
+ let ipnet: Ipv6Net = "::/0".parse().unwrap();
+ assert_eq!(ipnet, Ipv6Net::default());
+ }
+}