diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
commit | 698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch) | |
tree | 173a775858bd501c378080a10dca74132f05bc50 /vendor/libloading/src/os/unix/mod.rs | |
parent | Initial commit. (diff) | |
download | rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip |
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/libloading/src/os/unix/mod.rs')
-rw-r--r-- | vendor/libloading/src/os/unix/mod.rs | 446 |
1 files changed, 446 insertions, 0 deletions
diff --git a/vendor/libloading/src/os/unix/mod.rs b/vendor/libloading/src/os/unix/mod.rs new file mode 100644 index 000000000..fd0777eab --- /dev/null +++ b/vendor/libloading/src/os/unix/mod.rs @@ -0,0 +1,446 @@ +// A hack for docs.rs to build documentation that has both windows and linux documentation in the +// same rustdoc build visible. +#[cfg(all(libloading_docs, not(unix)))] +mod unix_imports {} +#[cfg(any(not(libloading_docs), unix))] +mod unix_imports { + pub(super) use std::os::unix::ffi::OsStrExt; +} + +pub use self::consts::*; +use self::unix_imports::*; +use std::ffi::{CStr, OsStr}; +use std::os::raw; +use std::{fmt, marker, mem, ptr}; +use util::{cstr_cow_from_bytes, ensure_compatible_types}; + +mod consts; + +// dl* family of functions did not have enough thought put into it. +// +// Whole error handling scheme is done via setting and querying some global state, therefore it is +// not safe to use dynamic library loading in MT-capable environment at all. Only in POSIX 2008+TC1 +// a thread-local state was allowed for `dlerror`, making the dl* family of functions MT-safe. +// +// In practice (as of 2020-04-01) most of the widely used targets use a thread-local for error +// state and have been doing so for a long time. Regardless the comments in this function shall +// remain as a documentation for the future generations. +fn with_dlerror<T, F>(wrap: fn(crate::error::DlDescription) -> crate::Error, closure: F) +-> Result<T, Option<crate::Error>> +where F: FnOnce() -> Option<T> { + // We used to guard all uses of dl* functions with our own mutex. This made them safe to use in + // MT programs provided the only way a program used dl* was via this library. However, it also + // had a number of downsides or cases where it failed to handle the problems. For instance, + // if any other library called `dlerror` internally concurrently with `libloading` things would + // still go awry. + // + // On platforms where `dlerror` is still MT-unsafe, `dlsym` (`Library::get`) can spuriously + // succeed and return a null pointer for a symbol when the actual symbol look-up operation + // fails. Instances where the actual symbol _could_ be `NULL` are platform specific. For + // instance on GNU glibc based-systems (an excerpt from dlsym(3)): + // + // > The value of a symbol returned by dlsym() will never be NULL if the shared object is the + // > result of normal compilation, since a global symbol is never placed at the NULL + // > address. There are nevertheless cases where a lookup using dlsym() may return NULL as the + // > value of a symbol. For example, the symbol value may be the result of a GNU indirect + // > function (IFUNC) resolver function that returns NULL as the resolved value. + + // While we could could call `dlerror` here to clear the previous error value, only the `dlsym` + // call depends on it being cleared beforehand and only in some cases too. We will instead + // clear the error inside the dlsym binding instead. + // + // In all the other cases, clearing the error here will only be hiding misuse of these bindings + // or a bug in implementation of dl* family of functions. + closure().ok_or_else(|| unsafe { + // This code will only get executed if the `closure` returns `None`. + let error = dlerror(); + if error.is_null() { + // In non-dlsym case this may happen when there’re bugs in our bindings or there’s + // non-libloading user of libdl; possibly in another thread. + None + } else { + // You can’t even rely on error string being static here; call to subsequent dlerror + // may invalidate or overwrite the error message. Why couldn’t they simply give up the + // ownership over the message? + // TODO: should do locale-aware conversion here. OTOH Rust doesn’t seem to work well in + // any system that uses non-utf8 locale, so I doubt there’s a problem here. + let message = CStr::from_ptr(error).into(); + Some(wrap(crate::error::DlDescription(message))) + // Since we do a copy of the error string above, maybe we should call dlerror again to + // let libdl know it may free its copy of the string now? + } + }) +} + +/// A platform-specific counterpart of the cross-platform [`Library`](crate::Library). +pub struct Library { + handle: *mut raw::c_void +} + +unsafe impl Send for Library {} + +// That being said... this section in the volume 2 of POSIX.1-2008 states: +// +// > All functions defined by this volume of POSIX.1-2008 shall be thread-safe, except that the +// > following functions need not be thread-safe. +// +// With notable absence of any dl* function other than dlerror in the list. By “this volume” +// I suppose they refer precisely to the “volume 2”. dl* family of functions are specified +// by this same volume, so the conclusion is indeed that dl* functions are required by POSIX +// to be thread-safe. Great! +// +// See for more details: +// +// * https://github.com/nagisa/rust_libloading/pull/17 +// * http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01 +unsafe impl Sync for Library {} + +impl Library { + /// Find and eagerly load a shared library (module). + /// + /// If the `filename` contains a [path separator], the `filename` is interpreted as a `path` to + /// a file. Otherwise, platform-specific algorithms are employed to find a library with a + /// matching file name. + /// + /// This is equivalent to <code>[Library::open](filename, [RTLD_LAZY] | [RTLD_LOCAL])</code>. + /// + /// [path separator]: std::path::MAIN_SEPARATOR + /// + /// # Safety + /// + /// When a library is loaded, initialisation routines contained within the library are executed. + /// For the purposes of safety, the execution of these routines is conceptually the same calling an + /// unknown foreign function and may impose arbitrary requirements on the caller for the call + /// to be sound. + /// + /// Additionally, the callers of this function must also ensure that execution of the + /// termination routines contained within the library is safe as well. These routines may be + /// executed when the library is unloaded. + #[inline] + pub unsafe fn new<P: AsRef<OsStr>>(filename: P) -> Result<Library, crate::Error> { + Library::open(Some(filename), RTLD_LAZY | RTLD_LOCAL) + } + + /// Load the `Library` representing the current executable. + /// + /// [`Library::get`] calls of the returned `Library` will look for symbols in following + /// locations in order: + /// + /// 1. The original program image; + /// 2. Any executable object files (e.g. shared libraries) loaded at program startup; + /// 3. Any executable object files loaded at runtime (e.g. via other `Library::new` calls or via + /// calls to the `dlopen` function). + /// + /// Note that the behaviour of a `Library` loaded with this method is different from that of + /// Libraries loaded with [`os::windows::Library::this`]. + /// + /// This is equivalent to <code>[Library::open](None, [RTLD_LAZY] | [RTLD_LOCAL])</code>. + /// + /// [`os::windows::Library::this`]: crate::os::windows::Library::this + #[inline] + pub fn this() -> Library { + unsafe { + // SAFE: this does not load any new shared library images, no danger in it executing + // initialiser routines. + Library::open(None::<&OsStr>, RTLD_LAZY | RTLD_LOCAL).expect("this should never fail") + } + } + + /// Find and load an executable object file (shared library). + /// + /// See documentation for [`Library::this`] for further description of the behaviour + /// when the `filename` is `None`. Otherwise see [`Library::new`]. + /// + /// Corresponds to `dlopen(filename, flags)`. + /// + /// # Safety + /// + /// When a library is loaded, initialisation routines contained within the library are executed. + /// For the purposes of safety, the execution of these routines is conceptually the same calling an + /// unknown foreign function and may impose arbitrary requirements on the caller for the call + /// to be sound. + /// + /// Additionally, the callers of this function must also ensure that execution of the + /// termination routines contained within the library is safe as well. These routines may be + /// executed when the library is unloaded. + pub unsafe fn open<P>(filename: Option<P>, flags: raw::c_int) -> Result<Library, crate::Error> + where P: AsRef<OsStr> { + let filename = match filename { + None => None, + Some(ref f) => Some(cstr_cow_from_bytes(f.as_ref().as_bytes())?), + }; + with_dlerror(|desc| crate::Error::DlOpen { desc }, move || { + let result = dlopen(match filename { + None => ptr::null(), + Some(ref f) => f.as_ptr() + }, flags); + // ensure filename lives until dlopen completes + drop(filename); + if result.is_null() { + None + } else { + Some(Library { + handle: result + }) + } + }).map_err(|e| e.unwrap_or(crate::Error::DlOpenUnknown)) + } + + unsafe fn get_impl<T, F>(&self, symbol: &[u8], on_null: F) -> Result<Symbol<T>, crate::Error> + where F: FnOnce() -> Result<Symbol<T>, crate::Error> + { + ensure_compatible_types::<T, *mut raw::c_void>()?; + let symbol = cstr_cow_from_bytes(symbol)?; + // `dlsym` may return nullptr in two cases: when a symbol genuinely points to a null + // pointer or the symbol cannot be found. In order to detect this case a double dlerror + // pattern must be used, which is, sadly, a little bit racy. + // + // We try to leave as little space as possible for this to occur, but we can’t exactly + // fully prevent it. + match with_dlerror(|desc| crate::Error::DlSym { desc }, || { + dlerror(); + let symbol = dlsym(self.handle, symbol.as_ptr()); + if symbol.is_null() { + None + } else { + Some(Symbol { + pointer: symbol, + pd: marker::PhantomData + }) + } + }) { + Err(None) => on_null(), + Err(Some(e)) => Err(e), + Ok(x) => Ok(x) + } + + } + + /// Get a pointer to a function or static variable by symbol name. + /// + /// The `symbol` may not contain any null bytes, with the exception of the last byte. Providing a + /// null terminated `symbol` may help to avoid an allocation. + /// + /// Symbol is interpreted as-is; no mangling is done. This means that symbols like `x::y` are + /// most likely invalid. + /// + /// # Safety + /// + /// Users of this API must specify the correct type of the function or variable loaded. Using a + /// `Symbol` with a wrong type is undefined. + /// + /// # Platform-specific behaviour + /// + /// Implementation of thread local variables is extremely platform specific and uses of such + /// variables that work on e.g. Linux may have unintended behaviour on other targets. + /// + /// On POSIX implementations where the `dlerror` function is not confirmed to be MT-safe (such + /// as FreeBSD), this function will unconditionally return an error when the underlying `dlsym` + /// call returns a null pointer. There are rare situations where `dlsym` returns a genuine null + /// pointer without it being an error. If loading a null pointer is something you care about, + /// consider using the [`Library::get_singlethreaded`] call. + #[inline(always)] + pub unsafe fn get<T>(&self, symbol: &[u8]) -> Result<Symbol<T>, crate::Error> { + extern crate cfg_if; + cfg_if::cfg_if! { + // These targets are known to have MT-safe `dlerror`. + if #[cfg(any( + target_os = "linux", + target_os = "android", + target_os = "openbsd", + target_os = "macos", + target_os = "ios", + target_os = "solaris", + target_os = "illumos", + target_os = "redox", + target_os = "fuchsia" + ))] { + self.get_singlethreaded(symbol) + } else { + self.get_impl(symbol, || Err(crate::Error::DlSymUnknown)) + } + } + } + + /// Get a pointer to function or static variable by symbol name. + /// + /// The `symbol` may not contain any null bytes, with the exception of the last byte. Providing a + /// null terminated `symbol` may help to avoid an allocation. + /// + /// Symbol is interpreted as-is; no mangling is done. This means that symbols like `x::y` are + /// most likely invalid. + /// + /// # Safety + /// + /// Users of this API must specify the correct type of the function or variable loaded. + /// + /// It is up to the user of this library to ensure that no other calls to an MT-unsafe + /// implementation of `dlerror` occur during the execution of this function. Failing that, the + /// behaviour of this function is not defined. + /// + /// # Platform-specific behaviour + /// + /// The implementation of thread-local variables is extremely platform specific and uses of such + /// variables that work on e.g. Linux may have unintended behaviour on other targets. + #[inline(always)] + pub unsafe fn get_singlethreaded<T>(&self, symbol: &[u8]) -> Result<Symbol<T>, crate::Error> { + self.get_impl(symbol, || Ok(Symbol { + pointer: ptr::null_mut(), + pd: marker::PhantomData + })) + } + + /// Convert the `Library` to a raw handle. + /// + /// The handle returned by this function shall be usable with APIs which accept handles + /// as returned by `dlopen`. + pub fn into_raw(self) -> *mut raw::c_void { + let handle = self.handle; + mem::forget(self); + handle + } + + /// Convert a raw handle returned by `dlopen`-family of calls to a `Library`. + /// + /// # Safety + /// + /// The pointer shall be a result of a successful call of the `dlopen`-family of functions or a + /// pointer previously returned by `Library::into_raw` call. It must be valid to call `dlclose` + /// with this pointer as an argument. + pub unsafe fn from_raw(handle: *mut raw::c_void) -> Library { + Library { + handle + } + } + + /// Unload the library. + /// + /// This method might be a no-op, depending on the flags with which the `Library` was opened, + /// what library was opened or other platform specifics. + /// + /// You only need to call this if you are interested in handling any errors that may arise when + /// library is unloaded. Otherwise the implementation of `Drop` for `Library` will close the + /// library and ignore the errors were they arise. + /// + /// The underlying data structures may still get leaked if an error does occur. + pub fn close(self) -> Result<(), crate::Error> { + let result = with_dlerror(|desc| crate::Error::DlClose { desc }, || { + if unsafe { dlclose(self.handle) } == 0 { + Some(()) + } else { + None + } + }).map_err(|e| e.unwrap_or(crate::Error::DlCloseUnknown)); + // While the library is not free'd yet in case of an error, there is no reason to try + // dropping it again, because all that will do is try calling `dlclose` again. only + // this time it would ignore the return result, which we already seen failing… + std::mem::forget(self); + result + } +} + +impl Drop for Library { + fn drop(&mut self) { + unsafe { + dlclose(self.handle); + } + } +} + +impl fmt::Debug for Library { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.write_str(&format!("Library@{:p}", self.handle)) + } +} + +/// Symbol from a library. +/// +/// A major difference compared to the cross-platform `Symbol` is that this does not ensure that the +/// `Symbol` does not outlive the `Library` it comes from. +pub struct Symbol<T> { + pointer: *mut raw::c_void, + pd: marker::PhantomData<T> +} + +impl<T> Symbol<T> { + /// Convert the loaded `Symbol` into a raw pointer. + pub fn into_raw(self) -> *mut raw::c_void { + let pointer = self.pointer; + mem::forget(self); + pointer + } +} + +impl<T> Symbol<Option<T>> { + /// Lift Option out of the symbol. + pub fn lift_option(self) -> Option<Symbol<T>> { + if self.pointer.is_null() { + None + } else { + Some(Symbol { + pointer: self.pointer, + pd: marker::PhantomData, + }) + } + } +} + +unsafe impl<T: Send> Send for Symbol<T> {} +unsafe impl<T: Sync> Sync for Symbol<T> {} + +impl<T> Clone for Symbol<T> { + fn clone(&self) -> Symbol<T> { + Symbol { ..*self } + } +} + +impl<T> ::std::ops::Deref for Symbol<T> { + type Target = T; + fn deref(&self) -> &T { + unsafe { + // Additional reference level for a dereference on `deref` return value. + &*(&self.pointer as *const *mut _ as *const T) + } + } +} + +impl<T> fmt::Debug for Symbol<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + unsafe { + let mut info = mem::MaybeUninit::<DlInfo>::uninit(); + if dladdr(self.pointer, info.as_mut_ptr()) != 0 { + let info = info.assume_init(); + if info.dli_sname.is_null() { + f.write_str(&format!("Symbol@{:p} from {:?}", + self.pointer, + CStr::from_ptr(info.dli_fname))) + } else { + f.write_str(&format!("Symbol {:?}@{:p} from {:?}", + CStr::from_ptr(info.dli_sname), self.pointer, + CStr::from_ptr(info.dli_fname))) + } + } else { + f.write_str(&format!("Symbol@{:p}", self.pointer)) + } + } + } +} + +// Platform specific things +#[cfg_attr(any(target_os = "linux", target_os = "android"), link(name="dl"))] +#[cfg_attr(any(target_os = "freebsd", target_os = "dragonfly"), link(name="c"))] +extern { + fn dlopen(filename: *const raw::c_char, flags: raw::c_int) -> *mut raw::c_void; + fn dlclose(handle: *mut raw::c_void) -> raw::c_int; + fn dlsym(handle: *mut raw::c_void, symbol: *const raw::c_char) -> *mut raw::c_void; + fn dlerror() -> *mut raw::c_char; + fn dladdr(addr: *mut raw::c_void, info: *mut DlInfo) -> raw::c_int; +} + +#[repr(C)] +struct DlInfo { + dli_fname: *const raw::c_char, + dli_fbase: *mut raw::c_void, + dli_sname: *const raw::c_char, + dli_saddr: *mut raw::c_void +} |