summaryrefslogtreecommitdiffstats
path: root/vendor/libm-0.1.4/src/math/log1p.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-06-07 05:48:48 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-06-07 05:48:48 +0000
commitef24de24a82fe681581cc130f342363c47c0969a (patch)
tree0d494f7e1a38b95c92426f58fe6eaa877303a86c /vendor/libm-0.1.4/src/math/log1p.rs
parentReleasing progress-linux version 1.74.1+dfsg1-1~progress7.99u1. (diff)
downloadrustc-ef24de24a82fe681581cc130f342363c47c0969a.tar.xz
rustc-ef24de24a82fe681581cc130f342363c47c0969a.zip
Merging upstream version 1.75.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/libm-0.1.4/src/math/log1p.rs')
-rw-r--r--vendor/libm-0.1.4/src/math/log1p.rs144
1 files changed, 0 insertions, 144 deletions
diff --git a/vendor/libm-0.1.4/src/math/log1p.rs b/vendor/libm-0.1.4/src/math/log1p.rs
deleted file mode 100644
index cd7045ac9..000000000
--- a/vendor/libm-0.1.4/src/math/log1p.rs
+++ /dev/null
@@ -1,144 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* double log1p(double x)
- * Return the natural logarithm of 1+x.
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * 1+x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * Note. If k=0, then f=x is exact. However, if k!=0, then f
- * may not be representable exactly. In that case, a correction
- * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
- * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
- * and add back the correction term c/u.
- * (Note: when x > 2**53, one can simply return log(x))
- *
- * 2. Approximation of log(1+f): See log.c
- *
- * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
- *
- * Special cases:
- * log1p(x) is NaN with signal if x < -1 (including -INF) ;
- * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
- * log1p(NaN) is that NaN with no signal.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- *
- * Note: Assuming log() return accurate answer, the following
- * algorithm can be used to compute log1p(x) to within a few ULP:
- *
- * u = 1+x;
- * if(u==1.0) return x ; else
- * return log(u)*(x/(u-1.0));
- *
- * See HP-15C Advanced Functions Handbook, p.193.
- */
-
-use core::f64;
-
-const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
-const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
-const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
-const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
-const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
-const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
-const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
-const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
-const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
-
-#[inline]
-#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
-pub fn log1p(x: f64) -> f64 {
- let mut ui: u64 = x.to_bits();
- let hfsq: f64;
- let mut f: f64 = 0.;
- let mut c: f64 = 0.;
- let s: f64;
- let z: f64;
- let r: f64;
- let w: f64;
- let t1: f64;
- let t2: f64;
- let dk: f64;
- let hx: u32;
- let mut hu: u32;
- let mut k: i32;
-
- hx = (ui >> 32) as u32;
- k = 1;
- if hx < 0x3fda827a || (hx >> 31) > 0 {
- /* 1+x < sqrt(2)+ */
- if hx >= 0xbff00000 {
- /* x <= -1.0 */
- if x == -1. {
- return x / 0.0; /* log1p(-1) = -inf */
- }
- return (x - x) / 0.0; /* log1p(x<-1) = NaN */
- }
- if hx << 1 < 0x3ca00000 << 1 {
- /* |x| < 2**-53 */
- /* underflow if subnormal */
- if (hx & 0x7ff00000) == 0 {
- force_eval!(x as f32);
- }
- return x;
- }
- if hx <= 0xbfd2bec4 {
- /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
- k = 0;
- c = 0.;
- f = x;
- }
- } else if hx >= 0x7ff00000 {
- return x;
- }
- if k > 0 {
- ui = (1. + x).to_bits();
- hu = (ui >> 32) as u32;
- hu += 0x3ff00000 - 0x3fe6a09e;
- k = (hu >> 20) as i32 - 0x3ff;
- /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
- if k < 54 {
- c = if k >= 2 {
- 1. - (f64::from_bits(ui) - x)
- } else {
- x - (f64::from_bits(ui) - 1.)
- };
- c /= f64::from_bits(ui);
- } else {
- c = 0.;
- }
- /* reduce u into [sqrt(2)/2, sqrt(2)] */
- hu = (hu & 0x000fffff) + 0x3fe6a09e;
- ui = (hu as u64) << 32 | (ui & 0xffffffff);
- f = f64::from_bits(ui) - 1.;
- }
- hfsq = 0.5 * f * f;
- s = f / (2.0 + f);
- z = s * s;
- w = z * z;
- t1 = w * (LG2 + w * (LG4 + w * LG6));
- t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
- r = t2 + t1;
- dk = k as f64;
- s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
-}