summaryrefslogtreecommitdiffstats
path: root/vendor/libm-0.1.4/src/math/pow.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-06-07 05:48:48 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-06-07 05:48:48 +0000
commitef24de24a82fe681581cc130f342363c47c0969a (patch)
tree0d494f7e1a38b95c92426f58fe6eaa877303a86c /vendor/libm-0.1.4/src/math/pow.rs
parentReleasing progress-linux version 1.74.1+dfsg1-1~progress7.99u1. (diff)
downloadrustc-ef24de24a82fe681581cc130f342363c47c0969a.tar.xz
rustc-ef24de24a82fe681581cc130f342363c47c0969a.zip
Merging upstream version 1.75.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/libm-0.1.4/src/math/pow.rs')
-rw-r--r--vendor/libm-0.1.4/src/math/pow.rs634
1 files changed, 0 insertions, 634 deletions
diff --git a/vendor/libm-0.1.4/src/math/pow.rs b/vendor/libm-0.1.4/src/math/pow.rs
deleted file mode 100644
index 111d712ff..000000000
--- a/vendor/libm-0.1.4/src/math/pow.rs
+++ /dev/null
@@ -1,634 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
-/*
- * ====================================================
- * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
- *
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-// pow(x,y) return x**y
-//
-// n
-// Method: Let x = 2 * (1+f)
-// 1. Compute and return log2(x) in two pieces:
-// log2(x) = w1 + w2,
-// where w1 has 53-24 = 29 bit trailing zeros.
-// 2. Perform y*log2(x) = n+y' by simulating muti-precision
-// arithmetic, where |y'|<=0.5.
-// 3. Return x**y = 2**n*exp(y'*log2)
-//
-// Special cases:
-// 1. (anything) ** 0 is 1
-// 2. 1 ** (anything) is 1
-// 3. (anything except 1) ** NAN is NAN
-// 4. NAN ** (anything except 0) is NAN
-// 5. +-(|x| > 1) ** +INF is +INF
-// 6. +-(|x| > 1) ** -INF is +0
-// 7. +-(|x| < 1) ** +INF is +0
-// 8. +-(|x| < 1) ** -INF is +INF
-// 9. -1 ** +-INF is 1
-// 10. +0 ** (+anything except 0, NAN) is +0
-// 11. -0 ** (+anything except 0, NAN, odd integer) is +0
-// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
-// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
-// 14. -0 ** (+odd integer) is -0
-// 15. -0 ** (-odd integer) is -INF, raise divbyzero
-// 16. +INF ** (+anything except 0,NAN) is +INF
-// 17. +INF ** (-anything except 0,NAN) is +0
-// 18. -INF ** (+odd integer) is -INF
-// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
-// 20. (anything) ** 1 is (anything)
-// 21. (anything) ** -1 is 1/(anything)
-// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
-// 23. (-anything except 0 and inf) ** (non-integer) is NAN
-//
-// Accuracy:
-// pow(x,y) returns x**y nearly rounded. In particular
-// pow(integer,integer)
-// always returns the correct integer provided it is
-// representable.
-//
-// Constants :
-// The hexadecimal values are the intended ones for the following
-// constants. The decimal values may be used, provided that the
-// compiler will convert from decimal to binary accurately enough
-// to produce the hexadecimal values shown.
-//
-use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
-
-const BP: [f64; 2] = [1.0, 1.5];
-const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
-const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
-const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
-const HUGE: f64 = 1.0e300;
-const TINY: f64 = 1.0e-300;
-
-// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
-const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
-const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
-const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
-const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
-const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
-const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
-const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
-const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
-const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
-const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
-const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
-const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
-const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
-const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
-const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
-const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
-const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
-const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
-const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
-const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
-const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
-
-#[inline]
-#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
-pub fn pow(x: f64, y: f64) -> f64 {
- let t1: f64;
- let t2: f64;
-
- let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
- let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
-
- let mut ix: i32 = (hx & 0x7fffffff) as i32;
- let iy: i32 = (hy & 0x7fffffff) as i32;
-
- /* x**0 = 1, even if x is NaN */
- if ((iy as u32) | ly) == 0 {
- return 1.0;
- }
-
- /* 1**y = 1, even if y is NaN */
- if hx == 0x3ff00000 && lx == 0 {
- return 1.0;
- }
-
- /* NaN if either arg is NaN */
- if ix > 0x7ff00000
- || (ix == 0x7ff00000 && lx != 0)
- || iy > 0x7ff00000
- || (iy == 0x7ff00000 && ly != 0)
- {
- return x + y;
- }
-
- /* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
- */
- let mut yisint: i32 = 0;
- let mut k: i32;
- let mut j: i32;
- if hx < 0 {
- if iy >= 0x43400000 {
- yisint = 2; /* even integer y */
- } else if iy >= 0x3ff00000 {
- k = (iy >> 20) - 0x3ff; /* exponent */
-
- if k > 20 {
- j = (ly >> (52 - k)) as i32;
-
- if (j << (52 - k)) == (ly as i32) {
- yisint = 2 - (j & 1);
- }
- } else if ly == 0 {
- j = iy >> (20 - k);
-
- if (j << (20 - k)) == iy {
- yisint = 2 - (j & 1);
- }
- }
- }
- }
-
- if ly == 0 {
- /* special value of y */
- if iy == 0x7ff00000 {
- /* y is +-inf */
-
- return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
- /* (-1)**+-inf is 1 */
- 1.0
- } else if ix >= 0x3ff00000 {
- /* (|x|>1)**+-inf = inf,0 */
- if hy >= 0 {
- y
- } else {
- 0.0
- }
- } else {
- /* (|x|<1)**+-inf = 0,inf */
- if hy >= 0 {
- 0.0
- } else {
- -y
- }
- };
- }
-
- if iy == 0x3ff00000 {
- /* y is +-1 */
- return if hy >= 0 { x } else { 1.0 / x };
- }
-
- if hy == 0x40000000 {
- /* y is 2 */
- return x * x;
- }
-
- if hy == 0x3fe00000 {
- /* y is 0.5 */
- if hx >= 0 {
- /* x >= +0 */
- return sqrt(x);
- }
- }
- }
-
- let mut ax: f64 = fabs(x);
- if lx == 0 {
- /* special value of x */
- if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
- /* x is +-0,+-inf,+-1 */
- let mut z: f64 = ax;
-
- if hy < 0 {
- /* z = (1/|x|) */
- z = 1.0 / z;
- }
-
- if hx < 0 {
- if ((ix - 0x3ff00000) | yisint) == 0 {
- z = (z - z) / (z - z); /* (-1)**non-int is NaN */
- } else if yisint == 1 {
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- }
-
- return z;
- }
- }
-
- let mut s: f64 = 1.0; /* sign of result */
- if hx < 0 {
- if yisint == 0 {
- /* (x<0)**(non-int) is NaN */
- return (x - x) / (x - x);
- }
-
- if yisint == 1 {
- /* (x<0)**(odd int) */
- s = -1.0;
- }
- }
-
- /* |y| is HUGE */
- if iy > 0x41e00000 {
- /* if |y| > 2**31 */
- if iy > 0x43f00000 {
- /* if |y| > 2**64, must o/uflow */
- if ix <= 0x3fefffff {
- return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
- }
-
- if ix >= 0x3ff00000 {
- return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
- }
- }
-
- /* over/underflow if x is not close to one */
- if ix < 0x3fefffff {
- return if hy < 0 {
- s * HUGE * HUGE
- } else {
- s * TINY * TINY
- };
- }
- if ix > 0x3ff00000 {
- return if hy > 0 {
- s * HUGE * HUGE
- } else {
- s * TINY * TINY
- };
- }
-
- /* now |1-x| is TINY <= 2**-20, suffice to compute
- log(x) by x-x^2/2+x^3/3-x^4/4 */
- let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
- let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
- let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
- let v: f64 = t * IVLN2_L - w * IVLN2;
- t1 = with_set_low_word(u + v, 0);
- t2 = v - (t1 - u);
- } else {
- // double ss,s2,s_h,s_l,t_h,t_l;
- let mut n: i32 = 0;
-
- if ix < 0x00100000 {
- /* take care subnormal number */
- ax *= TWO53;
- n -= 53;
- ix = get_high_word(ax) as i32;
- }
-
- n += (ix >> 20) - 0x3ff;
- j = ix & 0x000fffff;
-
- /* determine interval */
- let k: i32;
- ix = j | 0x3ff00000; /* normalize ix */
- if j <= 0x3988E {
- /* |x|<sqrt(3/2) */
- k = 0;
- } else if j < 0xBB67A {
- /* |x|<sqrt(3) */
- k = 1;
- } else {
- k = 0;
- n += 1;
- ix -= 0x00100000;
- }
- ax = with_set_high_word(ax, ix as u32);
-
- /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- let u: f64 = ax - BP[k as usize]; /* bp[0]=1.0, bp[1]=1.5 */
- let v: f64 = 1.0 / (ax + BP[k as usize]);
- let ss: f64 = u * v;
- let s_h = with_set_low_word(ss, 0);
-
- /* t_h=ax+bp[k] High */
- let t_h: f64 = with_set_high_word(
- 0.0,
- ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
- );
- let t_l: f64 = ax - (t_h - BP[k as usize]);
- let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
-
- /* compute log(ax) */
- let s2: f64 = ss * ss;
- let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
- r += s_l * (s_h + ss);
- let s2: f64 = s_h * s_h;
- let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
- let t_l: f64 = r - ((t_h - 3.0) - s2);
-
- /* u+v = ss*(1+...) */
- let u: f64 = s_h * t_h;
- let v: f64 = s_l * t_h + t_l * ss;
-
- /* 2/(3log2)*(ss+...) */
- let p_h: f64 = with_set_low_word(u + v, 0);
- let p_l = v - (p_h - u);
- let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
- let z_l: f64 = CP_L * p_h + p_l * CP + DP_L[k as usize];
-
- /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- let t: f64 = n as f64;
- t1 = with_set_low_word(((z_h + z_l) + DP_H[k as usize]) + t, 0);
- t2 = z_l - (((t1 - t) - DP_H[k as usize]) - z_h);
- }
-
- /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
- let y1: f64 = with_set_low_word(y, 0);
- let p_l: f64 = (y - y1) * t1 + y * t2;
- let mut p_h: f64 = y1 * t1;
- let z: f64 = p_l + p_h;
- let mut j: i32 = (z.to_bits() >> 32) as i32;
- let i: i32 = z.to_bits() as i32;
- // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
-
- if j >= 0x40900000 {
- /* z >= 1024 */
- if (j - 0x40900000) | i != 0 {
- /* if z > 1024 */
- return s * HUGE * HUGE; /* overflow */
- }
-
- if p_l + OVT > z - p_h {
- return s * HUGE * HUGE; /* overflow */
- }
- } else if (j & 0x7fffffff) >= 0x4090cc00 {
- /* z <= -1075 */
- // FIXME: instead of abs(j) use unsigned j
-
- if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
- /* z < -1075 */
- return s * TINY * TINY; /* underflow */
- }
-
- if p_l <= z - p_h {
- return s * TINY * TINY; /* underflow */
- }
- }
-
- /* compute 2**(p_h+p_l) */
- let i: i32 = j & (0x7fffffff as i32);
- k = (i >> 20) - 0x3ff;
- let mut n: i32 = 0;
-
- if i > 0x3fe00000 {
- /* if |z| > 0.5, set n = [z+0.5] */
- n = j + (0x00100000 >> (k + 1));
- k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
- let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
- n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
- if j < 0 {
- n = -n;
- }
- p_h -= t;
- }
-
- let t: f64 = with_set_low_word(p_l + p_h, 0);
- let u: f64 = t * LG2_H;
- let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
- let mut z: f64 = u + v;
- let w: f64 = v - (z - u);
- let t: f64 = z * z;
- let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
- let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
- z = 1.0 - (r - z);
- j = get_high_word(z) as i32;
- j += n << 20;
-
- if (j >> 20) <= 0 {
- /* subnormal output */
- z = scalbn(z, n);
- } else {
- z = with_set_high_word(z, j as u32);
- }
-
- s * z
-}
-
-#[cfg(test)]
-mod tests {
- extern crate core;
-
- use self::core::f64::consts::{E, PI};
- use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY};
- use super::pow;
-
- const POS_ZERO: &[f64] = &[0.0];
- const NEG_ZERO: &[f64] = &[-0.0];
- const POS_ONE: &[f64] = &[1.0];
- const NEG_ONE: &[f64] = &[-1.0];
- const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
- const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
- const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON];
- const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON];
- const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX];
- const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
- const POS_ODDS: &[f64] = &[3.0, 7.0];
- const NEG_ODDS: &[f64] = &[-7.0, -3.0];
- const NANS: &[f64] = &[NAN];
- const POS_INF: &[f64] = &[INFINITY];
- const NEG_INF: &[f64] = &[NEG_INFINITY];
-
- const ALL: &[&[f64]] = &[
- POS_ZERO,
- NEG_ZERO,
- NANS,
- NEG_SMALL_FLOATS,
- POS_SMALL_FLOATS,
- NEG_FLOATS,
- POS_FLOATS,
- NEG_EVENS,
- POS_EVENS,
- NEG_ODDS,
- POS_ODDS,
- NEG_INF,
- POS_INF,
- NEG_ONE,
- POS_ONE,
- ];
- const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
- const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
-
- fn pow_test(base: f64, exponent: f64, expected: f64) {
- let res = pow(base, exponent);
- assert!(
- if expected.is_nan() {
- res.is_nan()
- } else {
- pow(base, exponent) == expected
- },
- "{} ** {} was {} instead of {}",
- base,
- exponent,
- res,
- expected
- );
- }
-
- fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
- sets.iter()
- .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
- }
-
- fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
- sets.iter()
- .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
- }
-
- fn test_sets(sets: &[&[f64]], computed: &Fn(f64) -> f64, expected: &Fn(f64) -> f64) {
- sets.iter().for_each(|s| {
- s.iter().for_each(|val| {
- let exp = expected(*val);
- let res = computed(*val);
-
- assert!(
- if exp.is_nan() {
- res.is_nan()
- } else {
- exp == res
- },
- "test for {} was {} instead of {}",
- val,
- res,
- exp
- );
- })
- });
- }
-
- #[test]
- fn zero_as_exponent() {
- test_sets_as_base(ALL, 0.0, 1.0);
- test_sets_as_base(ALL, -0.0, 1.0);
- }
-
- #[test]
- fn one_as_base() {
- test_sets_as_exponent(1.0, ALL, 1.0);
- }
-
- #[test]
- fn nan_inputs() {
- // NAN as the base:
- // (NAN ^ anything *but 0* should be NAN)
- test_sets_as_exponent(NAN, &ALL[2..], NAN);
-
- // NAN as the exponent:
- // (anything *but 1* ^ NAN should be NAN)
- test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN);
- }
-
- #[test]
- fn infinity_as_base() {
- // Positive Infinity as the base:
- // (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
- test_sets_as_exponent(INFINITY, &POS[1..], INFINITY);
-
- // (+Infinity ^ negative anything except 0 and NAN should be 0.0)
- test_sets_as_exponent(INFINITY, &NEG[1..], 0.0);
-
- // Negative Infinity as the base:
- // (-Infinity ^ positive odd ints should be -Infinity)
- test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY);
-
- // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
- // We can lump in pos/neg odd ints here because they don't seem to
- // cause panics (div by zero) in release mode (I think).
- test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
- }
-
- #[test]
- fn infinity_as_exponent() {
- // Positive/Negative base greater than 1:
- // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
- test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY);
-
- // (pos/neg > 1 ^ -Infinity should be 0.0)
- test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0);
-
- // Positive/Negative base less than 1:
- let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
-
- // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
- test_sets_as_base(base_below_one, INFINITY, 0.0);
-
- // (pos/neg < 1 ^ -Infinity should be Infinity)
- test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY);
-
- // Positive/Negative 1 as the base:
- // (pos/neg 1 ^ Infinity should be 1)
- test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0);
-
- // (pos/neg 1 ^ -Infinity should be 1)
- test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0);
- }
-
- #[test]
- fn zero_as_base() {
- // Positive Zero as the base:
- // (+0 ^ anything positive but 0 and NAN should be +0)
- test_sets_as_exponent(0.0, &POS[1..], 0.0);
-
- // (+0 ^ anything negative but 0 and NAN should be Infinity)
- // (this should panic because we're dividing by zero)
- test_sets_as_exponent(0.0, &NEG[1..], INFINITY);
-
- // Negative Zero as the base:
- // (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
- test_sets_as_exponent(-0.0, &POS[3..], 0.0);
-
- // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
- // (should panic because of divide by zero)
- test_sets_as_exponent(-0.0, &NEG[3..], INFINITY);
-
- // (-0 ^ positive odd ints should be -0)
- test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
-
- // (-0 ^ negative odd ints should be -Infinity)
- // (should panic because of divide by zero)
- test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY);
- }
-
- #[test]
- fn special_cases() {
- // One as the exponent:
- // (anything ^ 1 should be anything - i.e. the base)
- test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
-
- // Negative One as the exponent:
- // (anything ^ -1 should be 1/anything)
- test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
-
- // Factoring -1 out:
- // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
- &[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]
- .iter()
- .for_each(|int_set| {
- int_set.iter().for_each(|int| {
- test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
- pow(-1.0, *int) * pow(v, *int)
- });
- })
- });
-
- // Negative base (imaginary results):
- // (-anything except 0 and Infinity ^ non-integer should be NAN)
- &NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
- set.iter().for_each(|val| {
- test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN);
- })
- });
- }
-
- #[test]
- fn normal_cases() {
- assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
- assert_eq!(pow(-1.0, 9.0), -1.0);
- assert!(pow(-1.0, 2.2).is_nan());
- assert!(pow(-1.0, -1.14).is_nan());
- }
-}