diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-06-07 05:48:48 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-06-07 05:48:48 +0000 |
commit | ef24de24a82fe681581cc130f342363c47c0969a (patch) | |
tree | 0d494f7e1a38b95c92426f58fe6eaa877303a86c /vendor/libm-0.1.4/src/math/pow.rs | |
parent | Releasing progress-linux version 1.74.1+dfsg1-1~progress7.99u1. (diff) | |
download | rustc-ef24de24a82fe681581cc130f342363c47c0969a.tar.xz rustc-ef24de24a82fe681581cc130f342363c47c0969a.zip |
Merging upstream version 1.75.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/libm-0.1.4/src/math/pow.rs')
-rw-r--r-- | vendor/libm-0.1.4/src/math/pow.rs | 634 |
1 files changed, 0 insertions, 634 deletions
diff --git a/vendor/libm-0.1.4/src/math/pow.rs b/vendor/libm-0.1.4/src/math/pow.rs deleted file mode 100644 index 111d712ff..000000000 --- a/vendor/libm-0.1.4/src/math/pow.rs +++ /dev/null @@ -1,634 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ -/* - * ==================================================== - * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. - * - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -// pow(x,y) return x**y -// -// n -// Method: Let x = 2 * (1+f) -// 1. Compute and return log2(x) in two pieces: -// log2(x) = w1 + w2, -// where w1 has 53-24 = 29 bit trailing zeros. -// 2. Perform y*log2(x) = n+y' by simulating muti-precision -// arithmetic, where |y'|<=0.5. -// 3. Return x**y = 2**n*exp(y'*log2) -// -// Special cases: -// 1. (anything) ** 0 is 1 -// 2. 1 ** (anything) is 1 -// 3. (anything except 1) ** NAN is NAN -// 4. NAN ** (anything except 0) is NAN -// 5. +-(|x| > 1) ** +INF is +INF -// 6. +-(|x| > 1) ** -INF is +0 -// 7. +-(|x| < 1) ** +INF is +0 -// 8. +-(|x| < 1) ** -INF is +INF -// 9. -1 ** +-INF is 1 -// 10. +0 ** (+anything except 0, NAN) is +0 -// 11. -0 ** (+anything except 0, NAN, odd integer) is +0 -// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero -// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero -// 14. -0 ** (+odd integer) is -0 -// 15. -0 ** (-odd integer) is -INF, raise divbyzero -// 16. +INF ** (+anything except 0,NAN) is +INF -// 17. +INF ** (-anything except 0,NAN) is +0 -// 18. -INF ** (+odd integer) is -INF -// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) -// 20. (anything) ** 1 is (anything) -// 21. (anything) ** -1 is 1/(anything) -// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) -// 23. (-anything except 0 and inf) ** (non-integer) is NAN -// -// Accuracy: -// pow(x,y) returns x**y nearly rounded. In particular -// pow(integer,integer) -// always returns the correct integer provided it is -// representable. -// -// Constants : -// The hexadecimal values are the intended ones for the following -// constants. The decimal values may be used, provided that the -// compiler will convert from decimal to binary accurately enough -// to produce the hexadecimal values shown. -// -use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word}; - -const BP: [f64; 2] = [1.0, 1.5]; -const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ -const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ -const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ -const HUGE: f64 = 1.0e300; -const TINY: f64 = 1.0e-300; - -// poly coefs for (3/2)*(log(x)-2s-2/3*s**3: -const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ -const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ -const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ -const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ -const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ -const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ -const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ -const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ -const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ -const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ -const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ -const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ -const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ -const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ -const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ -const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ -const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ -const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ -const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ -const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ -const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ - -#[inline] -#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] -pub fn pow(x: f64, y: f64) -> f64 { - let t1: f64; - let t2: f64; - - let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); - let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); - - let mut ix: i32 = (hx & 0x7fffffff) as i32; - let iy: i32 = (hy & 0x7fffffff) as i32; - - /* x**0 = 1, even if x is NaN */ - if ((iy as u32) | ly) == 0 { - return 1.0; - } - - /* 1**y = 1, even if y is NaN */ - if hx == 0x3ff00000 && lx == 0 { - return 1.0; - } - - /* NaN if either arg is NaN */ - if ix > 0x7ff00000 - || (ix == 0x7ff00000 && lx != 0) - || iy > 0x7ff00000 - || (iy == 0x7ff00000 && ly != 0) - { - return x + y; - } - - /* determine if y is an odd int when x < 0 - * yisint = 0 ... y is not an integer - * yisint = 1 ... y is an odd int - * yisint = 2 ... y is an even int - */ - let mut yisint: i32 = 0; - let mut k: i32; - let mut j: i32; - if hx < 0 { - if iy >= 0x43400000 { - yisint = 2; /* even integer y */ - } else if iy >= 0x3ff00000 { - k = (iy >> 20) - 0x3ff; /* exponent */ - - if k > 20 { - j = (ly >> (52 - k)) as i32; - - if (j << (52 - k)) == (ly as i32) { - yisint = 2 - (j & 1); - } - } else if ly == 0 { - j = iy >> (20 - k); - - if (j << (20 - k)) == iy { - yisint = 2 - (j & 1); - } - } - } - } - - if ly == 0 { - /* special value of y */ - if iy == 0x7ff00000 { - /* y is +-inf */ - - return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { - /* (-1)**+-inf is 1 */ - 1.0 - } else if ix >= 0x3ff00000 { - /* (|x|>1)**+-inf = inf,0 */ - if hy >= 0 { - y - } else { - 0.0 - } - } else { - /* (|x|<1)**+-inf = 0,inf */ - if hy >= 0 { - 0.0 - } else { - -y - } - }; - } - - if iy == 0x3ff00000 { - /* y is +-1 */ - return if hy >= 0 { x } else { 1.0 / x }; - } - - if hy == 0x40000000 { - /* y is 2 */ - return x * x; - } - - if hy == 0x3fe00000 { - /* y is 0.5 */ - if hx >= 0 { - /* x >= +0 */ - return sqrt(x); - } - } - } - - let mut ax: f64 = fabs(x); - if lx == 0 { - /* special value of x */ - if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { - /* x is +-0,+-inf,+-1 */ - let mut z: f64 = ax; - - if hy < 0 { - /* z = (1/|x|) */ - z = 1.0 / z; - } - - if hx < 0 { - if ((ix - 0x3ff00000) | yisint) == 0 { - z = (z - z) / (z - z); /* (-1)**non-int is NaN */ - } else if yisint == 1 { - z = -z; /* (x<0)**odd = -(|x|**odd) */ - } - } - - return z; - } - } - - let mut s: f64 = 1.0; /* sign of result */ - if hx < 0 { - if yisint == 0 { - /* (x<0)**(non-int) is NaN */ - return (x - x) / (x - x); - } - - if yisint == 1 { - /* (x<0)**(odd int) */ - s = -1.0; - } - } - - /* |y| is HUGE */ - if iy > 0x41e00000 { - /* if |y| > 2**31 */ - if iy > 0x43f00000 { - /* if |y| > 2**64, must o/uflow */ - if ix <= 0x3fefffff { - return if hy < 0 { HUGE * HUGE } else { TINY * TINY }; - } - - if ix >= 0x3ff00000 { - return if hy > 0 { HUGE * HUGE } else { TINY * TINY }; - } - } - - /* over/underflow if x is not close to one */ - if ix < 0x3fefffff { - return if hy < 0 { - s * HUGE * HUGE - } else { - s * TINY * TINY - }; - } - if ix > 0x3ff00000 { - return if hy > 0 { - s * HUGE * HUGE - } else { - s * TINY * TINY - }; - } - - /* now |1-x| is TINY <= 2**-20, suffice to compute - log(x) by x-x^2/2+x^3/3-x^4/4 */ - let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ - let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); - let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ - let v: f64 = t * IVLN2_L - w * IVLN2; - t1 = with_set_low_word(u + v, 0); - t2 = v - (t1 - u); - } else { - // double ss,s2,s_h,s_l,t_h,t_l; - let mut n: i32 = 0; - - if ix < 0x00100000 { - /* take care subnormal number */ - ax *= TWO53; - n -= 53; - ix = get_high_word(ax) as i32; - } - - n += (ix >> 20) - 0x3ff; - j = ix & 0x000fffff; - - /* determine interval */ - let k: i32; - ix = j | 0x3ff00000; /* normalize ix */ - if j <= 0x3988E { - /* |x|<sqrt(3/2) */ - k = 0; - } else if j < 0xBB67A { - /* |x|<sqrt(3) */ - k = 1; - } else { - k = 0; - n += 1; - ix -= 0x00100000; - } - ax = with_set_high_word(ax, ix as u32); - - /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ - let u: f64 = ax - BP[k as usize]; /* bp[0]=1.0, bp[1]=1.5 */ - let v: f64 = 1.0 / (ax + BP[k as usize]); - let ss: f64 = u * v; - let s_h = with_set_low_word(ss, 0); - - /* t_h=ax+bp[k] High */ - let t_h: f64 = with_set_high_word( - 0.0, - ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), - ); - let t_l: f64 = ax - (t_h - BP[k as usize]); - let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); - - /* compute log(ax) */ - let s2: f64 = ss * ss; - let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); - r += s_l * (s_h + ss); - let s2: f64 = s_h * s_h; - let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); - let t_l: f64 = r - ((t_h - 3.0) - s2); - - /* u+v = ss*(1+...) */ - let u: f64 = s_h * t_h; - let v: f64 = s_l * t_h + t_l * ss; - - /* 2/(3log2)*(ss+...) */ - let p_h: f64 = with_set_low_word(u + v, 0); - let p_l = v - (p_h - u); - let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ - let z_l: f64 = CP_L * p_h + p_l * CP + DP_L[k as usize]; - - /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ - let t: f64 = n as f64; - t1 = with_set_low_word(((z_h + z_l) + DP_H[k as usize]) + t, 0); - t2 = z_l - (((t1 - t) - DP_H[k as usize]) - z_h); - } - - /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ - let y1: f64 = with_set_low_word(y, 0); - let p_l: f64 = (y - y1) * t1 + y * t2; - let mut p_h: f64 = y1 * t1; - let z: f64 = p_l + p_h; - let mut j: i32 = (z.to_bits() >> 32) as i32; - let i: i32 = z.to_bits() as i32; - // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); - - if j >= 0x40900000 { - /* z >= 1024 */ - if (j - 0x40900000) | i != 0 { - /* if z > 1024 */ - return s * HUGE * HUGE; /* overflow */ - } - - if p_l + OVT > z - p_h { - return s * HUGE * HUGE; /* overflow */ - } - } else if (j & 0x7fffffff) >= 0x4090cc00 { - /* z <= -1075 */ - // FIXME: instead of abs(j) use unsigned j - - if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { - /* z < -1075 */ - return s * TINY * TINY; /* underflow */ - } - - if p_l <= z - p_h { - return s * TINY * TINY; /* underflow */ - } - } - - /* compute 2**(p_h+p_l) */ - let i: i32 = j & (0x7fffffff as i32); - k = (i >> 20) - 0x3ff; - let mut n: i32 = 0; - - if i > 0x3fe00000 { - /* if |z| > 0.5, set n = [z+0.5] */ - n = j + (0x00100000 >> (k + 1)); - k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ - let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); - n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); - if j < 0 { - n = -n; - } - p_h -= t; - } - - let t: f64 = with_set_low_word(p_l + p_h, 0); - let u: f64 = t * LG2_H; - let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; - let mut z: f64 = u + v; - let w: f64 = v - (z - u); - let t: f64 = z * z; - let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); - let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); - z = 1.0 - (r - z); - j = get_high_word(z) as i32; - j += n << 20; - - if (j >> 20) <= 0 { - /* subnormal output */ - z = scalbn(z, n); - } else { - z = with_set_high_word(z, j as u32); - } - - s * z -} - -#[cfg(test)] -mod tests { - extern crate core; - - use self::core::f64::consts::{E, PI}; - use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY}; - use super::pow; - - const POS_ZERO: &[f64] = &[0.0]; - const NEG_ZERO: &[f64] = &[-0.0]; - const POS_ONE: &[f64] = &[1.0]; - const NEG_ONE: &[f64] = &[-1.0]; - const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI]; - const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI]; - const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON]; - const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON]; - const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX]; - const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0]; - const POS_ODDS: &[f64] = &[3.0, 7.0]; - const NEG_ODDS: &[f64] = &[-7.0, -3.0]; - const NANS: &[f64] = &[NAN]; - const POS_INF: &[f64] = &[INFINITY]; - const NEG_INF: &[f64] = &[NEG_INFINITY]; - - const ALL: &[&[f64]] = &[ - POS_ZERO, - NEG_ZERO, - NANS, - NEG_SMALL_FLOATS, - POS_SMALL_FLOATS, - NEG_FLOATS, - POS_FLOATS, - NEG_EVENS, - POS_EVENS, - NEG_ODDS, - POS_ODDS, - NEG_INF, - POS_INF, - NEG_ONE, - POS_ONE, - ]; - const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF]; - const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF]; - - fn pow_test(base: f64, exponent: f64, expected: f64) { - let res = pow(base, exponent); - assert!( - if expected.is_nan() { - res.is_nan() - } else { - pow(base, exponent) == expected - }, - "{} ** {} was {} instead of {}", - base, - exponent, - res, - expected - ); - } - - fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) { - sets.iter() - .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected))); - } - - fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) { - sets.iter() - .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected))); - } - - fn test_sets(sets: &[&[f64]], computed: &Fn(f64) -> f64, expected: &Fn(f64) -> f64) { - sets.iter().for_each(|s| { - s.iter().for_each(|val| { - let exp = expected(*val); - let res = computed(*val); - - assert!( - if exp.is_nan() { - res.is_nan() - } else { - exp == res - }, - "test for {} was {} instead of {}", - val, - res, - exp - ); - }) - }); - } - - #[test] - fn zero_as_exponent() { - test_sets_as_base(ALL, 0.0, 1.0); - test_sets_as_base(ALL, -0.0, 1.0); - } - - #[test] - fn one_as_base() { - test_sets_as_exponent(1.0, ALL, 1.0); - } - - #[test] - fn nan_inputs() { - // NAN as the base: - // (NAN ^ anything *but 0* should be NAN) - test_sets_as_exponent(NAN, &ALL[2..], NAN); - - // NAN as the exponent: - // (anything *but 1* ^ NAN should be NAN) - test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN); - } - - #[test] - fn infinity_as_base() { - // Positive Infinity as the base: - // (+Infinity ^ positive anything but 0 and NAN should be +Infinity) - test_sets_as_exponent(INFINITY, &POS[1..], INFINITY); - - // (+Infinity ^ negative anything except 0 and NAN should be 0.0) - test_sets_as_exponent(INFINITY, &NEG[1..], 0.0); - - // Negative Infinity as the base: - // (-Infinity ^ positive odd ints should be -Infinity) - test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY); - - // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything)) - // We can lump in pos/neg odd ints here because they don't seem to - // cause panics (div by zero) in release mode (I think). - test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v)); - } - - #[test] - fn infinity_as_exponent() { - // Positive/Negative base greater than 1: - // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base) - test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY); - - // (pos/neg > 1 ^ -Infinity should be 0.0) - test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0); - - // Positive/Negative base less than 1: - let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS]; - - // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base) - test_sets_as_base(base_below_one, INFINITY, 0.0); - - // (pos/neg < 1 ^ -Infinity should be Infinity) - test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY); - - // Positive/Negative 1 as the base: - // (pos/neg 1 ^ Infinity should be 1) - test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0); - - // (pos/neg 1 ^ -Infinity should be 1) - test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0); - } - - #[test] - fn zero_as_base() { - // Positive Zero as the base: - // (+0 ^ anything positive but 0 and NAN should be +0) - test_sets_as_exponent(0.0, &POS[1..], 0.0); - - // (+0 ^ anything negative but 0 and NAN should be Infinity) - // (this should panic because we're dividing by zero) - test_sets_as_exponent(0.0, &NEG[1..], INFINITY); - - // Negative Zero as the base: - // (-0 ^ anything positive but 0, NAN, and odd ints should be +0) - test_sets_as_exponent(-0.0, &POS[3..], 0.0); - - // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity) - // (should panic because of divide by zero) - test_sets_as_exponent(-0.0, &NEG[3..], INFINITY); - - // (-0 ^ positive odd ints should be -0) - test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0); - - // (-0 ^ negative odd ints should be -Infinity) - // (should panic because of divide by zero) - test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY); - } - - #[test] - fn special_cases() { - // One as the exponent: - // (anything ^ 1 should be anything - i.e. the base) - test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v); - - // Negative One as the exponent: - // (anything ^ -1 should be 1/anything) - test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v); - - // Factoring -1 out: - // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer)) - &[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS] - .iter() - .for_each(|int_set| { - int_set.iter().for_each(|int| { - test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| { - pow(-1.0, *int) * pow(v, *int) - }); - }) - }); - - // Negative base (imaginary results): - // (-anything except 0 and Infinity ^ non-integer should be NAN) - &NEG[1..(NEG.len() - 1)].iter().for_each(|set| { - set.iter().for_each(|val| { - test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN); - }) - }); - } - - #[test] - fn normal_cases() { - assert_eq!(pow(2.0, 20.0), (1 << 20) as f64); - assert_eq!(pow(-1.0, 9.0), -1.0); - assert!(pow(-1.0, 2.2).is_nan()); - assert!(pow(-1.0, -1.14).is_nan()); - } -} |