summaryrefslogtreecommitdiffstats
path: root/vendor/primeorder/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-18 02:49:50 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-18 02:49:50 +0000
commit9835e2ae736235810b4ea1c162ca5e65c547e770 (patch)
tree3fcebf40ed70e581d776a8a4c65923e8ec20e026 /vendor/primeorder/src
parentReleasing progress-linux version 1.70.0+dfsg2-1~progress7.99u1. (diff)
downloadrustc-9835e2ae736235810b4ea1c162ca5e65c547e770.tar.xz
rustc-9835e2ae736235810b4ea1c162ca5e65c547e770.zip
Merging upstream version 1.71.1+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/primeorder/src')
-rw-r--r--vendor/primeorder/src/affine.rs485
-rw-r--r--vendor/primeorder/src/dev.rs152
-rw-r--r--vendor/primeorder/src/field.rs641
-rw-r--r--vendor/primeorder/src/lib.rs46
-rw-r--r--vendor/primeorder/src/point_arithmetic.rs318
-rw-r--r--vendor/primeorder/src/projective.rs696
6 files changed, 2338 insertions, 0 deletions
diff --git a/vendor/primeorder/src/affine.rs b/vendor/primeorder/src/affine.rs
new file mode 100644
index 000000000..e7f2feccd
--- /dev/null
+++ b/vendor/primeorder/src/affine.rs
@@ -0,0 +1,485 @@
+//! Affine curve points.
+
+#![allow(clippy::op_ref)]
+
+use crate::{PrimeCurveParams, ProjectivePoint};
+use core::{
+ borrow::Borrow,
+ ops::{Mul, Neg},
+};
+use elliptic_curve::{
+ ff::{Field, PrimeField},
+ generic_array::ArrayLength,
+ group::{prime::PrimeCurveAffine, GroupEncoding},
+ point::{AffineCoordinates, DecompactPoint, DecompressPoint, Double},
+ sec1::{
+ self, CompressedPoint, EncodedPoint, FromEncodedPoint, ModulusSize, ToCompactEncodedPoint,
+ ToEncodedPoint, UncompressedPointSize,
+ },
+ subtle::{Choice, ConditionallySelectable, ConstantTimeEq, ConstantTimeGreater, CtOption},
+ zeroize::DefaultIsZeroes,
+ Error, FieldBytes, FieldBytesEncoding, FieldBytesSize, PublicKey, Result, Scalar,
+};
+
+#[cfg(feature = "serde")]
+use serdect::serde::{de, ser, Deserialize, Serialize};
+
+/// Point on a Weierstrass curve in affine coordinates.
+#[derive(Clone, Copy, Debug)]
+pub struct AffinePoint<C: PrimeCurveParams> {
+ /// x-coordinate
+ pub(crate) x: C::FieldElement,
+
+ /// y-coordinate
+ pub(crate) y: C::FieldElement,
+
+ /// Is this point the point at infinity? 0 = no, 1 = yes
+ ///
+ /// This is a proxy for [`Choice`], but uses `u8` instead to permit `const`
+ /// constructors for `IDENTITY` and `GENERATOR`.
+ pub(crate) infinity: u8,
+}
+
+impl<C> AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ /// Additive identity of the group a.k.a. the point at infinity.
+ pub const IDENTITY: Self = Self {
+ x: C::FieldElement::ZERO,
+ y: C::FieldElement::ZERO,
+ infinity: 1,
+ };
+
+ /// Base point of the curve.
+ pub const GENERATOR: Self = Self {
+ x: C::GENERATOR.0,
+ y: C::GENERATOR.1,
+ infinity: 0,
+ };
+
+ /// Is this point the point at infinity?
+ pub fn is_identity(&self) -> Choice {
+ Choice::from(self.infinity)
+ }
+
+ /// Conditionally negate [`AffinePoint`] for use with point compaction.
+ fn to_compact(self) -> Self {
+ let neg_self = -self;
+ let choice = C::Uint::decode_field_bytes(&self.y.to_repr())
+ .ct_gt(&C::Uint::decode_field_bytes(&neg_self.y.to_repr()));
+
+ Self {
+ x: self.x,
+ y: C::FieldElement::conditional_select(&self.y, &neg_self.y, choice),
+ infinity: self.infinity,
+ }
+ }
+}
+
+impl<C> AffineCoordinates for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type FieldRepr = FieldBytes<C>;
+
+ fn x(&self) -> FieldBytes<C> {
+ self.x.to_repr()
+ }
+
+ fn y_is_odd(&self) -> Choice {
+ self.y.is_odd()
+ }
+}
+
+impl<C> ConditionallySelectable for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
+ Self {
+ x: C::FieldElement::conditional_select(&a.x, &b.x, choice),
+ y: C::FieldElement::conditional_select(&a.y, &b.y, choice),
+ infinity: u8::conditional_select(&a.infinity, &b.infinity, choice),
+ }
+ }
+}
+
+impl<C> ConstantTimeEq for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn ct_eq(&self, other: &Self) -> Choice {
+ self.x.ct_eq(&other.x) & self.y.ct_eq(&other.y) & self.infinity.ct_eq(&other.infinity)
+ }
+}
+
+impl<C> Default for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn default() -> Self {
+ Self::IDENTITY
+ }
+}
+
+impl<C> DefaultIsZeroes for AffinePoint<C> where C: PrimeCurveParams {}
+
+impl<C> DecompressPoint<C> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+{
+ fn decompress(x_bytes: &FieldBytes<C>, y_is_odd: Choice) -> CtOption<Self> {
+ C::FieldElement::from_repr(*x_bytes).and_then(|x| {
+ let alpha = x * &x * &x + &(C::EQUATION_A * &x) + &C::EQUATION_B;
+ let beta = alpha.sqrt();
+
+ beta.map(|beta| {
+ let y = C::FieldElement::conditional_select(
+ &-beta,
+ &beta,
+ beta.is_odd().ct_eq(&y_is_odd),
+ );
+
+ Self { x, y, infinity: 0 }
+ })
+ })
+ }
+}
+
+impl<C> DecompactPoint<C> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+{
+ fn decompact(x_bytes: &FieldBytes<C>) -> CtOption<Self> {
+ Self::decompress(x_bytes, Choice::from(0)).map(|point| point.to_compact())
+ }
+}
+
+impl<C> Eq for AffinePoint<C> where C: PrimeCurveParams {}
+
+impl<C> FromEncodedPoint<C> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+{
+ /// Attempts to parse the given [`EncodedPoint`] as an SEC1-encoded
+ /// [`AffinePoint`].
+ ///
+ /// # Returns
+ ///
+ /// `None` value if `encoded_point` is not on the secp384r1 curve.
+ fn from_encoded_point(encoded_point: &EncodedPoint<C>) -> CtOption<Self> {
+ match encoded_point.coordinates() {
+ sec1::Coordinates::Identity => CtOption::new(Self::IDENTITY, 1.into()),
+ sec1::Coordinates::Compact { x } => Self::decompact(x),
+ sec1::Coordinates::Compressed { x, y_is_odd } => {
+ Self::decompress(x, Choice::from(y_is_odd as u8))
+ }
+ sec1::Coordinates::Uncompressed { x, y } => {
+ C::FieldElement::from_repr(*y).and_then(|y| {
+ Self::decompress(x, y.is_odd())
+ .and_then(|point| CtOption::new(point, point.y.ct_eq(&y)))
+ })
+ }
+ }
+ }
+}
+
+impl<C> From<ProjectivePoint<C>> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(p: ProjectivePoint<C>) -> AffinePoint<C> {
+ p.to_affine()
+ }
+}
+
+impl<C> From<&ProjectivePoint<C>> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(p: &ProjectivePoint<C>) -> AffinePoint<C> {
+ p.to_affine()
+ }
+}
+
+impl<C> From<PublicKey<C>> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(public_key: PublicKey<C>) -> AffinePoint<C> {
+ *public_key.as_affine()
+ }
+}
+
+impl<C> From<&PublicKey<C>> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(public_key: &PublicKey<C>) -> AffinePoint<C> {
+ AffinePoint::from(*public_key)
+ }
+}
+
+impl<C> From<AffinePoint<C>> for EncodedPoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ fn from(affine: AffinePoint<C>) -> EncodedPoint<C> {
+ affine.to_encoded_point(false)
+ }
+}
+
+impl<C> GroupEncoding for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ type Repr = CompressedPoint<C>;
+
+ /// NOTE: not constant-time with respect to identity point
+ fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
+ EncodedPoint::<C>::from_bytes(bytes)
+ .map(|point| CtOption::new(point, Choice::from(1)))
+ .unwrap_or_else(|_| {
+ // SEC1 identity encoding is technically 1-byte 0x00, but the
+ // `GroupEncoding` API requires a fixed-width `Repr`
+ let is_identity = bytes.ct_eq(&Self::Repr::default());
+ CtOption::new(EncodedPoint::<C>::identity(), is_identity)
+ })
+ .and_then(|point| Self::from_encoded_point(&point))
+ }
+
+ fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
+ // No unchecked conversion possible for compressed points
+ Self::from_bytes(bytes)
+ }
+
+ fn to_bytes(&self) -> Self::Repr {
+ let encoded = self.to_encoded_point(true);
+ let mut result = CompressedPoint::<C>::default();
+ result[..encoded.len()].copy_from_slice(encoded.as_bytes());
+ result
+ }
+}
+
+impl<C> PartialEq for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn eq(&self, other: &Self) -> bool {
+ self.ct_eq(other).into()
+ }
+}
+
+impl<C> PrimeCurveAffine for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ ProjectivePoint<C>: Double,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ type Curve = ProjectivePoint<C>;
+ type Scalar = Scalar<C>;
+
+ fn identity() -> AffinePoint<C> {
+ Self::IDENTITY
+ }
+
+ fn generator() -> AffinePoint<C> {
+ Self::GENERATOR
+ }
+
+ fn is_identity(&self) -> Choice {
+ self.is_identity()
+ }
+
+ fn to_curve(&self) -> ProjectivePoint<C> {
+ ProjectivePoint::from(*self)
+ }
+}
+
+impl<C> ToCompactEncodedPoint<C> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ /// Serialize this value as a SEC1 compact [`EncodedPoint`]
+ fn to_compact_encoded_point(&self) -> CtOption<EncodedPoint<C>> {
+ let point = self.to_compact();
+
+ let mut bytes = CompressedPoint::<C>::default();
+ bytes[0] = sec1::Tag::Compact.into();
+ bytes[1..].copy_from_slice(&point.x.to_repr());
+
+ let encoded = EncodedPoint::<C>::from_bytes(bytes);
+ let is_some = point.y.ct_eq(&self.y);
+ CtOption::new(encoded.unwrap_or_default(), is_some)
+ }
+}
+
+impl<C> ToEncodedPoint<C> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ fn to_encoded_point(&self, compress: bool) -> EncodedPoint<C> {
+ EncodedPoint::<C>::conditional_select(
+ &EncodedPoint::<C>::from_affine_coordinates(
+ &self.x.to_repr(),
+ &self.y.to_repr(),
+ compress,
+ ),
+ &EncodedPoint::<C>::identity(),
+ self.is_identity(),
+ )
+ }
+}
+
+impl<C> TryFrom<EncodedPoint<C>> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+{
+ type Error = Error;
+
+ fn try_from(point: EncodedPoint<C>) -> Result<AffinePoint<C>> {
+ AffinePoint::try_from(&point)
+ }
+}
+
+impl<C> TryFrom<&EncodedPoint<C>> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+{
+ type Error = Error;
+
+ fn try_from(point: &EncodedPoint<C>) -> Result<AffinePoint<C>> {
+ Option::from(AffinePoint::<C>::from_encoded_point(point)).ok_or(Error)
+ }
+}
+
+impl<C> TryFrom<AffinePoint<C>> for PublicKey<C>
+where
+ C: PrimeCurveParams,
+{
+ type Error = Error;
+
+ fn try_from(affine_point: AffinePoint<C>) -> Result<PublicKey<C>> {
+ PublicKey::from_affine(affine_point)
+ }
+}
+
+impl<C> TryFrom<&AffinePoint<C>> for PublicKey<C>
+where
+ C: PrimeCurveParams,
+{
+ type Error = Error;
+
+ fn try_from(affine_point: &AffinePoint<C>) -> Result<PublicKey<C>> {
+ PublicKey::<C>::try_from(*affine_point)
+ }
+}
+
+//
+// Arithmetic trait impls
+//
+
+impl<C, S> Mul<S> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ S: Borrow<Scalar<C>>,
+ ProjectivePoint<C>: Double,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn mul(self, scalar: S) -> ProjectivePoint<C> {
+ ProjectivePoint::<C>::from(self) * scalar
+ }
+}
+
+impl<C> Neg for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = Self;
+
+ fn neg(self) -> Self {
+ AffinePoint {
+ x: self.x,
+ y: -self.y,
+ infinity: self.infinity,
+ }
+ }
+}
+
+impl<C> Neg for &AffinePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = AffinePoint<C>;
+
+ fn neg(self) -> AffinePoint<C> {
+ -(*self)
+ }
+}
+
+//
+// serde support
+//
+
+#[cfg(feature = "serde")]
+impl<C> Serialize for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ fn serialize<S>(&self, serializer: S) -> core::result::Result<S::Ok, S::Error>
+ where
+ S: ser::Serializer,
+ {
+ self.to_encoded_point(true).serialize(serializer)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de, C> Deserialize<'de> for AffinePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+{
+ fn deserialize<D>(deserializer: D) -> core::result::Result<Self, D::Error>
+ where
+ D: de::Deserializer<'de>,
+ {
+ EncodedPoint::<C>::deserialize(deserializer)?
+ .try_into()
+ .map_err(de::Error::custom)
+ }
+}
diff --git a/vendor/primeorder/src/dev.rs b/vendor/primeorder/src/dev.rs
new file mode 100644
index 000000000..67877aa74
--- /dev/null
+++ b/vendor/primeorder/src/dev.rs
@@ -0,0 +1,152 @@
+//! Development-related functionality.
+
+/// Implement projective arithmetic tests.
+#[macro_export]
+macro_rules! impl_projective_arithmetic_tests {
+ (
+ $affine:tt,
+ $projective:tt,
+ $scalar:ty,
+ $add_vectors:expr,
+ $mul_vectors:expr
+ ) => {
+ /// Assert that the provided projective point matches the given test vector.
+ // TODO(tarcieri): use coordinate APIs. See zkcrypto/group#30
+ macro_rules! assert_point_eq {
+ ($actual:expr, $expected:expr) => {
+ let (expected_x, expected_y) = $expected;
+
+ let point = $actual.to_affine().to_encoded_point(false);
+ let (actual_x, actual_y) = match point.coordinates() {
+ sec1::Coordinates::Uncompressed { x, y } => (x, y),
+ _ => unreachable!(),
+ };
+
+ assert_eq!(&expected_x, actual_x.as_slice());
+ assert_eq!(&expected_y, actual_y.as_slice());
+ };
+ }
+
+ #[test]
+ fn affine_to_projective() {
+ let basepoint_affine = $affine::GENERATOR;
+ let basepoint_projective = $projective::GENERATOR;
+
+ assert_eq!($projective::from(basepoint_affine), basepoint_projective,);
+ assert_eq!(basepoint_projective.to_affine(), basepoint_affine);
+ assert!(!bool::from(basepoint_projective.to_affine().is_identity()));
+
+ assert!(bool::from($projective::IDENTITY.to_affine().is_identity()));
+ }
+
+ #[test]
+ fn projective_identity_addition() {
+ let identity = $projective::IDENTITY;
+ let generator = $projective::GENERATOR;
+
+ assert_eq!(identity + &generator, generator);
+ assert_eq!(generator + &identity, generator);
+ }
+
+ #[test]
+ fn projective_mixed_addition() {
+ let identity = $projective::IDENTITY;
+ let basepoint_affine = $affine::GENERATOR;
+ let basepoint_projective = $projective::GENERATOR;
+
+ assert_eq!(identity + &basepoint_affine, basepoint_projective);
+ assert_eq!(
+ basepoint_projective + &basepoint_affine,
+ basepoint_projective + &basepoint_projective
+ );
+ }
+
+ #[test]
+ fn test_vector_repeated_add() {
+ let generator = $projective::GENERATOR;
+ let mut p = generator;
+
+ for i in 0..$add_vectors.len() {
+ assert_point_eq!(p, $add_vectors[i]);
+ p += &generator;
+ }
+ }
+
+ #[test]
+ fn test_vector_repeated_add_mixed() {
+ let generator = $affine::GENERATOR;
+ let mut p = $projective::GENERATOR;
+
+ for i in 0..$add_vectors.len() {
+ assert_point_eq!(p, $add_vectors[i]);
+ p += &generator;
+ }
+ }
+
+ #[test]
+ fn test_vector_add_mixed_identity() {
+ let generator = $projective::GENERATOR;
+ let p0 = generator + $projective::IDENTITY;
+ let p1 = generator + $affine::IDENTITY;
+ assert_eq!(p0, p1);
+ }
+
+ #[test]
+ fn test_vector_double_generator() {
+ let generator = $projective::GENERATOR;
+ let mut p = generator;
+
+ for i in 0..2 {
+ assert_point_eq!(p, $add_vectors[i]);
+ p = p.double();
+ }
+ }
+
+ #[test]
+ fn projective_add_vs_double() {
+ let generator = $projective::GENERATOR;
+ assert_eq!(generator + &generator, generator.double());
+ }
+
+ #[test]
+ fn projective_add_and_sub() {
+ let basepoint_affine = $affine::GENERATOR;
+ let basepoint_projective = $projective::GENERATOR;
+
+ assert_eq!(
+ (basepoint_projective + &basepoint_projective) - &basepoint_projective,
+ basepoint_projective
+ );
+ assert_eq!(
+ (basepoint_projective + &basepoint_affine) - &basepoint_affine,
+ basepoint_projective
+ );
+ }
+
+ #[test]
+ fn projective_double_and_sub() {
+ let generator = $projective::GENERATOR;
+ assert_eq!(generator.double() - &generator, generator);
+ }
+
+ #[test]
+ fn test_vector_scalar_mult() {
+ let generator = $projective::GENERATOR;
+
+ for (k, coords) in $add_vectors
+ .iter()
+ .enumerate()
+ .map(|(k, coords)| (<$scalar>::from(k as u64 + 1), *coords))
+ .chain(
+ $mul_vectors
+ .iter()
+ .cloned()
+ .map(|(k, x, y)| (<$scalar>::from_repr(k.into()).unwrap(), (x, y))),
+ )
+ {
+ let p = generator * &k;
+ assert_point_eq!(p, coords);
+ }
+ }
+ };
+}
diff --git a/vendor/primeorder/src/field.rs b/vendor/primeorder/src/field.rs
new file mode 100644
index 000000000..a347f0bb1
--- /dev/null
+++ b/vendor/primeorder/src/field.rs
@@ -0,0 +1,641 @@
+/// Implements a field element type whose internal representation is in
+/// Montgomery form, providing a combination of trait impls and inherent impls
+/// which are `const fn` where possible.
+///
+/// Accepts a set of `const fn` arithmetic operation functions as arguments.
+///
+/// # Inherent impls
+/// - `const ZERO: Self`
+/// - `const ONE: Self` (multiplicative identity)
+/// - `pub fn from_bytes`
+/// - `pub fn from_slice`
+/// - `pub fn from_uint`
+/// - `fn from_uint_unchecked`
+/// - `pub fn to_bytes`
+/// - `pub fn to_canonical`
+/// - `pub fn is_odd`
+/// - `pub fn is_zero`
+/// - `pub fn double`
+///
+/// NOTE: field implementations must provide their own inherent impls of
+/// the following methods in order for the code generated by this macro to
+/// compile:
+///
+/// - `pub fn invert`
+/// - `pub fn sqrt`
+///
+/// # Trait impls
+/// - `AsRef<$arr>`
+/// - `ConditionallySelectable`
+/// - `ConstantTimeEq`
+/// - `ConstantTimeGreater`
+/// - `ConstantTimeLess`
+/// - `Default`
+/// - `DefaultIsZeroes`
+/// - `Eq`
+/// - `Field`
+/// - `PartialEq`
+///
+/// ## Ops
+/// - `Add`
+/// - `AddAssign`
+/// - `Sub`
+/// - `SubAssign`
+/// - `Mul`
+/// - `MulAssign`
+/// - `Neg`
+#[macro_export]
+macro_rules! impl_mont_field_element {
+ (
+ $curve:tt,
+ $fe:tt,
+ $bytes:ty,
+ $uint:ty,
+ $modulus:expr,
+ $arr:ty,
+ $from_mont:ident,
+ $to_mont:ident,
+ $add:ident,
+ $sub:ident,
+ $mul:ident,
+ $neg:ident,
+ $square:ident
+ ) => {
+ impl $fe {
+ /// Zero element.
+ pub const ZERO: Self = Self(<$uint>::ZERO);
+
+ /// Multiplicative identity.
+ pub const ONE: Self = Self::from_uint_unchecked(<$uint>::ONE);
+
+ /// Create a [`
+ #[doc = stringify!($fe)]
+ /// `] from a canonical big-endian representation.
+ pub fn from_bytes(repr: &$bytes) -> $crate::elliptic_curve::subtle::CtOption<Self> {
+ use $crate::elliptic_curve::FieldBytesEncoding;
+ Self::from_uint(FieldBytesEncoding::<$curve>::decode_field_bytes(repr))
+ }
+
+ /// Decode [`
+ #[doc = stringify!($fe)]
+ /// `] from a big endian byte slice.
+ pub fn from_slice(slice: &[u8]) -> $crate::elliptic_curve::Result<Self> {
+ use $crate::elliptic_curve::generic_array::{typenum::Unsigned, GenericArray};
+
+ if slice.len() != <$curve as $crate::elliptic_curve::Curve>::FieldBytesSize::USIZE {
+ return Err($crate::elliptic_curve::Error);
+ }
+
+ Option::from(Self::from_bytes(GenericArray::from_slice(slice)))
+ .ok_or($crate::elliptic_curve::Error)
+ }
+
+ /// Decode [`
+ #[doc = stringify!($fe)]
+ /// `]
+ /// from [`
+ #[doc = stringify!($uint)]
+ /// `] converting it into Montgomery form:
+ ///
+ /// ```text
+ /// w * R^2 * R^-1 mod p = wR mod p
+ /// ```
+ pub fn from_uint(uint: $uint) -> $crate::elliptic_curve::subtle::CtOption<Self> {
+ use $crate::elliptic_curve::subtle::ConstantTimeLess as _;
+ let is_some = uint.ct_lt(&$modulus);
+ $crate::elliptic_curve::subtle::CtOption::new(
+ Self::from_uint_unchecked(uint),
+ is_some,
+ )
+ }
+
+ /// Parse a [`
+ #[doc = stringify!($fe)]
+ /// `] from big endian hex-encoded bytes.
+ ///
+ /// Does *not* perform a check that the field element does not overflow the order.
+ ///
+ /// This method is primarily intended for defining internal constants.
+ #[allow(dead_code)]
+ pub(crate) const fn from_hex(hex: &str) -> Self {
+ Self::from_uint_unchecked(<$uint>::from_be_hex(hex))
+ }
+
+ /// Convert a `u64` into a [`
+ #[doc = stringify!($fe)]
+ /// `].
+ pub const fn from_u64(w: u64) -> Self {
+ Self::from_uint_unchecked(<$uint>::from_u64(w))
+ }
+
+ /// Decode [`
+ #[doc = stringify!($fe)]
+ /// `] from [`
+ #[doc = stringify!($uint)]
+ /// `] converting it into Montgomery form.
+ ///
+ /// Does *not* perform a check that the field element does not overflow the order.
+ ///
+ /// Used incorrectly this can lead to invalid results!
+ pub(crate) const fn from_uint_unchecked(w: $uint) -> Self {
+ Self(<$uint>::from_words($to_mont(w.as_words())))
+ }
+
+ /// Returns the big-endian encoding of this [`
+ #[doc = stringify!($fe)]
+ /// `].
+ pub fn to_bytes(self) -> $bytes {
+ use $crate::elliptic_curve::FieldBytesEncoding;
+ FieldBytesEncoding::<$curve>::encode_field_bytes(&self.to_canonical())
+ }
+
+ /// Translate [`
+ #[doc = stringify!($fe)]
+ /// `] out of the Montgomery domain, returning a [`
+ #[doc = stringify!($uint)]
+ /// `] in canonical form.
+ #[inline]
+ pub const fn to_canonical(self) -> $uint {
+ <$uint>::from_words($from_mont(self.0.as_words()))
+ }
+
+ /// Determine if this [`
+ #[doc = stringify!($fe)]
+ /// `] is odd in the SEC1 sense: `self mod 2 == 1`.
+ ///
+ /// # Returns
+ ///
+ /// If odd, return `Choice(1)`. Otherwise, return `Choice(0)`.
+ pub fn is_odd(&self) -> Choice {
+ use $crate::elliptic_curve::bigint::Integer;
+ self.to_canonical().is_odd()
+ }
+
+ /// Determine if this [`
+ #[doc = stringify!($fe)]
+ /// `] is even in the SEC1 sense: `self mod 2 == 0`.
+ ///
+ /// # Returns
+ ///
+ /// If even, return `Choice(1)`. Otherwise, return `Choice(0)`.
+ pub fn is_even(&self) -> Choice {
+ !self.is_odd()
+ }
+
+ /// Determine if this [`
+ #[doc = stringify!($fe)]
+ /// `] is zero.
+ ///
+ /// # Returns
+ ///
+ /// If zero, return `Choice(1)`. Otherwise, return `Choice(0)`.
+ pub fn is_zero(&self) -> Choice {
+ self.ct_eq(&Self::ZERO)
+ }
+
+ /// Add elements.
+ pub const fn add(&self, rhs: &Self) -> Self {
+ Self(<$uint>::from_words($add(
+ self.0.as_words(),
+ rhs.0.as_words(),
+ )))
+ }
+
+ /// Double element (add it to itself).
+ #[must_use]
+ pub const fn double(&self) -> Self {
+ self.add(self)
+ }
+
+ /// Subtract elements.
+ pub const fn sub(&self, rhs: &Self) -> Self {
+ Self(<$uint>::from_words($sub(
+ self.0.as_words(),
+ rhs.0.as_words(),
+ )))
+ }
+
+ /// Multiply elements.
+ pub const fn multiply(&self, rhs: &Self) -> Self {
+ Self(<$uint>::from_words($mul(
+ self.0.as_words(),
+ rhs.0.as_words(),
+ )))
+ }
+
+ /// Negate element.
+ pub const fn neg(&self) -> Self {
+ Self(<$uint>::from_words($neg(self.0.as_words())))
+ }
+
+ /// Compute modular square.
+ #[must_use]
+ pub const fn square(&self) -> Self {
+ Self(<$uint>::from_words($square(self.0.as_words())))
+ }
+
+ /// Returns `self^exp`, where `exp` is a little-endian integer exponent.
+ ///
+ /// **This operation is variable time with respect to the exponent.**
+ ///
+ /// If the exponent is fixed, this operation is effectively constant time.
+ pub const fn pow_vartime(&self, exp: &[u64]) -> Self {
+ let mut res = Self::ONE;
+ let mut i = exp.len();
+
+ while i > 0 {
+ i -= 1;
+
+ let mut j = 64;
+ while j > 0 {
+ j -= 1;
+ res = res.square();
+
+ if ((exp[i] >> j) & 1) == 1 {
+ res = res.multiply(self);
+ }
+ }
+ }
+
+ res
+ }
+ }
+
+ impl AsRef<$arr> for $fe {
+ fn as_ref(&self) -> &$arr {
+ self.0.as_ref()
+ }
+ }
+
+ impl Default for $fe {
+ fn default() -> Self {
+ Self::ZERO
+ }
+ }
+
+ impl Eq for $fe {}
+ impl PartialEq for $fe {
+ fn eq(&self, rhs: &Self) -> bool {
+ self.0.ct_eq(&(rhs.0)).into()
+ }
+ }
+
+ impl From<u32> for $fe {
+ fn from(n: u32) -> $fe {
+ Self::from_uint_unchecked(<$uint>::from(n))
+ }
+ }
+
+ impl From<u64> for $fe {
+ fn from(n: u64) -> $fe {
+ Self::from_uint_unchecked(<$uint>::from(n))
+ }
+ }
+
+ impl From<u128> for $fe {
+ fn from(n: u128) -> $fe {
+ Self::from_uint_unchecked(<$uint>::from(n))
+ }
+ }
+
+ impl $crate::elliptic_curve::subtle::ConditionallySelectable for $fe {
+ fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
+ Self(<$uint>::conditional_select(&a.0, &b.0, choice))
+ }
+ }
+
+ impl $crate::elliptic_curve::subtle::ConstantTimeEq for $fe {
+ fn ct_eq(&self, other: &Self) -> $crate::elliptic_curve::subtle::Choice {
+ self.0.ct_eq(&other.0)
+ }
+ }
+
+ impl $crate::elliptic_curve::subtle::ConstantTimeGreater for $fe {
+ fn ct_gt(&self, other: &Self) -> $crate::elliptic_curve::subtle::Choice {
+ self.0.ct_gt(&other.0)
+ }
+ }
+
+ impl $crate::elliptic_curve::subtle::ConstantTimeLess for $fe {
+ fn ct_lt(&self, other: &Self) -> $crate::elliptic_curve::subtle::Choice {
+ self.0.ct_lt(&other.0)
+ }
+ }
+
+ impl $crate::elliptic_curve::zeroize::DefaultIsZeroes for $fe {}
+
+ impl $crate::elliptic_curve::ff::Field for $fe {
+ const ZERO: Self = Self::ZERO;
+ const ONE: Self = Self::ONE;
+
+ fn random(mut rng: impl $crate::elliptic_curve::rand_core::RngCore) -> Self {
+ // NOTE: can't use ScalarPrimitive::random due to CryptoRng bound
+ let mut bytes = <$bytes>::default();
+
+ loop {
+ rng.fill_bytes(&mut bytes);
+ if let Some(fe) = Self::from_bytes(&bytes).into() {
+ return fe;
+ }
+ }
+ }
+
+ fn is_zero(&self) -> Choice {
+ Self::ZERO.ct_eq(self)
+ }
+
+ #[must_use]
+ fn square(&self) -> Self {
+ self.square()
+ }
+
+ #[must_use]
+ fn double(&self) -> Self {
+ self.double()
+ }
+
+ fn invert(&self) -> CtOption<Self> {
+ self.invert()
+ }
+
+ fn sqrt(&self) -> CtOption<Self> {
+ self.sqrt()
+ }
+
+ fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
+ $crate::elliptic_curve::ff::helpers::sqrt_ratio_generic(num, div)
+ }
+ }
+
+ $crate::impl_field_op!($fe, Add, add, $add);
+ $crate::impl_field_op!($fe, Sub, sub, $sub);
+ $crate::impl_field_op!($fe, Mul, mul, $mul);
+
+ impl AddAssign<$fe> for $fe {
+ #[inline]
+ fn add_assign(&mut self, other: $fe) {
+ *self = *self + other;
+ }
+ }
+
+ impl AddAssign<&$fe> for $fe {
+ #[inline]
+ fn add_assign(&mut self, other: &$fe) {
+ *self = *self + other;
+ }
+ }
+
+ impl SubAssign<$fe> for $fe {
+ #[inline]
+ fn sub_assign(&mut self, other: $fe) {
+ *self = *self - other;
+ }
+ }
+
+ impl SubAssign<&$fe> for $fe {
+ #[inline]
+ fn sub_assign(&mut self, other: &$fe) {
+ *self = *self - other;
+ }
+ }
+
+ impl MulAssign<&$fe> for $fe {
+ #[inline]
+ fn mul_assign(&mut self, other: &$fe) {
+ *self = *self * other;
+ }
+ }
+
+ impl MulAssign for $fe {
+ #[inline]
+ fn mul_assign(&mut self, other: $fe) {
+ *self = *self * other;
+ }
+ }
+
+ impl Neg for $fe {
+ type Output = $fe;
+
+ #[inline]
+ fn neg(self) -> $fe {
+ Self($neg(self.as_ref()).into())
+ }
+ }
+
+ impl Sum for $fe {
+ fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
+ iter.reduce(core::ops::Add::add).unwrap_or(Self::ZERO)
+ }
+ }
+
+ impl<'a> Sum<&'a $fe> for $fe {
+ fn sum<I: Iterator<Item = &'a $fe>>(iter: I) -> Self {
+ iter.copied().sum()
+ }
+ }
+
+ impl Product for $fe {
+ fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
+ iter.reduce(core::ops::Mul::mul).unwrap_or(Self::ONE)
+ }
+ }
+
+ impl<'a> Product<&'a $fe> for $fe {
+ fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
+ iter.copied().product()
+ }
+ }
+ };
+}
+
+/// Emit impls for a `core::ops` trait for all combinations of reference types,
+/// which thunk to the given function.
+#[macro_export]
+macro_rules! impl_field_op {
+ ($fe:tt, $op:tt, $op_fn:ident, $func:ident) => {
+ impl ::core::ops::$op for $fe {
+ type Output = $fe;
+
+ #[inline]
+ fn $op_fn(self, rhs: $fe) -> $fe {
+ $fe($func(self.as_ref(), rhs.as_ref()).into())
+ }
+ }
+
+ impl ::core::ops::$op<&$fe> for $fe {
+ type Output = $fe;
+
+ #[inline]
+ fn $op_fn(self, rhs: &$fe) -> $fe {
+ $fe($func(self.as_ref(), rhs.as_ref()).into())
+ }
+ }
+
+ impl ::core::ops::$op<&$fe> for &$fe {
+ type Output = $fe;
+
+ #[inline]
+ fn $op_fn(self, rhs: &$fe) -> $fe {
+ $fe($func(self.as_ref(), rhs.as_ref()).into())
+ }
+ }
+ };
+}
+
+/// Implement Bernstein-Yang field element inversion.
+#[macro_export]
+macro_rules! impl_bernstein_yang_invert {
+ (
+ $a:expr,
+ $one:expr,
+ $d:expr,
+ $nlimbs:expr,
+ $word:ty,
+ $from_montgomery:ident,
+ $mul:ident,
+ $neg:ident,
+ $divstep_precomp:ident,
+ $divstep:ident,
+ $msat:ident,
+ $selectznz:ident,
+ ) => {{
+ // See Bernstein-Yang 2019 p.366
+ const ITERATIONS: usize = (49 * $d + 57) / 17;
+
+ let a = $from_montgomery($a);
+ let mut d = 1;
+ let mut f = $msat();
+ let mut g = [0; $nlimbs + 1];
+ let mut v = [0; $nlimbs];
+ let mut r = $one;
+ let mut i = 0;
+ let mut j = 0;
+
+ while j < $nlimbs {
+ g[j] = a[j];
+ j += 1;
+ }
+
+ while i < ITERATIONS - ITERATIONS % 2 {
+ let (out1, out2, out3, out4, out5) = $divstep(d, &f, &g, &v, &r);
+ let (out1, out2, out3, out4, out5) = $divstep(out1, &out2, &out3, &out4, &out5);
+ d = out1;
+ f = out2;
+ g = out3;
+ v = out4;
+ r = out5;
+ i += 2;
+ }
+
+ if ITERATIONS % 2 != 0 {
+ let (_out1, out2, _out3, out4, _out5) = $divstep(d, &f, &g, &v, &r);
+ v = out4;
+ f = out2;
+ }
+
+ let s = ((f[f.len() - 1] >> <$word>::BITS - 1) & 1) as u8;
+ let v = $selectznz(s, &v, &$neg(&v));
+ $mul(&v, &$divstep_precomp())
+ }};
+}
+
+/// Implement field element identity tests.
+#[macro_export]
+macro_rules! impl_field_identity_tests {
+ ($fe:tt) => {
+ #[test]
+ fn zero_is_additive_identity() {
+ let zero = $fe::ZERO;
+ let one = $fe::ONE;
+ assert_eq!(zero.add(&zero), zero);
+ assert_eq!(one.add(&zero), one);
+ }
+
+ #[test]
+ fn one_is_multiplicative_identity() {
+ let one = $fe::ONE;
+ assert_eq!(one.multiply(&one), one);
+ }
+ };
+}
+
+/// Implement field element inversion tests.
+#[macro_export]
+macro_rules! impl_field_invert_tests {
+ ($fe:tt) => {
+ #[test]
+ fn invert() {
+ let one = $fe::ONE;
+ assert_eq!(one.invert().unwrap(), one);
+
+ let three = one + &one + &one;
+ let inv_three = three.invert().unwrap();
+ assert_eq!(three * &inv_three, one);
+
+ let minus_three = -three;
+ let inv_minus_three = minus_three.invert().unwrap();
+ assert_eq!(inv_minus_three, -inv_three);
+ assert_eq!(three * &inv_minus_three, -one);
+ }
+ };
+}
+
+/// Implement field element square root tests.
+#[macro_export]
+macro_rules! impl_field_sqrt_tests {
+ ($fe:tt) => {
+ #[test]
+ fn sqrt() {
+ for &n in &[1u64, 4, 9, 16, 25, 36, 49, 64] {
+ let fe = $fe::from(n);
+ let sqrt = fe.sqrt().unwrap();
+ assert_eq!(sqrt.square(), fe);
+ }
+ }
+ };
+}
+
+/// Implement tests for the `PrimeField` trait.
+#[macro_export]
+macro_rules! impl_primefield_tests {
+ ($fe:tt, $t:expr) => {
+ #[test]
+ fn two_inv_constant() {
+ assert_eq!($fe::from(2u32) * $fe::TWO_INV, $fe::ONE);
+ }
+
+ #[test]
+ fn root_of_unity_constant() {
+ assert!($fe::S < 128);
+ let two_to_s = 1u128 << $fe::S;
+
+ // ROOT_OF_UNITY^{2^s} mod m == 1
+ assert_eq!(
+ $fe::ROOT_OF_UNITY.pow_vartime(&[
+ (two_to_s & 0xFFFFFFFFFFFFFFFF) as u64,
+ (two_to_s >> 64) as u64,
+ 0,
+ 0
+ ]),
+ $fe::ONE
+ );
+
+ // MULTIPLICATIVE_GENERATOR^{t} mod m == ROOT_OF_UNITY
+ assert_eq!(
+ $fe::MULTIPLICATIVE_GENERATOR.pow_vartime(&$t),
+ $fe::ROOT_OF_UNITY
+ )
+ }
+
+ #[test]
+ fn root_of_unity_inv_constant() {
+ assert_eq!($fe::ROOT_OF_UNITY * $fe::ROOT_OF_UNITY_INV, $fe::ONE);
+ }
+
+ #[test]
+ fn delta_constant() {
+ // DELTA^{t} mod m == 1
+ assert_eq!($fe::DELTA.pow_vartime(&$t), $fe::ONE);
+ }
+ };
+}
diff --git a/vendor/primeorder/src/lib.rs b/vendor/primeorder/src/lib.rs
new file mode 100644
index 000000000..0847a995a
--- /dev/null
+++ b/vendor/primeorder/src/lib.rs
@@ -0,0 +1,46 @@
+#![no_std]
+#![cfg_attr(docsrs, feature(doc_auto_cfg))]
+#![doc(
+ html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
+ html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
+)]
+#![forbid(unsafe_code)]
+#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
+#![doc = include_str!("../README.md")]
+
+#[cfg(feature = "dev")]
+pub mod dev;
+pub mod point_arithmetic;
+
+mod affine;
+mod field;
+mod projective;
+
+pub use crate::{affine::AffinePoint, projective::ProjectivePoint};
+pub use elliptic_curve::{self, point::Double, Field, FieldBytes, PrimeCurve, PrimeField};
+
+use elliptic_curve::CurveArithmetic;
+
+/// Parameters for elliptic curves of prime order which can be described by the
+/// short Weierstrass equation.
+pub trait PrimeCurveParams:
+ PrimeCurve
+ + CurveArithmetic
+ + CurveArithmetic<AffinePoint = AffinePoint<Self>>
+ + CurveArithmetic<ProjectivePoint = ProjectivePoint<Self>>
+{
+ /// Base field element type.
+ type FieldElement: PrimeField<Repr = FieldBytes<Self>>;
+
+ /// [Point arithmetic](point_arithmetic) implementation, might be optimized for this specific curve
+ type PointArithmetic: point_arithmetic::PointArithmetic<Self>;
+
+ /// Coefficient `a` in the curve equation.
+ const EQUATION_A: Self::FieldElement;
+
+ /// Coefficient `b` in the curve equation.
+ const EQUATION_B: Self::FieldElement;
+
+ /// Generator point's affine coordinates: (x, y).
+ const GENERATOR: (Self::FieldElement, Self::FieldElement);
+}
diff --git a/vendor/primeorder/src/point_arithmetic.rs b/vendor/primeorder/src/point_arithmetic.rs
new file mode 100644
index 000000000..b41308992
--- /dev/null
+++ b/vendor/primeorder/src/point_arithmetic.rs
@@ -0,0 +1,318 @@
+//! Point arithmetic implementation optimised for different curve equations
+//!
+//! Support for formulas specialized to the short Weierstrass equation's
+//! 𝒂-coefficient.
+
+use elliptic_curve::{subtle::ConditionallySelectable, Field};
+
+use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};
+
+mod sealed {
+ use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};
+
+ /// Elliptic point arithmetic implementation
+ ///
+ /// Provides implementation of point arithmetic (point addition, point doubling) which
+ /// might be optimized for the curve.
+ pub trait PointArithmetic<C: PrimeCurveParams> {
+ /// Returns `lhs + rhs`
+ fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C>;
+
+ /// Returns `lhs + rhs`
+ fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C>;
+
+ /// Returns `point + point`
+ fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C>;
+ }
+}
+
+/// Allow crate-local visibility
+pub(crate) use sealed::PointArithmetic;
+
+/// The 𝒂-coefficient of the short Weierstrass equation does not have specific
+/// properties which allow for an optimized implementation.
+pub struct EquationAIsGeneric {}
+
+impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsGeneric {
+ /// Implements complete addition for any curve
+ ///
+ /// Implements the complete addition formula from [Renes-Costello-Batina 2015]
+ /// (Algorithm 1). The comments after each line indicate which algorithm steps
+ /// are being performed.
+ ///
+ /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
+ fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ let b3 = C::FieldElement::from(3) * C::EQUATION_B;
+
+ let t0 = lhs.x * rhs.x; // 1
+ let t1 = lhs.y * rhs.y; // 2
+ let t2 = lhs.z * rhs.z; // 3
+ let t3 = lhs.x + lhs.y; // 4
+ let t4 = rhs.x + rhs.y; // 5
+ let t3 = t3 * t4; // 6
+ let t4 = t0 + t1; // 7
+ let t3 = t3 - t4; // 8
+ let t4 = lhs.x + lhs.z; // 9
+ let t5 = rhs.x + rhs.z; // 10
+ let t4 = t4 * t5; // 11
+ let t5 = t0 + t2; // 12
+ let t4 = t4 - t5; // 13
+ let t5 = lhs.y + lhs.z; // 14
+ let x3 = rhs.y + rhs.z; // 15
+ let t5 = t5 * x3; // 16
+ let x3 = t1 + t2; // 17
+ let t5 = t5 - x3; // 18
+ let z3 = C::EQUATION_A * t4; // 19
+ let x3 = b3 * t2; // 20
+ let z3 = x3 + z3; // 21
+ let x3 = t1 - z3; // 22
+ let z3 = t1 + z3; // 23
+ let y3 = x3 * z3; // 24
+ let t1 = t0 + t0; // 25
+ let t1 = t1 + t0; // 26
+ let t2 = C::EQUATION_A * t2; // 27
+ let t4 = b3 * t4; // 28
+ let t1 = t1 + t2; // 29
+ let t2 = t0 - t2; // 30
+ let t2 = C::EQUATION_A * t2; // 31
+ let t4 = t4 + t2; // 32
+ let t0 = t1 * t4; // 33
+ let y3 = y3 + t0; // 34
+ let t0 = t5 * t4; // 35
+ let x3 = t3 * x3; // 36
+ let x3 = x3 - t0; // 37
+ let t0 = t3 * t1; // 38
+ let z3 = t5 * z3; // 39
+ let z3 = z3 + t0; // 40
+
+ ProjectivePoint {
+ x: x3,
+ y: y3,
+ z: z3,
+ }
+ }
+
+ /// Implements complete mixed addition for curves with any `a`
+ ///
+ /// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015]
+ /// (Algorithm 2). The comments after each line indicate which algorithm
+ /// steps are being performed.
+ ///
+ /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
+ fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
+ let b3 = C::EQUATION_B * C::FieldElement::from(3);
+
+ let t0 = lhs.x * rhs.x; // 1
+ let t1 = lhs.y * rhs.y; // 2
+ let t3 = rhs.x + rhs.y; // 3
+ let t4 = lhs.x + lhs.y; // 4
+ let t3 = t3 * t4; // 5
+ let t4 = t0 + t1; // 6
+ let t3 = t3 - t4; // 7
+ let t4 = rhs.x * lhs.z; // 8
+ let t4 = t4 + lhs.x; // 9
+ let t5 = rhs.y * lhs.z; // 10
+ let t5 = t5 + lhs.y; // 11
+ let z3 = C::EQUATION_A * t4; // 12
+ let x3 = b3 * lhs.z; // 13
+ let z3 = x3 + z3; // 14
+ let x3 = t1 - z3; // 15
+ let z3 = t1 + z3; // 16
+ let y3 = x3 * z3; // 17
+ let t1 = t0 + t0; // 18
+ let t1 = t1 + t0; // 19
+ let t2 = C::EQUATION_A * lhs.z; // 20
+ let t4 = b3 * t4; // 21
+ let t1 = t1 + t2; // 22
+ let t2 = t0 - t2; // 23
+ let t2 = C::EQUATION_A * t2; // 24
+ let t4 = t4 + t2; // 25
+ let t0 = t1 * t4; // 26
+ let y3 = y3 + t0; // 27
+ let t0 = t5 * t4; // 28
+ let x3 = t3 * x3; // 29
+ let x3 = x3 - t0; // 30
+ let t0 = t3 * t1; // 31
+ let z3 = t5 * z3; // 32
+ let z3 = z3 + t0; // 33
+
+ let mut ret = ProjectivePoint {
+ x: x3,
+ y: y3,
+ z: z3,
+ };
+ ret.conditional_assign(lhs, rhs.is_identity());
+ ret
+ }
+
+ /// Implements point doubling for curves with any `a`
+ ///
+ /// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015]
+ /// (Algorithm 3). The comments after each line indicate which algorithm
+ /// steps are being performed.
+ ///
+ /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
+ fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ let b3 = C::EQUATION_B * C::FieldElement::from(3);
+
+ let t0 = point.x * point.x; // 1
+ let t1 = point.y * point.y; // 2
+ let t2 = point.z * point.z; // 3
+ let t3 = point.x * point.y; // 4
+ let t3 = t3 + t3; // 5
+ let z3 = point.x * point.z; // 6
+ let z3 = z3 + z3; // 7
+ let x3 = C::EQUATION_A * z3; // 8
+ let y3 = b3 * t2; // 9
+ let y3 = x3 + y3; // 10
+ let x3 = t1 - y3; // 11
+ let y3 = t1 + y3; // 12
+ let y3 = x3 * y3; // 13
+ let x3 = t3 * x3; // 14
+ let z3 = b3 * z3; // 15
+ let t2 = C::EQUATION_A * t2; // 16
+ let t3 = t0 - t2; // 17
+ let t3 = C::EQUATION_A * t3; // 18
+ let t3 = t3 + z3; // 19
+ let z3 = t0 + t0; // 20
+ let t0 = z3 + t0; // 21
+ let t0 = t0 + t2; // 22
+ let t0 = t0 * t3; // 23
+ let y3 = y3 + t0; // 24
+ let t2 = point.y * point.z; // 25
+ let t2 = t2 + t2; // 26
+ let t0 = t2 * t3; // 27
+ let x3 = x3 - t0; // 28
+ let z3 = t2 * t1; // 29
+ let z3 = z3 + z3; // 30
+ let z3 = z3 + z3; // 31
+
+ ProjectivePoint {
+ x: x3,
+ y: y3,
+ z: z3,
+ }
+ }
+}
+
+/// The 𝒂-coefficient of the short Weierstrass equation is -3.
+pub struct EquationAIsMinusThree {}
+
+impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsMinusThree {
+ /// Implements complete addition for curves with `a = -3`
+ ///
+ /// Implements the complete addition formula from [Renes-Costello-Batina 2015]
+ /// (Algorithm 4). The comments after each line indicate which algorithm steps
+ /// are being performed.
+ ///
+ /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
+ fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ debug_assert_eq!(
+ C::EQUATION_A,
+ -C::FieldElement::from(3),
+ "this implementation is only valid for C::EQUATION_A = -3"
+ );
+
+ let xx = lhs.x * rhs.x; // 1
+ let yy = lhs.y * rhs.y; // 2
+ let zz = lhs.z * rhs.z; // 3
+ let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 4, 5, 6, 7, 8
+ let yz_pairs = ((lhs.y + lhs.z) * (rhs.y + rhs.z)) - (yy + zz); // 9, 10, 11, 12, 13
+ let xz_pairs = ((lhs.x + lhs.z) * (rhs.x + rhs.z)) - (xx + zz); // 14, 15, 16, 17, 18
+
+ let bzz_part = xz_pairs - (C::EQUATION_B * zz); // 19, 20
+ let bzz3_part = bzz_part.double() + bzz_part; // 21, 22
+ let yy_m_bzz3 = yy - bzz3_part; // 23
+ let yy_p_bzz3 = yy + bzz3_part; // 24
+
+ let zz3 = zz.double() + zz; // 26, 27
+ let bxz_part = (C::EQUATION_B * xz_pairs) - (zz3 + xx); // 25, 28, 29
+ let bxz3_part = bxz_part.double() + bxz_part; // 30, 31
+ let xx3_m_zz3 = xx.double() + xx - zz3; // 32, 33, 34
+
+ ProjectivePoint {
+ x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 35, 39, 40
+ y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 36, 37, 38
+ z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 41, 42, 43
+ }
+ }
+
+ /// Implements complete mixed addition for curves with `a = -3`
+ ///
+ /// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015]
+ /// (Algorithm 5). The comments after each line indicate which algorithm
+ /// steps are being performed.
+ ///
+ /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
+ fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
+ debug_assert_eq!(
+ C::EQUATION_A,
+ -C::FieldElement::from(3),
+ "this implementation is only valid for C::EQUATION_A = -3"
+ );
+
+ let xx = lhs.x * rhs.x; // 1
+ let yy = lhs.y * rhs.y; // 2
+ let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 3, 4, 5, 6, 7
+ let yz_pairs = (rhs.y * lhs.z) + lhs.y; // 8, 9 (t4)
+ let xz_pairs = (rhs.x * lhs.z) + lhs.x; // 10, 11 (y3)
+
+ let bz_part = xz_pairs - (C::EQUATION_B * lhs.z); // 12, 13
+ let bz3_part = bz_part.double() + bz_part; // 14, 15
+ let yy_m_bzz3 = yy - bz3_part; // 16
+ let yy_p_bzz3 = yy + bz3_part; // 17
+
+ let z3 = lhs.z.double() + lhs.z; // 19, 20
+ let bxz_part = (C::EQUATION_B * xz_pairs) - (z3 + xx); // 18, 21, 22
+ let bxz3_part = bxz_part.double() + bxz_part; // 23, 24
+ let xx3_m_zz3 = xx.double() + xx - z3; // 25, 26, 27
+
+ let mut ret = ProjectivePoint {
+ x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 28, 32, 33
+ y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 29, 30, 31
+ z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 34, 35, 36
+ };
+ ret.conditional_assign(lhs, rhs.is_identity());
+ ret
+ }
+
+ /// Implements point doubling for curves with `a = -3`
+ ///
+ /// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015]
+ /// (Algorithm 6). The comments after each line indicate which algorithm
+ /// steps are being performed.
+ ///
+ /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
+ fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ debug_assert_eq!(
+ C::EQUATION_A,
+ -C::FieldElement::from(3),
+ "this implementation is only valid for C::EQUATION_A = -3"
+ );
+
+ let xx = point.x.square(); // 1
+ let yy = point.y.square(); // 2
+ let zz = point.z.square(); // 3
+ let xy2 = (point.x * point.y).double(); // 4, 5
+ let xz2 = (point.x * point.z).double(); // 6, 7
+
+ let bzz_part = (C::EQUATION_B * zz) - xz2; // 8, 9
+ let bzz3_part = bzz_part.double() + bzz_part; // 10, 11
+ let yy_m_bzz3 = yy - bzz3_part; // 12
+ let yy_p_bzz3 = yy + bzz3_part; // 13
+ let y_frag = yy_p_bzz3 * yy_m_bzz3; // 14
+ let x_frag = yy_m_bzz3 * xy2; // 15
+
+ let zz3 = zz.double() + zz; // 16, 17
+ let bxz2_part = (C::EQUATION_B * xz2) - (zz3 + xx); // 18, 19, 20
+ let bxz6_part = bxz2_part.double() + bxz2_part; // 21, 22
+ let xx3_m_zz3 = xx.double() + xx - zz3; // 23, 24, 25
+
+ let y = y_frag + (xx3_m_zz3 * bxz6_part); // 26, 27
+ let yz2 = (point.y * point.z).double(); // 28, 29
+ let x = x_frag - (bxz6_part * yz2); // 30, 31
+ let z = (yz2 * yy).double().double(); // 32, 33, 34
+
+ ProjectivePoint { x, y, z }
+ }
+}
diff --git a/vendor/primeorder/src/projective.rs b/vendor/primeorder/src/projective.rs
new file mode 100644
index 000000000..5549543fc
--- /dev/null
+++ b/vendor/primeorder/src/projective.rs
@@ -0,0 +1,696 @@
+//! Projective curve points.
+
+#![allow(clippy::needless_range_loop, clippy::op_ref)]
+
+use crate::{point_arithmetic::PointArithmetic, AffinePoint, Field, PrimeCurveParams};
+use core::{
+ borrow::Borrow,
+ iter::Sum,
+ ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
+};
+use elliptic_curve::{
+ bigint::{ArrayEncoding, Integer},
+ generic_array::ArrayLength,
+ group::{
+ self,
+ cofactor::CofactorGroup,
+ prime::{PrimeCurve, PrimeGroup},
+ Group, GroupEncoding,
+ },
+ ops::{LinearCombination, MulByGenerator},
+ point::Double,
+ rand_core::RngCore,
+ sec1::{
+ CompressedPoint, EncodedPoint, FromEncodedPoint, ModulusSize, ToEncodedPoint,
+ UncompressedPointSize,
+ },
+ subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
+ zeroize::DefaultIsZeroes,
+ Error, FieldBytes, FieldBytesSize, PublicKey, Result, Scalar,
+};
+
+/// Point on a Weierstrass curve in projective coordinates.
+#[derive(Clone, Copy, Debug)]
+pub struct ProjectivePoint<C: PrimeCurveParams> {
+ pub(crate) x: C::FieldElement,
+ pub(crate) y: C::FieldElement,
+ pub(crate) z: C::FieldElement,
+}
+
+impl<C> ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ /// Additive identity of the group a.k.a. the point at infinity.
+ pub const IDENTITY: Self = Self {
+ x: C::FieldElement::ZERO,
+ y: C::FieldElement::ONE,
+ z: C::FieldElement::ZERO,
+ };
+
+ /// Base point of the curve.
+ pub const GENERATOR: Self = Self {
+ x: C::GENERATOR.0,
+ y: C::GENERATOR.1,
+ z: C::FieldElement::ONE,
+ };
+
+ /// Returns the affine representation of this point, or `None` if it is the identity.
+ pub fn to_affine(&self) -> AffinePoint<C> {
+ self.z
+ .invert()
+ .map(|zinv| AffinePoint {
+ x: self.x * &zinv,
+ y: self.y * &zinv,
+ infinity: 0,
+ })
+ .unwrap_or(AffinePoint::IDENTITY)
+ }
+
+ /// Returns `-self`.
+ pub fn neg(&self) -> Self {
+ Self {
+ x: self.x,
+ y: -self.y,
+ z: self.z,
+ }
+ }
+
+ /// Returns `self + other`.
+ pub fn add(&self, other: &Self) -> Self {
+ C::PointArithmetic::add(self, other)
+ }
+
+ /// Returns `self + other`.
+ fn add_mixed(&self, other: &AffinePoint<C>) -> Self {
+ C::PointArithmetic::add_mixed(self, other)
+ }
+
+ /// Returns `self - other`.
+ pub fn sub(&self, other: &Self) -> Self {
+ self.add(&other.neg())
+ }
+
+ /// Returns `self - other`.
+ fn sub_mixed(&self, other: &AffinePoint<C>) -> Self {
+ self.add_mixed(&other.neg())
+ }
+
+ /// Returns `[k] self`.
+ fn mul(&self, k: &Scalar<C>) -> Self
+ where
+ Self: Double,
+ {
+ let k = Into::<C::Uint>::into(*k).to_le_byte_array();
+
+ let mut pc = [Self::default(); 16];
+ pc[0] = Self::IDENTITY;
+ pc[1] = *self;
+
+ for i in 2..16 {
+ pc[i] = if i % 2 == 0 {
+ Double::double(&pc[i / 2])
+ } else {
+ pc[i - 1].add(self)
+ };
+ }
+
+ let mut q = Self::IDENTITY;
+ let mut pos = C::Uint::BITS - 4;
+
+ loop {
+ let slot = (k[pos >> 3] >> (pos & 7)) & 0xf;
+
+ let mut t = ProjectivePoint::IDENTITY;
+
+ for i in 1..16 {
+ t.conditional_assign(
+ &pc[i],
+ Choice::from(((slot as usize ^ i).wrapping_sub(1) >> 8) as u8 & 1),
+ );
+ }
+
+ q = q.add(&t);
+
+ if pos == 0 {
+ break;
+ }
+
+ q = Double::double(&Double::double(&Double::double(&Double::double(&q))));
+ pos -= 4;
+ }
+
+ q
+ }
+}
+
+impl<C> CofactorGroup for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ type Subgroup = Self;
+
+ fn clear_cofactor(&self) -> Self::Subgroup {
+ *self
+ }
+
+ fn into_subgroup(self) -> CtOption<Self> {
+ CtOption::new(self, 1.into())
+ }
+
+ fn is_torsion_free(&self) -> Choice {
+ 1.into()
+ }
+}
+
+impl<C> ConditionallySelectable for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
+ Self {
+ x: C::FieldElement::conditional_select(&a.x, &b.x, choice),
+ y: C::FieldElement::conditional_select(&a.y, &b.y, choice),
+ z: C::FieldElement::conditional_select(&a.z, &b.z, choice),
+ }
+ }
+}
+
+impl<C> ConstantTimeEq for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn ct_eq(&self, other: &Self) -> Choice {
+ self.to_affine().ct_eq(&other.to_affine())
+ }
+}
+
+impl<C> Default for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn default() -> Self {
+ Self::IDENTITY
+ }
+}
+
+impl<C> DefaultIsZeroes for ProjectivePoint<C> where C: PrimeCurveParams {}
+
+impl<C: PrimeCurveParams> Double for ProjectivePoint<C> {
+ fn double(&self) -> Self {
+ C::PointArithmetic::double(self)
+ }
+}
+
+impl<C> Eq for ProjectivePoint<C> where C: PrimeCurveParams {}
+
+impl<C> From<AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(p: AffinePoint<C>) -> Self {
+ let projective = ProjectivePoint {
+ x: p.x,
+ y: p.y,
+ z: C::FieldElement::ONE,
+ };
+ Self::conditional_select(&projective, &Self::IDENTITY, p.is_identity())
+ }
+}
+
+impl<C> From<&AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(p: &AffinePoint<C>) -> Self {
+ Self::from(*p)
+ }
+}
+
+impl<C> From<PublicKey<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(public_key: PublicKey<C>) -> ProjectivePoint<C> {
+ AffinePoint::from(public_key).into()
+ }
+}
+
+impl<C> From<&PublicKey<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn from(public_key: &PublicKey<C>) -> ProjectivePoint<C> {
+ AffinePoint::<C>::from(public_key).into()
+ }
+}
+
+impl<C> FromEncodedPoint<C> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+{
+ fn from_encoded_point(p: &EncodedPoint<C>) -> CtOption<Self> {
+ AffinePoint::<C>::from_encoded_point(p).map(Self::from)
+ }
+}
+
+impl<C> Group for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+{
+ type Scalar = Scalar<C>;
+
+ fn random(mut rng: impl RngCore) -> Self {
+ Self::GENERATOR * <Scalar<C> as Field>::random(&mut rng)
+ }
+
+ fn identity() -> Self {
+ Self::IDENTITY
+ }
+
+ fn generator() -> Self {
+ Self::GENERATOR
+ }
+
+ fn is_identity(&self) -> Choice {
+ self.ct_eq(&Self::IDENTITY)
+ }
+
+ #[must_use]
+ fn double(&self) -> Self {
+ Double::double(self)
+ }
+}
+
+impl<C> GroupEncoding for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ type Repr = CompressedPoint<C>;
+
+ fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
+ <AffinePoint<C> as GroupEncoding>::from_bytes(bytes).map(Into::into)
+ }
+
+ fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
+ // No unchecked conversion possible for compressed points
+ Self::from_bytes(bytes)
+ }
+
+ fn to_bytes(&self) -> Self::Repr {
+ self.to_affine().to_bytes()
+ }
+}
+
+impl<C> group::Curve for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+{
+ type AffineRepr = AffinePoint<C>;
+
+ fn to_affine(&self) -> AffinePoint<C> {
+ ProjectivePoint::to_affine(self)
+ }
+}
+
+impl<C> LinearCombination for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+{
+}
+
+impl<C> MulByGenerator for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+{
+ fn mul_by_generator(scalar: &Self::Scalar) -> Self {
+ // TODO(tarcieri): precomputed basepoint tables
+ Self::generator() * scalar
+ }
+}
+
+impl<C> PrimeGroup for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+}
+
+impl<C> PrimeCurve for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+ FieldBytes<C>: Copy,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ type Affine = AffinePoint<C>;
+}
+
+impl<C> PartialEq for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn eq(&self, other: &Self) -> bool {
+ self.ct_eq(other).into()
+ }
+}
+
+impl<C> ToEncodedPoint<C> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+ FieldBytesSize<C>: ModulusSize,
+ CompressedPoint<C>: Copy,
+ <UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
+{
+ fn to_encoded_point(&self, compress: bool) -> EncodedPoint<C> {
+ self.to_affine().to_encoded_point(compress)
+ }
+}
+
+impl<C> TryFrom<ProjectivePoint<C>> for PublicKey<C>
+where
+ C: PrimeCurveParams,
+{
+ type Error = Error;
+
+ fn try_from(point: ProjectivePoint<C>) -> Result<PublicKey<C>> {
+ AffinePoint::<C>::from(point).try_into()
+ }
+}
+
+impl<C> TryFrom<&ProjectivePoint<C>> for PublicKey<C>
+where
+ C: PrimeCurveParams,
+{
+ type Error = Error;
+
+ fn try_from(point: &ProjectivePoint<C>) -> Result<PublicKey<C>> {
+ AffinePoint::<C>::from(point).try_into()
+ }
+}
+
+//
+// Arithmetic trait impls
+//
+
+impl<C> Add<ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn add(self, other: ProjectivePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::add(&self, &other)
+ }
+}
+
+impl<C> Add<&ProjectivePoint<C>> for &ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn add(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::add(self, other)
+ }
+}
+
+impl<C> Add<&ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn add(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::add(&self, other)
+ }
+}
+
+impl<C> AddAssign<ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn add_assign(&mut self, rhs: ProjectivePoint<C>) {
+ *self = ProjectivePoint::add(self, &rhs);
+ }
+}
+
+impl<C> AddAssign<&ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn add_assign(&mut self, rhs: &ProjectivePoint<C>) {
+ *self = ProjectivePoint::add(self, rhs);
+ }
+}
+
+impl<C> Add<AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn add(self, other: AffinePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::add_mixed(&self, &other)
+ }
+}
+
+impl<C> Add<&AffinePoint<C>> for &ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn add(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::add_mixed(self, other)
+ }
+}
+
+impl<C> Add<&AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn add(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::add_mixed(&self, other)
+ }
+}
+
+impl<C> AddAssign<AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn add_assign(&mut self, rhs: AffinePoint<C>) {
+ *self = ProjectivePoint::add_mixed(self, &rhs);
+ }
+}
+
+impl<C> AddAssign<&AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn add_assign(&mut self, rhs: &AffinePoint<C>) {
+ *self = ProjectivePoint::add_mixed(self, rhs);
+ }
+}
+
+impl<C> Sum for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
+ iter.fold(ProjectivePoint::IDENTITY, |a, b| a + b)
+ }
+}
+
+impl<'a, C> Sum<&'a ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn sum<I: Iterator<Item = &'a ProjectivePoint<C>>>(iter: I) -> Self {
+ iter.cloned().sum()
+ }
+}
+
+impl<C> Sub<ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn sub(self, other: ProjectivePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::sub(&self, &other)
+ }
+}
+
+impl<C> Sub<&ProjectivePoint<C>> for &ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn sub(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::sub(self, other)
+ }
+}
+
+impl<C> Sub<&ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn sub(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::sub(&self, other)
+ }
+}
+
+impl<C> SubAssign<ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn sub_assign(&mut self, rhs: ProjectivePoint<C>) {
+ *self = ProjectivePoint::sub(self, &rhs);
+ }
+}
+
+impl<C> SubAssign<&ProjectivePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn sub_assign(&mut self, rhs: &ProjectivePoint<C>) {
+ *self = ProjectivePoint::sub(self, rhs);
+ }
+}
+
+impl<C> Sub<AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn sub(self, other: AffinePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::sub_mixed(&self, &other)
+ }
+}
+
+impl<C> Sub<&AffinePoint<C>> for &ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn sub(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::sub_mixed(self, other)
+ }
+}
+
+impl<C> Sub<&AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn sub(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::sub_mixed(&self, other)
+ }
+}
+
+impl<C> SubAssign<AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn sub_assign(&mut self, rhs: AffinePoint<C>) {
+ *self = ProjectivePoint::sub_mixed(self, &rhs);
+ }
+}
+
+impl<C> SubAssign<&AffinePoint<C>> for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ fn sub_assign(&mut self, rhs: &AffinePoint<C>) {
+ *self = ProjectivePoint::sub_mixed(self, rhs);
+ }
+}
+
+impl<C, S> Mul<S> for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+ S: Borrow<Scalar<C>>,
+{
+ type Output = Self;
+
+ fn mul(self, scalar: S) -> Self {
+ ProjectivePoint::mul(&self, scalar.borrow())
+ }
+}
+
+impl<C> Mul<&Scalar<C>> for &ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+ ProjectivePoint<C>: Double,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn mul(self, scalar: &Scalar<C>) -> ProjectivePoint<C> {
+ ProjectivePoint::mul(self, scalar)
+ }
+}
+
+impl<C, S> MulAssign<S> for ProjectivePoint<C>
+where
+ Self: Double,
+ C: PrimeCurveParams,
+ S: Borrow<Scalar<C>>,
+{
+ fn mul_assign(&mut self, scalar: S) {
+ *self = ProjectivePoint::mul(self, scalar.borrow());
+ }
+}
+
+impl<C> Neg for ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn neg(self) -> ProjectivePoint<C> {
+ ProjectivePoint::neg(&self)
+ }
+}
+
+impl<'a, C> Neg for &'a ProjectivePoint<C>
+where
+ C: PrimeCurveParams,
+{
+ type Output = ProjectivePoint<C>;
+
+ fn neg(self) -> ProjectivePoint<C> {
+ ProjectivePoint::neg(self)
+ }
+}