summaryrefslogtreecommitdiffstats
path: root/vendor/rand/src/seq
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /vendor/rand/src/seq
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/rand/src/seq')
-rw-r--r--vendor/rand/src/seq/index.rs678
-rw-r--r--vendor/rand/src/seq/mod.rs1356
2 files changed, 2034 insertions, 0 deletions
diff --git a/vendor/rand/src/seq/index.rs b/vendor/rand/src/seq/index.rs
new file mode 100644
index 000000000..b38e4649d
--- /dev/null
+++ b/vendor/rand/src/seq/index.rs
@@ -0,0 +1,678 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Low-level API for sampling indices
+
+#[cfg(feature = "alloc")] use core::slice;
+
+#[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
+// BTreeMap is not as fast in tests, but better than nothing.
+#[cfg(all(feature = "alloc", not(feature = "std")))]
+use alloc::collections::BTreeSet;
+#[cfg(feature = "std")] use std::collections::HashSet;
+
+#[cfg(feature = "std")]
+use crate::distributions::WeightedError;
+
+#[cfg(feature = "alloc")]
+use crate::{Rng, distributions::{uniform::SampleUniform, Distribution, Uniform}};
+
+#[cfg(feature = "serde1")]
+use serde::{Serialize, Deserialize};
+
+/// A vector of indices.
+///
+/// Multiple internal representations are possible.
+#[derive(Clone, Debug)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub enum IndexVec {
+ #[doc(hidden)]
+ U32(Vec<u32>),
+ #[doc(hidden)]
+ USize(Vec<usize>),
+}
+
+impl IndexVec {
+ /// Returns the number of indices
+ #[inline]
+ pub fn len(&self) -> usize {
+ match *self {
+ IndexVec::U32(ref v) => v.len(),
+ IndexVec::USize(ref v) => v.len(),
+ }
+ }
+
+ /// Returns `true` if the length is 0.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ match *self {
+ IndexVec::U32(ref v) => v.is_empty(),
+ IndexVec::USize(ref v) => v.is_empty(),
+ }
+ }
+
+ /// Return the value at the given `index`.
+ ///
+ /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
+ /// restrictions.)
+ #[inline]
+ pub fn index(&self, index: usize) -> usize {
+ match *self {
+ IndexVec::U32(ref v) => v[index] as usize,
+ IndexVec::USize(ref v) => v[index],
+ }
+ }
+
+ /// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
+ #[inline]
+ pub fn into_vec(self) -> Vec<usize> {
+ match self {
+ IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
+ IndexVec::USize(v) => v,
+ }
+ }
+
+ /// Iterate over the indices as a sequence of `usize` values
+ #[inline]
+ pub fn iter(&self) -> IndexVecIter<'_> {
+ match *self {
+ IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
+ IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
+ }
+ }
+}
+
+impl IntoIterator for IndexVec {
+ type Item = usize;
+ type IntoIter = IndexVecIntoIter;
+
+ /// Convert into an iterator over the indices as a sequence of `usize` values
+ #[inline]
+ fn into_iter(self) -> IndexVecIntoIter {
+ match self {
+ IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
+ IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
+ }
+ }
+}
+
+impl PartialEq for IndexVec {
+ fn eq(&self, other: &IndexVec) -> bool {
+ use self::IndexVec::*;
+ match (self, other) {
+ (&U32(ref v1), &U32(ref v2)) => v1 == v2,
+ (&USize(ref v1), &USize(ref v2)) => v1 == v2,
+ (&U32(ref v1), &USize(ref v2)) => {
+ (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
+ }
+ (&USize(ref v1), &U32(ref v2)) => {
+ (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
+ }
+ }
+ }
+}
+
+impl From<Vec<u32>> for IndexVec {
+ #[inline]
+ fn from(v: Vec<u32>) -> Self {
+ IndexVec::U32(v)
+ }
+}
+
+impl From<Vec<usize>> for IndexVec {
+ #[inline]
+ fn from(v: Vec<usize>) -> Self {
+ IndexVec::USize(v)
+ }
+}
+
+/// Return type of `IndexVec::iter`.
+#[derive(Debug)]
+pub enum IndexVecIter<'a> {
+ #[doc(hidden)]
+ U32(slice::Iter<'a, u32>),
+ #[doc(hidden)]
+ USize(slice::Iter<'a, usize>),
+}
+
+impl<'a> Iterator for IndexVecIter<'a> {
+ type Item = usize;
+
+ #[inline]
+ fn next(&mut self) -> Option<usize> {
+ use self::IndexVecIter::*;
+ match *self {
+ U32(ref mut iter) => iter.next().map(|i| *i as usize),
+ USize(ref mut iter) => iter.next().cloned(),
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ match *self {
+ IndexVecIter::U32(ref v) => v.size_hint(),
+ IndexVecIter::USize(ref v) => v.size_hint(),
+ }
+ }
+}
+
+impl<'a> ExactSizeIterator for IndexVecIter<'a> {}
+
+/// Return type of `IndexVec::into_iter`.
+#[derive(Clone, Debug)]
+pub enum IndexVecIntoIter {
+ #[doc(hidden)]
+ U32(vec::IntoIter<u32>),
+ #[doc(hidden)]
+ USize(vec::IntoIter<usize>),
+}
+
+impl Iterator for IndexVecIntoIter {
+ type Item = usize;
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ use self::IndexVecIntoIter::*;
+ match *self {
+ U32(ref mut v) => v.next().map(|i| i as usize),
+ USize(ref mut v) => v.next(),
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ use self::IndexVecIntoIter::*;
+ match *self {
+ U32(ref v) => v.size_hint(),
+ USize(ref v) => v.size_hint(),
+ }
+ }
+}
+
+impl ExactSizeIterator for IndexVecIntoIter {}
+
+
+/// Randomly sample exactly `amount` distinct indices from `0..length`, and
+/// return them in random order (fully shuffled).
+///
+/// This method is used internally by the slice sampling methods, but it can
+/// sometimes be useful to have the indices themselves so this is provided as
+/// an alternative.
+///
+/// The implementation used is not specified; we automatically select the
+/// fastest available algorithm for the `length` and `amount` parameters
+/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
+/// complexity is `O(amount)`, except that when `amount` is small, performance
+/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
+/// `O(length)`.
+///
+/// Note that performance is significantly better over `u32` indices than over
+/// `u64` indices. Because of this we hide the underlying type behind an
+/// abstraction, `IndexVec`.
+///
+/// If an allocation-free `no_std` function is required, it is suggested
+/// to adapt the internal `sample_floyd` implementation.
+///
+/// Panics if `amount > length`.
+pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
+where R: Rng + ?Sized {
+ if amount > length {
+ panic!("`amount` of samples must be less than or equal to `length`");
+ }
+ if length > (::core::u32::MAX as usize) {
+ // We never want to use inplace here, but could use floyd's alg
+ // Lazy version: always use the cache alg.
+ return sample_rejection(rng, length, amount);
+ }
+ let amount = amount as u32;
+ let length = length as u32;
+
+ // Choice of algorithm here depends on both length and amount. See:
+ // https://github.com/rust-random/rand/pull/479
+ // We do some calculations with f32. Accuracy is not very important.
+
+ if amount < 163 {
+ const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
+ let j = if length < 500_000 { 0 } else { 1 };
+ let amount_fp = amount as f32;
+ let m4 = C[0][j] * amount_fp;
+ // Short-cut: when amount < 12, floyd's is always faster
+ if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
+ sample_inplace(rng, length, amount)
+ } else {
+ sample_floyd(rng, length, amount)
+ }
+ } else {
+ const C: [f32; 2] = [270.0, 330.0 / 9.0];
+ let j = if length < 500_000 { 0 } else { 1 };
+ if (length as f32) < C[j] * (amount as f32) {
+ sample_inplace(rng, length, amount)
+ } else {
+ sample_rejection(rng, length, amount)
+ }
+ }
+}
+
+/// Randomly sample exactly `amount` distinct indices from `0..length`, and
+/// return them in an arbitrary order (there is no guarantee of shuffling or
+/// ordering). The weights are to be provided by the input function `weights`,
+/// which will be called once for each index.
+///
+/// This method is used internally by the slice sampling methods, but it can
+/// sometimes be useful to have the indices themselves so this is provided as
+/// an alternative.
+///
+/// This implementation uses `O(length + amount)` space and `O(length)` time
+/// if the "nightly" feature is enabled, or `O(length)` space and
+/// `O(length + amount * log length)` time otherwise.
+///
+/// Panics if `amount > length`.
+#[cfg(feature = "std")]
+#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
+pub fn sample_weighted<R, F, X>(
+ rng: &mut R, length: usize, weight: F, amount: usize,
+) -> Result<IndexVec, WeightedError>
+where
+ R: Rng + ?Sized,
+ F: Fn(usize) -> X,
+ X: Into<f64>,
+{
+ if length > (core::u32::MAX as usize) {
+ sample_efraimidis_spirakis(rng, length, weight, amount)
+ } else {
+ assert!(amount <= core::u32::MAX as usize);
+ let amount = amount as u32;
+ let length = length as u32;
+ sample_efraimidis_spirakis(rng, length, weight, amount)
+ }
+}
+
+
+/// Randomly sample exactly `amount` distinct indices from `0..length`, and
+/// return them in an arbitrary order (there is no guarantee of shuffling or
+/// ordering). The weights are to be provided by the input function `weights`,
+/// which will be called once for each index.
+///
+/// This implementation uses the algorithm described by Efraimidis and Spirakis
+/// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
+/// It uses `O(length + amount)` space and `O(length)` time if the
+/// "nightly" feature is enabled, or `O(length)` space and `O(length
+/// + amount * log length)` time otherwise.
+///
+/// Panics if `amount > length`.
+#[cfg(feature = "std")]
+fn sample_efraimidis_spirakis<R, F, X, N>(
+ rng: &mut R, length: N, weight: F, amount: N,
+) -> Result<IndexVec, WeightedError>
+where
+ R: Rng + ?Sized,
+ F: Fn(usize) -> X,
+ X: Into<f64>,
+ N: UInt,
+ IndexVec: From<Vec<N>>,
+{
+ if amount == N::zero() {
+ return Ok(IndexVec::U32(Vec::new()));
+ }
+
+ if amount > length {
+ panic!("`amount` of samples must be less than or equal to `length`");
+ }
+
+ struct Element<N> {
+ index: N,
+ key: f64,
+ }
+ impl<N> PartialOrd for Element<N> {
+ fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
+ self.key.partial_cmp(&other.key)
+ }
+ }
+ impl<N> Ord for Element<N> {
+ fn cmp(&self, other: &Self) -> core::cmp::Ordering {
+ // partial_cmp will always produce a value,
+ // because we check that the weights are not nan
+ self.partial_cmp(other).unwrap()
+ }
+ }
+ impl<N> PartialEq for Element<N> {
+ fn eq(&self, other: &Self) -> bool {
+ self.key == other.key
+ }
+ }
+ impl<N> Eq for Element<N> {}
+
+ #[cfg(feature = "nightly")]
+ {
+ let mut candidates = Vec::with_capacity(length.as_usize());
+ let mut index = N::zero();
+ while index < length {
+ let weight = weight(index.as_usize()).into();
+ if !(weight >= 0.) {
+ return Err(WeightedError::InvalidWeight);
+ }
+
+ let key = rng.gen::<f64>().powf(1.0 / weight);
+ candidates.push(Element { index, key });
+
+ index += N::one();
+ }
+
+ // Partially sort the array to find the `amount` elements with the greatest
+ // keys. Do this by using `select_nth_unstable` to put the elements with
+ // the *smallest* keys at the beginning of the list in `O(n)` time, which
+ // provides equivalent information about the elements with the *greatest* keys.
+ let (_, mid, greater)
+ = candidates.select_nth_unstable(length.as_usize() - amount.as_usize());
+
+ let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
+ result.push(mid.index);
+ for element in greater {
+ result.push(element.index);
+ }
+ Ok(IndexVec::from(result))
+ }
+
+ #[cfg(not(feature = "nightly"))]
+ {
+ use alloc::collections::BinaryHeap;
+
+ // Partially sort the array such that the `amount` elements with the largest
+ // keys are first using a binary max heap.
+ let mut candidates = BinaryHeap::with_capacity(length.as_usize());
+ let mut index = N::zero();
+ while index < length {
+ let weight = weight(index.as_usize()).into();
+ if !(weight >= 0.) {
+ return Err(WeightedError::InvalidWeight);
+ }
+
+ let key = rng.gen::<f64>().powf(1.0 / weight);
+ candidates.push(Element { index, key });
+
+ index += N::one();
+ }
+
+ let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
+ while result.len() < amount.as_usize() {
+ result.push(candidates.pop().unwrap().index);
+ }
+ Ok(IndexVec::from(result))
+ }
+}
+
+/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
+/// combination algorithm.
+///
+/// The output values are fully shuffled. (Overhead is under 50%.)
+///
+/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
+fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
+where R: Rng + ?Sized {
+ // For small amount we use Floyd's fully-shuffled variant. For larger
+ // amounts this is slow due to Vec::insert performance, so we shuffle
+ // afterwards. Benchmarks show little overhead from extra logic.
+ let floyd_shuffle = amount < 50;
+
+ debug_assert!(amount <= length);
+ let mut indices = Vec::with_capacity(amount as usize);
+ for j in length - amount..length {
+ let t = rng.gen_range(0..=j);
+ if floyd_shuffle {
+ if let Some(pos) = indices.iter().position(|&x| x == t) {
+ indices.insert(pos, j);
+ continue;
+ }
+ } else if indices.contains(&t) {
+ indices.push(j);
+ continue;
+ }
+ indices.push(t);
+ }
+ if !floyd_shuffle {
+ // Reimplement SliceRandom::shuffle with smaller indices
+ for i in (1..amount).rev() {
+ // invariant: elements with index > i have been locked in place.
+ indices.swap(i as usize, rng.gen_range(0..=i) as usize);
+ }
+ }
+ IndexVec::from(indices)
+}
+
+/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
+/// partial Fisher-Yates method.
+/// Sample an amount of indices using an inplace partial fisher yates method.
+///
+/// This allocates the entire `length` of indices and randomizes only the first `amount`.
+/// It then truncates to `amount` and returns.
+///
+/// This method is not appropriate for large `length` and potentially uses a lot
+/// of memory; because of this we only implement for `u32` index (which improves
+/// performance in all cases).
+///
+/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
+fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
+where R: Rng + ?Sized {
+ debug_assert!(amount <= length);
+ let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
+ indices.extend(0..length);
+ for i in 0..amount {
+ let j: u32 = rng.gen_range(i..length);
+ indices.swap(i as usize, j as usize);
+ }
+ indices.truncate(amount as usize);
+ debug_assert_eq!(indices.len(), amount as usize);
+ IndexVec::from(indices)
+}
+
+trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
+ + core::hash::Hash + core::ops::AddAssign {
+ fn zero() -> Self;
+ fn one() -> Self;
+ fn as_usize(self) -> usize;
+}
+impl UInt for u32 {
+ #[inline]
+ fn zero() -> Self {
+ 0
+ }
+
+ #[inline]
+ fn one() -> Self {
+ 1
+ }
+
+ #[inline]
+ fn as_usize(self) -> usize {
+ self as usize
+ }
+}
+impl UInt for usize {
+ #[inline]
+ fn zero() -> Self {
+ 0
+ }
+
+ #[inline]
+ fn one() -> Self {
+ 1
+ }
+
+ #[inline]
+ fn as_usize(self) -> usize {
+ self
+ }
+}
+
+/// Randomly sample exactly `amount` indices from `0..length`, using rejection
+/// sampling.
+///
+/// Since `amount <<< length` there is a low chance of a random sample in
+/// `0..length` being a duplicate. We test for duplicates and resample where
+/// necessary. The algorithm is `O(amount)` time and memory.
+///
+/// This function is generic over X primarily so that results are value-stable
+/// over 32-bit and 64-bit platforms.
+fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
+where
+ R: Rng + ?Sized,
+ IndexVec: From<Vec<X>>,
+{
+ debug_assert!(amount < length);
+ #[cfg(feature = "std")]
+ let mut cache = HashSet::with_capacity(amount.as_usize());
+ #[cfg(not(feature = "std"))]
+ let mut cache = BTreeSet::new();
+ let distr = Uniform::new(X::zero(), length);
+ let mut indices = Vec::with_capacity(amount.as_usize());
+ for _ in 0..amount.as_usize() {
+ let mut pos = distr.sample(rng);
+ while !cache.insert(pos) {
+ pos = distr.sample(rng);
+ }
+ indices.push(pos);
+ }
+
+ debug_assert_eq!(indices.len(), amount.as_usize());
+ IndexVec::from(indices)
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ #[cfg(feature = "serde1")]
+ fn test_serialization_index_vec() {
+ let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
+ let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
+ match (some_index_vec, de_some_index_vec) {
+ (IndexVec::U32(a), IndexVec::U32(b)) => {
+ assert_eq!(a, b);
+ },
+ (IndexVec::USize(a), IndexVec::USize(b)) => {
+ assert_eq!(a, b);
+ },
+ _ => {panic!("failed to seralize/deserialize `IndexVec`")}
+ }
+ }
+
+ #[cfg(feature = "alloc")] use alloc::vec;
+
+ #[test]
+ fn test_sample_boundaries() {
+ let mut r = crate::test::rng(404);
+
+ assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
+ assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
+ assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
+
+ assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
+
+ assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
+ assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
+ assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
+
+ // These algorithms should be fast with big numbers. Test average.
+ let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
+ assert!(1 << 25 < sum && sum < (1 << 25) * 25);
+
+ let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
+ assert!(1 << 25 < sum && sum < (1 << 25) * 25);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_sample_alg() {
+ let seed_rng = crate::test::rng;
+
+ // We can't test which algorithm is used directly, but Floyd's alg
+ // should produce different results from the others. (Also, `inplace`
+ // and `cached` currently use different sizes thus produce different results.)
+
+ // A small length and relatively large amount should use inplace
+ let (length, amount): (usize, usize) = (100, 50);
+ let v1 = sample(&mut seed_rng(420), length, amount);
+ let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
+ assert!(v1.iter().all(|e| e < length));
+ assert_eq!(v1, v2);
+
+ // Test Floyd's alg does produce different results
+ let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
+ assert!(v1 != v3);
+
+ // A large length and small amount should use Floyd
+ let (length, amount): (usize, usize) = (1 << 20, 50);
+ let v1 = sample(&mut seed_rng(421), length, amount);
+ let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
+ assert!(v1.iter().all(|e| e < length));
+ assert_eq!(v1, v2);
+
+ // A large length and larger amount should use cache
+ let (length, amount): (usize, usize) = (1 << 20, 600);
+ let v1 = sample(&mut seed_rng(422), length, amount);
+ let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
+ assert!(v1.iter().all(|e| e < length));
+ assert_eq!(v1, v2);
+ }
+
+ #[cfg(feature = "std")]
+ #[test]
+ fn test_sample_weighted() {
+ let seed_rng = crate::test::rng;
+ for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
+ let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
+ match v {
+ IndexVec::U32(mut indices) => {
+ assert_eq!(indices.len(), amount);
+ indices.sort_unstable();
+ indices.dedup();
+ assert_eq!(indices.len(), amount);
+ for &i in &indices {
+ assert!((i as usize) < len);
+ }
+ },
+ IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
+ }
+ }
+ }
+
+ #[test]
+ fn value_stability_sample() {
+ let do_test = |length, amount, values: &[u32]| {
+ let mut buf = [0u32; 8];
+ let mut rng = crate::test::rng(410);
+
+ let res = sample(&mut rng, length, amount);
+ let len = res.len().min(buf.len());
+ for (x, y) in res.into_iter().zip(buf.iter_mut()) {
+ *y = x as u32;
+ }
+ assert_eq!(
+ &buf[0..len],
+ values,
+ "failed sampling {}, {}",
+ length,
+ amount
+ );
+ };
+
+ do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
+ do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
+ do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
+ do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
+ do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
+
+ do_test(1_000_000, 8, &[
+ 103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
+ ]); // floyd
+ do_test(1_000_000, 180, &[
+ 103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
+ ]); // rejection
+ }
+}
diff --git a/vendor/rand/src/seq/mod.rs b/vendor/rand/src/seq/mod.rs
new file mode 100644
index 000000000..069e9e6b1
--- /dev/null
+++ b/vendor/rand/src/seq/mod.rs
@@ -0,0 +1,1356 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Sequence-related functionality
+//!
+//! This module provides:
+//!
+//! * [`SliceRandom`] slice sampling and mutation
+//! * [`IteratorRandom`] iterator sampling
+//! * [`index::sample`] low-level API to choose multiple indices from
+//! `0..length`
+//!
+//! Also see:
+//!
+//! * [`crate::distributions::WeightedIndex`] distribution which provides
+//! weighted index sampling.
+//!
+//! In order to make results reproducible across 32-64 bit architectures, all
+//! `usize` indices are sampled as a `u32` where possible (also providing a
+//! small performance boost in some cases).
+
+
+#[cfg(feature = "alloc")]
+#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+pub mod index;
+
+#[cfg(feature = "alloc")] use core::ops::Index;
+
+#[cfg(feature = "alloc")] use alloc::vec::Vec;
+
+#[cfg(feature = "alloc")]
+use crate::distributions::uniform::{SampleBorrow, SampleUniform};
+#[cfg(feature = "alloc")] use crate::distributions::WeightedError;
+use crate::Rng;
+
+/// Extension trait on slices, providing random mutation and sampling methods.
+///
+/// This trait is implemented on all `[T]` slice types, providing several
+/// methods for choosing and shuffling elements. You must `use` this trait:
+///
+/// ```
+/// use rand::seq::SliceRandom;
+///
+/// let mut rng = rand::thread_rng();
+/// let mut bytes = "Hello, random!".to_string().into_bytes();
+/// bytes.shuffle(&mut rng);
+/// let str = String::from_utf8(bytes).unwrap();
+/// println!("{}", str);
+/// ```
+/// Example output (non-deterministic):
+/// ```none
+/// l,nmroHado !le
+/// ```
+pub trait SliceRandom {
+ /// The element type.
+ type Item;
+
+ /// Returns a reference to one random element of the slice, or `None` if the
+ /// slice is empty.
+ ///
+ /// For slices, complexity is `O(1)`.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::thread_rng;
+ /// use rand::seq::SliceRandom;
+ ///
+ /// let choices = [1, 2, 4, 8, 16, 32];
+ /// let mut rng = thread_rng();
+ /// println!("{:?}", choices.choose(&mut rng));
+ /// assert_eq!(choices[..0].choose(&mut rng), None);
+ /// ```
+ fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
+ where R: Rng + ?Sized;
+
+ /// Returns a mutable reference to one random element of the slice, or
+ /// `None` if the slice is empty.
+ ///
+ /// For slices, complexity is `O(1)`.
+ fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
+ where R: Rng + ?Sized;
+
+ /// Chooses `amount` elements from the slice at random, without repetition,
+ /// and in random order. The returned iterator is appropriate both for
+ /// collection into a `Vec` and filling an existing buffer (see example).
+ ///
+ /// In case this API is not sufficiently flexible, use [`index::sample`].
+ ///
+ /// For slices, complexity is the same as [`index::sample`].
+ ///
+ /// # Example
+ /// ```
+ /// use rand::seq::SliceRandom;
+ ///
+ /// let mut rng = &mut rand::thread_rng();
+ /// let sample = "Hello, audience!".as_bytes();
+ ///
+ /// // collect the results into a vector:
+ /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
+ ///
+ /// // store in a buffer:
+ /// let mut buf = [0u8; 5];
+ /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
+ /// *slot = *b;
+ /// }
+ /// ```
+ #[cfg(feature = "alloc")]
+ #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+ fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
+ where R: Rng + ?Sized;
+
+ /// Similar to [`choose`], but where the likelihood of each outcome may be
+ /// specified.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
+ /// likelihood `weight(x)`. The probability of each item being selected is
+ /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
+ ///
+ /// For slices of length `n`, complexity is `O(n)`.
+ /// See also [`choose_weighted_mut`], [`distributions::weighted`].
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::prelude::*;
+ ///
+ /// let choices = [('a', 2), ('b', 1), ('c', 1)];
+ /// let mut rng = thread_rng();
+ /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
+ /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
+ /// ```
+ /// [`choose`]: SliceRandom::choose
+ /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
+ /// [`distributions::weighted`]: crate::distributions::weighted
+ #[cfg(feature = "alloc")]
+ #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+ fn choose_weighted<R, F, B, X>(
+ &self, rng: &mut R, weight: F,
+ ) -> Result<&Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default;
+
+ /// Similar to [`choose_mut`], but where the likelihood of each outcome may
+ /// be specified.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
+ /// likelihood `weight(x)`. The probability of each item being selected is
+ /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
+ ///
+ /// For slices of length `n`, complexity is `O(n)`.
+ /// See also [`choose_weighted`], [`distributions::weighted`].
+ ///
+ /// [`choose_mut`]: SliceRandom::choose_mut
+ /// [`choose_weighted`]: SliceRandom::choose_weighted
+ /// [`distributions::weighted`]: crate::distributions::weighted
+ #[cfg(feature = "alloc")]
+ #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+ fn choose_weighted_mut<R, F, B, X>(
+ &mut self, rng: &mut R, weight: F,
+ ) -> Result<&mut Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default;
+
+ /// Similar to [`choose_multiple`], but where the likelihood of each element's
+ /// inclusion in the output may be specified. The elements are returned in an
+ /// arbitrary, unspecified order.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
+ /// likelihood `weight(x)`. The probability of each item being selected is
+ /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
+ ///
+ /// If all of the weights are equal, even if they are all zero, each element has
+ /// an equal likelihood of being selected.
+ ///
+ /// The complexity of this method depends on the feature `partition_at_index`.
+ /// If the feature is enabled, then for slices of length `n`, the complexity
+ /// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and
+ /// `O(n * log amount)` time.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::prelude::*;
+ ///
+ /// let choices = [('a', 2), ('b', 1), ('c', 1)];
+ /// let mut rng = thread_rng();
+ /// // First Draw * Second Draw = total odds
+ /// // -----------------------
+ /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
+ /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
+ /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
+ /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
+ /// ```
+ /// [`choose_multiple`]: SliceRandom::choose_multiple
+ //
+ // Note: this is feature-gated on std due to usage of f64::powf.
+ // If necessary, we may use alloc+libm as an alternative (see PR #1089).
+ #[cfg(feature = "std")]
+ #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
+ fn choose_multiple_weighted<R, F, X>(
+ &self, rng: &mut R, amount: usize, weight: F,
+ ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> X,
+ X: Into<f64>;
+
+ /// Shuffle a mutable slice in place.
+ ///
+ /// For slices of length `n`, complexity is `O(n)`.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::seq::SliceRandom;
+ /// use rand::thread_rng;
+ ///
+ /// let mut rng = thread_rng();
+ /// let mut y = [1, 2, 3, 4, 5];
+ /// println!("Unshuffled: {:?}", y);
+ /// y.shuffle(&mut rng);
+ /// println!("Shuffled: {:?}", y);
+ /// ```
+ fn shuffle<R>(&mut self, rng: &mut R)
+ where R: Rng + ?Sized;
+
+ /// Shuffle a slice in place, but exit early.
+ ///
+ /// Returns two mutable slices from the source slice. The first contains
+ /// `amount` elements randomly permuted. The second has the remaining
+ /// elements that are not fully shuffled.
+ ///
+ /// This is an efficient method to select `amount` elements at random from
+ /// the slice, provided the slice may be mutated.
+ ///
+ /// If you only need to choose elements randomly and `amount > self.len()/2`
+ /// then you may improve performance by taking
+ /// `amount = values.len() - amount` and using only the second slice.
+ ///
+ /// If `amount` is greater than the number of elements in the slice, this
+ /// will perform a full shuffle.
+ ///
+ /// For slices, complexity is `O(m)` where `m = amount`.
+ fn partial_shuffle<R>(
+ &mut self, rng: &mut R, amount: usize,
+ ) -> (&mut [Self::Item], &mut [Self::Item])
+ where R: Rng + ?Sized;
+}
+
+/// Extension trait on iterators, providing random sampling methods.
+///
+/// This trait is implemented on all iterators `I` where `I: Iterator + Sized`
+/// and provides methods for
+/// choosing one or more elements. You must `use` this trait:
+///
+/// ```
+/// use rand::seq::IteratorRandom;
+///
+/// let mut rng = rand::thread_rng();
+///
+/// let faces = "πŸ˜€πŸ˜ŽπŸ˜πŸ˜•πŸ˜ πŸ˜’";
+/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
+/// ```
+/// Example output (non-deterministic):
+/// ```none
+/// I am πŸ˜€!
+/// ```
+pub trait IteratorRandom: Iterator + Sized {
+ /// Choose one element at random from the iterator.
+ ///
+ /// Returns `None` if and only if the iterator is empty.
+ ///
+ /// This method uses [`Iterator::size_hint`] for optimisation. With an
+ /// accurate hint and where [`Iterator::nth`] is a constant-time operation
+ /// this method can offer `O(1)` performance. Where no size hint is
+ /// available, complexity is `O(n)` where `n` is the iterator length.
+ /// Partial hints (where `lower > 0`) also improve performance.
+ ///
+ /// Note that the output values and the number of RNG samples used
+ /// depends on size hints. In particular, `Iterator` combinators that don't
+ /// change the values yielded but change the size hints may result in
+ /// `choose` returning different elements. If you want consistent results
+ /// and RNG usage consider using [`IteratorRandom::choose_stable`].
+ fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
+ where R: Rng + ?Sized {
+ let (mut lower, mut upper) = self.size_hint();
+ let mut consumed = 0;
+ let mut result = None;
+
+ // Handling for this condition outside the loop allows the optimizer to eliminate the loop
+ // when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g.
+ // seq_iter_choose_from_1000.
+ if upper == Some(lower) {
+ return if lower == 0 {
+ None
+ } else {
+ self.nth(gen_index(rng, lower))
+ };
+ }
+
+ // Continue until the iterator is exhausted
+ loop {
+ if lower > 1 {
+ let ix = gen_index(rng, lower + consumed);
+ let skip = if ix < lower {
+ result = self.nth(ix);
+ lower - (ix + 1)
+ } else {
+ lower
+ };
+ if upper == Some(lower) {
+ return result;
+ }
+ consumed += lower;
+ if skip > 0 {
+ self.nth(skip - 1);
+ }
+ } else {
+ let elem = self.next();
+ if elem.is_none() {
+ return result;
+ }
+ consumed += 1;
+ if gen_index(rng, consumed) == 0 {
+ result = elem;
+ }
+ }
+
+ let hint = self.size_hint();
+ lower = hint.0;
+ upper = hint.1;
+ }
+ }
+
+ /// Choose one element at random from the iterator.
+ ///
+ /// Returns `None` if and only if the iterator is empty.
+ ///
+ /// This method is very similar to [`choose`] except that the result
+ /// only depends on the length of the iterator and the values produced by
+ /// `rng`. Notably for any iterator of a given length this will make the
+ /// same requests to `rng` and if the same sequence of values are produced
+ /// the same index will be selected from `self`. This may be useful if you
+ /// need consistent results no matter what type of iterator you are working
+ /// with. If you do not need this stability prefer [`choose`].
+ ///
+ /// Note that this method still uses [`Iterator::size_hint`] to skip
+ /// constructing elements where possible, however the selection and `rng`
+ /// calls are the same in the face of this optimization. If you want to
+ /// force every element to be created regardless call `.inspect(|e| ())`.
+ ///
+ /// [`choose`]: IteratorRandom::choose
+ fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item>
+ where R: Rng + ?Sized {
+ let mut consumed = 0;
+ let mut result = None;
+
+ loop {
+ // Currently the only way to skip elements is `nth()`. So we need to
+ // store what index to access next here.
+ // This should be replaced by `advance_by()` once it is stable:
+ // https://github.com/rust-lang/rust/issues/77404
+ let mut next = 0;
+
+ let (lower, _) = self.size_hint();
+ if lower >= 2 {
+ let highest_selected = (0..lower)
+ .filter(|ix| gen_index(rng, consumed+ix+1) == 0)
+ .last();
+
+ consumed += lower;
+ next = lower;
+
+ if let Some(ix) = highest_selected {
+ result = self.nth(ix);
+ next -= ix + 1;
+ debug_assert!(result.is_some(), "iterator shorter than size_hint().0");
+ }
+ }
+
+ let elem = self.nth(next);
+ if elem.is_none() {
+ return result
+ }
+
+ if gen_index(rng, consumed+1) == 0 {
+ result = elem;
+ }
+ consumed += 1;
+ }
+ }
+
+ /// Collects values at random from the iterator into a supplied buffer
+ /// until that buffer is filled.
+ ///
+ /// Although the elements are selected randomly, the order of elements in
+ /// the buffer is neither stable nor fully random. If random ordering is
+ /// desired, shuffle the result.
+ ///
+ /// Returns the number of elements added to the buffer. This equals the length
+ /// of the buffer unless the iterator contains insufficient elements, in which
+ /// case this equals the number of elements available.
+ ///
+ /// Complexity is `O(n)` where `n` is the length of the iterator.
+ /// For slices, prefer [`SliceRandom::choose_multiple`].
+ fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
+ where R: Rng + ?Sized {
+ let amount = buf.len();
+ let mut len = 0;
+ while len < amount {
+ if let Some(elem) = self.next() {
+ buf[len] = elem;
+ len += 1;
+ } else {
+ // Iterator exhausted; stop early
+ return len;
+ }
+ }
+
+ // Continue, since the iterator was not exhausted
+ for (i, elem) in self.enumerate() {
+ let k = gen_index(rng, i + 1 + amount);
+ if let Some(slot) = buf.get_mut(k) {
+ *slot = elem;
+ }
+ }
+ len
+ }
+
+ /// Collects `amount` values at random from the iterator into a vector.
+ ///
+ /// This is equivalent to `choose_multiple_fill` except for the result type.
+ ///
+ /// Although the elements are selected randomly, the order of elements in
+ /// the buffer is neither stable nor fully random. If random ordering is
+ /// desired, shuffle the result.
+ ///
+ /// The length of the returned vector equals `amount` unless the iterator
+ /// contains insufficient elements, in which case it equals the number of
+ /// elements available.
+ ///
+ /// Complexity is `O(n)` where `n` is the length of the iterator.
+ /// For slices, prefer [`SliceRandom::choose_multiple`].
+ #[cfg(feature = "alloc")]
+ #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+ fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
+ where R: Rng + ?Sized {
+ let mut reservoir = Vec::with_capacity(amount);
+ reservoir.extend(self.by_ref().take(amount));
+
+ // Continue unless the iterator was exhausted
+ //
+ // note: this prevents iterators that "restart" from causing problems.
+ // If the iterator stops once, then so do we.
+ if reservoir.len() == amount {
+ for (i, elem) in self.enumerate() {
+ let k = gen_index(rng, i + 1 + amount);
+ if let Some(slot) = reservoir.get_mut(k) {
+ *slot = elem;
+ }
+ }
+ } else {
+ // Don't hang onto extra memory. There is a corner case where
+ // `amount` was much less than `self.len()`.
+ reservoir.shrink_to_fit();
+ }
+ reservoir
+ }
+}
+
+
+impl<T> SliceRandom for [T] {
+ type Item = T;
+
+ fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
+ where R: Rng + ?Sized {
+ if self.is_empty() {
+ None
+ } else {
+ Some(&self[gen_index(rng, self.len())])
+ }
+ }
+
+ fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
+ where R: Rng + ?Sized {
+ if self.is_empty() {
+ None
+ } else {
+ let len = self.len();
+ Some(&mut self[gen_index(rng, len)])
+ }
+ }
+
+ #[cfg(feature = "alloc")]
+ fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
+ where R: Rng + ?Sized {
+ let amount = ::core::cmp::min(amount, self.len());
+ SliceChooseIter {
+ slice: self,
+ _phantom: Default::default(),
+ indices: index::sample(rng, self.len(), amount).into_iter(),
+ }
+ }
+
+ #[cfg(feature = "alloc")]
+ fn choose_weighted<R, F, B, X>(
+ &self, rng: &mut R, weight: F,
+ ) -> Result<&Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default,
+ {
+ use crate::distributions::{Distribution, WeightedIndex};
+ let distr = WeightedIndex::new(self.iter().map(weight))?;
+ Ok(&self[distr.sample(rng)])
+ }
+
+ #[cfg(feature = "alloc")]
+ fn choose_weighted_mut<R, F, B, X>(
+ &mut self, rng: &mut R, weight: F,
+ ) -> Result<&mut Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default,
+ {
+ use crate::distributions::{Distribution, WeightedIndex};
+ let distr = WeightedIndex::new(self.iter().map(weight))?;
+ Ok(&mut self[distr.sample(rng)])
+ }
+
+ #[cfg(feature = "std")]
+ fn choose_multiple_weighted<R, F, X>(
+ &self, rng: &mut R, amount: usize, weight: F,
+ ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> X,
+ X: Into<f64>,
+ {
+ let amount = ::core::cmp::min(amount, self.len());
+ Ok(SliceChooseIter {
+ slice: self,
+ _phantom: Default::default(),
+ indices: index::sample_weighted(
+ rng,
+ self.len(),
+ |idx| weight(&self[idx]).into(),
+ amount,
+ )?
+ .into_iter(),
+ })
+ }
+
+ fn shuffle<R>(&mut self, rng: &mut R)
+ where R: Rng + ?Sized {
+ for i in (1..self.len()).rev() {
+ // invariant: elements with index > i have been locked in place.
+ self.swap(i, gen_index(rng, i + 1));
+ }
+ }
+
+ fn partial_shuffle<R>(
+ &mut self, rng: &mut R, amount: usize,
+ ) -> (&mut [Self::Item], &mut [Self::Item])
+ where R: Rng + ?Sized {
+ // This applies Durstenfeld's algorithm for the
+ // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
+ // for an unbiased permutation, but exits early after choosing `amount`
+ // elements.
+
+ let len = self.len();
+ let end = if amount >= len { 0 } else { len - amount };
+
+ for i in (end..len).rev() {
+ // invariant: elements with index > i have been locked in place.
+ self.swap(i, gen_index(rng, i + 1));
+ }
+ let r = self.split_at_mut(end);
+ (r.1, r.0)
+ }
+}
+
+impl<I> IteratorRandom for I where I: Iterator + Sized {}
+
+
+/// An iterator over multiple slice elements.
+///
+/// This struct is created by
+/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
+#[cfg(feature = "alloc")]
+#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+#[derive(Debug)]
+pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
+ slice: &'a S,
+ _phantom: ::core::marker::PhantomData<T>,
+ indices: index::IndexVecIntoIter,
+}
+
+#[cfg(feature = "alloc")]
+impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
+ type Item = &'a T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ // TODO: investigate using SliceIndex::get_unchecked when stable
+ self.indices.next().map(|i| &self.slice[i as usize])
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.indices.len(), Some(self.indices.len()))
+ }
+}
+
+#[cfg(feature = "alloc")]
+impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
+ for SliceChooseIter<'a, S, T>
+{
+ fn len(&self) -> usize {
+ self.indices.len()
+ }
+}
+
+
+// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
+// possible, primarily in order to produce the same output on 32-bit and 64-bit
+// platforms.
+#[inline]
+fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
+ if ubound <= (core::u32::MAX as usize) {
+ rng.gen_range(0..ubound as u32) as usize
+ } else {
+ rng.gen_range(0..ubound)
+ }
+}
+
+
+#[cfg(test)]
+mod test {
+ use super::*;
+ #[cfg(feature = "alloc")] use crate::Rng;
+ #[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec;
+
+ #[test]
+ fn test_slice_choose() {
+ let mut r = crate::test::rng(107);
+ let chars = [
+ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
+ ];
+ let mut chosen = [0i32; 14];
+ // The below all use a binomial distribution with n=1000, p=1/14.
+ // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
+ for _ in 0..1000 {
+ let picked = *chars.choose(&mut r).unwrap();
+ chosen[(picked as usize) - ('a' as usize)] += 1;
+ }
+ for count in chosen.iter() {
+ assert!(40 < *count && *count < 106);
+ }
+
+ chosen.iter_mut().for_each(|x| *x = 0);
+ for _ in 0..1000 {
+ *chosen.choose_mut(&mut r).unwrap() += 1;
+ }
+ for count in chosen.iter() {
+ assert!(40 < *count && *count < 106);
+ }
+
+ let mut v: [isize; 0] = [];
+ assert_eq!(v.choose(&mut r), None);
+ assert_eq!(v.choose_mut(&mut r), None);
+ }
+
+ #[test]
+ fn value_stability_slice() {
+ let mut r = crate::test::rng(413);
+ let chars = [
+ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
+ ];
+ let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
+
+ assert_eq!(chars.choose(&mut r), Some(&'l'));
+ assert_eq!(nums.choose_mut(&mut r), Some(&mut 10));
+
+ #[cfg(feature = "alloc")]
+ assert_eq!(
+ &chars
+ .choose_multiple(&mut r, 8)
+ .cloned()
+ .collect::<Vec<char>>(),
+ &['d', 'm', 'b', 'n', 'c', 'k', 'h', 'e']
+ );
+
+ #[cfg(feature = "alloc")]
+ assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f'));
+ #[cfg(feature = "alloc")]
+ assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5));
+
+ let mut r = crate::test::rng(414);
+ nums.shuffle(&mut r);
+ assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]);
+ nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
+ let res = nums.partial_shuffle(&mut r, 6);
+ assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]);
+ assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]);
+ }
+
+ #[derive(Clone)]
+ struct UnhintedIterator<I: Iterator + Clone> {
+ iter: I,
+ }
+ impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next()
+ }
+ }
+
+ #[derive(Clone)]
+ struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
+ iter: I,
+ chunk_remaining: usize,
+ chunk_size: usize,
+ hint_total_size: bool,
+ }
+ impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.chunk_remaining == 0 {
+ self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len());
+ }
+ self.chunk_remaining = self.chunk_remaining.saturating_sub(1);
+
+ self.iter.next()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (
+ self.chunk_remaining,
+ if self.hint_total_size {
+ Some(self.iter.len())
+ } else {
+ None
+ },
+ )
+ }
+ }
+
+ #[derive(Clone)]
+ struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
+ iter: I,
+ window_size: usize,
+ hint_total_size: bool,
+ }
+ impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (
+ ::core::cmp::min(self.iter.len(), self.window_size),
+ if self.hint_total_size {
+ Some(self.iter.len())
+ } else {
+ None
+ },
+ )
+ }
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_iterator_choose() {
+ let r = &mut crate::test::rng(109);
+ fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
+ let mut chosen = [0i32; 9];
+ for _ in 0..1000 {
+ let picked = iter.clone().choose(r).unwrap();
+ chosen[picked] += 1;
+ }
+ for count in chosen.iter() {
+ // Samples should follow Binomial(1000, 1/9)
+ // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
+ // Note: have seen 153, which is unlikely but not impossible.
+ assert!(
+ 72 < *count && *count < 154,
+ "count not close to 1000/9: {}",
+ count
+ );
+ }
+ }
+
+ test_iter(r, 0..9);
+ test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
+ #[cfg(feature = "alloc")]
+ test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
+ test_iter(r, UnhintedIterator { iter: 0..9 });
+ test_iter(r, ChunkHintedIterator {
+ iter: 0..9,
+ chunk_size: 4,
+ chunk_remaining: 4,
+ hint_total_size: false,
+ });
+ test_iter(r, ChunkHintedIterator {
+ iter: 0..9,
+ chunk_size: 4,
+ chunk_remaining: 4,
+ hint_total_size: true,
+ });
+ test_iter(r, WindowHintedIterator {
+ iter: 0..9,
+ window_size: 2,
+ hint_total_size: false,
+ });
+ test_iter(r, WindowHintedIterator {
+ iter: 0..9,
+ window_size: 2,
+ hint_total_size: true,
+ });
+
+ assert_eq!((0..0).choose(r), None);
+ assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_iterator_choose_stable() {
+ let r = &mut crate::test::rng(109);
+ fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
+ let mut chosen = [0i32; 9];
+ for _ in 0..1000 {
+ let picked = iter.clone().choose_stable(r).unwrap();
+ chosen[picked] += 1;
+ }
+ for count in chosen.iter() {
+ // Samples should follow Binomial(1000, 1/9)
+ // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
+ // Note: have seen 153, which is unlikely but not impossible.
+ assert!(
+ 72 < *count && *count < 154,
+ "count not close to 1000/9: {}",
+ count
+ );
+ }
+ }
+
+ test_iter(r, 0..9);
+ test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
+ #[cfg(feature = "alloc")]
+ test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
+ test_iter(r, UnhintedIterator { iter: 0..9 });
+ test_iter(r, ChunkHintedIterator {
+ iter: 0..9,
+ chunk_size: 4,
+ chunk_remaining: 4,
+ hint_total_size: false,
+ });
+ test_iter(r, ChunkHintedIterator {
+ iter: 0..9,
+ chunk_size: 4,
+ chunk_remaining: 4,
+ hint_total_size: true,
+ });
+ test_iter(r, WindowHintedIterator {
+ iter: 0..9,
+ window_size: 2,
+ hint_total_size: false,
+ });
+ test_iter(r, WindowHintedIterator {
+ iter: 0..9,
+ window_size: 2,
+ hint_total_size: true,
+ });
+
+ assert_eq!((0..0).choose(r), None);
+ assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_iterator_choose_stable_stability() {
+ fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] {
+ let r = &mut crate::test::rng(109);
+ let mut chosen = [0i32; 9];
+ for _ in 0..1000 {
+ let picked = iter.clone().choose_stable(r).unwrap();
+ chosen[picked] += 1;
+ }
+ chosen
+ }
+
+ let reference = test_iter(0..9);
+ assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference);
+
+ #[cfg(feature = "alloc")]
+ assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference);
+ assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference);
+ assert_eq!(test_iter(ChunkHintedIterator {
+ iter: 0..9,
+ chunk_size: 4,
+ chunk_remaining: 4,
+ hint_total_size: false,
+ }), reference);
+ assert_eq!(test_iter(ChunkHintedIterator {
+ iter: 0..9,
+ chunk_size: 4,
+ chunk_remaining: 4,
+ hint_total_size: true,
+ }), reference);
+ assert_eq!(test_iter(WindowHintedIterator {
+ iter: 0..9,
+ window_size: 2,
+ hint_total_size: false,
+ }), reference);
+ assert_eq!(test_iter(WindowHintedIterator {
+ iter: 0..9,
+ window_size: 2,
+ hint_total_size: true,
+ }), reference);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_shuffle() {
+ let mut r = crate::test::rng(108);
+ let empty: &mut [isize] = &mut [];
+ empty.shuffle(&mut r);
+ let mut one = [1];
+ one.shuffle(&mut r);
+ let b: &[_] = &[1];
+ assert_eq!(one, b);
+
+ let mut two = [1, 2];
+ two.shuffle(&mut r);
+ assert!(two == [1, 2] || two == [2, 1]);
+
+ fn move_last(slice: &mut [usize], pos: usize) {
+ // use slice[pos..].rotate_left(1); once we can use that
+ let last_val = slice[pos];
+ for i in pos..slice.len() - 1 {
+ slice[i] = slice[i + 1];
+ }
+ *slice.last_mut().unwrap() = last_val;
+ }
+ let mut counts = [0i32; 24];
+ for _ in 0..10000 {
+ let mut arr: [usize; 4] = [0, 1, 2, 3];
+ arr.shuffle(&mut r);
+ let mut permutation = 0usize;
+ let mut pos_value = counts.len();
+ for i in 0..4 {
+ pos_value /= 4 - i;
+ let pos = arr.iter().position(|&x| x == i).unwrap();
+ assert!(pos < (4 - i));
+ permutation += pos * pos_value;
+ move_last(&mut arr, pos);
+ assert_eq!(arr[3], i);
+ }
+ for (i, &a) in arr.iter().enumerate() {
+ assert_eq!(a, i);
+ }
+ counts[permutation] += 1;
+ }
+ for count in counts.iter() {
+ // Binomial(10000, 1/24) with average 416.667
+ // Octave: binocdf(n, 10000, 1/24)
+ // 99.9% chance samples lie within this range:
+ assert!(352 <= *count && *count <= 483, "count: {}", count);
+ }
+ }
+
+ #[test]
+ fn test_partial_shuffle() {
+ let mut r = crate::test::rng(118);
+
+ let mut empty: [u32; 0] = [];
+ let res = empty.partial_shuffle(&mut r, 10);
+ assert_eq!((res.0.len(), res.1.len()), (0, 0));
+
+ let mut v = [1, 2, 3, 4, 5];
+ let res = v.partial_shuffle(&mut r, 2);
+ assert_eq!((res.0.len(), res.1.len()), (2, 3));
+ assert!(res.0[0] != res.0[1]);
+ // First elements are only modified if selected, so at least one isn't modified:
+ assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
+ }
+
+ #[test]
+ #[cfg(feature = "alloc")]
+ fn test_sample_iter() {
+ let min_val = 1;
+ let max_val = 100;
+
+ let mut r = crate::test::rng(401);
+ let vals = (min_val..max_val).collect::<Vec<i32>>();
+ let small_sample = vals.iter().choose_multiple(&mut r, 5);
+ let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
+
+ assert_eq!(small_sample.len(), 5);
+ assert_eq!(large_sample.len(), vals.len());
+ // no randomization happens when amount >= len
+ assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());
+
+ assert!(small_sample
+ .iter()
+ .all(|e| { **e >= min_val && **e <= max_val }));
+ }
+
+ #[test]
+ #[cfg(feature = "alloc")]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_weighted() {
+ let mut r = crate::test::rng(406);
+ const N_REPS: u32 = 3000;
+ let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
+ let total_weight = weights.iter().sum::<u32>() as f32;
+
+ let verify = |result: [i32; 14]| {
+ for (i, count) in result.iter().enumerate() {
+ let exp = (weights[i] * N_REPS) as f32 / total_weight;
+ let mut err = (*count as f32 - exp).abs();
+ if err != 0.0 {
+ err /= exp;
+ }
+ assert!(err <= 0.25);
+ }
+ };
+
+ // choose_weighted
+ fn get_weight<T>(item: &(u32, T)) -> u32 {
+ item.0
+ }
+ let mut chosen = [0i32; 14];
+ let mut items = [(0u32, 0usize); 14]; // (weight, index)
+ for (i, item) in items.iter_mut().enumerate() {
+ *item = (weights[i], i);
+ }
+ for _ in 0..N_REPS {
+ let item = items.choose_weighted(&mut r, get_weight).unwrap();
+ chosen[item.1] += 1;
+ }
+ verify(chosen);
+
+ // choose_weighted_mut
+ let mut items = [(0u32, 0i32); 14]; // (weight, count)
+ for (i, item) in items.iter_mut().enumerate() {
+ *item = (weights[i], 0);
+ }
+ for _ in 0..N_REPS {
+ items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
+ }
+ for (ch, item) in chosen.iter_mut().zip(items.iter()) {
+ *ch = item.1;
+ }
+ verify(chosen);
+
+ // Check error cases
+ let empty_slice = &mut [10][0..0];
+ assert_eq!(
+ empty_slice.choose_weighted(&mut r, |_| 1),
+ Err(WeightedError::NoItem)
+ );
+ assert_eq!(
+ empty_slice.choose_weighted_mut(&mut r, |_| 1),
+ Err(WeightedError::NoItem)
+ );
+ assert_eq!(
+ ['x'].choose_weighted_mut(&mut r, |_| 0),
+ Err(WeightedError::AllWeightsZero)
+ );
+ assert_eq!(
+ [0, -1].choose_weighted_mut(&mut r, |x| *x),
+ Err(WeightedError::InvalidWeight)
+ );
+ assert_eq!(
+ [-1, 0].choose_weighted_mut(&mut r, |x| *x),
+ Err(WeightedError::InvalidWeight)
+ );
+ }
+
+ #[test]
+ fn value_stability_choose() {
+ fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
+ let mut rng = crate::test::rng(411);
+ iter.choose(&mut rng)
+ }
+
+ assert_eq!(choose([].iter().cloned()), None);
+ assert_eq!(choose(0..100), Some(33));
+ assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
+ assert_eq!(
+ choose(ChunkHintedIterator {
+ iter: 0..100,
+ chunk_size: 32,
+ chunk_remaining: 32,
+ hint_total_size: false,
+ }),
+ Some(39)
+ );
+ assert_eq!(
+ choose(ChunkHintedIterator {
+ iter: 0..100,
+ chunk_size: 32,
+ chunk_remaining: 32,
+ hint_total_size: true,
+ }),
+ Some(39)
+ );
+ assert_eq!(
+ choose(WindowHintedIterator {
+ iter: 0..100,
+ window_size: 32,
+ hint_total_size: false,
+ }),
+ Some(90)
+ );
+ assert_eq!(
+ choose(WindowHintedIterator {
+ iter: 0..100,
+ window_size: 32,
+ hint_total_size: true,
+ }),
+ Some(90)
+ );
+ }
+
+ #[test]
+ fn value_stability_choose_stable() {
+ fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
+ let mut rng = crate::test::rng(411);
+ iter.choose_stable(&mut rng)
+ }
+
+ assert_eq!(choose([].iter().cloned()), None);
+ assert_eq!(choose(0..100), Some(40));
+ assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
+ assert_eq!(
+ choose(ChunkHintedIterator {
+ iter: 0..100,
+ chunk_size: 32,
+ chunk_remaining: 32,
+ hint_total_size: false,
+ }),
+ Some(40)
+ );
+ assert_eq!(
+ choose(ChunkHintedIterator {
+ iter: 0..100,
+ chunk_size: 32,
+ chunk_remaining: 32,
+ hint_total_size: true,
+ }),
+ Some(40)
+ );
+ assert_eq!(
+ choose(WindowHintedIterator {
+ iter: 0..100,
+ window_size: 32,
+ hint_total_size: false,
+ }),
+ Some(40)
+ );
+ assert_eq!(
+ choose(WindowHintedIterator {
+ iter: 0..100,
+ window_size: 32,
+ hint_total_size: true,
+ }),
+ Some(40)
+ );
+ }
+
+ #[test]
+ fn value_stability_choose_multiple() {
+ fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
+ let mut rng = crate::test::rng(412);
+ let mut buf = [0u32; 8];
+ assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len());
+ assert_eq!(&buf[0..v.len()], v);
+ }
+
+ do_test(0..4, &[0, 1, 2, 3]);
+ do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
+ do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
+
+ #[cfg(feature = "alloc")]
+ {
+ fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
+ let mut rng = crate::test::rng(412);
+ assert_eq!(iter.choose_multiple(&mut rng, v.len()), v);
+ }
+
+ do_test(0..4, &[0, 1, 2, 3]);
+ do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
+ do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn test_multiple_weighted_edge_cases() {
+ use super::*;
+
+ let mut rng = crate::test::rng(413);
+
+ // Case 1: One of the weights is 0
+ let choices = [('a', 2), ('b', 1), ('c', 0)];
+ for _ in 0..100 {
+ let result = choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap()
+ .collect::<Vec<_>>();
+
+ assert_eq!(result.len(), 2);
+ assert!(!result.iter().any(|val| val.0 == 'c'));
+ }
+
+ // Case 2: All of the weights are 0
+ let choices = [('a', 0), ('b', 0), ('c', 0)];
+
+ assert_eq!(choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap().count(), 2);
+
+ // Case 3: Negative weights
+ let choices = [('a', -1), ('b', 1), ('c', 1)];
+ assert_eq!(
+ choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+
+ // Case 4: Empty list
+ let choices = [];
+ assert_eq!(choices
+ .choose_multiple_weighted(&mut rng, 0, |_: &()| 0)
+ .unwrap().count(), 0);
+
+ // Case 5: NaN weights
+ let choices = [('a', core::f64::NAN), ('b', 1.0), ('c', 1.0)];
+ assert_eq!(
+ choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+
+ // Case 6: +infinity weights
+ let choices = [('a', core::f64::INFINITY), ('b', 1.0), ('c', 1.0)];
+ for _ in 0..100 {
+ let result = choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap()
+ .collect::<Vec<_>>();
+ assert_eq!(result.len(), 2);
+ assert!(result.iter().any(|val| val.0 == 'a'));
+ }
+
+ // Case 7: -infinity weights
+ let choices = [('a', core::f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
+ assert_eq!(
+ choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+
+ // Case 8: -0 weights
+ let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
+ assert!(choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .is_ok());
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn test_multiple_weighted_distributions() {
+ use super::*;
+
+ // The theoretical probabilities of the different outcomes are:
+ // AB: 0.5 * 0.5 = 0.250
+ // AC: 0.5 * 0.5 = 0.250
+ // BA: 0.25 * 0.67 = 0.167
+ // BC: 0.25 * 0.33 = 0.082
+ // CA: 0.25 * 0.67 = 0.167
+ // CB: 0.25 * 0.33 = 0.082
+ let choices = [('a', 2), ('b', 1), ('c', 1)];
+ let mut rng = crate::test::rng(414);
+
+ let mut results = [0i32; 3];
+ let expected_results = [4167, 4167, 1666];
+ for _ in 0..10000 {
+ let result = choices
+ .choose_multiple_weighted(&mut rng, 2, |item| item.1)
+ .unwrap()
+ .collect::<Vec<_>>();
+
+ assert_eq!(result.len(), 2);
+
+ match (result[0].0, result[1].0) {
+ ('a', 'b') | ('b', 'a') => {
+ results[0] += 1;
+ }
+ ('a', 'c') | ('c', 'a') => {
+ results[1] += 1;
+ }
+ ('b', 'c') | ('c', 'b') => {
+ results[2] += 1;
+ }
+ (_, _) => panic!("unexpected result"),
+ }
+ }
+
+ let mut diffs = results
+ .iter()
+ .zip(&expected_results)
+ .map(|(a, b)| (a - b).abs());
+ assert!(!diffs.any(|deviation| deviation > 100));
+ }
+}