summaryrefslogtreecommitdiffstats
path: root/vendor/twox-hash/src/thirty_two.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:19:13 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:19:13 +0000
commit218caa410aa38c29984be31a5229b9fa717560ee (patch)
treec54bd55eeb6e4c508940a30e94c0032fbd45d677 /vendor/twox-hash/src/thirty_two.rs
parentReleasing progress-linux version 1.67.1+dfsg1-1~progress7.99u1. (diff)
downloadrustc-218caa410aa38c29984be31a5229b9fa717560ee.tar.xz
rustc-218caa410aa38c29984be31a5229b9fa717560ee.zip
Merging upstream version 1.68.2+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/twox-hash/src/thirty_two.rs')
-rw-r--r--vendor/twox-hash/src/thirty_two.rs416
1 files changed, 416 insertions, 0 deletions
diff --git a/vendor/twox-hash/src/thirty_two.rs b/vendor/twox-hash/src/thirty_two.rs
new file mode 100644
index 000000000..cfa44cdbc
--- /dev/null
+++ b/vendor/twox-hash/src/thirty_two.rs
@@ -0,0 +1,416 @@
+use crate::UnalignedBuffer;
+use core::{cmp, hash::Hasher};
+
+#[cfg(feature = "serialize")]
+use serde::{Deserialize, Serialize};
+
+const CHUNK_SIZE: usize = 16;
+
+pub const PRIME_1: u32 = 2_654_435_761;
+pub const PRIME_2: u32 = 2_246_822_519;
+pub const PRIME_3: u32 = 3_266_489_917;
+pub const PRIME_4: u32 = 668_265_263;
+pub const PRIME_5: u32 = 374_761_393;
+
+#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
+#[derive(Copy, Clone, PartialEq)]
+struct XxCore {
+ v1: u32,
+ v2: u32,
+ v3: u32,
+ v4: u32,
+}
+
+/// Calculates the 32-bit hash. Care should be taken when using this
+/// hash.
+///
+/// Although this struct implements `Hasher`, it only calculates a
+/// 32-bit number, leaving the upper bits as 0. This means it is
+/// unlikely to be correct to use this in places like a `HashMap`.
+#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
+#[derive(Debug, Copy, Clone, PartialEq)]
+pub struct XxHash32 {
+ total_len: u64,
+ seed: u32,
+ core: XxCore,
+ #[cfg_attr(feature = "serialize", serde(flatten))]
+ buffer: Buffer,
+}
+
+impl XxCore {
+ fn with_seed(seed: u32) -> XxCore {
+ XxCore {
+ v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
+ v2: seed.wrapping_add(PRIME_2),
+ v3: seed,
+ v4: seed.wrapping_sub(PRIME_1),
+ }
+ }
+
+ #[inline(always)]
+ fn ingest_chunks<I>(&mut self, values: I)
+ where
+ I: IntoIterator<Item = [u32; 4]>,
+ {
+ #[inline(always)]
+ fn ingest_one_number(mut current_value: u32, mut value: u32) -> u32 {
+ value = value.wrapping_mul(PRIME_2);
+ current_value = current_value.wrapping_add(value);
+ current_value = current_value.rotate_left(13);
+ current_value.wrapping_mul(PRIME_1)
+ }
+
+ // By drawing these out, we can avoid going back and forth to
+ // memory. It only really helps for large files, when we need
+ // to iterate multiple times here.
+
+ let mut v1 = self.v1;
+ let mut v2 = self.v2;
+ let mut v3 = self.v3;
+ let mut v4 = self.v4;
+
+ for [n1, n2, n3, n4] in values {
+ v1 = ingest_one_number(v1, n1.to_le());
+ v2 = ingest_one_number(v2, n2.to_le());
+ v3 = ingest_one_number(v3, n3.to_le());
+ v4 = ingest_one_number(v4, n4.to_le());
+ }
+
+ self.v1 = v1;
+ self.v2 = v2;
+ self.v3 = v3;
+ self.v4 = v4;
+ }
+
+ #[inline(always)]
+ fn finish(&self) -> u32 {
+ // The original code pulls out local vars for v[1234]
+ // here. Performance tests did not show that to be effective
+ // here, presumably because this method is not called in a
+ // tight loop.
+
+ #[allow(unknown_lints, clippy::needless_late_init)] // keeping things parallel
+ let mut hash;
+
+ hash = self.v1.rotate_left(1);
+ hash = hash.wrapping_add(self.v2.rotate_left(7));
+ hash = hash.wrapping_add(self.v3.rotate_left(12));
+ hash = hash.wrapping_add(self.v4.rotate_left(18));
+
+ hash
+ }
+}
+
+impl core::fmt::Debug for XxCore {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
+ write!(
+ f,
+ "XxCore {{ {:016x} {:016x} {:016x} {:016x} }}",
+ self.v1, self.v2, self.v3, self.v4
+ )
+ }
+}
+
+#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
+#[derive(Debug, Copy, Clone, Default, PartialEq)]
+#[repr(align(4))]
+#[cfg_attr(feature = "serialize", serde(transparent))]
+struct AlignToU32<T>(T);
+
+#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
+#[derive(Debug, Copy, Clone, Default, PartialEq)]
+struct Buffer {
+ #[cfg_attr(feature = "serialize", serde(rename = "buffer"))]
+ data: AlignToU32<[u8; CHUNK_SIZE]>,
+ #[cfg_attr(feature = "serialize", serde(rename = "buffer_usage"))]
+ len: usize,
+}
+
+impl Buffer {
+ fn data(&self) -> &[u8] {
+ &self.data.0[..self.len]
+ }
+
+ /// Consumes as much of the parameter as it can, returning the unused part.
+ fn consume<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
+ let to_use = cmp::min(self.available(), data.len());
+ let (data, remaining) = data.split_at(to_use);
+ self.data.0[self.len..][..to_use].copy_from_slice(data);
+ self.len += to_use;
+ remaining
+ }
+
+ fn set_data(&mut self, data: &[u8]) {
+ debug_assert!(self.is_empty());
+ debug_assert!(data.len() < CHUNK_SIZE);
+ self.data.0[..data.len()].copy_from_slice(data);
+ self.len = data.len();
+ }
+
+ fn available(&self) -> usize {
+ CHUNK_SIZE - self.len
+ }
+
+ fn is_empty(&self) -> bool {
+ self.len == 0
+ }
+
+ fn is_full(&self) -> bool {
+ self.len == CHUNK_SIZE
+ }
+}
+
+impl XxHash32 {
+ /// Constructs the hash with an initial seed
+ pub fn with_seed(seed: u32) -> XxHash32 {
+ XxHash32 {
+ total_len: 0,
+ seed,
+ core: XxCore::with_seed(seed),
+ buffer: Buffer::default(),
+ }
+ }
+
+ pub(crate) fn write(&mut self, bytes: &[u8]) {
+ let remaining = self.maybe_consume_bytes(bytes);
+ if !remaining.is_empty() {
+ let mut remaining = UnalignedBuffer::new(remaining);
+ self.core.ingest_chunks(&mut remaining);
+ self.buffer.set_data(remaining.remaining());
+ }
+ self.total_len += bytes.len() as u64;
+ }
+
+ // Consume bytes and try to make `self.buffer` empty.
+ // If there are not enough bytes, `self.buffer` can be non-empty, and this
+ // function returns an empty slice.
+ fn maybe_consume_bytes<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
+ if self.buffer.is_empty() {
+ data
+ } else {
+ let data = self.buffer.consume(data);
+ if self.buffer.is_full() {
+ let mut u32s = UnalignedBuffer::new(self.buffer.data());
+ self.core.ingest_chunks(&mut u32s);
+ debug_assert!(u32s.remaining().is_empty());
+ self.buffer.len = 0;
+ }
+ data
+ }
+ }
+
+ pub(crate) fn finish(&self) -> u32 {
+ let mut hash = if self.total_len >= CHUNK_SIZE as u64 {
+ // We have processed at least one full chunk
+ self.core.finish()
+ } else {
+ self.seed.wrapping_add(PRIME_5)
+ };
+
+ hash = hash.wrapping_add(self.total_len as u32);
+
+ let mut buffered_u32s = UnalignedBuffer::<u32>::new(self.buffer.data());
+ for buffered_u32 in &mut buffered_u32s {
+ let k1 = buffered_u32.to_le().wrapping_mul(PRIME_3);
+ hash = hash.wrapping_add(k1);
+ hash = hash.rotate_left(17);
+ hash = hash.wrapping_mul(PRIME_4);
+ }
+
+ let buffered_u8s = buffered_u32s.remaining();
+ for &buffered_u8 in buffered_u8s {
+ let k1 = u32::from(buffered_u8).wrapping_mul(PRIME_5);
+ hash = hash.wrapping_add(k1);
+ hash = hash.rotate_left(11);
+ hash = hash.wrapping_mul(PRIME_1);
+ }
+
+ // The final intermixing
+ hash ^= hash >> 15;
+ hash = hash.wrapping_mul(PRIME_2);
+ hash ^= hash >> 13;
+ hash = hash.wrapping_mul(PRIME_3);
+ hash ^= hash >> 16;
+
+ hash
+ }
+
+ pub fn seed(&self) -> u32 {
+ self.seed
+ }
+
+ /// Get the total number of bytes hashed, truncated to 32 bits.
+ /// For the full 64-bit byte count, use `total_len_64`
+ pub fn total_len(&self) -> u32 {
+ self.total_len as u32
+ }
+
+ /// Get the total number of bytes hashed.
+ pub fn total_len_64(&self) -> u64 {
+ self.total_len
+ }
+}
+
+impl Default for XxHash32 {
+ fn default() -> XxHash32 {
+ XxHash32::with_seed(0)
+ }
+}
+
+impl Hasher for XxHash32 {
+ fn finish(&self) -> u64 {
+ u64::from(XxHash32::finish(self))
+ }
+
+ fn write(&mut self, bytes: &[u8]) {
+ XxHash32::write(self, bytes)
+ }
+}
+
+#[cfg(feature = "std")]
+pub use crate::std_support::thirty_two::RandomXxHashBuilder32;
+
+#[cfg(test)]
+mod test {
+ use super::{RandomXxHashBuilder32, XxHash32};
+ use std::collections::HashMap;
+ use std::hash::BuildHasherDefault;
+ use std::prelude::v1::*;
+
+ #[test]
+ fn ingesting_byte_by_byte_is_equivalent_to_large_chunks() {
+ let bytes: Vec<_> = (0..32).map(|_| 0).collect();
+
+ let mut byte_by_byte = XxHash32::with_seed(0);
+ for byte in bytes.chunks(1) {
+ byte_by_byte.write(byte);
+ }
+
+ let mut one_chunk = XxHash32::with_seed(0);
+ one_chunk.write(&bytes);
+
+ assert_eq!(byte_by_byte.core, one_chunk.core);
+ }
+
+ #[test]
+ fn hash_of_nothing_matches_c_implementation() {
+ let mut hasher = XxHash32::with_seed(0);
+ hasher.write(&[]);
+ assert_eq!(hasher.finish(), 0x02cc_5d05);
+ }
+
+ #[test]
+ fn hash_of_single_byte_matches_c_implementation() {
+ let mut hasher = XxHash32::with_seed(0);
+ hasher.write(&[42]);
+ assert_eq!(hasher.finish(), 0xe0fe_705f);
+ }
+
+ #[test]
+ fn hash_of_multiple_bytes_matches_c_implementation() {
+ let mut hasher = XxHash32::with_seed(0);
+ hasher.write(b"Hello, world!\0");
+ assert_eq!(hasher.finish(), 0x9e5e_7e93);
+ }
+
+ #[test]
+ fn hash_of_multiple_chunks_matches_c_implementation() {
+ let bytes: Vec<_> = (0..100).collect();
+ let mut hasher = XxHash32::with_seed(0);
+ hasher.write(&bytes);
+ assert_eq!(hasher.finish(), 0x7f89_ba44);
+ }
+
+ #[test]
+ fn hash_with_different_seed_matches_c_implementation() {
+ let mut hasher = XxHash32::with_seed(0x42c9_1977);
+ hasher.write(&[]);
+ assert_eq!(hasher.finish(), 0xd6bf_8459);
+ }
+
+ #[test]
+ fn hash_with_different_seed_and_multiple_chunks_matches_c_implementation() {
+ let bytes: Vec<_> = (0..100).collect();
+ let mut hasher = XxHash32::with_seed(0x42c9_1977);
+ hasher.write(&bytes);
+ assert_eq!(hasher.finish(), 0x6d2f_6c17);
+ }
+
+ #[test]
+ fn can_be_used_in_a_hashmap_with_a_default_seed() {
+ let mut hash: HashMap<_, _, BuildHasherDefault<XxHash32>> = Default::default();
+ hash.insert(42, "the answer");
+ assert_eq!(hash.get(&42), Some(&"the answer"));
+ }
+
+ #[test]
+ fn can_be_used_in_a_hashmap_with_a_random_seed() {
+ let mut hash: HashMap<_, _, RandomXxHashBuilder32> = Default::default();
+ hash.insert(42, "the answer");
+ assert_eq!(hash.get(&42), Some(&"the answer"));
+ }
+
+ #[cfg(feature = "serialize")]
+ type TestResult<T = ()> = Result<T, Box<dyn std::error::Error>>;
+
+ #[cfg(feature = "serialize")]
+ #[test]
+ fn test_serialization_cycle() -> TestResult {
+ let mut hasher = XxHash32::with_seed(0);
+ hasher.write(b"Hello, world!\0");
+ hasher.finish();
+
+ let serialized = serde_json::to_string(&hasher)?;
+ let unserialized: XxHash32 = serde_json::from_str(&serialized)?;
+ assert_eq!(hasher, unserialized);
+ Ok(())
+ }
+
+ #[cfg(feature = "serialize")]
+ #[test]
+ fn test_serialization_stability() -> TestResult {
+ let mut hasher = XxHash32::with_seed(0);
+ hasher.write(b"Hello, world!\0");
+ hasher.finish();
+
+ let serialized = r#"{
+ "total_len": 14,
+ "seed": 0,
+ "core": {
+ "v1": 606290984,
+ "v2": 2246822519,
+ "v3": 0,
+ "v4": 1640531535
+ },
+ "buffer": [
+ 72, 101, 108, 108, 111, 44, 32, 119,
+ 111, 114, 108, 100, 33, 0, 0, 0
+ ],
+ "buffer_usage": 14
+ }"#;
+
+ let unserialized: XxHash32 = serde_json::from_str(serialized).unwrap();
+ assert_eq!(hasher, unserialized);
+ Ok(())
+ }
+
+ // This test validates wraparound/truncation behavior for very large inputs
+ // of a 32-bit hash, but runs very slowly in the normal "cargo test"
+ // build config since it hashes 4.3GB of data. It runs reasonably quick
+ // under "cargo test --release".
+ /*
+ #[test]
+ fn len_overflow_32bit() {
+ // Hash 4.3 billion (4_300_000_000) bytes, which overflows a u32.
+ let bytes200: Vec<u8> = (0..200).collect();
+ let mut hasher = XxHash32::with_seed(0);
+ for _ in 0..(4_300_000_000u64 / 200u64) {
+ hasher.write(&bytes200);
+ }
+ assert_eq!(hasher.total_len_64(), 0x0000_0001_004c_cb00);
+ assert_eq!(hasher.total_len(), 0x004c_cb00);
+ // retult is tested against the C implementation
+ assert_eq!(hasher.finish(), 0x1522_4ca7);
+ }
+ */
+}