summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_borrowck/src/universal_regions.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_borrowck/src/universal_regions.rs')
-rw-r--r--compiler/rustc_borrowck/src/universal_regions.rs841
1 files changed, 841 insertions, 0 deletions
diff --git a/compiler/rustc_borrowck/src/universal_regions.rs b/compiler/rustc_borrowck/src/universal_regions.rs
new file mode 100644
index 000000000..2a7713bc4
--- /dev/null
+++ b/compiler/rustc_borrowck/src/universal_regions.rs
@@ -0,0 +1,841 @@
+//! Code to extract the universally quantified regions declared on a
+//! function and the relationships between them. For example:
+//!
+//! ```
+//! fn foo<'a, 'b, 'c: 'b>() { }
+//! ```
+//!
+//! here we would return a map assigning each of `{'a, 'b, 'c}`
+//! to an index, as well as the `FreeRegionMap` which can compute
+//! relationships between them.
+//!
+//! The code in this file doesn't *do anything* with those results; it
+//! just returns them for other code to use.
+
+use either::Either;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_errors::Diagnostic;
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{BodyOwnerKind, HirId};
+use rustc_index::vec::{Idx, IndexVec};
+use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin};
+use rustc_middle::ty::fold::TypeFoldable;
+use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
+use rustc_middle::ty::{self, InlineConstSubsts, InlineConstSubstsParts, RegionVid, Ty, TyCtxt};
+use std::iter;
+
+use crate::nll::ToRegionVid;
+
+#[derive(Debug)]
+pub struct UniversalRegions<'tcx> {
+ indices: UniversalRegionIndices<'tcx>,
+
+ /// The vid assigned to `'static`
+ pub fr_static: RegionVid,
+
+ /// A special region vid created to represent the current MIR fn
+ /// body. It will outlive the entire CFG but it will not outlive
+ /// any other universal regions.
+ pub fr_fn_body: RegionVid,
+
+ /// We create region variables such that they are ordered by their
+ /// `RegionClassification`. The first block are globals, then
+ /// externals, then locals. So, things from:
+ /// - `FIRST_GLOBAL_INDEX..first_extern_index` are global,
+ /// - `first_extern_index..first_local_index` are external,
+ /// - `first_local_index..num_universals` are local.
+ first_extern_index: usize,
+
+ /// See `first_extern_index`.
+ first_local_index: usize,
+
+ /// The total number of universal region variables instantiated.
+ num_universals: usize,
+
+ /// A special region variable created for the `'empty(U0)` region.
+ /// Note that this is **not** a "universal" region, as it doesn't
+ /// represent a universally bound placeholder or any such thing.
+ /// But we do create it here in this type because it's a useful region
+ /// to have around in a few limited cases.
+ pub root_empty: RegionVid,
+
+ /// The "defining" type for this function, with all universal
+ /// regions instantiated. For a closure or generator, this is the
+ /// closure type, but for a top-level function it's the `FnDef`.
+ pub defining_ty: DefiningTy<'tcx>,
+
+ /// The return type of this function, with all regions replaced by
+ /// their universal `RegionVid` equivalents.
+ ///
+ /// N.B., associated types in this type have not been normalized,
+ /// as the name suggests. =)
+ pub unnormalized_output_ty: Ty<'tcx>,
+
+ /// The fully liberated input types of this function, with all
+ /// regions replaced by their universal `RegionVid` equivalents.
+ ///
+ /// N.B., associated types in these types have not been normalized,
+ /// as the name suggests. =)
+ pub unnormalized_input_tys: &'tcx [Ty<'tcx>],
+
+ pub yield_ty: Option<Ty<'tcx>>,
+}
+
+/// The "defining type" for this MIR. The key feature of the "defining
+/// type" is that it contains the information needed to derive all the
+/// universal regions that are in scope as well as the types of the
+/// inputs/output from the MIR. In general, early-bound universal
+/// regions appear free in the defining type and late-bound regions
+/// appear bound in the signature.
+#[derive(Copy, Clone, Debug)]
+pub enum DefiningTy<'tcx> {
+ /// The MIR is a closure. The signature is found via
+ /// `ClosureSubsts::closure_sig_ty`.
+ Closure(DefId, SubstsRef<'tcx>),
+
+ /// The MIR is a generator. The signature is that generators take
+ /// no parameters and return the result of
+ /// `ClosureSubsts::generator_return_ty`.
+ Generator(DefId, SubstsRef<'tcx>, hir::Movability),
+
+ /// The MIR is a fn item with the given `DefId` and substs. The signature
+ /// of the function can be bound then with the `fn_sig` query.
+ FnDef(DefId, SubstsRef<'tcx>),
+
+ /// The MIR represents some form of constant. The signature then
+ /// is that it has no inputs and a single return value, which is
+ /// the value of the constant.
+ Const(DefId, SubstsRef<'tcx>),
+
+ /// The MIR represents an inline const. The signature has no inputs and a
+ /// single return value found via `InlineConstSubsts::ty`.
+ InlineConst(DefId, SubstsRef<'tcx>),
+}
+
+impl<'tcx> DefiningTy<'tcx> {
+ /// Returns a list of all the upvar types for this MIR. If this is
+ /// not a closure or generator, there are no upvars, and hence it
+ /// will be an empty list. The order of types in this list will
+ /// match up with the upvar order in the HIR, typesystem, and MIR.
+ pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
+ match self {
+ DefiningTy::Closure(_, substs) => Either::Left(substs.as_closure().upvar_tys()),
+ DefiningTy::Generator(_, substs, _) => {
+ Either::Right(Either::Left(substs.as_generator().upvar_tys()))
+ }
+ DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => {
+ Either::Right(Either::Right(iter::empty()))
+ }
+ }
+ }
+
+ /// Number of implicit inputs -- notably the "environment"
+ /// parameter for closures -- that appear in MIR but not in the
+ /// user's code.
+ pub fn implicit_inputs(self) -> usize {
+ match self {
+ DefiningTy::Closure(..) | DefiningTy::Generator(..) => 1,
+ DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => 0,
+ }
+ }
+
+ pub fn is_fn_def(&self) -> bool {
+ matches!(*self, DefiningTy::FnDef(..))
+ }
+
+ pub fn is_const(&self) -> bool {
+ matches!(*self, DefiningTy::Const(..) | DefiningTy::InlineConst(..))
+ }
+
+ pub fn def_id(&self) -> DefId {
+ match *self {
+ DefiningTy::Closure(def_id, ..)
+ | DefiningTy::Generator(def_id, ..)
+ | DefiningTy::FnDef(def_id, ..)
+ | DefiningTy::Const(def_id, ..)
+ | DefiningTy::InlineConst(def_id, ..) => def_id,
+ }
+ }
+}
+
+#[derive(Debug)]
+struct UniversalRegionIndices<'tcx> {
+ /// For those regions that may appear in the parameter environment
+ /// ('static and early-bound regions), we maintain a map from the
+ /// `ty::Region` to the internal `RegionVid` we are using. This is
+ /// used because trait matching and type-checking will feed us
+ /// region constraints that reference those regions and we need to
+ /// be able to map them our internal `RegionVid`. This is
+ /// basically equivalent to an `InternalSubsts`, except that it also
+ /// contains an entry for `ReStatic` -- it might be nice to just
+ /// use a substs, and then handle `ReStatic` another way.
+ indices: FxHashMap<ty::Region<'tcx>, RegionVid>,
+}
+
+#[derive(Debug, PartialEq)]
+pub enum RegionClassification {
+ /// A **global** region is one that can be named from
+ /// anywhere. There is only one, `'static`.
+ Global,
+
+ /// An **external** region is only relevant for
+ /// closures, generators, and inline consts. In that
+ /// case, it refers to regions that are free in the type
+ /// -- basically, something bound in the surrounding context.
+ ///
+ /// Consider this example:
+ ///
+ /// ```ignore (pseudo-rust)
+ /// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
+ /// let closure = for<'x> |x: &'x u32| { .. };
+ /// // ^^^^^^^ pretend this were legal syntax
+ /// // for declaring a late-bound region in
+ /// // a closure signature
+ /// }
+ /// ```
+ ///
+ /// Here, the lifetimes `'a` and `'b` would be **external** to the
+ /// closure.
+ ///
+ /// If we are not analyzing a closure/generator/inline-const,
+ /// there are no external lifetimes.
+ External,
+
+ /// A **local** lifetime is one about which we know the full set
+ /// of relevant constraints (that is, relationships to other named
+ /// regions). For a closure, this includes any region bound in
+ /// the closure's signature. For a fn item, this includes all
+ /// regions other than global ones.
+ ///
+ /// Continuing with the example from `External`, if we were
+ /// analyzing the closure, then `'x` would be local (and `'a` and
+ /// `'b` are external). If we are analyzing the function item
+ /// `foo`, then `'a` and `'b` are local (and `'x` is not in
+ /// scope).
+ Local,
+}
+
+const FIRST_GLOBAL_INDEX: usize = 0;
+
+impl<'tcx> UniversalRegions<'tcx> {
+ /// Creates a new and fully initialized `UniversalRegions` that
+ /// contains indices for all the free regions found in the given
+ /// MIR -- that is, all the regions that appear in the function's
+ /// signature. This will also compute the relationships that are
+ /// known between those regions.
+ pub fn new(
+ infcx: &InferCtxt<'_, 'tcx>,
+ mir_def: ty::WithOptConstParam<LocalDefId>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Self {
+ let tcx = infcx.tcx;
+ let mir_hir_id = tcx.hir().local_def_id_to_hir_id(mir_def.did);
+ UniversalRegionsBuilder { infcx, mir_def, mir_hir_id, param_env }.build()
+ }
+
+ /// Given a reference to a closure type, extracts all the values
+ /// from its free regions and returns a vector with them. This is
+ /// used when the closure's creator checks that the
+ /// `ClosureRegionRequirements` are met. The requirements from
+ /// `ClosureRegionRequirements` are expressed in terms of
+ /// `RegionVid` entries that map into the returned vector `V`: so
+ /// if the `ClosureRegionRequirements` contains something like
+ /// `'1: '2`, then the caller would impose the constraint that
+ /// `V[1]: V[2]`.
+ pub fn closure_mapping(
+ tcx: TyCtxt<'tcx>,
+ closure_substs: SubstsRef<'tcx>,
+ expected_num_vars: usize,
+ typeck_root_def_id: DefId,
+ ) -> IndexVec<RegionVid, ty::Region<'tcx>> {
+ let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
+ region_mapping.push(tcx.lifetimes.re_static);
+ tcx.for_each_free_region(&closure_substs, |fr| {
+ region_mapping.push(fr);
+ });
+
+ for_each_late_bound_region_defined_on(tcx, typeck_root_def_id, |r| {
+ region_mapping.push(r);
+ });
+
+ assert_eq!(
+ region_mapping.len(),
+ expected_num_vars,
+ "index vec had unexpected number of variables"
+ );
+
+ region_mapping
+ }
+
+ /// Returns `true` if `r` is a member of this set of universal regions.
+ pub fn is_universal_region(&self, r: RegionVid) -> bool {
+ (FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
+ }
+
+ /// Classifies `r` as a universal region, returning `None` if this
+ /// is not a member of this set of universal regions.
+ pub fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
+ let index = r.index();
+ if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
+ Some(RegionClassification::Global)
+ } else if (self.first_extern_index..self.first_local_index).contains(&index) {
+ Some(RegionClassification::External)
+ } else if (self.first_local_index..self.num_universals).contains(&index) {
+ Some(RegionClassification::Local)
+ } else {
+ None
+ }
+ }
+
+ /// Returns an iterator over all the RegionVids corresponding to
+ /// universally quantified free regions.
+ pub fn universal_regions(&self) -> impl Iterator<Item = RegionVid> {
+ (FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::new)
+ }
+
+ /// Returns `true` if `r` is classified as an local region.
+ pub fn is_local_free_region(&self, r: RegionVid) -> bool {
+ self.region_classification(r) == Some(RegionClassification::Local)
+ }
+
+ /// Returns the number of universal regions created in any category.
+ pub fn len(&self) -> usize {
+ self.num_universals
+ }
+
+ /// Returns the number of global plus external universal regions.
+ /// For closures, these are the regions that appear free in the
+ /// closure type (versus those bound in the closure
+ /// signature). They are therefore the regions between which the
+ /// closure may impose constraints that its creator must verify.
+ pub fn num_global_and_external_regions(&self) -> usize {
+ self.first_local_index
+ }
+
+ /// Gets an iterator over all the early-bound regions that have names.
+ pub fn named_universal_regions<'s>(
+ &'s self,
+ ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's {
+ self.indices.indices.iter().map(|(&r, &v)| (r, v))
+ }
+
+ /// See `UniversalRegionIndices::to_region_vid`.
+ pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
+ if let ty::ReEmpty(ty::UniverseIndex::ROOT) = *r {
+ self.root_empty
+ } else {
+ self.indices.to_region_vid(r)
+ }
+ }
+
+ /// As part of the NLL unit tests, you can annotate a function with
+ /// `#[rustc_regions]`, and we will emit information about the region
+ /// inference context and -- in particular -- the external constraints
+ /// that this region imposes on others. The methods in this file
+ /// handle the part about dumping the inference context internal
+ /// state.
+ pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diagnostic) {
+ match self.defining_ty {
+ DefiningTy::Closure(def_id, substs) => {
+ err.note(&format!(
+ "defining type: {} with closure substs {:#?}",
+ tcx.def_path_str_with_substs(def_id, substs),
+ &substs[tcx.generics_of(def_id).parent_count..],
+ ));
+
+ // FIXME: It'd be nice to print the late-bound regions
+ // here, but unfortunately these wind up stored into
+ // tests, and the resulting print-outs include def-ids
+ // and other things that are not stable across tests!
+ // So we just include the region-vid. Annoying.
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
+ for_each_late_bound_region_defined_on(tcx, typeck_root_def_id, |r| {
+ err.note(&format!("late-bound region is {:?}", self.to_region_vid(r),));
+ });
+ }
+ DefiningTy::Generator(def_id, substs, _) => {
+ err.note(&format!(
+ "defining type: {} with generator substs {:#?}",
+ tcx.def_path_str_with_substs(def_id, substs),
+ &substs[tcx.generics_of(def_id).parent_count..],
+ ));
+
+ // FIXME: As above, we'd like to print out the region
+ // `r` but doing so is not stable across architectures
+ // and so forth.
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
+ for_each_late_bound_region_defined_on(tcx, typeck_root_def_id, |r| {
+ err.note(&format!("late-bound region is {:?}", self.to_region_vid(r),));
+ });
+ }
+ DefiningTy::FnDef(def_id, substs) => {
+ err.note(&format!(
+ "defining type: {}",
+ tcx.def_path_str_with_substs(def_id, substs),
+ ));
+ }
+ DefiningTy::Const(def_id, substs) => {
+ err.note(&format!(
+ "defining constant type: {}",
+ tcx.def_path_str_with_substs(def_id, substs),
+ ));
+ }
+ DefiningTy::InlineConst(def_id, substs) => {
+ err.note(&format!(
+ "defining inline constant type: {}",
+ tcx.def_path_str_with_substs(def_id, substs),
+ ));
+ }
+ }
+ }
+}
+
+struct UniversalRegionsBuilder<'cx, 'tcx> {
+ infcx: &'cx InferCtxt<'cx, 'tcx>,
+ mir_def: ty::WithOptConstParam<LocalDefId>,
+ mir_hir_id: HirId,
+ param_env: ty::ParamEnv<'tcx>,
+}
+
+const FR: NllRegionVariableOrigin = NllRegionVariableOrigin::FreeRegion;
+
+impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> {
+ fn build(self) -> UniversalRegions<'tcx> {
+ debug!("build(mir_def={:?})", self.mir_def);
+
+ let param_env = self.param_env;
+ debug!("build: param_env={:?}", param_env);
+
+ assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());
+
+ // Create the "global" region that is always free in all contexts: 'static.
+ let fr_static = self.infcx.next_nll_region_var(FR).to_region_vid();
+
+ // We've now added all the global regions. The next ones we
+ // add will be external.
+ let first_extern_index = self.infcx.num_region_vars();
+
+ let defining_ty = self.defining_ty();
+ debug!("build: defining_ty={:?}", defining_ty);
+
+ let mut indices = self.compute_indices(fr_static, defining_ty);
+ debug!("build: indices={:?}", indices);
+
+ let typeck_root_def_id = self.infcx.tcx.typeck_root_def_id(self.mir_def.did.to_def_id());
+
+ // If this is is a 'root' body (not a closure/generator/inline const), then
+ // there are no extern regions, so the local regions start at the same
+ // position as the (empty) sub-list of extern regions
+ let first_local_index = if self.mir_def.did.to_def_id() == typeck_root_def_id {
+ first_extern_index
+ } else {
+ // If this is a closure, generator, or inline-const, then the late-bound regions from the enclosing
+ // function are actually external regions to us. For example, here, 'a is not local
+ // to the closure c (although it is local to the fn foo):
+ // fn foo<'a>() {
+ // let c = || { let x: &'a u32 = ...; }
+ // }
+ self.infcx
+ .replace_late_bound_regions_with_nll_infer_vars(self.mir_def.did, &mut indices);
+ // Any regions created during the execution of `defining_ty` or during the above
+ // late-bound region replacement are all considered 'extern' regions
+ self.infcx.num_region_vars()
+ };
+
+ // "Liberate" the late-bound regions. These correspond to
+ // "local" free regions.
+
+ let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);
+
+ let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
+ FR,
+ self.mir_def.did,
+ bound_inputs_and_output,
+ &mut indices,
+ );
+ // Converse of above, if this is a function then the late-bound regions declared on its
+ // signature are local to the fn.
+ if self.mir_def.did.to_def_id() == typeck_root_def_id {
+ self.infcx
+ .replace_late_bound_regions_with_nll_infer_vars(self.mir_def.did, &mut indices);
+ }
+
+ let (unnormalized_output_ty, mut unnormalized_input_tys) =
+ inputs_and_output.split_last().unwrap();
+
+ // C-variadic fns also have a `VaList` input that's not listed in the signature
+ // (as it's created inside the body itself, not passed in from outside).
+ if let DefiningTy::FnDef(def_id, _) = defining_ty {
+ if self.infcx.tcx.fn_sig(def_id).c_variadic() {
+ let va_list_did = self.infcx.tcx.require_lang_item(
+ LangItem::VaList,
+ Some(self.infcx.tcx.def_span(self.mir_def.did)),
+ );
+ let region = self
+ .infcx
+ .tcx
+ .mk_region(ty::ReVar(self.infcx.next_nll_region_var(FR).to_region_vid()));
+ let va_list_ty = self
+ .infcx
+ .tcx
+ .bound_type_of(va_list_did)
+ .subst(self.infcx.tcx, &[region.into()]);
+
+ unnormalized_input_tys = self.infcx.tcx.mk_type_list(
+ unnormalized_input_tys.iter().copied().chain(iter::once(va_list_ty)),
+ );
+ }
+ }
+
+ let fr_fn_body = self.infcx.next_nll_region_var(FR).to_region_vid();
+ let num_universals = self.infcx.num_region_vars();
+
+ debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index);
+ debug!("build: extern regions = {}..{}", first_extern_index, first_local_index);
+ debug!("build: local regions = {}..{}", first_local_index, num_universals);
+
+ let yield_ty = match defining_ty {
+ DefiningTy::Generator(_, substs, _) => Some(substs.as_generator().yield_ty()),
+ _ => None,
+ };
+
+ let root_empty = self
+ .infcx
+ .next_nll_region_var(NllRegionVariableOrigin::Existential { from_forall: true })
+ .to_region_vid();
+
+ UniversalRegions {
+ indices,
+ fr_static,
+ fr_fn_body,
+ root_empty,
+ first_extern_index,
+ first_local_index,
+ num_universals,
+ defining_ty,
+ unnormalized_output_ty: *unnormalized_output_ty,
+ unnormalized_input_tys,
+ yield_ty,
+ }
+ }
+
+ /// Returns the "defining type" of the current MIR;
+ /// see `DefiningTy` for details.
+ fn defining_ty(&self) -> DefiningTy<'tcx> {
+ let tcx = self.infcx.tcx;
+ let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.did.to_def_id());
+
+ match tcx.hir().body_owner_kind(self.mir_def.did) {
+ BodyOwnerKind::Closure | BodyOwnerKind::Fn => {
+ let defining_ty = if self.mir_def.did.to_def_id() == typeck_root_def_id {
+ tcx.type_of(typeck_root_def_id)
+ } else {
+ let tables = tcx.typeck(self.mir_def.did);
+ tables.node_type(self.mir_hir_id)
+ };
+
+ debug!("defining_ty (pre-replacement): {:?}", defining_ty);
+
+ let defining_ty =
+ self.infcx.replace_free_regions_with_nll_infer_vars(FR, defining_ty);
+
+ match *defining_ty.kind() {
+ ty::Closure(def_id, substs) => DefiningTy::Closure(def_id, substs),
+ ty::Generator(def_id, substs, movability) => {
+ DefiningTy::Generator(def_id, substs, movability)
+ }
+ ty::FnDef(def_id, substs) => DefiningTy::FnDef(def_id, substs),
+ _ => span_bug!(
+ tcx.def_span(self.mir_def.did),
+ "expected defining type for `{:?}`: `{:?}`",
+ self.mir_def.did,
+ defining_ty
+ ),
+ }
+ }
+
+ BodyOwnerKind::Const | BodyOwnerKind::Static(..) => {
+ let identity_substs = InternalSubsts::identity_for_item(tcx, typeck_root_def_id);
+ if self.mir_def.did.to_def_id() == typeck_root_def_id {
+ let substs =
+ self.infcx.replace_free_regions_with_nll_infer_vars(FR, identity_substs);
+ DefiningTy::Const(self.mir_def.did.to_def_id(), substs)
+ } else {
+ let ty = tcx.typeck(self.mir_def.did).node_type(self.mir_hir_id);
+ let substs = InlineConstSubsts::new(
+ tcx,
+ InlineConstSubstsParts { parent_substs: identity_substs, ty },
+ )
+ .substs;
+ let substs = self.infcx.replace_free_regions_with_nll_infer_vars(FR, substs);
+ DefiningTy::InlineConst(self.mir_def.did.to_def_id(), substs)
+ }
+ }
+ }
+ }
+
+ /// Builds a hashmap that maps from the universal regions that are
+ /// in scope (as a `ty::Region<'tcx>`) to their indices (as a
+ /// `RegionVid`). The map returned by this function contains only
+ /// the early-bound regions.
+ fn compute_indices(
+ &self,
+ fr_static: RegionVid,
+ defining_ty: DefiningTy<'tcx>,
+ ) -> UniversalRegionIndices<'tcx> {
+ let tcx = self.infcx.tcx;
+ let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.did.to_def_id());
+ let identity_substs = InternalSubsts::identity_for_item(tcx, typeck_root_def_id);
+ let fr_substs = match defining_ty {
+ DefiningTy::Closure(_, ref substs)
+ | DefiningTy::Generator(_, ref substs, _)
+ | DefiningTy::InlineConst(_, ref substs) => {
+ // In the case of closures, we rely on the fact that
+ // the first N elements in the ClosureSubsts are
+ // inherited from the `typeck_root_def_id`.
+ // Therefore, when we zip together (below) with
+ // `identity_substs`, we will get only those regions
+ // that correspond to early-bound regions declared on
+ // the `typeck_root_def_id`.
+ assert!(substs.len() >= identity_substs.len());
+ assert_eq!(substs.regions().count(), identity_substs.regions().count());
+ substs
+ }
+
+ DefiningTy::FnDef(_, substs) | DefiningTy::Const(_, substs) => substs,
+ };
+
+ let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static));
+ let subst_mapping =
+ iter::zip(identity_substs.regions(), fr_substs.regions().map(|r| r.to_region_vid()));
+
+ UniversalRegionIndices { indices: global_mapping.chain(subst_mapping).collect() }
+ }
+
+ fn compute_inputs_and_output(
+ &self,
+ indices: &UniversalRegionIndices<'tcx>,
+ defining_ty: DefiningTy<'tcx>,
+ ) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>> {
+ let tcx = self.infcx.tcx;
+ match defining_ty {
+ DefiningTy::Closure(def_id, substs) => {
+ assert_eq!(self.mir_def.did.to_def_id(), def_id);
+ let closure_sig = substs.as_closure().sig();
+ let inputs_and_output = closure_sig.inputs_and_output();
+ let bound_vars = tcx.mk_bound_variable_kinds(
+ inputs_and_output
+ .bound_vars()
+ .iter()
+ .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
+ );
+ let br = ty::BoundRegion {
+ var: ty::BoundVar::from_usize(bound_vars.len() - 1),
+ kind: ty::BrEnv,
+ };
+ let env_region = ty::ReLateBound(ty::INNERMOST, br);
+ let closure_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap();
+
+ // The "inputs" of the closure in the
+ // signature appear as a tuple. The MIR side
+ // flattens this tuple.
+ let (&output, tuplized_inputs) =
+ inputs_and_output.skip_binder().split_last().unwrap();
+ assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
+ let &ty::Tuple(inputs) = tuplized_inputs[0].kind() else {
+ bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]);
+ };
+
+ ty::Binder::bind_with_vars(
+ tcx.mk_type_list(
+ iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
+ ),
+ bound_vars,
+ )
+ }
+
+ DefiningTy::Generator(def_id, substs, movability) => {
+ assert_eq!(self.mir_def.did.to_def_id(), def_id);
+ let resume_ty = substs.as_generator().resume_ty();
+ let output = substs.as_generator().return_ty();
+ let generator_ty = tcx.mk_generator(def_id, substs, movability);
+ let inputs_and_output =
+ self.infcx.tcx.intern_type_list(&[generator_ty, resume_ty, output]);
+ ty::Binder::dummy(inputs_and_output)
+ }
+
+ DefiningTy::FnDef(def_id, _) => {
+ let sig = tcx.fn_sig(def_id);
+ let sig = indices.fold_to_region_vids(tcx, sig);
+ sig.inputs_and_output()
+ }
+
+ DefiningTy::Const(def_id, _) => {
+ // For a constant body, there are no inputs, and one
+ // "output" (the type of the constant).
+ assert_eq!(self.mir_def.did.to_def_id(), def_id);
+ let ty = tcx.type_of(self.mir_def.def_id_for_type_of());
+ let ty = indices.fold_to_region_vids(tcx, ty);
+ ty::Binder::dummy(tcx.intern_type_list(&[ty]))
+ }
+
+ DefiningTy::InlineConst(def_id, substs) => {
+ assert_eq!(self.mir_def.did.to_def_id(), def_id);
+ let ty = substs.as_inline_const().ty();
+ ty::Binder::dummy(tcx.intern_type_list(&[ty]))
+ }
+ }
+ }
+}
+
+trait InferCtxtExt<'tcx> {
+ fn replace_free_regions_with_nll_infer_vars<T>(
+ &self,
+ origin: NllRegionVariableOrigin,
+ value: T,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx>;
+
+ fn replace_bound_regions_with_nll_infer_vars<T>(
+ &self,
+ origin: NllRegionVariableOrigin,
+ all_outlive_scope: LocalDefId,
+ value: ty::Binder<'tcx, T>,
+ indices: &mut UniversalRegionIndices<'tcx>,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx>;
+
+ fn replace_late_bound_regions_with_nll_infer_vars(
+ &self,
+ mir_def_id: LocalDefId,
+ indices: &mut UniversalRegionIndices<'tcx>,
+ );
+}
+
+impl<'cx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'tcx> {
+ fn replace_free_regions_with_nll_infer_vars<T>(
+ &self,
+ origin: NllRegionVariableOrigin,
+ value: T,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ self.tcx.fold_regions(value, |_region, _depth| self.next_nll_region_var(origin))
+ }
+
+ #[instrument(level = "debug", skip(self, indices))]
+ fn replace_bound_regions_with_nll_infer_vars<T>(
+ &self,
+ origin: NllRegionVariableOrigin,
+ all_outlive_scope: LocalDefId,
+ value: ty::Binder<'tcx, T>,
+ indices: &mut UniversalRegionIndices<'tcx>,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ let (value, _map) = self.tcx.replace_late_bound_regions(value, |br| {
+ debug!(?br);
+ let liberated_region = self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
+ scope: all_outlive_scope.to_def_id(),
+ bound_region: br.kind,
+ }));
+ let region_vid = self.next_nll_region_var(origin);
+ indices.insert_late_bound_region(liberated_region, region_vid.to_region_vid());
+ debug!(?liberated_region, ?region_vid);
+ region_vid
+ });
+ value
+ }
+
+ /// Finds late-bound regions that do not appear in the parameter listing and adds them to the
+ /// indices vector. Typically, we identify late-bound regions as we process the inputs and
+ /// outputs of the closure/function. However, sometimes there are late-bound regions which do
+ /// not appear in the fn parameters but which are nonetheless in scope. The simplest case of
+ /// this are unused functions, like fn foo<'a>() { } (see e.g., #51351). Despite not being used,
+ /// users can still reference these regions (e.g., let x: &'a u32 = &22;), so we need to create
+ /// entries for them and store them in the indices map. This code iterates over the complete
+ /// set of late-bound regions and checks for any that we have not yet seen, adding them to the
+ /// inputs vector.
+ #[instrument(skip(self, indices))]
+ fn replace_late_bound_regions_with_nll_infer_vars(
+ &self,
+ mir_def_id: LocalDefId,
+ indices: &mut UniversalRegionIndices<'tcx>,
+ ) {
+ debug!("replace_late_bound_regions_with_nll_infer_vars(mir_def_id={:?})", mir_def_id);
+ let typeck_root_def_id = self.tcx.typeck_root_def_id(mir_def_id.to_def_id());
+ for_each_late_bound_region_defined_on(self.tcx, typeck_root_def_id, |r| {
+ debug!("replace_late_bound_regions_with_nll_infer_vars: r={:?}", r);
+ if !indices.indices.contains_key(&r) {
+ let region_vid = self.next_nll_region_var(FR);
+ debug!(?region_vid);
+ indices.insert_late_bound_region(r, region_vid.to_region_vid());
+ }
+ });
+ }
+}
+
+impl<'tcx> UniversalRegionIndices<'tcx> {
+ /// Initially, the `UniversalRegionIndices` map contains only the
+ /// early-bound regions in scope. Once that is all setup, we come
+ /// in later and instantiate the late-bound regions, and then we
+ /// insert the `ReFree` version of those into the map as
+ /// well. These are used for error reporting.
+ fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) {
+ debug!("insert_late_bound_region({:?}, {:?})", r, vid);
+ self.indices.insert(r, vid);
+ }
+
+ /// Converts `r` into a local inference variable: `r` can either
+ /// by a `ReVar` (i.e., already a reference to an inference
+ /// variable) or it can be `'static` or some early-bound
+ /// region. This is useful when taking the results from
+ /// type-checking and trait-matching, which may sometimes
+ /// reference those regions from the `ParamEnv`. It is also used
+ /// during initialization. Relies on the `indices` map having been
+ /// fully initialized.
+ pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
+ if let ty::ReVar(..) = *r {
+ r.to_region_vid()
+ } else {
+ *self
+ .indices
+ .get(&r)
+ .unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r))
+ }
+ }
+
+ /// Replaces all free regions in `value` with region vids, as
+ /// returned by `to_region_vid`.
+ pub fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ tcx.fold_regions(value, |region, _| tcx.mk_region(ty::ReVar(self.to_region_vid(region))))
+ }
+}
+
+/// Iterates over the late-bound regions defined on fn_def_id and
+/// invokes `f` with the liberated form of each one.
+fn for_each_late_bound_region_defined_on<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ fn_def_id: DefId,
+ mut f: impl FnMut(ty::Region<'tcx>),
+) {
+ if let Some(late_bounds) = tcx.is_late_bound_map(fn_def_id.expect_local()) {
+ for &region_def_id in late_bounds.iter() {
+ let name = tcx.item_name(region_def_id.to_def_id());
+ let liberated_region = tcx.mk_region(ty::ReFree(ty::FreeRegion {
+ scope: fn_def_id,
+ bound_region: ty::BoundRegionKind::BrNamed(region_def_id.to_def_id(), name),
+ }));
+ f(liberated_region);
+ }
+ }
+}