summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_gcc/src/intrinsic/simd.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_gcc/src/intrinsic/simd.rs')
-rw-r--r--compiler/rustc_codegen_gcc/src/intrinsic/simd.rs751
1 files changed, 751 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_gcc/src/intrinsic/simd.rs b/compiler/rustc_codegen_gcc/src/intrinsic/simd.rs
new file mode 100644
index 000000000..2401f3350
--- /dev/null
+++ b/compiler/rustc_codegen_gcc/src/intrinsic/simd.rs
@@ -0,0 +1,751 @@
+use std::cmp::Ordering;
+
+use gccjit::{BinaryOp, RValue, Type, ToRValue};
+use rustc_codegen_ssa::base::compare_simd_types;
+use rustc_codegen_ssa::common::{TypeKind, span_invalid_monomorphization_error};
+use rustc_codegen_ssa::mir::operand::OperandRef;
+use rustc_codegen_ssa::mir::place::PlaceRef;
+use rustc_codegen_ssa::traits::{BaseTypeMethods, BuilderMethods};
+use rustc_hir as hir;
+use rustc_middle::span_bug;
+use rustc_middle::ty::layout::HasTyCtxt;
+use rustc_middle::ty::{self, Ty};
+use rustc_span::{Span, Symbol, sym};
+use rustc_target::abi::Align;
+
+use crate::builder::Builder;
+use crate::intrinsic;
+
+pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, name: Symbol, callee_ty: Ty<'tcx>, args: &[OperandRef<'tcx, RValue<'gcc>>], ret_ty: Ty<'tcx>, llret_ty: Type<'gcc>, span: Span) -> Result<RValue<'gcc>, ()> {
+ // macros for error handling:
+ #[allow(unused_macro_rules)]
+ macro_rules! emit_error {
+ ($msg: tt) => {
+ emit_error!($msg, )
+ };
+ ($msg: tt, $($fmt: tt)*) => {
+ span_invalid_monomorphization_error(
+ bx.sess(), span,
+ &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
+ name, $($fmt)*));
+ }
+ }
+
+ macro_rules! return_error {
+ ($($fmt: tt)*) => {
+ {
+ emit_error!($($fmt)*);
+ return Err(());
+ }
+ }
+ }
+
+ macro_rules! require {
+ ($cond: expr, $($fmt: tt)*) => {
+ if !$cond {
+ return_error!($($fmt)*);
+ }
+ };
+ }
+
+ macro_rules! require_simd {
+ ($ty: expr, $position: expr) => {
+ require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
+ };
+ }
+
+ let tcx = bx.tcx();
+ let sig =
+ tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx));
+ let arg_tys = sig.inputs();
+
+ if name == sym::simd_select_bitmask {
+ require_simd!(arg_tys[1], "argument");
+ let (len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
+
+ let expected_int_bits = (len.max(8) - 1).next_power_of_two();
+ let expected_bytes = len / 8 + ((len % 8 > 0) as u64);
+
+ let mask_ty = arg_tys[0];
+ let mut mask = match mask_ty.kind() {
+ ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
+ ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
+ ty::Array(elem, len)
+ if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
+ && len.try_eval_usize(bx.tcx, ty::ParamEnv::reveal_all())
+ == Some(expected_bytes) =>
+ {
+ let place = PlaceRef::alloca(bx, args[0].layout);
+ args[0].val.store(bx, place);
+ let int_ty = bx.type_ix(expected_bytes * 8);
+ let ptr = bx.pointercast(place.llval, bx.cx.type_ptr_to(int_ty));
+ bx.load(int_ty, ptr, Align::ONE)
+ }
+ _ => return_error!(
+ "invalid bitmask `{}`, expected `u{}` or `[u8; {}]`",
+ mask_ty,
+ expected_int_bits,
+ expected_bytes
+ ),
+ };
+
+ let arg1 = args[1].immediate();
+ let arg1_type = arg1.get_type();
+ let arg1_vector_type = arg1_type.unqualified().dyncast_vector().expect("vector type");
+ let arg1_element_type = arg1_vector_type.get_element_type();
+
+ let mut elements = vec![];
+ let one = bx.context.new_rvalue_one(mask.get_type());
+ for _ in 0..len {
+ let element = bx.context.new_cast(None, mask & one, arg1_element_type);
+ elements.push(element);
+ mask = mask >> one;
+ }
+ let vector_mask = bx.context.new_rvalue_from_vector(None, arg1_type, &elements);
+
+ return Ok(bx.vector_select(vector_mask, arg1, args[2].immediate()));
+ }
+
+ // every intrinsic below takes a SIMD vector as its first argument
+ require_simd!(arg_tys[0], "input");
+ let in_ty = arg_tys[0];
+
+ let comparison = match name {
+ sym::simd_eq => Some(hir::BinOpKind::Eq),
+ sym::simd_ne => Some(hir::BinOpKind::Ne),
+ sym::simd_lt => Some(hir::BinOpKind::Lt),
+ sym::simd_le => Some(hir::BinOpKind::Le),
+ sym::simd_gt => Some(hir::BinOpKind::Gt),
+ sym::simd_ge => Some(hir::BinOpKind::Ge),
+ _ => None,
+ };
+
+ let (in_len, in_elem) = arg_tys[0].simd_size_and_type(bx.tcx());
+ if let Some(cmp_op) = comparison {
+ require_simd!(ret_ty, "return");
+
+ let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
+ require!(
+ in_len == out_len,
+ "expected return type with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ in_len,
+ in_ty,
+ ret_ty,
+ out_len
+ );
+ require!(
+ bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
+ "expected return type with integer elements, found `{}` with non-integer `{}`",
+ ret_ty,
+ out_ty
+ );
+
+ return Ok(compare_simd_types(
+ bx,
+ args[0].immediate(),
+ args[1].immediate(),
+ in_elem,
+ llret_ty,
+ cmp_op,
+ ));
+ }
+
+ if let Some(stripped) = name.as_str().strip_prefix("simd_shuffle") {
+ let n: u64 =
+ if stripped.is_empty() {
+ // Make sure this is actually an array, since typeck only checks the length-suffixed
+ // version of this intrinsic.
+ match args[2].layout.ty.kind() {
+ ty::Array(ty, len) if matches!(ty.kind(), ty::Uint(ty::UintTy::U32)) => {
+ len.try_eval_usize(bx.cx.tcx, ty::ParamEnv::reveal_all()).unwrap_or_else(|| {
+ span_bug!(span, "could not evaluate shuffle index array length")
+ })
+ }
+ _ => return_error!(
+ "simd_shuffle index must be an array of `u32`, got `{}`",
+ args[2].layout.ty
+ ),
+ }
+ }
+ else {
+ stripped.parse().unwrap_or_else(|_| {
+ span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")
+ })
+ };
+
+ require_simd!(ret_ty, "return");
+
+ let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
+ require!(
+ out_len == n,
+ "expected return type of length {}, found `{}` with length {}",
+ n,
+ ret_ty,
+ out_len
+ );
+ require!(
+ in_elem == out_ty,
+ "expected return element type `{}` (element of input `{}`), \
+ found `{}` with element type `{}`",
+ in_elem,
+ in_ty,
+ ret_ty,
+ out_ty
+ );
+
+ let vector = args[2].immediate();
+
+ return Ok(bx.shuffle_vector(
+ args[0].immediate(),
+ args[1].immediate(),
+ vector,
+ ));
+ }
+
+ #[cfg(feature="master")]
+ if name == sym::simd_insert {
+ require!(
+ in_elem == arg_tys[2],
+ "expected inserted type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ arg_tys[2]
+ );
+ let vector = args[0].immediate();
+ let index = args[1].immediate();
+ let value = args[2].immediate();
+ // TODO(antoyo): use a recursive unqualified() here.
+ let vector_type = vector.get_type().unqualified().dyncast_vector().expect("vector type");
+ let element_type = vector_type.get_element_type();
+ // NOTE: we cannot cast to an array and assign to its element here because the value might
+ // not be an l-value. So, call a builtin to set the element.
+ // TODO(antoyo): perhaps we could create a new vector or maybe there's a GIMPLE instruction for that?
+ // TODO(antoyo): don't use target specific builtins here.
+ let func_name =
+ match in_len {
+ 2 => {
+ if element_type == bx.i64_type {
+ "__builtin_ia32_vec_set_v2di"
+ }
+ else {
+ unimplemented!();
+ }
+ },
+ 4 => {
+ if element_type == bx.i32_type {
+ "__builtin_ia32_vec_set_v4si"
+ }
+ else {
+ unimplemented!();
+ }
+ },
+ 8 => {
+ if element_type == bx.i16_type {
+ "__builtin_ia32_vec_set_v8hi"
+ }
+ else {
+ unimplemented!();
+ }
+ },
+ _ => unimplemented!("Len: {}", in_len),
+ };
+ let builtin = bx.context.get_target_builtin_function(func_name);
+ let param1_type = builtin.get_param(0).to_rvalue().get_type();
+ // TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
+ let vector = bx.cx.bitcast_if_needed(vector, param1_type);
+ let result = bx.context.new_call(None, builtin, &[vector, value, bx.context.new_cast(None, index, bx.int_type)]);
+ // TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
+ return Ok(bx.context.new_bitcast(None, result, vector.get_type()));
+ }
+
+ #[cfg(feature="master")]
+ if name == sym::simd_extract {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ let vector = args[0].immediate();
+ return Ok(bx.context.new_vector_access(None, vector, args[1].immediate()).to_rvalue());
+ }
+
+ if name == sym::simd_select {
+ let m_elem_ty = in_elem;
+ let m_len = in_len;
+ require_simd!(arg_tys[1], "argument");
+ let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
+ require!(
+ m_len == v_len,
+ "mismatched lengths: mask length `{}` != other vector length `{}`",
+ m_len,
+ v_len
+ );
+ match m_elem_ty.kind() {
+ ty::Int(_) => {}
+ _ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty),
+ }
+ return Ok(bx.vector_select(args[0].immediate(), args[1].immediate(), args[2].immediate()));
+ }
+
+ if name == sym::simd_cast {
+ require_simd!(ret_ty, "return");
+ let (out_len, out_elem) = ret_ty.simd_size_and_type(bx.tcx());
+ require!(
+ in_len == out_len,
+ "expected return type with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ in_len,
+ in_ty,
+ ret_ty,
+ out_len
+ );
+ // casting cares about nominal type, not just structural type
+ if in_elem == out_elem {
+ return Ok(args[0].immediate());
+ }
+
+ enum Style {
+ Float,
+ Int(/* is signed? */ bool),
+ Unsupported,
+ }
+
+ let (in_style, in_width) = match in_elem.kind() {
+ // vectors of pointer-sized integers should've been
+ // disallowed before here, so this unwrap is safe.
+ ty::Int(i) => (
+ Style::Int(true),
+ i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Uint(u) => (
+ Style::Int(false),
+ u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Float(f) => (Style::Float, f.bit_width()),
+ _ => (Style::Unsupported, 0),
+ };
+ let (out_style, out_width) = match out_elem.kind() {
+ ty::Int(i) => (
+ Style::Int(true),
+ i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Uint(u) => (
+ Style::Int(false),
+ u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Float(f) => (Style::Float, f.bit_width()),
+ _ => (Style::Unsupported, 0),
+ };
+
+ let extend = |in_type, out_type| {
+ let vector_type = bx.context.new_vector_type(out_type, 8);
+ let vector = args[0].immediate();
+ let array_type = bx.context.new_array_type(None, in_type, 8);
+ // TODO(antoyo): switch to using new_vector_access or __builtin_convertvector for vector casting.
+ let array = bx.context.new_bitcast(None, vector, array_type);
+
+ let cast_vec_element = |index| {
+ let index = bx.context.new_rvalue_from_int(bx.int_type, index);
+ bx.context.new_cast(None, bx.context.new_array_access(None, array, index).to_rvalue(), out_type)
+ };
+
+ bx.context.new_rvalue_from_vector(None, vector_type, &[
+ cast_vec_element(0),
+ cast_vec_element(1),
+ cast_vec_element(2),
+ cast_vec_element(3),
+ cast_vec_element(4),
+ cast_vec_element(5),
+ cast_vec_element(6),
+ cast_vec_element(7),
+ ])
+ };
+
+ match (in_style, out_style) {
+ (Style::Int(in_is_signed), Style::Int(_)) => {
+ return Ok(match in_width.cmp(&out_width) {
+ Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
+ Ordering::Equal => args[0].immediate(),
+ Ordering::Less => {
+ if in_is_signed {
+ match (in_width, out_width) {
+ // FIXME(antoyo): the function _mm_cvtepi8_epi16 should directly
+ // call an intrinsic equivalent to __builtin_ia32_pmovsxbw128 so that
+ // we can generate a call to it.
+ (8, 16) => extend(bx.i8_type, bx.i16_type),
+ (8, 32) => extend(bx.i8_type, bx.i32_type),
+ (8, 64) => extend(bx.i8_type, bx.i64_type),
+ (16, 32) => extend(bx.i16_type, bx.i32_type),
+ (32, 64) => extend(bx.i32_type, bx.i64_type),
+ (16, 64) => extend(bx.i16_type, bx.i64_type),
+ _ => unimplemented!("in: {}, out: {}", in_width, out_width),
+ }
+ } else {
+ match (in_width, out_width) {
+ (8, 16) => extend(bx.u8_type, bx.u16_type),
+ (8, 32) => extend(bx.u8_type, bx.u32_type),
+ (8, 64) => extend(bx.u8_type, bx.u64_type),
+ (16, 32) => extend(bx.u16_type, bx.u32_type),
+ (16, 64) => extend(bx.u16_type, bx.u64_type),
+ (32, 64) => extend(bx.u32_type, bx.u64_type),
+ _ => unimplemented!("in: {}, out: {}", in_width, out_width),
+ }
+ }
+ }
+ });
+ }
+ (Style::Int(_), Style::Float) => {
+ // TODO: add support for internal functions in libgccjit to get access to IFN_VEC_CONVERT which is
+ // doing like __builtin_convertvector?
+ // Or maybe provide convert_vector as an API since it might not easy to get the
+ // types of internal functions.
+ unimplemented!();
+ }
+ (Style::Float, Style::Int(_)) => {
+ unimplemented!();
+ }
+ (Style::Float, Style::Float) => {
+ unimplemented!();
+ }
+ _ => { /* Unsupported. Fallthrough. */ }
+ }
+ require!(
+ false,
+ "unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
+ in_ty,
+ in_elem,
+ ret_ty,
+ out_elem
+ );
+ }
+
+ macro_rules! arith_binary {
+ ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
+ $(if name == sym::$name {
+ match in_elem.kind() {
+ $($(ty::$p(_))|* => {
+ return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
+ })*
+ _ => {},
+ }
+ require!(false,
+ "unsupported operation on `{}` with element `{}`",
+ in_ty,
+ in_elem)
+ })*
+ }
+ }
+
+ fn simd_simple_float_intrinsic<'gcc, 'tcx>(
+ name: Symbol,
+ in_elem: Ty<'_>,
+ in_ty: Ty<'_>,
+ in_len: u64,
+ bx: &mut Builder<'_, 'gcc, 'tcx>,
+ span: Span,
+ args: &[OperandRef<'tcx, RValue<'gcc>>],
+ ) -> Result<RValue<'gcc>, ()> {
+ macro_rules! emit_error {
+ ($msg: tt, $($fmt: tt)*) => {
+ span_invalid_monomorphization_error(
+ bx.sess(), span,
+ &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
+ name, $($fmt)*));
+ }
+ }
+ macro_rules! return_error {
+ ($($fmt: tt)*) => {
+ {
+ emit_error!($($fmt)*);
+ return Err(());
+ }
+ }
+ }
+
+ let (elem_ty_str, elem_ty) =
+ if let ty::Float(f) = in_elem.kind() {
+ let elem_ty = bx.cx.type_float_from_ty(*f);
+ match f.bit_width() {
+ 32 => ("f32", elem_ty),
+ 64 => ("f64", elem_ty),
+ _ => {
+ return_error!(
+ "unsupported element type `{}` of floating-point vector `{}`",
+ f.name_str(),
+ in_ty
+ );
+ }
+ }
+ }
+ else {
+ return_error!("`{}` is not a floating-point type", in_ty);
+ };
+
+ let vec_ty = bx.cx.type_vector(elem_ty, in_len);
+
+ let (intr_name, fn_ty) =
+ match name {
+ sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)), // TODO(antoyo): pand with 170141183420855150465331762880109871103
+ sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
+ sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)),
+ sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)),
+ sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
+ _ => return_error!("unrecognized intrinsic `{}`", name),
+ };
+ let llvm_name = &format!("llvm.{0}.v{1}{2}", intr_name, in_len, elem_ty_str);
+ let function = intrinsic::llvm::intrinsic(llvm_name, &bx.cx);
+ let function: RValue<'gcc> = unsafe { std::mem::transmute(function) };
+ let c = bx.call(fn_ty, function, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None);
+ Ok(c)
+ }
+
+ if std::matches!(
+ name,
+ sym::simd_ceil
+ | sym::simd_fabs
+ | sym::simd_fcos
+ | sym::simd_fexp2
+ | sym::simd_fexp
+ | sym::simd_flog10
+ | sym::simd_flog2
+ | sym::simd_flog
+ | sym::simd_floor
+ | sym::simd_fma
+ | sym::simd_fpow
+ | sym::simd_fpowi
+ | sym::simd_fsin
+ | sym::simd_fsqrt
+ | sym::simd_round
+ | sym::simd_trunc
+ ) {
+ return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
+ }
+
+ arith_binary! {
+ simd_add: Uint, Int => add, Float => fadd;
+ simd_sub: Uint, Int => sub, Float => fsub;
+ simd_mul: Uint, Int => mul, Float => fmul;
+ simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
+ simd_rem: Uint => urem, Int => srem, Float => frem;
+ simd_shl: Uint, Int => shl;
+ simd_shr: Uint => lshr, Int => ashr;
+ simd_and: Uint, Int => and;
+ simd_or: Uint, Int => or; // FIXME(antoyo): calling `or` might not work on vectors.
+ simd_xor: Uint, Int => xor;
+ }
+
+ macro_rules! arith_unary {
+ ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
+ $(if name == sym::$name {
+ match in_elem.kind() {
+ $($(ty::$p(_))|* => {
+ return Ok(bx.$call(args[0].immediate()))
+ })*
+ _ => {},
+ }
+ require!(false,
+ "unsupported operation on `{}` with element `{}`",
+ in_ty,
+ in_elem)
+ })*
+ }
+ }
+
+ arith_unary! {
+ simd_neg: Int => neg, Float => fneg;
+ }
+
+ #[cfg(feature="master")]
+ if name == sym::simd_saturating_add || name == sym::simd_saturating_sub {
+ let lhs = args[0].immediate();
+ let rhs = args[1].immediate();
+ let is_add = name == sym::simd_saturating_add;
+ let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
+ let (signed, elem_width, elem_ty) = match *in_elem.kind() {
+ ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
+ ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
+ _ => {
+ return_error!(
+ "expected element type `{}` of vector type `{}` \
+ to be a signed or unsigned integer type",
+ arg_tys[0].simd_size_and_type(bx.tcx()).1,
+ arg_tys[0]
+ );
+ }
+ };
+ let builtin_name =
+ match (signed, is_add, in_len, elem_width) {
+ (true, true, 32, 8) => "__builtin_ia32_paddsb256", // TODO(antoyo): cast arguments to unsigned.
+ (false, true, 32, 8) => "__builtin_ia32_paddusb256",
+ (true, true, 16, 16) => "__builtin_ia32_paddsw256",
+ (false, true, 16, 16) => "__builtin_ia32_paddusw256",
+ (true, false, 16, 16) => "__builtin_ia32_psubsw256",
+ (false, false, 16, 16) => "__builtin_ia32_psubusw256",
+ (true, false, 32, 8) => "__builtin_ia32_psubsb256",
+ (false, false, 32, 8) => "__builtin_ia32_psubusb256",
+ _ => unimplemented!("signed: {}, is_add: {}, in_len: {}, elem_width: {}", signed, is_add, in_len, elem_width),
+ };
+ let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
+
+ let func = bx.context.get_target_builtin_function(builtin_name);
+ let param1_type = func.get_param(0).to_rvalue().get_type();
+ let param2_type = func.get_param(1).to_rvalue().get_type();
+ let lhs = bx.cx.bitcast_if_needed(lhs, param1_type);
+ let rhs = bx.cx.bitcast_if_needed(rhs, param2_type);
+ let result = bx.context.new_call(None, func, &[lhs, rhs]);
+ // TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
+ return Ok(bx.context.new_bitcast(None, result, vec_ty));
+ }
+
+ macro_rules! arith_red {
+ ($name:ident : $vec_op:expr, $float_reduce:ident, $ordered:expr, $op:ident,
+ $identity:expr) => {
+ if name == sym::$name {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ return match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) => {
+ let r = bx.vector_reduce_op(args[0].immediate(), $vec_op);
+ if $ordered {
+ // if overflow occurs, the result is the
+ // mathematical result modulo 2^n:
+ Ok(bx.$op(args[1].immediate(), r))
+ }
+ else {
+ Ok(bx.vector_reduce_op(args[0].immediate(), $vec_op))
+ }
+ }
+ ty::Float(_) => {
+ if $ordered {
+ // ordered arithmetic reductions take an accumulator
+ let acc = args[1].immediate();
+ Ok(bx.$float_reduce(acc, args[0].immediate()))
+ }
+ else {
+ Ok(bx.vector_reduce_op(args[0].immediate(), $vec_op))
+ }
+ }
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ };
+ }
+ };
+ }
+
+ arith_red!(
+ simd_reduce_add_unordered: BinaryOp::Plus,
+ vector_reduce_fadd_fast,
+ false,
+ add,
+ 0.0 // TODO: Use this argument.
+ );
+ arith_red!(
+ simd_reduce_mul_unordered: BinaryOp::Mult,
+ vector_reduce_fmul_fast,
+ false,
+ mul,
+ 1.0
+ );
+
+ macro_rules! minmax_red {
+ ($name:ident: $reduction:ident) => {
+ if name == sym::$name {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ return match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) | ty::Float(_) => Ok(bx.$reduction(args[0].immediate())),
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ };
+ }
+ };
+ }
+
+ minmax_red!(simd_reduce_min: vector_reduce_min);
+ minmax_red!(simd_reduce_max: vector_reduce_max);
+
+ macro_rules! bitwise_red {
+ ($name:ident : $op:expr, $boolean:expr) => {
+ if name == sym::$name {
+ let input = if !$boolean {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ args[0].immediate()
+ } else {
+ match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) => {}
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ }
+
+ // boolean reductions operate on vectors of i1s:
+ let i1 = bx.type_i1();
+ let i1xn = bx.type_vector(i1, in_len as u64);
+ bx.trunc(args[0].immediate(), i1xn)
+ };
+ return match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) => {
+ let r = bx.vector_reduce_op(input, $op);
+ Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
+ }
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ };
+ }
+ };
+ }
+
+ bitwise_red!(simd_reduce_and: BinaryOp::BitwiseAnd, false);
+ bitwise_red!(simd_reduce_or: BinaryOp::BitwiseOr, false);
+
+ unimplemented!("simd {}", name);
+}