summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_gcc/src/type_of.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_gcc/src/type_of.rs')
-rw-r--r--compiler/rustc_codegen_gcc/src/type_of.rs385
1 files changed, 385 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_gcc/src/type_of.rs b/compiler/rustc_codegen_gcc/src/type_of.rs
new file mode 100644
index 000000000..524d10fb5
--- /dev/null
+++ b/compiler/rustc_codegen_gcc/src/type_of.rs
@@ -0,0 +1,385 @@
+use std::fmt::Write;
+
+use gccjit::{Struct, Type};
+use crate::rustc_codegen_ssa::traits::{BaseTypeMethods, DerivedTypeMethods, LayoutTypeMethods};
+use rustc_middle::bug;
+use rustc_middle::ty::{self, Ty, TypeVisitable};
+use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, TyAndLayout};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_target::abi::{self, Abi, F32, F64, FieldsShape, Int, Integer, Pointer, PointeeInfo, Size, TyAbiInterface, Variants};
+use rustc_target::abi::call::{CastTarget, FnAbi, Reg};
+
+use crate::abi::{FnAbiGccExt, GccType};
+use crate::context::CodegenCx;
+use crate::type_::struct_fields;
+
+impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
+ fn type_from_unsigned_integer(&self, i: Integer) -> Type<'gcc> {
+ use Integer::*;
+ match i {
+ I8 => self.type_u8(),
+ I16 => self.type_u16(),
+ I32 => self.type_u32(),
+ I64 => self.type_u64(),
+ I128 => self.type_u128(),
+ }
+ }
+
+ #[cfg(feature="master")]
+ pub fn type_int_from_ty(&self, t: ty::IntTy) -> Type<'gcc> {
+ match t {
+ ty::IntTy::Isize => self.type_isize(),
+ ty::IntTy::I8 => self.type_i8(),
+ ty::IntTy::I16 => self.type_i16(),
+ ty::IntTy::I32 => self.type_i32(),
+ ty::IntTy::I64 => self.type_i64(),
+ ty::IntTy::I128 => self.type_i128(),
+ }
+ }
+
+ #[cfg(feature="master")]
+ pub fn type_uint_from_ty(&self, t: ty::UintTy) -> Type<'gcc> {
+ match t {
+ ty::UintTy::Usize => self.type_isize(),
+ ty::UintTy::U8 => self.type_i8(),
+ ty::UintTy::U16 => self.type_i16(),
+ ty::UintTy::U32 => self.type_i32(),
+ ty::UintTy::U64 => self.type_i64(),
+ ty::UintTy::U128 => self.type_i128(),
+ }
+ }
+}
+
+pub fn uncached_gcc_type<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, layout: TyAndLayout<'tcx>, defer: &mut Option<(Struct<'gcc>, TyAndLayout<'tcx>)>) -> Type<'gcc> {
+ match layout.abi {
+ Abi::Scalar(_) => bug!("handled elsewhere"),
+ Abi::Vector { ref element, count } => {
+ let element = layout.scalar_gcc_type_at(cx, element, Size::ZERO);
+ return cx.context.new_vector_type(element, count);
+ },
+ Abi::ScalarPair(..) => {
+ return cx.type_struct(
+ &[
+ layout.scalar_pair_element_gcc_type(cx, 0, false),
+ layout.scalar_pair_element_gcc_type(cx, 1, false),
+ ],
+ false,
+ );
+ }
+ Abi::Uninhabited | Abi::Aggregate { .. } => {}
+ }
+
+ let name = match layout.ty.kind() {
+ // FIXME(eddyb) producing readable type names for trait objects can result
+ // in problematically distinct types due to HRTB and subtyping (see #47638).
+ // ty::Dynamic(..) |
+ ty::Adt(..) | ty::Closure(..) | ty::Foreign(..) | ty::Generator(..) | ty::Str
+ if !cx.sess().fewer_names() =>
+ {
+ let mut name = with_no_trimmed_paths!(layout.ty.to_string());
+ if let (&ty::Adt(def, _), &Variants::Single { index }) =
+ (layout.ty.kind(), &layout.variants)
+ {
+ if def.is_enum() && !def.variants().is_empty() {
+ write!(&mut name, "::{}", def.variant(index).name).unwrap();
+ }
+ }
+ if let (&ty::Generator(_, _, _), &Variants::Single { index }) =
+ (layout.ty.kind(), &layout.variants)
+ {
+ write!(&mut name, "::{}", ty::GeneratorSubsts::variant_name(index)).unwrap();
+ }
+ Some(name)
+ }
+ ty::Adt(..) => {
+ // If `Some` is returned then a named struct is created in LLVM. Name collisions are
+ // avoided by LLVM (with increasing suffixes). If rustc doesn't generate names then that
+ // can improve perf.
+ // FIXME(antoyo): I don't think that's true for libgccjit.
+ Some(String::new())
+ }
+ _ => None,
+ };
+
+ match layout.fields {
+ FieldsShape::Primitive | FieldsShape::Union(_) => {
+ let fill = cx.type_padding_filler(layout.size, layout.align.abi);
+ let packed = false;
+ match name {
+ None => cx.type_struct(&[fill], packed),
+ Some(ref name) => {
+ let gcc_type = cx.type_named_struct(name);
+ cx.set_struct_body(gcc_type, &[fill], packed);
+ gcc_type.as_type()
+ },
+ }
+ }
+ FieldsShape::Array { count, .. } => cx.type_array(layout.field(cx, 0).gcc_type(cx, true), count),
+ FieldsShape::Arbitrary { .. } =>
+ match name {
+ None => {
+ let (gcc_fields, packed) = struct_fields(cx, layout);
+ cx.type_struct(&gcc_fields, packed)
+ },
+ Some(ref name) => {
+ let gcc_type = cx.type_named_struct(name);
+ *defer = Some((gcc_type, layout));
+ gcc_type.as_type()
+ },
+ },
+ }
+}
+
+pub trait LayoutGccExt<'tcx> {
+ fn is_gcc_immediate(&self) -> bool;
+ fn is_gcc_scalar_pair(&self) -> bool;
+ fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc>;
+ fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
+ fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc>;
+ fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc>;
+ fn gcc_field_index(&self, index: usize) -> u64;
+ fn pointee_info_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, offset: Size) -> Option<PointeeInfo>;
+}
+
+impl<'tcx> LayoutGccExt<'tcx> for TyAndLayout<'tcx> {
+ fn is_gcc_immediate(&self) -> bool {
+ match self.abi {
+ Abi::Scalar(_) | Abi::Vector { .. } => true,
+ Abi::ScalarPair(..) => false,
+ Abi::Uninhabited | Abi::Aggregate { .. } => self.is_zst(),
+ }
+ }
+
+ fn is_gcc_scalar_pair(&self) -> bool {
+ match self.abi {
+ Abi::ScalarPair(..) => true,
+ Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } | Abi::Aggregate { .. } => false,
+ }
+ }
+
+ /// Gets the GCC type corresponding to a Rust type, i.e., `rustc_middle::ty::Ty`.
+ /// The pointee type of the pointer in `PlaceRef` is always this type.
+ /// For sized types, it is also the right LLVM type for an `alloca`
+ /// containing a value of that type, and most immediates (except `bool`).
+ /// Unsized types, however, are represented by a "minimal unit", e.g.
+ /// `[T]` becomes `T`, while `str` and `Trait` turn into `i8` - this
+ /// is useful for indexing slices, as `&[T]`'s data pointer is `T*`.
+ /// If the type is an unsized struct, the regular layout is generated,
+ /// with the inner-most trailing unsized field using the "minimal unit"
+ /// of that field's type - this is useful for taking the address of
+ /// that field and ensuring the struct has the right alignment.
+ //TODO(antoyo): do we still need the set_fields parameter?
+ fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc> {
+ if let Abi::Scalar(ref scalar) = self.abi {
+ // Use a different cache for scalars because pointers to DSTs
+ // can be either fat or thin (data pointers of fat pointers).
+ if let Some(&ty) = cx.scalar_types.borrow().get(&self.ty) {
+ return ty;
+ }
+ let ty =
+ match *self.ty.kind() {
+ ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
+ cx.type_ptr_to(cx.layout_of(ty).gcc_type(cx, set_fields))
+ }
+ ty::Adt(def, _) if def.is_box() => {
+ cx.type_ptr_to(cx.layout_of(self.ty.boxed_ty()).gcc_type(cx, true))
+ }
+ ty::FnPtr(sig) => cx.fn_ptr_backend_type(&cx.fn_abi_of_fn_ptr(sig, ty::List::empty())),
+ _ => self.scalar_gcc_type_at(cx, scalar, Size::ZERO),
+ };
+ cx.scalar_types.borrow_mut().insert(self.ty, ty);
+ return ty;
+ }
+
+ // Check the cache.
+ let variant_index =
+ match self.variants {
+ Variants::Single { index } => Some(index),
+ _ => None,
+ };
+ let cached_type = cx.types.borrow().get(&(self.ty, variant_index)).cloned();
+ if let Some(ty) = cached_type {
+ let type_to_set_fields = cx.types_with_fields_to_set.borrow_mut().remove(&ty);
+ if let Some((struct_type, layout)) = type_to_set_fields {
+ // Since we might be trying to generate a type containing another type which is not
+ // completely generated yet, we deferred setting the fields until now.
+ let (fields, packed) = struct_fields(cx, layout);
+ cx.set_struct_body(struct_type, &fields, packed);
+ }
+ return ty;
+ }
+
+ assert!(!self.ty.has_escaping_bound_vars(), "{:?} has escaping bound vars", self.ty);
+
+ // Make sure lifetimes are erased, to avoid generating distinct LLVM
+ // types for Rust types that only differ in the choice of lifetimes.
+ let normal_ty = cx.tcx.erase_regions(self.ty);
+
+ let mut defer = None;
+ let ty =
+ if self.ty != normal_ty {
+ let mut layout = cx.layout_of(normal_ty);
+ if let Some(v) = variant_index {
+ layout = layout.for_variant(cx, v);
+ }
+ layout.gcc_type(cx, true)
+ }
+ else {
+ uncached_gcc_type(cx, *self, &mut defer)
+ };
+
+ cx.types.borrow_mut().insert((self.ty, variant_index), ty);
+
+ if let Some((ty, layout)) = defer {
+ let (fields, packed) = struct_fields(cx, layout);
+ cx.set_struct_body(ty, &fields, packed);
+ }
+
+ ty
+ }
+
+ fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
+ if let Abi::Scalar(ref scalar) = self.abi {
+ if scalar.is_bool() {
+ return cx.type_i1();
+ }
+ }
+ self.gcc_type(cx, true)
+ }
+
+ fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc> {
+ match scalar.primitive() {
+ Int(i, true) => cx.type_from_integer(i),
+ Int(i, false) => cx.type_from_unsigned_integer(i),
+ F32 => cx.type_f32(),
+ F64 => cx.type_f64(),
+ Pointer => {
+ // If we know the alignment, pick something better than i8.
+ let pointee =
+ if let Some(pointee) = self.pointee_info_at(cx, offset) {
+ cx.type_pointee_for_align(pointee.align)
+ }
+ else {
+ cx.type_i8()
+ };
+ cx.type_ptr_to(pointee)
+ }
+ }
+ }
+
+ fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
+ // TODO(antoyo): remove llvm hack:
+ // HACK(eddyb) special-case fat pointers until LLVM removes
+ // pointee types, to avoid bitcasting every `OperandRef::deref`.
+ match self.ty.kind() {
+ ty::Ref(..) | ty::RawPtr(_) => {
+ return self.field(cx, index).gcc_type(cx, true);
+ }
+ // only wide pointer boxes are handled as pointers
+ // thin pointer boxes with scalar allocators are handled by the general logic below
+ ty::Adt(def, substs) if def.is_box() && cx.layout_of(substs.type_at(1)).is_zst() => {
+ let ptr_ty = cx.tcx.mk_mut_ptr(self.ty.boxed_ty());
+ return cx.layout_of(ptr_ty).scalar_pair_element_gcc_type(cx, index, immediate);
+ }
+ _ => {}
+ }
+
+ let (a, b) = match self.abi {
+ Abi::ScalarPair(ref a, ref b) => (a, b),
+ _ => bug!("TyAndLayout::scalar_pair_element_llty({:?}): not applicable", self),
+ };
+ let scalar = [a, b][index];
+
+ // Make sure to return the same type `immediate_gcc_type` would when
+ // dealing with an immediate pair. This means that `(bool, bool)` is
+ // effectively represented as `{i8, i8}` in memory and two `i1`s as an
+ // immediate, just like `bool` is typically `i8` in memory and only `i1`
+ // when immediate. We need to load/store `bool` as `i8` to avoid
+ // crippling LLVM optimizations or triggering other LLVM bugs with `i1`.
+ // TODO(antoyo): this bugs certainly don't happen in this case since the bool type is used instead of i1.
+ if scalar.is_bool() {
+ return cx.type_i1();
+ }
+
+ let offset =
+ if index == 0 {
+ Size::ZERO
+ }
+ else {
+ a.size(cx).align_to(b.align(cx).abi)
+ };
+ self.scalar_gcc_type_at(cx, scalar, offset)
+ }
+
+ fn gcc_field_index(&self, index: usize) -> u64 {
+ match self.abi {
+ Abi::Scalar(_) | Abi::ScalarPair(..) => {
+ bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
+ }
+ _ => {}
+ }
+ match self.fields {
+ FieldsShape::Primitive | FieldsShape::Union(_) => {
+ bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
+ }
+
+ FieldsShape::Array { .. } => index as u64,
+
+ FieldsShape::Arbitrary { .. } => 1 + (self.fields.memory_index(index) as u64) * 2,
+ }
+ }
+
+ fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size) -> Option<PointeeInfo> {
+ if let Some(&pointee) = cx.pointee_infos.borrow().get(&(self.ty, offset)) {
+ return pointee;
+ }
+
+ let result = Ty::ty_and_layout_pointee_info_at(*self, cx, offset);
+
+ cx.pointee_infos.borrow_mut().insert((self.ty, offset), result);
+ result
+ }
+}
+
+impl<'gcc, 'tcx> LayoutTypeMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
+ fn backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
+ layout.gcc_type(self, true)
+ }
+
+ fn immediate_backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
+ layout.immediate_gcc_type(self)
+ }
+
+ fn is_backend_immediate(&self, layout: TyAndLayout<'tcx>) -> bool {
+ layout.is_gcc_immediate()
+ }
+
+ fn is_backend_scalar_pair(&self, layout: TyAndLayout<'tcx>) -> bool {
+ layout.is_gcc_scalar_pair()
+ }
+
+ fn backend_field_index(&self, layout: TyAndLayout<'tcx>, index: usize) -> u64 {
+ layout.gcc_field_index(index)
+ }
+
+ fn scalar_pair_element_backend_type(&self, layout: TyAndLayout<'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
+ layout.scalar_pair_element_gcc_type(self, index, immediate)
+ }
+
+ fn cast_backend_type(&self, ty: &CastTarget) -> Type<'gcc> {
+ ty.gcc_type(self)
+ }
+
+ fn fn_ptr_backend_type(&self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
+ fn_abi.ptr_to_gcc_type(self)
+ }
+
+ fn reg_backend_type(&self, _ty: &Reg) -> Type<'gcc> {
+ unimplemented!();
+ }
+
+ fn fn_decl_backend_type(&self, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
+ // FIXME(antoyo): return correct type.
+ self.type_void()
+ }
+}