summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_llvm/src/debuginfo/doc.md
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_llvm/src/debuginfo/doc.md')
-rw-r--r--compiler/rustc_codegen_llvm/src/debuginfo/doc.md131
1 files changed, 131 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_llvm/src/debuginfo/doc.md b/compiler/rustc_codegen_llvm/src/debuginfo/doc.md
new file mode 100644
index 000000000..aaec4e68c
--- /dev/null
+++ b/compiler/rustc_codegen_llvm/src/debuginfo/doc.md
@@ -0,0 +1,131 @@
+# Debug Info Module
+
+This module serves the purpose of generating debug symbols. We use LLVM's
+[source level debugging](https://llvm.org/docs/SourceLevelDebugging.html)
+features for generating the debug information. The general principle is
+this:
+
+Given the right metadata in the LLVM IR, the LLVM code generator is able to
+create DWARF debug symbols for the given code. The
+[metadata](https://llvm.org/docs/LangRef.html#metadata-type) is structured
+much like DWARF *debugging information entries* (DIE), representing type
+information such as datatype layout, function signatures, block layout,
+variable location and scope information, etc. It is the purpose of this
+module to generate correct metadata and insert it into the LLVM IR.
+
+As the exact format of metadata trees may change between different LLVM
+versions, we now use LLVM
+[DIBuilder](https://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html)
+to create metadata where possible. This will hopefully ease the adaption of
+this module to future LLVM versions.
+
+The public API of the module is a set of functions that will insert the
+correct metadata into the LLVM IR when called with the right parameters.
+The module is thus driven from an outside client with functions like
+`debuginfo::create_local_var_metadata(bx: block, local: &ast::local)`.
+
+Internally the module will try to reuse already created metadata by
+utilizing a cache. The way to get a shared metadata node when needed is
+thus to just call the corresponding function in this module:
+```ignore (illustrative)
+let file_metadata = file_metadata(cx, file);
+```
+The function will take care of probing the cache for an existing node for
+that exact file path.
+
+All private state used by the module is stored within either the
+CodegenUnitDebugContext struct (owned by the CodegenCx) or the
+FunctionDebugContext (owned by the FunctionCx).
+
+This file consists of three conceptual sections:
+1. The public interface of the module
+2. Module-internal metadata creation functions
+3. Minor utility functions
+
+
+## Recursive Types
+
+Some kinds of types, such as structs and enums can be recursive. That means
+that the type definition of some type X refers to some other type which in
+turn (transitively) refers to X. This introduces cycles into the type
+referral graph. A naive algorithm doing an on-demand, depth-first traversal
+of this graph when describing types, can get trapped in an endless loop
+when it reaches such a cycle.
+
+For example, the following simple type for a singly-linked list...
+
+```
+struct List {
+ value: i32,
+ tail: Option<Box<List>>,
+}
+```
+
+will generate the following callstack with a naive DFS algorithm:
+
+```ignore (illustrative)
+describe(t = List)
+ describe(t = i32)
+ describe(t = Option<Box<List>>)
+ describe(t = Box<List>)
+ describe(t = List) // at the beginning again...
+ ...
+```
+
+To break cycles like these, we use "stubs". That is, when
+the algorithm encounters a possibly recursive type (any struct or enum), it
+immediately creates a type description node and inserts it into the cache
+*before* describing the members of the type. This type description is just
+a stub (as type members are not described and added to it yet) but it
+allows the algorithm to already refer to the type. After the stub is
+inserted into the cache, the algorithm continues as before. If it now
+encounters a recursive reference, it will hit the cache and does not try to
+describe the type anew. This behavior is encapsulated in the
+`type_map::build_type_with_children()` function.
+
+
+## Source Locations and Line Information
+
+In addition to data type descriptions the debugging information must also
+allow to map machine code locations back to source code locations in order
+to be useful. This functionality is also handled in this module. The
+following functions allow to control source mappings:
+
++ `set_source_location()`
++ `clear_source_location()`
++ `start_emitting_source_locations()`
+
+`set_source_location()` allows to set the current source location. All IR
+instructions created after a call to this function will be linked to the
+given source location, until another location is specified with
+`set_source_location()` or the source location is cleared with
+`clear_source_location()`. In the later case, subsequent IR instruction
+will not be linked to any source location. As you can see, this is a
+stateful API (mimicking the one in LLVM), so be careful with source
+locations set by previous calls. It's probably best to not rely on any
+specific state being present at a given point in code.
+
+One topic that deserves some extra attention is *function prologues*. At
+the beginning of a function's machine code there are typically a few
+instructions for loading argument values into allocas and checking if
+there's enough stack space for the function to execute. This *prologue* is
+not visible in the source code and LLVM puts a special PROLOGUE END marker
+into the line table at the first non-prologue instruction of the function.
+In order to find out where the prologue ends, LLVM looks for the first
+instruction in the function body that is linked to a source location. So,
+when generating prologue instructions we have to make sure that we don't
+emit source location information until the 'real' function body begins. For
+this reason, source location emission is disabled by default for any new
+function being codegened and is only activated after a call to the third
+function from the list above, `start_emitting_source_locations()`. This
+function should be called right before regularly starting to codegen the
+top-level block of the given function.
+
+There is one exception to the above rule: `llvm.dbg.declare` instruction
+must be linked to the source location of the variable being declared. For
+function parameters these `llvm.dbg.declare` instructions typically occur
+in the middle of the prologue, however, they are ignored by LLVM's prologue
+detection. The `create_argument_metadata()` and related functions take care
+of linking the `llvm.dbg.declare` instructions to the correct source
+locations even while source location emission is still disabled, so there
+is no need to do anything special with source location handling here.