summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_llvm/src/intrinsic.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_llvm/src/intrinsic.rs')
-rw-r--r--compiler/rustc_codegen_llvm/src/intrinsic.rs1924
1 files changed, 1924 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_llvm/src/intrinsic.rs b/compiler/rustc_codegen_llvm/src/intrinsic.rs
new file mode 100644
index 000000000..9f3647492
--- /dev/null
+++ b/compiler/rustc_codegen_llvm/src/intrinsic.rs
@@ -0,0 +1,1924 @@
+use crate::abi::{Abi, FnAbi, FnAbiLlvmExt, LlvmType, PassMode};
+use crate::builder::Builder;
+use crate::context::CodegenCx;
+use crate::llvm;
+use crate::type_::Type;
+use crate::type_of::LayoutLlvmExt;
+use crate::va_arg::emit_va_arg;
+use crate::value::Value;
+
+use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh};
+use rustc_codegen_ssa::common::span_invalid_monomorphization_error;
+use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
+use rustc_codegen_ssa::mir::operand::OperandRef;
+use rustc_codegen_ssa::mir::place::PlaceRef;
+use rustc_codegen_ssa::traits::*;
+use rustc_hir as hir;
+use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, LayoutOf};
+use rustc_middle::ty::{self, Ty};
+use rustc_middle::{bug, span_bug};
+use rustc_span::{sym, symbol::kw, Span, Symbol};
+use rustc_target::abi::{self, Align, HasDataLayout, Primitive};
+use rustc_target::spec::{HasTargetSpec, PanicStrategy};
+
+use std::cmp::Ordering;
+use std::iter;
+
+fn get_simple_intrinsic<'ll>(
+ cx: &CodegenCx<'ll, '_>,
+ name: Symbol,
+) -> Option<(&'ll Type, &'ll Value)> {
+ let llvm_name = match name {
+ sym::sqrtf32 => "llvm.sqrt.f32",
+ sym::sqrtf64 => "llvm.sqrt.f64",
+ sym::powif32 => "llvm.powi.f32",
+ sym::powif64 => "llvm.powi.f64",
+ sym::sinf32 => "llvm.sin.f32",
+ sym::sinf64 => "llvm.sin.f64",
+ sym::cosf32 => "llvm.cos.f32",
+ sym::cosf64 => "llvm.cos.f64",
+ sym::powf32 => "llvm.pow.f32",
+ sym::powf64 => "llvm.pow.f64",
+ sym::expf32 => "llvm.exp.f32",
+ sym::expf64 => "llvm.exp.f64",
+ sym::exp2f32 => "llvm.exp2.f32",
+ sym::exp2f64 => "llvm.exp2.f64",
+ sym::logf32 => "llvm.log.f32",
+ sym::logf64 => "llvm.log.f64",
+ sym::log10f32 => "llvm.log10.f32",
+ sym::log10f64 => "llvm.log10.f64",
+ sym::log2f32 => "llvm.log2.f32",
+ sym::log2f64 => "llvm.log2.f64",
+ sym::fmaf32 => "llvm.fma.f32",
+ sym::fmaf64 => "llvm.fma.f64",
+ sym::fabsf32 => "llvm.fabs.f32",
+ sym::fabsf64 => "llvm.fabs.f64",
+ sym::minnumf32 => "llvm.minnum.f32",
+ sym::minnumf64 => "llvm.minnum.f64",
+ sym::maxnumf32 => "llvm.maxnum.f32",
+ sym::maxnumf64 => "llvm.maxnum.f64",
+ sym::copysignf32 => "llvm.copysign.f32",
+ sym::copysignf64 => "llvm.copysign.f64",
+ sym::floorf32 => "llvm.floor.f32",
+ sym::floorf64 => "llvm.floor.f64",
+ sym::ceilf32 => "llvm.ceil.f32",
+ sym::ceilf64 => "llvm.ceil.f64",
+ sym::truncf32 => "llvm.trunc.f32",
+ sym::truncf64 => "llvm.trunc.f64",
+ sym::rintf32 => "llvm.rint.f32",
+ sym::rintf64 => "llvm.rint.f64",
+ sym::nearbyintf32 => "llvm.nearbyint.f32",
+ sym::nearbyintf64 => "llvm.nearbyint.f64",
+ sym::roundf32 => "llvm.round.f32",
+ sym::roundf64 => "llvm.round.f64",
+ _ => return None,
+ };
+ Some(cx.get_intrinsic(llvm_name))
+}
+
+impl<'ll, 'tcx> IntrinsicCallMethods<'tcx> for Builder<'_, 'll, 'tcx> {
+ fn codegen_intrinsic_call(
+ &mut self,
+ instance: ty::Instance<'tcx>,
+ fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
+ args: &[OperandRef<'tcx, &'ll Value>],
+ llresult: &'ll Value,
+ span: Span,
+ ) {
+ let tcx = self.tcx;
+ let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
+
+ let ty::FnDef(def_id, substs) = *callee_ty.kind() else {
+ bug!("expected fn item type, found {}", callee_ty);
+ };
+
+ let sig = callee_ty.fn_sig(tcx);
+ let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
+ let arg_tys = sig.inputs();
+ let ret_ty = sig.output();
+ let name = tcx.item_name(def_id);
+
+ let llret_ty = self.layout_of(ret_ty).llvm_type(self);
+ let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
+
+ let simple = get_simple_intrinsic(self, name);
+ let llval = match name {
+ _ if simple.is_some() => {
+ let (simple_ty, simple_fn) = simple.unwrap();
+ self.call(
+ simple_ty,
+ simple_fn,
+ &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
+ None,
+ )
+ }
+ sym::likely => {
+ self.call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(true)])
+ }
+ sym::unlikely => self
+ .call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(false)]),
+ kw::Try => {
+ try_intrinsic(
+ self,
+ args[0].immediate(),
+ args[1].immediate(),
+ args[2].immediate(),
+ llresult,
+ );
+ return;
+ }
+ sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[]),
+ sym::va_copy => {
+ self.call_intrinsic("llvm.va_copy", &[args[0].immediate(), args[1].immediate()])
+ }
+ sym::va_arg => {
+ match fn_abi.ret.layout.abi {
+ abi::Abi::Scalar(scalar) => {
+ match scalar.primitive() {
+ Primitive::Int(..) => {
+ if self.cx().size_of(ret_ty).bytes() < 4 {
+ // `va_arg` should not be called on an integer type
+ // less than 4 bytes in length. If it is, promote
+ // the integer to an `i32` and truncate the result
+ // back to the smaller type.
+ let promoted_result = emit_va_arg(self, args[0], tcx.types.i32);
+ self.trunc(promoted_result, llret_ty)
+ } else {
+ emit_va_arg(self, args[0], ret_ty)
+ }
+ }
+ Primitive::F64 | Primitive::Pointer => {
+ emit_va_arg(self, args[0], ret_ty)
+ }
+ // `va_arg` should never be used with the return type f32.
+ Primitive::F32 => bug!("the va_arg intrinsic does not work with `f32`"),
+ }
+ }
+ _ => bug!("the va_arg intrinsic does not work with non-scalar types"),
+ }
+ }
+
+ sym::volatile_load | sym::unaligned_volatile_load => {
+ let tp_ty = substs.type_at(0);
+ let ptr = args[0].immediate();
+ let load = if let PassMode::Cast(ty) = fn_abi.ret.mode {
+ let llty = ty.llvm_type(self);
+ let ptr = self.pointercast(ptr, self.type_ptr_to(llty));
+ self.volatile_load(llty, ptr)
+ } else {
+ self.volatile_load(self.layout_of(tp_ty).llvm_type(self), ptr)
+ };
+ let align = if name == sym::unaligned_volatile_load {
+ 1
+ } else {
+ self.align_of(tp_ty).bytes() as u32
+ };
+ unsafe {
+ llvm::LLVMSetAlignment(load, align);
+ }
+ self.to_immediate(load, self.layout_of(tp_ty))
+ }
+ sym::volatile_store => {
+ let dst = args[0].deref(self.cx());
+ args[1].val.volatile_store(self, dst);
+ return;
+ }
+ sym::unaligned_volatile_store => {
+ let dst = args[0].deref(self.cx());
+ args[1].val.unaligned_volatile_store(self, dst);
+ return;
+ }
+ sym::prefetch_read_data
+ | sym::prefetch_write_data
+ | sym::prefetch_read_instruction
+ | sym::prefetch_write_instruction => {
+ let (rw, cache_type) = match name {
+ sym::prefetch_read_data => (0, 1),
+ sym::prefetch_write_data => (1, 1),
+ sym::prefetch_read_instruction => (0, 0),
+ sym::prefetch_write_instruction => (1, 0),
+ _ => bug!(),
+ };
+ self.call_intrinsic(
+ "llvm.prefetch",
+ &[
+ args[0].immediate(),
+ self.const_i32(rw),
+ args[1].immediate(),
+ self.const_i32(cache_type),
+ ],
+ )
+ }
+ sym::ctlz
+ | sym::ctlz_nonzero
+ | sym::cttz
+ | sym::cttz_nonzero
+ | sym::ctpop
+ | sym::bswap
+ | sym::bitreverse
+ | sym::rotate_left
+ | sym::rotate_right
+ | sym::saturating_add
+ | sym::saturating_sub => {
+ let ty = arg_tys[0];
+ match int_type_width_signed(ty, self) {
+ Some((width, signed)) => match name {
+ sym::ctlz | sym::cttz => {
+ let y = self.const_bool(false);
+ self.call_intrinsic(
+ &format!("llvm.{}.i{}", name, width),
+ &[args[0].immediate(), y],
+ )
+ }
+ sym::ctlz_nonzero => {
+ let y = self.const_bool(true);
+ let llvm_name = &format!("llvm.ctlz.i{}", width);
+ self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
+ }
+ sym::cttz_nonzero => {
+ let y = self.const_bool(true);
+ let llvm_name = &format!("llvm.cttz.i{}", width);
+ self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
+ }
+ sym::ctpop => self.call_intrinsic(
+ &format!("llvm.ctpop.i{}", width),
+ &[args[0].immediate()],
+ ),
+ sym::bswap => {
+ if width == 8 {
+ args[0].immediate() // byte swap a u8/i8 is just a no-op
+ } else {
+ self.call_intrinsic(
+ &format!("llvm.bswap.i{}", width),
+ &[args[0].immediate()],
+ )
+ }
+ }
+ sym::bitreverse => self.call_intrinsic(
+ &format!("llvm.bitreverse.i{}", width),
+ &[args[0].immediate()],
+ ),
+ sym::rotate_left | sym::rotate_right => {
+ let is_left = name == sym::rotate_left;
+ let val = args[0].immediate();
+ let raw_shift = args[1].immediate();
+ // rotate = funnel shift with first two args the same
+ let llvm_name =
+ &format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
+ self.call_intrinsic(llvm_name, &[val, val, raw_shift])
+ }
+ sym::saturating_add | sym::saturating_sub => {
+ let is_add = name == sym::saturating_add;
+ let lhs = args[0].immediate();
+ let rhs = args[1].immediate();
+ let llvm_name = &format!(
+ "llvm.{}{}.sat.i{}",
+ if signed { 's' } else { 'u' },
+ if is_add { "add" } else { "sub" },
+ width
+ );
+ self.call_intrinsic(llvm_name, &[lhs, rhs])
+ }
+ _ => bug!(),
+ },
+ None => {
+ span_invalid_monomorphization_error(
+ tcx.sess,
+ span,
+ &format!(
+ "invalid monomorphization of `{}` intrinsic: \
+ expected basic integer type, found `{}`",
+ name, ty
+ ),
+ );
+ return;
+ }
+ }
+ }
+
+ sym::raw_eq => {
+ use abi::Abi::*;
+ let tp_ty = substs.type_at(0);
+ let layout = self.layout_of(tp_ty).layout;
+ let use_integer_compare = match layout.abi() {
+ Scalar(_) | ScalarPair(_, _) => true,
+ Uninhabited | Vector { .. } => false,
+ Aggregate { .. } => {
+ // For rusty ABIs, small aggregates are actually passed
+ // as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
+ // so we re-use that same threshold here.
+ layout.size() <= self.data_layout().pointer_size * 2
+ }
+ };
+
+ let a = args[0].immediate();
+ let b = args[1].immediate();
+ if layout.size().bytes() == 0 {
+ self.const_bool(true)
+ } else if use_integer_compare {
+ let integer_ty = self.type_ix(layout.size().bits());
+ let ptr_ty = self.type_ptr_to(integer_ty);
+ let a_ptr = self.bitcast(a, ptr_ty);
+ let a_val = self.load(integer_ty, a_ptr, layout.align().abi);
+ let b_ptr = self.bitcast(b, ptr_ty);
+ let b_val = self.load(integer_ty, b_ptr, layout.align().abi);
+ self.icmp(IntPredicate::IntEQ, a_val, b_val)
+ } else {
+ let i8p_ty = self.type_i8p();
+ let a_ptr = self.bitcast(a, i8p_ty);
+ let b_ptr = self.bitcast(b, i8p_ty);
+ let n = self.const_usize(layout.size().bytes());
+ let cmp = self.call_intrinsic("memcmp", &[a_ptr, b_ptr, n]);
+ match self.cx.sess().target.arch.as_ref() {
+ "avr" | "msp430" => self.icmp(IntPredicate::IntEQ, cmp, self.const_i16(0)),
+ _ => self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0)),
+ }
+ }
+ }
+
+ sym::black_box => {
+ args[0].val.store(self, result);
+
+ // We need to "use" the argument in some way LLVM can't introspect, and on
+ // targets that support it we can typically leverage inline assembly to do
+ // this. LLVM's interpretation of inline assembly is that it's, well, a black
+ // box. This isn't the greatest implementation since it probably deoptimizes
+ // more than we want, but it's so far good enough.
+ crate::asm::inline_asm_call(
+ self,
+ "",
+ "r,~{memory}",
+ &[result.llval],
+ self.type_void(),
+ true,
+ false,
+ llvm::AsmDialect::Att,
+ &[span],
+ false,
+ None,
+ )
+ .unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`"));
+
+ // We have copied the value to `result` already.
+ return;
+ }
+
+ _ if name.as_str().starts_with("simd_") => {
+ match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) {
+ Ok(llval) => llval,
+ Err(()) => return,
+ }
+ }
+
+ _ => bug!("unknown intrinsic '{}'", name),
+ };
+
+ if !fn_abi.ret.is_ignore() {
+ if let PassMode::Cast(ty) = fn_abi.ret.mode {
+ let ptr_llty = self.type_ptr_to(ty.llvm_type(self));
+ let ptr = self.pointercast(result.llval, ptr_llty);
+ self.store(llval, ptr, result.align);
+ } else {
+ OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
+ .val
+ .store(self, result);
+ }
+ }
+ }
+
+ fn abort(&mut self) {
+ self.call_intrinsic("llvm.trap", &[]);
+ }
+
+ fn assume(&mut self, val: Self::Value) {
+ self.call_intrinsic("llvm.assume", &[val]);
+ }
+
+ fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
+ self.call_intrinsic("llvm.expect.i1", &[cond, self.const_bool(expected)])
+ }
+
+ fn type_test(&mut self, pointer: Self::Value, typeid: Self::Value) -> Self::Value {
+ // Test the called operand using llvm.type.test intrinsic. The LowerTypeTests link-time
+ // optimization pass replaces calls to this intrinsic with code to test type membership.
+ let i8p_ty = self.type_i8p();
+ let bitcast = self.bitcast(pointer, i8p_ty);
+ self.call_intrinsic("llvm.type.test", &[bitcast, typeid])
+ }
+
+ fn type_checked_load(
+ &mut self,
+ llvtable: &'ll Value,
+ vtable_byte_offset: u64,
+ typeid: &'ll Value,
+ ) -> Self::Value {
+ let vtable_byte_offset = self.const_i32(vtable_byte_offset as i32);
+ self.call_intrinsic("llvm.type.checked.load", &[llvtable, vtable_byte_offset, typeid])
+ }
+
+ fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
+ self.call_intrinsic("llvm.va_start", &[va_list])
+ }
+
+ fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
+ self.call_intrinsic("llvm.va_end", &[va_list])
+ }
+}
+
+fn try_intrinsic<'ll>(
+ bx: &mut Builder<'_, 'll, '_>,
+ try_func: &'ll Value,
+ data: &'ll Value,
+ catch_func: &'ll Value,
+ dest: &'ll Value,
+) {
+ if bx.sess().panic_strategy() == PanicStrategy::Abort {
+ let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
+ bx.call(try_func_ty, try_func, &[data], None);
+ // Return 0 unconditionally from the intrinsic call;
+ // we can never unwind.
+ let ret_align = bx.tcx().data_layout.i32_align.abi;
+ bx.store(bx.const_i32(0), dest, ret_align);
+ } else if wants_msvc_seh(bx.sess()) {
+ codegen_msvc_try(bx, try_func, data, catch_func, dest);
+ } else if bx.sess().target.os == "emscripten" {
+ codegen_emcc_try(bx, try_func, data, catch_func, dest);
+ } else {
+ codegen_gnu_try(bx, try_func, data, catch_func, dest);
+ }
+}
+
+// MSVC's definition of the `rust_try` function.
+//
+// This implementation uses the new exception handling instructions in LLVM
+// which have support in LLVM for SEH on MSVC targets. Although these
+// instructions are meant to work for all targets, as of the time of this
+// writing, however, LLVM does not recommend the usage of these new instructions
+// as the old ones are still more optimized.
+fn codegen_msvc_try<'ll>(
+ bx: &mut Builder<'_, 'll, '_>,
+ try_func: &'ll Value,
+ data: &'ll Value,
+ catch_func: &'ll Value,
+ dest: &'ll Value,
+) {
+ let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
+ bx.set_personality_fn(bx.eh_personality());
+
+ let normal = bx.append_sibling_block("normal");
+ let catchswitch = bx.append_sibling_block("catchswitch");
+ let catchpad_rust = bx.append_sibling_block("catchpad_rust");
+ let catchpad_foreign = bx.append_sibling_block("catchpad_foreign");
+ let caught = bx.append_sibling_block("caught");
+
+ let try_func = llvm::get_param(bx.llfn(), 0);
+ let data = llvm::get_param(bx.llfn(), 1);
+ let catch_func = llvm::get_param(bx.llfn(), 2);
+
+ // We're generating an IR snippet that looks like:
+ //
+ // declare i32 @rust_try(%try_func, %data, %catch_func) {
+ // %slot = alloca i8*
+ // invoke %try_func(%data) to label %normal unwind label %catchswitch
+ //
+ // normal:
+ // ret i32 0
+ //
+ // catchswitch:
+ // %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller
+ //
+ // catchpad_rust:
+ // %tok = catchpad within %cs [%type_descriptor, 8, %slot]
+ // %ptr = load %slot
+ // call %catch_func(%data, %ptr)
+ // catchret from %tok to label %caught
+ //
+ // catchpad_foreign:
+ // %tok = catchpad within %cs [null, 64, null]
+ // call %catch_func(%data, null)
+ // catchret from %tok to label %caught
+ //
+ // caught:
+ // ret i32 1
+ // }
+ //
+ // This structure follows the basic usage of throw/try/catch in LLVM.
+ // For example, compile this C++ snippet to see what LLVM generates:
+ //
+ // struct rust_panic {
+ // rust_panic(const rust_panic&);
+ // ~rust_panic();
+ //
+ // void* x[2];
+ // };
+ //
+ // int __rust_try(
+ // void (*try_func)(void*),
+ // void *data,
+ // void (*catch_func)(void*, void*) noexcept
+ // ) {
+ // try {
+ // try_func(data);
+ // return 0;
+ // } catch(rust_panic& a) {
+ // catch_func(data, &a);
+ // return 1;
+ // } catch(...) {
+ // catch_func(data, NULL);
+ // return 1;
+ // }
+ // }
+ //
+ // More information can be found in libstd's seh.rs implementation.
+ let ptr_align = bx.tcx().data_layout.pointer_align.abi;
+ let slot = bx.alloca(bx.type_i8p(), ptr_align);
+ let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
+ bx.invoke(try_func_ty, try_func, &[data], normal, catchswitch, None);
+
+ bx.switch_to_block(normal);
+ bx.ret(bx.const_i32(0));
+
+ bx.switch_to_block(catchswitch);
+ let cs = bx.catch_switch(None, None, &[catchpad_rust, catchpad_foreign]);
+
+ // We can't use the TypeDescriptor defined in libpanic_unwind because it
+ // might be in another DLL and the SEH encoding only supports specifying
+ // a TypeDescriptor from the current module.
+ //
+ // However this isn't an issue since the MSVC runtime uses string
+ // comparison on the type name to match TypeDescriptors rather than
+ // pointer equality.
+ //
+ // So instead we generate a new TypeDescriptor in each module that uses
+ // `try` and let the linker merge duplicate definitions in the same
+ // module.
+ //
+ // When modifying, make sure that the type_name string exactly matches
+ // the one used in src/libpanic_unwind/seh.rs.
+ let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_i8p());
+ let type_name = bx.const_bytes(b"rust_panic\0");
+ let type_info =
+ bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_i8p()), type_name], false);
+ let tydesc = bx.declare_global("__rust_panic_type_info", bx.val_ty(type_info));
+ unsafe {
+ llvm::LLVMRustSetLinkage(tydesc, llvm::Linkage::LinkOnceODRLinkage);
+ llvm::SetUniqueComdat(bx.llmod, tydesc);
+ llvm::LLVMSetInitializer(tydesc, type_info);
+ }
+
+ // The flag value of 8 indicates that we are catching the exception by
+ // reference instead of by value. We can't use catch by value because
+ // that requires copying the exception object, which we don't support
+ // since our exception object effectively contains a Box.
+ //
+ // Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang
+ bx.switch_to_block(catchpad_rust);
+ let flags = bx.const_i32(8);
+ let funclet = bx.catch_pad(cs, &[tydesc, flags, slot]);
+ let ptr = bx.load(bx.type_i8p(), slot, ptr_align);
+ let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
+ bx.call(catch_ty, catch_func, &[data, ptr], Some(&funclet));
+ bx.catch_ret(&funclet, caught);
+
+ // The flag value of 64 indicates a "catch-all".
+ bx.switch_to_block(catchpad_foreign);
+ let flags = bx.const_i32(64);
+ let null = bx.const_null(bx.type_i8p());
+ let funclet = bx.catch_pad(cs, &[null, flags, null]);
+ bx.call(catch_ty, catch_func, &[data, null], Some(&funclet));
+ bx.catch_ret(&funclet, caught);
+
+ bx.switch_to_block(caught);
+ bx.ret(bx.const_i32(1));
+ });
+
+ // Note that no invoke is used here because by definition this function
+ // can't panic (that's what it's catching).
+ let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None);
+ let i32_align = bx.tcx().data_layout.i32_align.abi;
+ bx.store(ret, dest, i32_align);
+}
+
+// Definition of the standard `try` function for Rust using the GNU-like model
+// of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
+// instructions).
+//
+// This codegen is a little surprising because we always call a shim
+// function instead of inlining the call to `invoke` manually here. This is done
+// because in LLVM we're only allowed to have one personality per function
+// definition. The call to the `try` intrinsic is being inlined into the
+// function calling it, and that function may already have other personality
+// functions in play. By calling a shim we're guaranteed that our shim will have
+// the right personality function.
+fn codegen_gnu_try<'ll>(
+ bx: &mut Builder<'_, 'll, '_>,
+ try_func: &'ll Value,
+ data: &'ll Value,
+ catch_func: &'ll Value,
+ dest: &'ll Value,
+) {
+ let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
+ // Codegens the shims described above:
+ //
+ // bx:
+ // invoke %try_func(%data) normal %normal unwind %catch
+ //
+ // normal:
+ // ret 0
+ //
+ // catch:
+ // (%ptr, _) = landingpad
+ // call %catch_func(%data, %ptr)
+ // ret 1
+ let then = bx.append_sibling_block("then");
+ let catch = bx.append_sibling_block("catch");
+
+ let try_func = llvm::get_param(bx.llfn(), 0);
+ let data = llvm::get_param(bx.llfn(), 1);
+ let catch_func = llvm::get_param(bx.llfn(), 2);
+ let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
+ bx.invoke(try_func_ty, try_func, &[data], then, catch, None);
+
+ bx.switch_to_block(then);
+ bx.ret(bx.const_i32(0));
+
+ // Type indicator for the exception being thrown.
+ //
+ // The first value in this tuple is a pointer to the exception object
+ // being thrown. The second value is a "selector" indicating which of
+ // the landing pad clauses the exception's type had been matched to.
+ // rust_try ignores the selector.
+ bx.switch_to_block(catch);
+ let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
+ let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 1);
+ let tydesc = bx.const_null(bx.type_i8p());
+ bx.add_clause(vals, tydesc);
+ let ptr = bx.extract_value(vals, 0);
+ let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
+ bx.call(catch_ty, catch_func, &[data, ptr], None);
+ bx.ret(bx.const_i32(1));
+ });
+
+ // Note that no invoke is used here because by definition this function
+ // can't panic (that's what it's catching).
+ let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None);
+ let i32_align = bx.tcx().data_layout.i32_align.abi;
+ bx.store(ret, dest, i32_align);
+}
+
+// Variant of codegen_gnu_try used for emscripten where Rust panics are
+// implemented using C++ exceptions. Here we use exceptions of a specific type
+// (`struct rust_panic`) to represent Rust panics.
+fn codegen_emcc_try<'ll>(
+ bx: &mut Builder<'_, 'll, '_>,
+ try_func: &'ll Value,
+ data: &'ll Value,
+ catch_func: &'ll Value,
+ dest: &'ll Value,
+) {
+ let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
+ // Codegens the shims described above:
+ //
+ // bx:
+ // invoke %try_func(%data) normal %normal unwind %catch
+ //
+ // normal:
+ // ret 0
+ //
+ // catch:
+ // (%ptr, %selector) = landingpad
+ // %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic)
+ // %is_rust_panic = %selector == %rust_typeid
+ // %catch_data = alloca { i8*, i8 }
+ // %catch_data[0] = %ptr
+ // %catch_data[1] = %is_rust_panic
+ // call %catch_func(%data, %catch_data)
+ // ret 1
+ let then = bx.append_sibling_block("then");
+ let catch = bx.append_sibling_block("catch");
+
+ let try_func = llvm::get_param(bx.llfn(), 0);
+ let data = llvm::get_param(bx.llfn(), 1);
+ let catch_func = llvm::get_param(bx.llfn(), 2);
+ let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
+ bx.invoke(try_func_ty, try_func, &[data], then, catch, None);
+
+ bx.switch_to_block(then);
+ bx.ret(bx.const_i32(0));
+
+ // Type indicator for the exception being thrown.
+ //
+ // The first value in this tuple is a pointer to the exception object
+ // being thrown. The second value is a "selector" indicating which of
+ // the landing pad clauses the exception's type had been matched to.
+ bx.switch_to_block(catch);
+ let tydesc = bx.eh_catch_typeinfo();
+ let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
+ let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 2);
+ bx.add_clause(vals, tydesc);
+ bx.add_clause(vals, bx.const_null(bx.type_i8p()));
+ let ptr = bx.extract_value(vals, 0);
+ let selector = bx.extract_value(vals, 1);
+
+ // Check if the typeid we got is the one for a Rust panic.
+ let rust_typeid = bx.call_intrinsic("llvm.eh.typeid.for", &[tydesc]);
+ let is_rust_panic = bx.icmp(IntPredicate::IntEQ, selector, rust_typeid);
+ let is_rust_panic = bx.zext(is_rust_panic, bx.type_bool());
+
+ // We need to pass two values to catch_func (ptr and is_rust_panic), so
+ // create an alloca and pass a pointer to that.
+ let ptr_align = bx.tcx().data_layout.pointer_align.abi;
+ let i8_align = bx.tcx().data_layout.i8_align.abi;
+ let catch_data_type = bx.type_struct(&[bx.type_i8p(), bx.type_bool()], false);
+ let catch_data = bx.alloca(catch_data_type, ptr_align);
+ let catch_data_0 =
+ bx.inbounds_gep(catch_data_type, catch_data, &[bx.const_usize(0), bx.const_usize(0)]);
+ bx.store(ptr, catch_data_0, ptr_align);
+ let catch_data_1 =
+ bx.inbounds_gep(catch_data_type, catch_data, &[bx.const_usize(0), bx.const_usize(1)]);
+ bx.store(is_rust_panic, catch_data_1, i8_align);
+ let catch_data = bx.bitcast(catch_data, bx.type_i8p());
+
+ let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
+ bx.call(catch_ty, catch_func, &[data, catch_data], None);
+ bx.ret(bx.const_i32(1));
+ });
+
+ // Note that no invoke is used here because by definition this function
+ // can't panic (that's what it's catching).
+ let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None);
+ let i32_align = bx.tcx().data_layout.i32_align.abi;
+ bx.store(ret, dest, i32_align);
+}
+
+// Helper function to give a Block to a closure to codegen a shim function.
+// This is currently primarily used for the `try` intrinsic functions above.
+fn gen_fn<'ll, 'tcx>(
+ cx: &CodegenCx<'ll, 'tcx>,
+ name: &str,
+ rust_fn_sig: ty::PolyFnSig<'tcx>,
+ codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
+) -> (&'ll Type, &'ll Value) {
+ let fn_abi = cx.fn_abi_of_fn_ptr(rust_fn_sig, ty::List::empty());
+ let llty = fn_abi.llvm_type(cx);
+ let llfn = cx.declare_fn(name, fn_abi);
+ cx.set_frame_pointer_type(llfn);
+ cx.apply_target_cpu_attr(llfn);
+ // FIXME(eddyb) find a nicer way to do this.
+ unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) };
+ let llbb = Builder::append_block(cx, llfn, "entry-block");
+ let bx = Builder::build(cx, llbb);
+ codegen(bx);
+ (llty, llfn)
+}
+
+// Helper function used to get a handle to the `__rust_try` function used to
+// catch exceptions.
+//
+// This function is only generated once and is then cached.
+fn get_rust_try_fn<'ll, 'tcx>(
+ cx: &CodegenCx<'ll, 'tcx>,
+ codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
+) -> (&'ll Type, &'ll Value) {
+ if let Some(llfn) = cx.rust_try_fn.get() {
+ return llfn;
+ }
+
+ // Define the type up front for the signature of the rust_try function.
+ let tcx = cx.tcx;
+ let i8p = tcx.mk_mut_ptr(tcx.types.i8);
+ // `unsafe fn(*mut i8) -> ()`
+ let try_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
+ iter::once(i8p),
+ tcx.mk_unit(),
+ false,
+ hir::Unsafety::Unsafe,
+ Abi::Rust,
+ )));
+ // `unsafe fn(*mut i8, *mut i8) -> ()`
+ let catch_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
+ [i8p, i8p].iter().cloned(),
+ tcx.mk_unit(),
+ false,
+ hir::Unsafety::Unsafe,
+ Abi::Rust,
+ )));
+ // `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32`
+ let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig(
+ [try_fn_ty, i8p, catch_fn_ty].into_iter(),
+ tcx.types.i32,
+ false,
+ hir::Unsafety::Unsafe,
+ Abi::Rust,
+ ));
+ let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen);
+ cx.rust_try_fn.set(Some(rust_try));
+ rust_try
+}
+
+fn generic_simd_intrinsic<'ll, 'tcx>(
+ bx: &mut Builder<'_, 'll, 'tcx>,
+ name: Symbol,
+ callee_ty: Ty<'tcx>,
+ args: &[OperandRef<'tcx, &'ll Value>],
+ ret_ty: Ty<'tcx>,
+ llret_ty: &'ll Type,
+ span: Span,
+) -> Result<&'ll Value, ()> {
+ // macros for error handling:
+ #[allow(unused_macro_rules)]
+ macro_rules! emit_error {
+ ($msg: tt) => {
+ emit_error!($msg, )
+ };
+ ($msg: tt, $($fmt: tt)*) => {
+ span_invalid_monomorphization_error(
+ bx.sess(), span,
+ &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
+ name, $($fmt)*));
+ }
+ }
+
+ macro_rules! return_error {
+ ($($fmt: tt)*) => {
+ {
+ emit_error!($($fmt)*);
+ return Err(());
+ }
+ }
+ }
+
+ macro_rules! require {
+ ($cond: expr, $($fmt: tt)*) => {
+ if !$cond {
+ return_error!($($fmt)*);
+ }
+ };
+ }
+
+ macro_rules! require_simd {
+ ($ty: expr, $position: expr) => {
+ require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
+ };
+ }
+
+ let tcx = bx.tcx();
+ let sig =
+ tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx));
+ let arg_tys = sig.inputs();
+
+ if name == sym::simd_select_bitmask {
+ require_simd!(arg_tys[1], "argument");
+ let (len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
+
+ let expected_int_bits = (len.max(8) - 1).next_power_of_two();
+ let expected_bytes = len / 8 + ((len % 8 > 0) as u64);
+
+ let mask_ty = arg_tys[0];
+ let mask = match mask_ty.kind() {
+ ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
+ ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
+ ty::Array(elem, len)
+ if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
+ && len.try_eval_usize(bx.tcx, ty::ParamEnv::reveal_all())
+ == Some(expected_bytes) =>
+ {
+ let place = PlaceRef::alloca(bx, args[0].layout);
+ args[0].val.store(bx, place);
+ let int_ty = bx.type_ix(expected_bytes * 8);
+ let ptr = bx.pointercast(place.llval, bx.cx.type_ptr_to(int_ty));
+ bx.load(int_ty, ptr, Align::ONE)
+ }
+ _ => return_error!(
+ "invalid bitmask `{}`, expected `u{}` or `[u8; {}]`",
+ mask_ty,
+ expected_int_bits,
+ expected_bytes
+ ),
+ };
+
+ let i1 = bx.type_i1();
+ let im = bx.type_ix(len);
+ let i1xn = bx.type_vector(i1, len);
+ let m_im = bx.trunc(mask, im);
+ let m_i1s = bx.bitcast(m_im, i1xn);
+ return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
+ }
+
+ // every intrinsic below takes a SIMD vector as its first argument
+ require_simd!(arg_tys[0], "input");
+ let in_ty = arg_tys[0];
+
+ let comparison = match name {
+ sym::simd_eq => Some(hir::BinOpKind::Eq),
+ sym::simd_ne => Some(hir::BinOpKind::Ne),
+ sym::simd_lt => Some(hir::BinOpKind::Lt),
+ sym::simd_le => Some(hir::BinOpKind::Le),
+ sym::simd_gt => Some(hir::BinOpKind::Gt),
+ sym::simd_ge => Some(hir::BinOpKind::Ge),
+ _ => None,
+ };
+
+ let (in_len, in_elem) = arg_tys[0].simd_size_and_type(bx.tcx());
+ if let Some(cmp_op) = comparison {
+ require_simd!(ret_ty, "return");
+
+ let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
+ require!(
+ in_len == out_len,
+ "expected return type with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ in_len,
+ in_ty,
+ ret_ty,
+ out_len
+ );
+ require!(
+ bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
+ "expected return type with integer elements, found `{}` with non-integer `{}`",
+ ret_ty,
+ out_ty
+ );
+
+ return Ok(compare_simd_types(
+ bx,
+ args[0].immediate(),
+ args[1].immediate(),
+ in_elem,
+ llret_ty,
+ cmp_op,
+ ));
+ }
+
+ if let Some(stripped) = name.as_str().strip_prefix("simd_shuffle") {
+ // If this intrinsic is the older "simd_shuffleN" form, simply parse the integer.
+ // If there is no suffix, use the index array length.
+ let n: u64 = if stripped.is_empty() {
+ // Make sure this is actually an array, since typeck only checks the length-suffixed
+ // version of this intrinsic.
+ match args[2].layout.ty.kind() {
+ ty::Array(ty, len) if matches!(ty.kind(), ty::Uint(ty::UintTy::U32)) => {
+ len.try_eval_usize(bx.cx.tcx, ty::ParamEnv::reveal_all()).unwrap_or_else(|| {
+ span_bug!(span, "could not evaluate shuffle index array length")
+ })
+ }
+ _ => return_error!(
+ "simd_shuffle index must be an array of `u32`, got `{}`",
+ args[2].layout.ty
+ ),
+ }
+ } else {
+ stripped.parse().unwrap_or_else(|_| {
+ span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")
+ })
+ };
+
+ require_simd!(ret_ty, "return");
+ let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
+ require!(
+ out_len == n,
+ "expected return type of length {}, found `{}` with length {}",
+ n,
+ ret_ty,
+ out_len
+ );
+ require!(
+ in_elem == out_ty,
+ "expected return element type `{}` (element of input `{}`), \
+ found `{}` with element type `{}`",
+ in_elem,
+ in_ty,
+ ret_ty,
+ out_ty
+ );
+
+ let total_len = u128::from(in_len) * 2;
+
+ let vector = args[2].immediate();
+
+ let indices: Option<Vec<_>> = (0..n)
+ .map(|i| {
+ let arg_idx = i;
+ let val = bx.const_get_elt(vector, i as u64);
+ match bx.const_to_opt_u128(val, true) {
+ None => {
+ emit_error!("shuffle index #{} is not a constant", arg_idx);
+ None
+ }
+ Some(idx) if idx >= total_len => {
+ emit_error!(
+ "shuffle index #{} is out of bounds (limit {})",
+ arg_idx,
+ total_len
+ );
+ None
+ }
+ Some(idx) => Some(bx.const_i32(idx as i32)),
+ }
+ })
+ .collect();
+ let Some(indices) = indices else {
+ return Ok(bx.const_null(llret_ty));
+ };
+
+ return Ok(bx.shuffle_vector(
+ args[0].immediate(),
+ args[1].immediate(),
+ bx.const_vector(&indices),
+ ));
+ }
+
+ if name == sym::simd_insert {
+ require!(
+ in_elem == arg_tys[2],
+ "expected inserted type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ arg_tys[2]
+ );
+ return Ok(bx.insert_element(
+ args[0].immediate(),
+ args[2].immediate(),
+ args[1].immediate(),
+ ));
+ }
+ if name == sym::simd_extract {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ return Ok(bx.extract_element(args[0].immediate(), args[1].immediate()));
+ }
+
+ if name == sym::simd_select {
+ let m_elem_ty = in_elem;
+ let m_len = in_len;
+ require_simd!(arg_tys[1], "argument");
+ let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
+ require!(
+ m_len == v_len,
+ "mismatched lengths: mask length `{}` != other vector length `{}`",
+ m_len,
+ v_len
+ );
+ match m_elem_ty.kind() {
+ ty::Int(_) => {}
+ _ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty),
+ }
+ // truncate the mask to a vector of i1s
+ let i1 = bx.type_i1();
+ let i1xn = bx.type_vector(i1, m_len as u64);
+ let m_i1s = bx.trunc(args[0].immediate(), i1xn);
+ return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
+ }
+
+ if name == sym::simd_bitmask {
+ // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
+ // vector mask and returns the most significant bit (MSB) of each lane in the form
+ // of either:
+ // * an unsigned integer
+ // * an array of `u8`
+ // If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits.
+ //
+ // The bit order of the result depends on the byte endianness, LSB-first for little
+ // endian and MSB-first for big endian.
+ let expected_int_bits = in_len.max(8);
+ let expected_bytes = expected_int_bits / 8 + ((expected_int_bits % 8 > 0) as u64);
+
+ // Integer vector <i{in_bitwidth} x in_len>:
+ let (i_xn, in_elem_bitwidth) = match in_elem.kind() {
+ ty::Int(i) => (
+ args[0].immediate(),
+ i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
+ ),
+ ty::Uint(i) => (
+ args[0].immediate(),
+ i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
+ ),
+ _ => return_error!(
+ "vector argument `{}`'s element type `{}`, expected integer element type",
+ in_ty,
+ in_elem
+ ),
+ };
+
+ // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
+ let shift_indices =
+ vec![
+ bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _);
+ in_len as _
+ ];
+ let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
+ // Truncate vector to an <i1 x N>
+ let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len));
+ // Bitcast <i1 x N> to iN:
+ let i_ = bx.bitcast(i1xn, bx.type_ix(in_len));
+
+ match ret_ty.kind() {
+ ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => {
+ // Zero-extend iN to the bitmask type:
+ return Ok(bx.zext(i_, bx.type_ix(expected_int_bits)));
+ }
+ ty::Array(elem, len)
+ if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
+ && len.try_eval_usize(bx.tcx, ty::ParamEnv::reveal_all())
+ == Some(expected_bytes) =>
+ {
+ // Zero-extend iN to the array length:
+ let ze = bx.zext(i_, bx.type_ix(expected_bytes * 8));
+
+ // Convert the integer to a byte array
+ let ptr = bx.alloca(bx.type_ix(expected_bytes * 8), Align::ONE);
+ bx.store(ze, ptr, Align::ONE);
+ let array_ty = bx.type_array(bx.type_i8(), expected_bytes);
+ let ptr = bx.pointercast(ptr, bx.cx.type_ptr_to(array_ty));
+ return Ok(bx.load(array_ty, ptr, Align::ONE));
+ }
+ _ => return_error!(
+ "cannot return `{}`, expected `u{}` or `[u8; {}]`",
+ ret_ty,
+ expected_int_bits,
+ expected_bytes
+ ),
+ }
+ }
+
+ fn simd_simple_float_intrinsic<'ll, 'tcx>(
+ name: Symbol,
+ in_elem: Ty<'_>,
+ in_ty: Ty<'_>,
+ in_len: u64,
+ bx: &mut Builder<'_, 'll, 'tcx>,
+ span: Span,
+ args: &[OperandRef<'tcx, &'ll Value>],
+ ) -> Result<&'ll Value, ()> {
+ #[allow(unused_macro_rules)]
+ macro_rules! emit_error {
+ ($msg: tt) => {
+ emit_error!($msg, )
+ };
+ ($msg: tt, $($fmt: tt)*) => {
+ span_invalid_monomorphization_error(
+ bx.sess(), span,
+ &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
+ name, $($fmt)*));
+ }
+ }
+ macro_rules! return_error {
+ ($($fmt: tt)*) => {
+ {
+ emit_error!($($fmt)*);
+ return Err(());
+ }
+ }
+ }
+
+ let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() {
+ let elem_ty = bx.cx.type_float_from_ty(*f);
+ match f.bit_width() {
+ 32 => ("f32", elem_ty),
+ 64 => ("f64", elem_ty),
+ _ => {
+ return_error!(
+ "unsupported element type `{}` of floating-point vector `{}`",
+ f.name_str(),
+ in_ty
+ );
+ }
+ }
+ } else {
+ return_error!("`{}` is not a floating-point type", in_ty);
+ };
+
+ let vec_ty = bx.type_vector(elem_ty, in_len);
+
+ let (intr_name, fn_ty) = match name {
+ sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
+ sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)),
+ sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)),
+ sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
+ sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
+ _ => return_error!("unrecognized intrinsic `{}`", name),
+ };
+ let llvm_name = &format!("llvm.{0}.v{1}{2}", intr_name, in_len, elem_ty_str);
+ let f = bx.declare_cfn(llvm_name, llvm::UnnamedAddr::No, fn_ty);
+ let c =
+ bx.call(fn_ty, f, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None);
+ Ok(c)
+ }
+
+ if std::matches!(
+ name,
+ sym::simd_ceil
+ | sym::simd_fabs
+ | sym::simd_fcos
+ | sym::simd_fexp2
+ | sym::simd_fexp
+ | sym::simd_flog10
+ | sym::simd_flog2
+ | sym::simd_flog
+ | sym::simd_floor
+ | sym::simd_fma
+ | sym::simd_fpow
+ | sym::simd_fpowi
+ | sym::simd_fsin
+ | sym::simd_fsqrt
+ | sym::simd_round
+ | sym::simd_trunc
+ ) {
+ return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
+ }
+
+ // FIXME: use:
+ // https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
+ // https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
+ fn llvm_vector_str(
+ elem_ty: Ty<'_>,
+ vec_len: u64,
+ no_pointers: usize,
+ bx: &Builder<'_, '_, '_>,
+ ) -> String {
+ let p0s: String = "p0".repeat(no_pointers);
+ match *elem_ty.kind() {
+ ty::Int(v) => format!(
+ "v{}{}i{}",
+ vec_len,
+ p0s,
+ // Normalize to prevent crash if v: IntTy::Isize
+ v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
+ ),
+ ty::Uint(v) => format!(
+ "v{}{}i{}",
+ vec_len,
+ p0s,
+ // Normalize to prevent crash if v: UIntTy::Usize
+ v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
+ ),
+ ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()),
+ _ => unreachable!(),
+ }
+ }
+
+ fn llvm_vector_ty<'ll>(
+ cx: &CodegenCx<'ll, '_>,
+ elem_ty: Ty<'_>,
+ vec_len: u64,
+ mut no_pointers: usize,
+ ) -> &'ll Type {
+ // FIXME: use cx.layout_of(ty).llvm_type() ?
+ let mut elem_ty = match *elem_ty.kind() {
+ ty::Int(v) => cx.type_int_from_ty(v),
+ ty::Uint(v) => cx.type_uint_from_ty(v),
+ ty::Float(v) => cx.type_float_from_ty(v),
+ _ => unreachable!(),
+ };
+ while no_pointers > 0 {
+ elem_ty = cx.type_ptr_to(elem_ty);
+ no_pointers -= 1;
+ }
+ cx.type_vector(elem_ty, vec_len)
+ }
+
+ if name == sym::simd_gather {
+ // simd_gather(values: <N x T>, pointers: <N x *_ T>,
+ // mask: <N x i{M}>) -> <N x T>
+ // * N: number of elements in the input vectors
+ // * T: type of the element to load
+ // * M: any integer width is supported, will be truncated to i1
+
+ // All types must be simd vector types
+ require_simd!(in_ty, "first");
+ require_simd!(arg_tys[1], "second");
+ require_simd!(arg_tys[2], "third");
+ require_simd!(ret_ty, "return");
+
+ // Of the same length:
+ let (out_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
+ let (out_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
+ require!(
+ in_len == out_len,
+ "expected {} argument with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ "second",
+ in_len,
+ in_ty,
+ arg_tys[1],
+ out_len
+ );
+ require!(
+ in_len == out_len2,
+ "expected {} argument with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ "third",
+ in_len,
+ in_ty,
+ arg_tys[2],
+ out_len2
+ );
+
+ // The return type must match the first argument type
+ require!(ret_ty == in_ty, "expected return type `{}`, found `{}`", in_ty, ret_ty);
+
+ // This counts how many pointers
+ fn ptr_count(t: Ty<'_>) -> usize {
+ match t.kind() {
+ ty::RawPtr(p) => 1 + ptr_count(p.ty),
+ _ => 0,
+ }
+ }
+
+ // Non-ptr type
+ fn non_ptr(t: Ty<'_>) -> Ty<'_> {
+ match t.kind() {
+ ty::RawPtr(p) => non_ptr(p.ty),
+ _ => t,
+ }
+ }
+
+ // The second argument must be a simd vector with an element type that's a pointer
+ // to the element type of the first argument
+ let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
+ let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
+ let (pointer_count, underlying_ty) = match element_ty1.kind() {
+ ty::RawPtr(p) if p.ty == in_elem => (ptr_count(element_ty1), non_ptr(element_ty1)),
+ _ => {
+ require!(
+ false,
+ "expected element type `{}` of second argument `{}` \
+ to be a pointer to the element type `{}` of the first \
+ argument `{}`, found `{}` != `*_ {}`",
+ element_ty1,
+ arg_tys[1],
+ in_elem,
+ in_ty,
+ element_ty1,
+ in_elem
+ );
+ unreachable!();
+ }
+ };
+ assert!(pointer_count > 0);
+ assert_eq!(pointer_count - 1, ptr_count(element_ty0));
+ assert_eq!(underlying_ty, non_ptr(element_ty0));
+
+ // The element type of the third argument must be a signed integer type of any width:
+ let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
+ match element_ty2.kind() {
+ ty::Int(_) => (),
+ _ => {
+ require!(
+ false,
+ "expected element type `{}` of third argument `{}` \
+ to be a signed integer type",
+ element_ty2,
+ arg_tys[2]
+ );
+ }
+ }
+
+ // Alignment of T, must be a constant integer value:
+ let alignment_ty = bx.type_i32();
+ let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
+
+ // Truncate the mask vector to a vector of i1s:
+ let (mask, mask_ty) = {
+ let i1 = bx.type_i1();
+ let i1xn = bx.type_vector(i1, in_len);
+ (bx.trunc(args[2].immediate(), i1xn), i1xn)
+ };
+
+ // Type of the vector of pointers:
+ let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
+ let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count, bx);
+
+ // Type of the vector of elements:
+ let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
+ let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1, bx);
+
+ let llvm_intrinsic =
+ format!("llvm.masked.gather.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
+ let fn_ty = bx.type_func(
+ &[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty],
+ llvm_elem_vec_ty,
+ );
+ let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
+ let v =
+ bx.call(fn_ty, f, &[args[1].immediate(), alignment, mask, args[0].immediate()], None);
+ return Ok(v);
+ }
+
+ if name == sym::simd_scatter {
+ // simd_scatter(values: <N x T>, pointers: <N x *mut T>,
+ // mask: <N x i{M}>) -> ()
+ // * N: number of elements in the input vectors
+ // * T: type of the element to load
+ // * M: any integer width is supported, will be truncated to i1
+
+ // All types must be simd vector types
+ require_simd!(in_ty, "first");
+ require_simd!(arg_tys[1], "second");
+ require_simd!(arg_tys[2], "third");
+
+ // Of the same length:
+ let (element_len1, _) = arg_tys[1].simd_size_and_type(bx.tcx());
+ let (element_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
+ require!(
+ in_len == element_len1,
+ "expected {} argument with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ "second",
+ in_len,
+ in_ty,
+ arg_tys[1],
+ element_len1
+ );
+ require!(
+ in_len == element_len2,
+ "expected {} argument with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ "third",
+ in_len,
+ in_ty,
+ arg_tys[2],
+ element_len2
+ );
+
+ // This counts how many pointers
+ fn ptr_count(t: Ty<'_>) -> usize {
+ match t.kind() {
+ ty::RawPtr(p) => 1 + ptr_count(p.ty),
+ _ => 0,
+ }
+ }
+
+ // Non-ptr type
+ fn non_ptr(t: Ty<'_>) -> Ty<'_> {
+ match t.kind() {
+ ty::RawPtr(p) => non_ptr(p.ty),
+ _ => t,
+ }
+ }
+
+ // The second argument must be a simd vector with an element type that's a pointer
+ // to the element type of the first argument
+ let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
+ let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
+ let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
+ let (pointer_count, underlying_ty) = match element_ty1.kind() {
+ ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => {
+ (ptr_count(element_ty1), non_ptr(element_ty1))
+ }
+ _ => {
+ require!(
+ false,
+ "expected element type `{}` of second argument `{}` \
+ to be a pointer to the element type `{}` of the first \
+ argument `{}`, found `{}` != `*mut {}`",
+ element_ty1,
+ arg_tys[1],
+ in_elem,
+ in_ty,
+ element_ty1,
+ in_elem
+ );
+ unreachable!();
+ }
+ };
+ assert!(pointer_count > 0);
+ assert_eq!(pointer_count - 1, ptr_count(element_ty0));
+ assert_eq!(underlying_ty, non_ptr(element_ty0));
+
+ // The element type of the third argument must be a signed integer type of any width:
+ match element_ty2.kind() {
+ ty::Int(_) => (),
+ _ => {
+ require!(
+ false,
+ "expected element type `{}` of third argument `{}` \
+ be a signed integer type",
+ element_ty2,
+ arg_tys[2]
+ );
+ }
+ }
+
+ // Alignment of T, must be a constant integer value:
+ let alignment_ty = bx.type_i32();
+ let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
+
+ // Truncate the mask vector to a vector of i1s:
+ let (mask, mask_ty) = {
+ let i1 = bx.type_i1();
+ let i1xn = bx.type_vector(i1, in_len);
+ (bx.trunc(args[2].immediate(), i1xn), i1xn)
+ };
+
+ let ret_t = bx.type_void();
+
+ // Type of the vector of pointers:
+ let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
+ let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count, bx);
+
+ // Type of the vector of elements:
+ let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
+ let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1, bx);
+
+ let llvm_intrinsic =
+ format!("llvm.masked.scatter.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
+ let fn_ty =
+ bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t);
+ let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
+ let v =
+ bx.call(fn_ty, f, &[args[0].immediate(), args[1].immediate(), alignment, mask], None);
+ return Ok(v);
+ }
+
+ macro_rules! arith_red {
+ ($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident,
+ $identity:expr) => {
+ if name == sym::$name {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ return match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) => {
+ let r = bx.$integer_reduce(args[0].immediate());
+ if $ordered {
+ // if overflow occurs, the result is the
+ // mathematical result modulo 2^n:
+ Ok(bx.$op(args[1].immediate(), r))
+ } else {
+ Ok(bx.$integer_reduce(args[0].immediate()))
+ }
+ }
+ ty::Float(f) => {
+ let acc = if $ordered {
+ // ordered arithmetic reductions take an accumulator
+ args[1].immediate()
+ } else {
+ // unordered arithmetic reductions use the identity accumulator
+ match f.bit_width() {
+ 32 => bx.const_real(bx.type_f32(), $identity),
+ 64 => bx.const_real(bx.type_f64(), $identity),
+ v => return_error!(
+ r#"
+unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
+ sym::$name,
+ in_ty,
+ in_elem,
+ v,
+ ret_ty
+ ),
+ }
+ };
+ Ok(bx.$float_reduce(acc, args[0].immediate()))
+ }
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ };
+ }
+ };
+ }
+
+ arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, 0.0);
+ arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0);
+ arith_red!(
+ simd_reduce_add_unordered: vector_reduce_add,
+ vector_reduce_fadd_fast,
+ false,
+ add,
+ 0.0
+ );
+ arith_red!(
+ simd_reduce_mul_unordered: vector_reduce_mul,
+ vector_reduce_fmul_fast,
+ false,
+ mul,
+ 1.0
+ );
+
+ macro_rules! minmax_red {
+ ($name:ident: $int_red:ident, $float_red:ident) => {
+ if name == sym::$name {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ return match in_elem.kind() {
+ ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)),
+ ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)),
+ ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())),
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ };
+ }
+ };
+ }
+
+ minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin);
+ minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax);
+
+ minmax_red!(simd_reduce_min_nanless: vector_reduce_min, vector_reduce_fmin_fast);
+ minmax_red!(simd_reduce_max_nanless: vector_reduce_max, vector_reduce_fmax_fast);
+
+ macro_rules! bitwise_red {
+ ($name:ident : $red:ident, $boolean:expr) => {
+ if name == sym::$name {
+ let input = if !$boolean {
+ require!(
+ ret_ty == in_elem,
+ "expected return type `{}` (element of input `{}`), found `{}`",
+ in_elem,
+ in_ty,
+ ret_ty
+ );
+ args[0].immediate()
+ } else {
+ match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) => {}
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ }
+
+ // boolean reductions operate on vectors of i1s:
+ let i1 = bx.type_i1();
+ let i1xn = bx.type_vector(i1, in_len as u64);
+ bx.trunc(args[0].immediate(), i1xn)
+ };
+ return match in_elem.kind() {
+ ty::Int(_) | ty::Uint(_) => {
+ let r = bx.$red(input);
+ Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
+ }
+ _ => return_error!(
+ "unsupported {} from `{}` with element `{}` to `{}`",
+ sym::$name,
+ in_ty,
+ in_elem,
+ ret_ty
+ ),
+ };
+ }
+ };
+ }
+
+ bitwise_red!(simd_reduce_and: vector_reduce_and, false);
+ bitwise_red!(simd_reduce_or: vector_reduce_or, false);
+ bitwise_red!(simd_reduce_xor: vector_reduce_xor, false);
+ bitwise_red!(simd_reduce_all: vector_reduce_and, true);
+ bitwise_red!(simd_reduce_any: vector_reduce_or, true);
+
+ if name == sym::simd_cast || name == sym::simd_as {
+ require_simd!(ret_ty, "return");
+ let (out_len, out_elem) = ret_ty.simd_size_and_type(bx.tcx());
+ require!(
+ in_len == out_len,
+ "expected return type with length {} (same as input type `{}`), \
+ found `{}` with length {}",
+ in_len,
+ in_ty,
+ ret_ty,
+ out_len
+ );
+ // casting cares about nominal type, not just structural type
+ if in_elem == out_elem {
+ return Ok(args[0].immediate());
+ }
+
+ enum Style {
+ Float,
+ Int(/* is signed? */ bool),
+ Unsupported,
+ }
+
+ let (in_style, in_width) = match in_elem.kind() {
+ // vectors of pointer-sized integers should've been
+ // disallowed before here, so this unwrap is safe.
+ ty::Int(i) => (
+ Style::Int(true),
+ i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Uint(u) => (
+ Style::Int(false),
+ u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Float(f) => (Style::Float, f.bit_width()),
+ _ => (Style::Unsupported, 0),
+ };
+ let (out_style, out_width) = match out_elem.kind() {
+ ty::Int(i) => (
+ Style::Int(true),
+ i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Uint(u) => (
+ Style::Int(false),
+ u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
+ ),
+ ty::Float(f) => (Style::Float, f.bit_width()),
+ _ => (Style::Unsupported, 0),
+ };
+
+ match (in_style, out_style) {
+ (Style::Int(in_is_signed), Style::Int(_)) => {
+ return Ok(match in_width.cmp(&out_width) {
+ Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
+ Ordering::Equal => args[0].immediate(),
+ Ordering::Less => {
+ if in_is_signed {
+ bx.sext(args[0].immediate(), llret_ty)
+ } else {
+ bx.zext(args[0].immediate(), llret_ty)
+ }
+ }
+ });
+ }
+ (Style::Int(in_is_signed), Style::Float) => {
+ return Ok(if in_is_signed {
+ bx.sitofp(args[0].immediate(), llret_ty)
+ } else {
+ bx.uitofp(args[0].immediate(), llret_ty)
+ });
+ }
+ (Style::Float, Style::Int(out_is_signed)) => {
+ return Ok(match (out_is_signed, name == sym::simd_as) {
+ (false, false) => bx.fptoui(args[0].immediate(), llret_ty),
+ (true, false) => bx.fptosi(args[0].immediate(), llret_ty),
+ (_, true) => bx.cast_float_to_int(out_is_signed, args[0].immediate(), llret_ty),
+ });
+ }
+ (Style::Float, Style::Float) => {
+ return Ok(match in_width.cmp(&out_width) {
+ Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
+ Ordering::Equal => args[0].immediate(),
+ Ordering::Less => bx.fpext(args[0].immediate(), llret_ty),
+ });
+ }
+ _ => { /* Unsupported. Fallthrough. */ }
+ }
+ require!(
+ false,
+ "unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
+ in_ty,
+ in_elem,
+ ret_ty,
+ out_elem
+ );
+ }
+ macro_rules! arith_binary {
+ ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
+ $(if name == sym::$name {
+ match in_elem.kind() {
+ $($(ty::$p(_))|* => {
+ return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
+ })*
+ _ => {},
+ }
+ require!(false,
+ "unsupported operation on `{}` with element `{}`",
+ in_ty,
+ in_elem)
+ })*
+ }
+ }
+ arith_binary! {
+ simd_add: Uint, Int => add, Float => fadd;
+ simd_sub: Uint, Int => sub, Float => fsub;
+ simd_mul: Uint, Int => mul, Float => fmul;
+ simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
+ simd_rem: Uint => urem, Int => srem, Float => frem;
+ simd_shl: Uint, Int => shl;
+ simd_shr: Uint => lshr, Int => ashr;
+ simd_and: Uint, Int => and;
+ simd_or: Uint, Int => or;
+ simd_xor: Uint, Int => xor;
+ simd_fmax: Float => maxnum;
+ simd_fmin: Float => minnum;
+
+ }
+ macro_rules! arith_unary {
+ ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
+ $(if name == sym::$name {
+ match in_elem.kind() {
+ $($(ty::$p(_))|* => {
+ return Ok(bx.$call(args[0].immediate()))
+ })*
+ _ => {},
+ }
+ require!(false,
+ "unsupported operation on `{}` with element `{}`",
+ in_ty,
+ in_elem)
+ })*
+ }
+ }
+ arith_unary! {
+ simd_neg: Int => neg, Float => fneg;
+ }
+
+ if name == sym::simd_arith_offset {
+ // This also checks that the first operand is a ptr type.
+ let pointee = in_elem.builtin_deref(true).unwrap_or_else(|| {
+ span_bug!(span, "must be called with a vector of pointer types as first argument")
+ });
+ let layout = bx.layout_of(pointee.ty);
+ let ptrs = args[0].immediate();
+ // The second argument must be a ptr-sized integer.
+ // (We don't care about the signedness, this is wrapping anyway.)
+ let (_offsets_len, offsets_elem) = arg_tys[1].simd_size_and_type(bx.tcx());
+ if !matches!(offsets_elem.kind(), ty::Int(ty::IntTy::Isize) | ty::Uint(ty::UintTy::Usize)) {
+ span_bug!(
+ span,
+ "must be called with a vector of pointer-sized integers as second argument"
+ );
+ }
+ let offsets = args[1].immediate();
+
+ return Ok(bx.gep(bx.backend_type(layout), ptrs, &[offsets]));
+ }
+
+ if name == sym::simd_saturating_add || name == sym::simd_saturating_sub {
+ let lhs = args[0].immediate();
+ let rhs = args[1].immediate();
+ let is_add = name == sym::simd_saturating_add;
+ let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
+ let (signed, elem_width, elem_ty) = match *in_elem.kind() {
+ ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
+ ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
+ _ => {
+ return_error!(
+ "expected element type `{}` of vector type `{}` \
+ to be a signed or unsigned integer type",
+ arg_tys[0].simd_size_and_type(bx.tcx()).1,
+ arg_tys[0]
+ );
+ }
+ };
+ let llvm_intrinsic = &format!(
+ "llvm.{}{}.sat.v{}i{}",
+ if signed { 's' } else { 'u' },
+ if is_add { "add" } else { "sub" },
+ in_len,
+ elem_width
+ );
+ let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
+
+ let fn_ty = bx.type_func(&[vec_ty, vec_ty], vec_ty);
+ let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
+ let v = bx.call(fn_ty, f, &[lhs, rhs], None);
+ return Ok(v);
+ }
+
+ span_bug!(span, "unknown SIMD intrinsic");
+}
+
+// Returns the width of an int Ty, and if it's signed or not
+// Returns None if the type is not an integer
+// FIXME: there’s multiple of this functions, investigate using some of the already existing
+// stuffs.
+fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> {
+ match ty.kind() {
+ ty::Int(t) => {
+ Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), true))
+ }
+ ty::Uint(t) => {
+ Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), false))
+ }
+ _ => None,
+ }
+}