summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_ssa/src/back/write.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_ssa/src/back/write.rs')
-rw-r--r--compiler/rustc_codegen_ssa/src/back/write.rs36
1 files changed, 18 insertions, 18 deletions
diff --git a/compiler/rustc_codegen_ssa/src/back/write.rs b/compiler/rustc_codegen_ssa/src/back/write.rs
index 12fca6496..9f1614af7 100644
--- a/compiler/rustc_codegen_ssa/src/back/write.rs
+++ b/compiler/rustc_codegen_ssa/src/back/write.rs
@@ -105,7 +105,7 @@ pub struct ModuleConfig {
pub emit_thin_lto: bool,
pub bc_cmdline: String,
- // Miscellaneous flags. These are mostly copied from command-line
+ // Miscellaneous flags. These are mostly copied from command-line
// options.
pub verify_llvm_ir: bool,
pub no_prepopulate_passes: bool,
@@ -538,7 +538,7 @@ fn produce_final_output_artifacts(
let copy_if_one_unit = |output_type: OutputType, keep_numbered: bool| {
if compiled_modules.modules.len() == 1 {
- // 1) Only one codegen unit. In this case it's no difficulty
+ // 1) Only one codegen unit. In this case it's no difficulty
// to copy `foo.0.x` to `foo.x`.
let module_name = Some(&compiled_modules.modules[0].name[..]);
let path = crate_output.temp_path(output_type, module_name);
@@ -557,15 +557,15 @@ fn produce_final_output_artifacts(
.to_owned();
if crate_output.outputs.contains_key(&output_type) {
- // 2) Multiple codegen units, with `--emit foo=some_name`. We have
+ // 2) Multiple codegen units, with `--emit foo=some_name`. We have
// no good solution for this case, so warn the user.
sess.emit_warning(errors::IgnoringEmitPath { extension });
} else if crate_output.single_output_file.is_some() {
- // 3) Multiple codegen units, with `-o some_name`. We have
+ // 3) Multiple codegen units, with `-o some_name`. We have
// no good solution for this case, so warn the user.
sess.emit_warning(errors::IgnoringOutput { extension });
} else {
- // 4) Multiple codegen units, but no explicit name. We
+ // 4) Multiple codegen units, but no explicit name. We
// just leave the `foo.0.x` files in place.
// (We don't have to do any work in this case.)
}
@@ -579,7 +579,7 @@ fn produce_final_output_artifacts(
match *output_type {
OutputType::Bitcode => {
user_wants_bitcode = true;
- // Copy to .bc, but always keep the .0.bc. There is a later
+ // Copy to .bc, but always keep the .0.bc. There is a later
// check to figure out if we should delete .0.bc files, or keep
// them for making an rlib.
copy_if_one_unit(OutputType::Bitcode, true);
@@ -611,7 +611,7 @@ fn produce_final_output_artifacts(
// `-C save-temps` or `--emit=` flags).
if !sess.opts.cg.save_temps {
- // Remove the temporary .#module-name#.o objects. If the user didn't
+ // Remove the temporary .#module-name#.o objects. If the user didn't
// explicitly request bitcode (with --emit=bc), and the bitcode is not
// needed for building an rlib, then we must remove .#module-name#.bc as
// well.
@@ -1002,7 +1002,7 @@ fn start_executing_work<B: ExtraBackendMethods>(
let sess = tcx.sess;
let mut each_linked_rlib_for_lto = Vec::new();
- drop(link::each_linked_rlib(sess, crate_info, &mut |cnum, path| {
+ drop(link::each_linked_rlib(crate_info, None, &mut |cnum, path| {
if link::ignored_for_lto(sess, crate_info, cnum) {
return;
}
@@ -1098,7 +1098,7 @@ fn start_executing_work<B: ExtraBackendMethods>(
// There are a few environmental pre-conditions that shape how the system
// is set up:
//
- // - Error reporting only can happen on the main thread because that's the
+ // - Error reporting can only happen on the main thread because that's the
// only place where we have access to the compiler `Session`.
// - LLVM work can be done on any thread.
// - Codegen can only happen on the main thread.
@@ -1110,16 +1110,16 @@ fn start_executing_work<B: ExtraBackendMethods>(
// Error Reporting
// ===============
// The error reporting restriction is handled separately from the rest: We
- // set up a `SharedEmitter` the holds an open channel to the main thread.
+ // set up a `SharedEmitter` that holds an open channel to the main thread.
// When an error occurs on any thread, the shared emitter will send the
// error message to the receiver main thread (`SharedEmitterMain`). The
// main thread will periodically query this error message queue and emit
// any error messages it has received. It might even abort compilation if
- // has received a fatal error. In this case we rely on all other threads
+ // it has received a fatal error. In this case we rely on all other threads
// being torn down automatically with the main thread.
// Since the main thread will often be busy doing codegen work, error
// reporting will be somewhat delayed, since the message queue can only be
- // checked in between to work packages.
+ // checked in between two work packages.
//
// Work Processing Infrastructure
// ==============================
@@ -1133,7 +1133,7 @@ fn start_executing_work<B: ExtraBackendMethods>(
// thread about what work to do when, and it will spawn off LLVM worker
// threads as open LLVM WorkItems become available.
//
- // The job of the main thread is to codegen CGUs into LLVM work package
+ // The job of the main thread is to codegen CGUs into LLVM work packages
// (since the main thread is the only thread that can do this). The main
// thread will block until it receives a message from the coordinator, upon
// which it will codegen one CGU, send it to the coordinator and block
@@ -1142,10 +1142,10 @@ fn start_executing_work<B: ExtraBackendMethods>(
//
// The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
// available, it will spawn off a new LLVM worker thread and let it process
- // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
+ // a WorkItem. When a LLVM worker thread is done with its WorkItem,
// it will just shut down, which also frees all resources associated with
// the given LLVM module, and sends a message to the coordinator that the
- // has been completed.
+ // WorkItem has been completed.
//
// Work Scheduling
// ===============
@@ -1165,7 +1165,7 @@ fn start_executing_work<B: ExtraBackendMethods>(
//
// Doing LLVM Work on the Main Thread
// ----------------------------------
- // Since the main thread owns the compiler processes implicit `Token`, it is
+ // Since the main thread owns the compiler process's implicit `Token`, it is
// wasteful to keep it blocked without doing any work. Therefore, what we do
// in this case is: We spawn off an additional LLVM worker thread that helps
// reduce the queue. The work it is doing corresponds to the implicit
@@ -1216,7 +1216,7 @@ fn start_executing_work<B: ExtraBackendMethods>(
// ------------------------------
//
// The final job the coordinator thread is responsible for is managing LTO
- // and how that works. When LTO is requested what we'll to is collect all
+ // and how that works. When LTO is requested what we'll do is collect all
// optimized LLVM modules into a local vector on the coordinator. Once all
// modules have been codegened and optimized we hand this to the `lto`
// module for further optimization. The `lto` module will return back a list
@@ -1899,7 +1899,7 @@ impl<B: ExtraBackendMethods> OngoingCodegen<B> {
// FIXME: time_llvm_passes support - does this use a global context or
// something?
- if sess.codegen_units() == 1 && sess.time_llvm_passes() {
+ if sess.codegen_units() == 1 && sess.opts.unstable_opts.time_llvm_passes {
self.backend.print_pass_timings()
}