summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_ssa/src/base.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_ssa/src/base.rs')
-rw-r--r--compiler/rustc_codegen_ssa/src/base.rs961
1 files changed, 961 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_ssa/src/base.rs b/compiler/rustc_codegen_ssa/src/base.rs
new file mode 100644
index 000000000..a840b2709
--- /dev/null
+++ b/compiler/rustc_codegen_ssa/src/base.rs
@@ -0,0 +1,961 @@
+use crate::back::metadata::create_compressed_metadata_file;
+use crate::back::write::{
+ compute_per_cgu_lto_type, start_async_codegen, submit_codegened_module_to_llvm,
+ submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm, ComputedLtoType, OngoingCodegen,
+};
+use crate::common::{IntPredicate, RealPredicate, TypeKind};
+use crate::meth;
+use crate::mir;
+use crate::mir::operand::OperandValue;
+use crate::mir::place::PlaceRef;
+use crate::traits::*;
+use crate::{CachedModuleCodegen, CompiledModule, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
+
+use rustc_attr as attr;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
+
+use rustc_data_structures::sync::par_iter;
+#[cfg(parallel_compiler)]
+use rustc_data_structures::sync::ParallelIterator;
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LOCAL_CRATE};
+use rustc_hir::lang_items::LangItem;
+use rustc_index::vec::Idx;
+use rustc_metadata::EncodedMetadata;
+use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
+use rustc_middle::middle::exported_symbols;
+use rustc_middle::middle::lang_items;
+use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
+use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
+use rustc_session::cgu_reuse_tracker::CguReuse;
+use rustc_session::config::{self, CrateType, EntryFnType, OutputType};
+use rustc_session::Session;
+use rustc_span::symbol::sym;
+use rustc_span::{DebuggerVisualizerFile, DebuggerVisualizerType};
+use rustc_target::abi::{Align, VariantIdx};
+
+use std::collections::BTreeSet;
+use std::convert::TryFrom;
+use std::time::{Duration, Instant};
+
+use itertools::Itertools;
+
+pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
+ match op {
+ hir::BinOpKind::Eq => IntPredicate::IntEQ,
+ hir::BinOpKind::Ne => IntPredicate::IntNE,
+ hir::BinOpKind::Lt => {
+ if signed {
+ IntPredicate::IntSLT
+ } else {
+ IntPredicate::IntULT
+ }
+ }
+ hir::BinOpKind::Le => {
+ if signed {
+ IntPredicate::IntSLE
+ } else {
+ IntPredicate::IntULE
+ }
+ }
+ hir::BinOpKind::Gt => {
+ if signed {
+ IntPredicate::IntSGT
+ } else {
+ IntPredicate::IntUGT
+ }
+ }
+ hir::BinOpKind::Ge => {
+ if signed {
+ IntPredicate::IntSGE
+ } else {
+ IntPredicate::IntUGE
+ }
+ }
+ op => bug!(
+ "comparison_op_to_icmp_predicate: expected comparison operator, \
+ found {:?}",
+ op
+ ),
+ }
+}
+
+pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
+ match op {
+ hir::BinOpKind::Eq => RealPredicate::RealOEQ,
+ hir::BinOpKind::Ne => RealPredicate::RealUNE,
+ hir::BinOpKind::Lt => RealPredicate::RealOLT,
+ hir::BinOpKind::Le => RealPredicate::RealOLE,
+ hir::BinOpKind::Gt => RealPredicate::RealOGT,
+ hir::BinOpKind::Ge => RealPredicate::RealOGE,
+ op => {
+ bug!(
+ "comparison_op_to_fcmp_predicate: expected comparison operator, \
+ found {:?}",
+ op
+ );
+ }
+ }
+}
+
+pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ lhs: Bx::Value,
+ rhs: Bx::Value,
+ t: Ty<'tcx>,
+ ret_ty: Bx::Type,
+ op: hir::BinOpKind,
+) -> Bx::Value {
+ let signed = match t.kind() {
+ ty::Float(_) => {
+ let cmp = bin_op_to_fcmp_predicate(op);
+ let cmp = bx.fcmp(cmp, lhs, rhs);
+ return bx.sext(cmp, ret_ty);
+ }
+ ty::Uint(_) => false,
+ ty::Int(_) => true,
+ _ => bug!("compare_simd_types: invalid SIMD type"),
+ };
+
+ let cmp = bin_op_to_icmp_predicate(op, signed);
+ let cmp = bx.icmp(cmp, lhs, rhs);
+ // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
+ // to get the correctly sized type. This will compile to a single instruction
+ // once the IR is converted to assembly if the SIMD instruction is supported
+ // by the target architecture.
+ bx.sext(cmp, ret_ty)
+}
+
+/// Retrieves the information we are losing (making dynamic) in an unsizing
+/// adjustment.
+///
+/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
+/// where the new vtable for an object will be derived from the old one.
+pub fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ source: Ty<'tcx>,
+ target: Ty<'tcx>,
+ old_info: Option<Bx::Value>,
+) -> Bx::Value {
+ let cx = bx.cx();
+ let (source, target) =
+ cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, bx.param_env());
+ match (source.kind(), target.kind()) {
+ (&ty::Array(_, len), &ty::Slice(_)) => {
+ cx.const_usize(len.eval_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
+ }
+ (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
+ let old_info =
+ old_info.expect("unsized_info: missing old info for trait upcasting coercion");
+ if data_a.principal_def_id() == data_b.principal_def_id() {
+ return old_info;
+ }
+
+ // trait upcasting coercion
+
+ let vptr_entry_idx =
+ cx.tcx().vtable_trait_upcasting_coercion_new_vptr_slot((source, target));
+
+ if let Some(entry_idx) = vptr_entry_idx {
+ let ptr_ty = cx.type_i8p();
+ let ptr_align = cx.tcx().data_layout.pointer_align.abi;
+ let llvtable = bx.pointercast(old_info, bx.type_ptr_to(ptr_ty));
+ let gep = bx.inbounds_gep(
+ ptr_ty,
+ llvtable,
+ &[bx.const_usize(u64::try_from(entry_idx).unwrap())],
+ );
+ let new_vptr = bx.load(ptr_ty, gep, ptr_align);
+ bx.nonnull_metadata(new_vptr);
+ // VTable loads are invariant.
+ bx.set_invariant_load(new_vptr);
+ new_vptr
+ } else {
+ old_info
+ }
+ }
+ (_, &ty::Dynamic(ref data, ..)) => {
+ let vtable_ptr_ty = cx.scalar_pair_element_backend_type(
+ cx.layout_of(cx.tcx().mk_mut_ptr(target)),
+ 1,
+ true,
+ );
+ cx.const_ptrcast(meth::get_vtable(cx, source, data.principal()), vtable_ptr_ty)
+ }
+ _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
+ }
+}
+
+/// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
+pub fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ src: Bx::Value,
+ src_ty: Ty<'tcx>,
+ dst_ty: Ty<'tcx>,
+ old_info: Option<Bx::Value>,
+) -> (Bx::Value, Bx::Value) {
+ debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
+ match (src_ty.kind(), dst_ty.kind()) {
+ (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
+ | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
+ assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
+ let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
+ (bx.pointercast(src, ptr_ty), unsized_info(bx, a, b, old_info))
+ }
+ (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
+ assert_eq!(def_a, def_b);
+ let src_layout = bx.cx().layout_of(src_ty);
+ let dst_layout = bx.cx().layout_of(dst_ty);
+ if src_ty == dst_ty {
+ return (src, old_info.unwrap());
+ }
+ let mut result = None;
+ for i in 0..src_layout.fields.count() {
+ let src_f = src_layout.field(bx.cx(), i);
+ if src_f.is_zst() {
+ continue;
+ }
+
+ assert_eq!(src_layout.fields.offset(i).bytes(), 0);
+ assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
+ assert_eq!(src_layout.size, src_f.size);
+
+ let dst_f = dst_layout.field(bx.cx(), i);
+ assert_ne!(src_f.ty, dst_f.ty);
+ assert_eq!(result, None);
+ result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
+ }
+ let (lldata, llextra) = result.unwrap();
+ let lldata_ty = bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true);
+ let llextra_ty = bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true);
+ // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
+ (bx.bitcast(lldata, lldata_ty), bx.bitcast(llextra, llextra_ty))
+ }
+ _ => bug!("unsize_ptr: called on bad types"),
+ }
+}
+
+/// Coerces `src`, which is a reference to a value of type `src_ty`,
+/// to a value of type `dst_ty`, and stores the result in `dst`.
+pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ src: PlaceRef<'tcx, Bx::Value>,
+ dst: PlaceRef<'tcx, Bx::Value>,
+) {
+ let src_ty = src.layout.ty;
+ let dst_ty = dst.layout.ty;
+ match (src_ty.kind(), dst_ty.kind()) {
+ (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
+ let (base, info) = match bx.load_operand(src).val {
+ OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
+ OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
+ OperandValue::Ref(..) => bug!(),
+ };
+ OperandValue::Pair(base, info).store(bx, dst);
+ }
+
+ (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
+ assert_eq!(def_a, def_b);
+
+ for i in 0..def_a.variant(VariantIdx::new(0)).fields.len() {
+ let src_f = src.project_field(bx, i);
+ let dst_f = dst.project_field(bx, i);
+
+ if dst_f.layout.is_zst() {
+ continue;
+ }
+
+ if src_f.layout.ty == dst_f.layout.ty {
+ memcpy_ty(
+ bx,
+ dst_f.llval,
+ dst_f.align,
+ src_f.llval,
+ src_f.align,
+ src_f.layout,
+ MemFlags::empty(),
+ );
+ } else {
+ coerce_unsized_into(bx, src_f, dst_f);
+ }
+ }
+ }
+ _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
+ }
+}
+
+pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ op: hir::BinOpKind,
+ lhs: Bx::Value,
+ rhs: Bx::Value,
+) -> Bx::Value {
+ cast_shift_rhs(bx, op, lhs, rhs)
+}
+
+fn cast_shift_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ op: hir::BinOpKind,
+ lhs: Bx::Value,
+ rhs: Bx::Value,
+) -> Bx::Value {
+ // Shifts may have any size int on the rhs
+ if op.is_shift() {
+ let mut rhs_llty = bx.cx().val_ty(rhs);
+ let mut lhs_llty = bx.cx().val_ty(lhs);
+ if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
+ rhs_llty = bx.cx().element_type(rhs_llty)
+ }
+ if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
+ lhs_llty = bx.cx().element_type(lhs_llty)
+ }
+ let rhs_sz = bx.cx().int_width(rhs_llty);
+ let lhs_sz = bx.cx().int_width(lhs_llty);
+ if lhs_sz < rhs_sz {
+ bx.trunc(rhs, lhs_llty)
+ } else if lhs_sz > rhs_sz {
+ // FIXME (#1877: If in the future shifting by negative
+ // values is no longer undefined then this is wrong.
+ bx.zext(rhs, lhs_llty)
+ } else {
+ rhs
+ }
+ } else {
+ rhs
+ }
+}
+
+/// Returns `true` if this session's target will use SEH-based unwinding.
+///
+/// This is only true for MSVC targets, and even then the 64-bit MSVC target
+/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
+/// 64-bit MinGW) instead of "full SEH".
+pub fn wants_msvc_seh(sess: &Session) -> bool {
+ sess.target.is_like_msvc
+}
+
+pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ dst: Bx::Value,
+ dst_align: Align,
+ src: Bx::Value,
+ src_align: Align,
+ layout: TyAndLayout<'tcx>,
+ flags: MemFlags,
+) {
+ let size = layout.size.bytes();
+ if size == 0 {
+ return;
+ }
+
+ bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
+}
+
+pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
+ cx: &'a Bx::CodegenCx,
+ instance: Instance<'tcx>,
+) {
+ // this is an info! to allow collecting monomorphization statistics
+ // and to allow finding the last function before LLVM aborts from
+ // release builds.
+ info!("codegen_instance({})", instance);
+
+ mir::codegen_mir::<Bx>(cx, instance);
+}
+
+/// Creates the `main` function which will initialize the rust runtime and call
+/// users main function.
+pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ cx: &'a Bx::CodegenCx,
+) -> Option<Bx::Function> {
+ let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
+ let main_is_local = main_def_id.is_local();
+ let instance = Instance::mono(cx.tcx(), main_def_id);
+
+ if main_is_local {
+ // We want to create the wrapper in the same codegen unit as Rust's main
+ // function.
+ if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
+ return None;
+ }
+ } else if !cx.codegen_unit().is_primary() {
+ // We want to create the wrapper only when the codegen unit is the primary one
+ return None;
+ }
+
+ let main_llfn = cx.get_fn_addr(instance);
+
+ let use_start_lang_item = EntryFnType::Start != entry_type;
+ let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, use_start_lang_item);
+ return Some(entry_fn);
+
+ fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ cx: &'a Bx::CodegenCx,
+ rust_main: Bx::Value,
+ rust_main_def_id: DefId,
+ use_start_lang_item: bool,
+ ) -> Bx::Function {
+ // The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
+ // depending on whether the target needs `argc` and `argv` to be passed in.
+ let llfty = if cx.sess().target.main_needs_argc_argv {
+ cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
+ } else {
+ cx.type_func(&[], cx.type_int())
+ };
+
+ let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).output();
+ // Given that `main()` has no arguments,
+ // then its return type cannot have
+ // late-bound regions, since late-bound
+ // regions must appear in the argument
+ // listing.
+ let main_ret_ty = cx.tcx().normalize_erasing_regions(
+ ty::ParamEnv::reveal_all(),
+ main_ret_ty.no_bound_vars().unwrap(),
+ );
+
+ let Some(llfn) = cx.declare_c_main(llfty) else {
+ // FIXME: We should be smart and show a better diagnostic here.
+ let span = cx.tcx().def_span(rust_main_def_id);
+ cx.sess()
+ .struct_span_err(span, "entry symbol `main` declared multiple times")
+ .help("did you use `#[no_mangle]` on `fn main`? Use `#[start]` instead")
+ .emit();
+ cx.sess().abort_if_errors();
+ bug!();
+ };
+
+ // `main` should respect same config for frame pointer elimination as rest of code
+ cx.set_frame_pointer_type(llfn);
+ cx.apply_target_cpu_attr(llfn);
+
+ let llbb = Bx::append_block(&cx, llfn, "top");
+ let mut bx = Bx::build(&cx, llbb);
+
+ bx.insert_reference_to_gdb_debug_scripts_section_global();
+
+ let isize_ty = cx.type_isize();
+ let i8pp_ty = cx.type_ptr_to(cx.type_i8p());
+ let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
+
+ let (start_fn, start_ty, args) = if use_start_lang_item {
+ let start_def_id = cx.tcx().require_lang_item(LangItem::Start, None);
+ let start_fn = cx.get_fn_addr(
+ ty::Instance::resolve(
+ cx.tcx(),
+ ty::ParamEnv::reveal_all(),
+ start_def_id,
+ cx.tcx().intern_substs(&[main_ret_ty.into()]),
+ )
+ .unwrap()
+ .unwrap(),
+ );
+ let start_ty = cx.type_func(&[cx.val_ty(rust_main), isize_ty, i8pp_ty], isize_ty);
+ (start_fn, start_ty, vec![rust_main, arg_argc, arg_argv])
+ } else {
+ debug!("using user-defined start fn");
+ let start_ty = cx.type_func(&[isize_ty, i8pp_ty], isize_ty);
+ (rust_main, start_ty, vec![arg_argc, arg_argv])
+ };
+
+ let result = bx.call(start_ty, start_fn, &args, None);
+ let cast = bx.intcast(result, cx.type_int(), true);
+ bx.ret(cast);
+
+ llfn
+ }
+}
+
+/// Obtain the `argc` and `argv` values to pass to the rust start function.
+fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ cx: &'a Bx::CodegenCx,
+ bx: &mut Bx,
+) -> (Bx::Value, Bx::Value) {
+ if cx.sess().target.main_needs_argc_argv {
+ // Params from native `main()` used as args for rust start function
+ let param_argc = bx.get_param(0);
+ let param_argv = bx.get_param(1);
+ let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
+ let arg_argv = param_argv;
+ (arg_argc, arg_argv)
+ } else {
+ // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
+ let arg_argc = bx.const_int(cx.type_int(), 0);
+ let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
+ (arg_argc, arg_argv)
+ }
+}
+
+/// This function returns all of the debugger visualizers specified for the
+/// current crate as well as all upstream crates transitively that match the
+/// `visualizer_type` specified.
+pub fn collect_debugger_visualizers_transitive(
+ tcx: TyCtxt<'_>,
+ visualizer_type: DebuggerVisualizerType,
+) -> BTreeSet<DebuggerVisualizerFile> {
+ tcx.debugger_visualizers(LOCAL_CRATE)
+ .iter()
+ .chain(
+ tcx.crates(())
+ .iter()
+ .filter(|&cnum| {
+ let used_crate_source = tcx.used_crate_source(*cnum);
+ used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
+ })
+ .flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
+ )
+ .filter(|visualizer| visualizer.visualizer_type == visualizer_type)
+ .cloned()
+ .collect::<BTreeSet<_>>()
+}
+
+pub fn codegen_crate<B: ExtraBackendMethods>(
+ backend: B,
+ tcx: TyCtxt<'_>,
+ target_cpu: String,
+ metadata: EncodedMetadata,
+ need_metadata_module: bool,
+) -> OngoingCodegen<B> {
+ // Skip crate items and just output metadata in -Z no-codegen mode.
+ if tcx.sess.opts.unstable_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
+ let ongoing_codegen = start_async_codegen(backend, tcx, target_cpu, metadata, None, 1);
+
+ ongoing_codegen.codegen_finished(tcx);
+
+ ongoing_codegen.check_for_errors(tcx.sess);
+
+ return ongoing_codegen;
+ }
+
+ let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
+
+ // Run the monomorphization collector and partition the collected items into
+ // codegen units.
+ let codegen_units = tcx.collect_and_partition_mono_items(()).1;
+
+ // Force all codegen_unit queries so they are already either red or green
+ // when compile_codegen_unit accesses them. We are not able to re-execute
+ // the codegen_unit query from just the DepNode, so an unknown color would
+ // lead to having to re-execute compile_codegen_unit, possibly
+ // unnecessarily.
+ if tcx.dep_graph.is_fully_enabled() {
+ for cgu in codegen_units {
+ tcx.ensure().codegen_unit(cgu.name());
+ }
+ }
+
+ let metadata_module = if need_metadata_module {
+ // Emit compressed metadata object.
+ let metadata_cgu_name =
+ cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
+ tcx.sess.time("write_compressed_metadata", || {
+ let file_name =
+ tcx.output_filenames(()).temp_path(OutputType::Metadata, Some(&metadata_cgu_name));
+ let data = create_compressed_metadata_file(
+ tcx.sess,
+ &metadata,
+ &exported_symbols::metadata_symbol_name(tcx),
+ );
+ if let Err(err) = std::fs::write(&file_name, data) {
+ tcx.sess.fatal(&format!("error writing metadata object file: {}", err));
+ }
+ Some(CompiledModule {
+ name: metadata_cgu_name,
+ kind: ModuleKind::Metadata,
+ object: Some(file_name),
+ dwarf_object: None,
+ bytecode: None,
+ })
+ })
+ } else {
+ None
+ };
+
+ let ongoing_codegen = start_async_codegen(
+ backend.clone(),
+ tcx,
+ target_cpu,
+ metadata,
+ metadata_module,
+ codegen_units.len(),
+ );
+
+ // Codegen an allocator shim, if necessary.
+ //
+ // If the crate doesn't have an `allocator_kind` set then there's definitely
+ // no shim to generate. Otherwise we also check our dependency graph for all
+ // our output crate types. If anything there looks like its a `Dynamic`
+ // linkage, then it's already got an allocator shim and we'll be using that
+ // one instead. If nothing exists then it's our job to generate the
+ // allocator!
+ let any_dynamic_crate = tcx.dependency_formats(()).iter().any(|(_, list)| {
+ use rustc_middle::middle::dependency_format::Linkage;
+ list.iter().any(|&linkage| linkage == Linkage::Dynamic)
+ });
+ let allocator_module = if any_dynamic_crate {
+ None
+ } else if let Some(kind) = tcx.allocator_kind(()) {
+ let llmod_id =
+ cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
+ let module_llvm = tcx.sess.time("write_allocator_module", || {
+ backend.codegen_allocator(tcx, &llmod_id, kind, tcx.lang_items().oom().is_some())
+ });
+
+ Some(ModuleCodegen { name: llmod_id, module_llvm, kind: ModuleKind::Allocator })
+ } else {
+ None
+ };
+
+ if let Some(allocator_module) = allocator_module {
+ ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, allocator_module);
+ }
+
+ // For better throughput during parallel processing by LLVM, we used to sort
+ // CGUs largest to smallest. This would lead to better thread utilization
+ // by, for example, preventing a large CGU from being processed last and
+ // having only one LLVM thread working while the rest remained idle.
+ //
+ // However, this strategy would lead to high memory usage, as it meant the
+ // LLVM-IR for all of the largest CGUs would be resident in memory at once.
+ //
+ // Instead, we can compromise by ordering CGUs such that the largest and
+ // smallest are first, second largest and smallest are next, etc. If there
+ // are large size variations, this can reduce memory usage significantly.
+ let codegen_units: Vec<_> = {
+ let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
+ sorted_cgus.sort_by_cached_key(|cgu| cgu.size_estimate());
+
+ let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
+ second_half.iter().rev().interleave(first_half).copied().collect()
+ };
+
+ // Calculate the CGU reuse
+ let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
+ codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect::<Vec<_>>()
+ });
+
+ let mut total_codegen_time = Duration::new(0, 0);
+ let start_rss = tcx.sess.time_passes().then(|| get_resident_set_size());
+
+ // The non-parallel compiler can only translate codegen units to LLVM IR
+ // on a single thread, leading to a staircase effect where the N LLVM
+ // threads have to wait on the single codegen threads to generate work
+ // for them. The parallel compiler does not have this restriction, so
+ // we can pre-load the LLVM queue in parallel before handing off
+ // coordination to the OnGoingCodegen scheduler.
+ //
+ // This likely is a temporary measure. Once we don't have to support the
+ // non-parallel compiler anymore, we can compile CGUs end-to-end in
+ // parallel and get rid of the complicated scheduling logic.
+ let mut pre_compiled_cgus = if cfg!(parallel_compiler) {
+ tcx.sess.time("compile_first_CGU_batch", || {
+ // Try to find one CGU to compile per thread.
+ let cgus: Vec<_> = cgu_reuse
+ .iter()
+ .enumerate()
+ .filter(|&(_, reuse)| reuse == &CguReuse::No)
+ .take(tcx.sess.threads())
+ .collect();
+
+ // Compile the found CGUs in parallel.
+ let start_time = Instant::now();
+
+ let pre_compiled_cgus = par_iter(cgus)
+ .map(|(i, _)| {
+ let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
+ (i, module)
+ })
+ .collect();
+
+ total_codegen_time += start_time.elapsed();
+
+ pre_compiled_cgus
+ })
+ } else {
+ FxHashMap::default()
+ };
+
+ for (i, cgu) in codegen_units.iter().enumerate() {
+ ongoing_codegen.wait_for_signal_to_codegen_item();
+ ongoing_codegen.check_for_errors(tcx.sess);
+
+ let cgu_reuse = cgu_reuse[i];
+ tcx.sess.cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
+
+ match cgu_reuse {
+ CguReuse::No => {
+ let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
+ cgu
+ } else {
+ let start_time = Instant::now();
+ let module = backend.compile_codegen_unit(tcx, cgu.name());
+ total_codegen_time += start_time.elapsed();
+ module
+ };
+ // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
+ // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
+ // compilation hang on post-monomorphization errors.
+ tcx.sess.abort_if_errors();
+
+ submit_codegened_module_to_llvm(
+ &backend,
+ &ongoing_codegen.coordinator.sender,
+ module,
+ cost,
+ );
+ false
+ }
+ CguReuse::PreLto => {
+ submit_pre_lto_module_to_llvm(
+ &backend,
+ tcx,
+ &ongoing_codegen.coordinator.sender,
+ CachedModuleCodegen {
+ name: cgu.name().to_string(),
+ source: cgu.previous_work_product(tcx),
+ },
+ );
+ true
+ }
+ CguReuse::PostLto => {
+ submit_post_lto_module_to_llvm(
+ &backend,
+ &ongoing_codegen.coordinator.sender,
+ CachedModuleCodegen {
+ name: cgu.name().to_string(),
+ source: cgu.previous_work_product(tcx),
+ },
+ );
+ true
+ }
+ };
+ }
+
+ ongoing_codegen.codegen_finished(tcx);
+
+ // Since the main thread is sometimes blocked during codegen, we keep track
+ // -Ztime-passes output manually.
+ if tcx.sess.time_passes() {
+ let end_rss = get_resident_set_size();
+
+ print_time_passes_entry(
+ "codegen_to_LLVM_IR",
+ total_codegen_time,
+ start_rss.unwrap(),
+ end_rss,
+ );
+ }
+
+ ongoing_codegen.check_for_errors(tcx.sess);
+ ongoing_codegen
+}
+
+impl CrateInfo {
+ pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
+ let exported_symbols = tcx
+ .sess
+ .crate_types()
+ .iter()
+ .map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
+ .collect();
+ let linked_symbols = tcx
+ .sess
+ .crate_types()
+ .iter()
+ .map(|&c| (c, crate::back::linker::linked_symbols(tcx, c)))
+ .collect();
+ let local_crate_name = tcx.crate_name(LOCAL_CRATE);
+ let crate_attrs = tcx.hir().attrs(rustc_hir::CRATE_HIR_ID);
+ let subsystem = tcx.sess.first_attr_value_str_by_name(crate_attrs, sym::windows_subsystem);
+ let windows_subsystem = subsystem.map(|subsystem| {
+ if subsystem != sym::windows && subsystem != sym::console {
+ tcx.sess.fatal(&format!(
+ "invalid windows subsystem `{}`, only \
+ `windows` and `console` are allowed",
+ subsystem
+ ));
+ }
+ subsystem.to_string()
+ });
+
+ // This list is used when generating the command line to pass through to
+ // system linker. The linker expects undefined symbols on the left of the
+ // command line to be defined in libraries on the right, not the other way
+ // around. For more info, see some comments in the add_used_library function
+ // below.
+ //
+ // In order to get this left-to-right dependency ordering, we use the reverse
+ // postorder of all crates putting the leaves at the right-most positions.
+ let used_crates = tcx
+ .postorder_cnums(())
+ .iter()
+ .rev()
+ .copied()
+ .filter(|&cnum| !tcx.dep_kind(cnum).macros_only())
+ .collect();
+
+ let mut info = CrateInfo {
+ target_cpu,
+ exported_symbols,
+ linked_symbols,
+ local_crate_name,
+ compiler_builtins: None,
+ profiler_runtime: None,
+ is_no_builtins: Default::default(),
+ native_libraries: Default::default(),
+ used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
+ crate_name: Default::default(),
+ used_crates,
+ used_crate_source: Default::default(),
+ lang_item_to_crate: Default::default(),
+ missing_lang_items: Default::default(),
+ dependency_formats: tcx.dependency_formats(()).clone(),
+ windows_subsystem,
+ natvis_debugger_visualizers: Default::default(),
+ };
+ let lang_items = tcx.lang_items();
+
+ let crates = tcx.crates(());
+
+ let n_crates = crates.len();
+ info.native_libraries.reserve(n_crates);
+ info.crate_name.reserve(n_crates);
+ info.used_crate_source.reserve(n_crates);
+ info.missing_lang_items.reserve(n_crates);
+
+ for &cnum in crates.iter() {
+ info.native_libraries
+ .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
+ info.crate_name.insert(cnum, tcx.crate_name(cnum));
+
+ let used_crate_source = tcx.used_crate_source(cnum);
+ info.used_crate_source.insert(cnum, used_crate_source.clone());
+ if tcx.is_compiler_builtins(cnum) {
+ info.compiler_builtins = Some(cnum);
+ }
+ if tcx.is_profiler_runtime(cnum) {
+ info.profiler_runtime = Some(cnum);
+ }
+ if tcx.is_no_builtins(cnum) {
+ info.is_no_builtins.insert(cnum);
+ }
+ let missing = tcx.missing_lang_items(cnum);
+ for &item in missing.iter() {
+ if let Ok(id) = lang_items.require(item) {
+ info.lang_item_to_crate.insert(item, id.krate);
+ }
+ }
+
+ // No need to look for lang items that don't actually need to exist.
+ let missing =
+ missing.iter().cloned().filter(|&l| lang_items::required(tcx, l)).collect();
+ info.missing_lang_items.insert(cnum, missing);
+ }
+
+ let embed_visualizers = tcx.sess.crate_types().iter().any(|&crate_type| match crate_type {
+ CrateType::Executable | CrateType::Dylib | CrateType::Cdylib => {
+ // These are crate types for which we invoke the linker and can embed
+ // NatVis visualizers.
+ true
+ }
+ CrateType::ProcMacro => {
+ // We could embed NatVis for proc macro crates too (to improve the debugging
+ // experience for them) but it does not seem like a good default, since
+ // this is a rare use case and we don't want to slow down the common case.
+ false
+ }
+ CrateType::Staticlib | CrateType::Rlib => {
+ // We don't invoke the linker for these, so we don't need to collect the NatVis for them.
+ false
+ }
+ });
+
+ if tcx.sess.target.is_like_msvc && embed_visualizers {
+ info.natvis_debugger_visualizers =
+ collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
+ }
+
+ info
+ }
+}
+
+pub fn provide(providers: &mut Providers) {
+ providers.backend_optimization_level = |tcx, cratenum| {
+ let for_speed = match tcx.sess.opts.optimize {
+ // If globally no optimisation is done, #[optimize] has no effect.
+ //
+ // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
+ // pass manager and it is likely that some module-wide passes (such as inliner or
+ // cross-function constant propagation) would ignore the `optnone` annotation we put
+ // on the functions, thus necessarily involving these functions into optimisations.
+ config::OptLevel::No => return config::OptLevel::No,
+ // If globally optimise-speed is already specified, just use that level.
+ config::OptLevel::Less => return config::OptLevel::Less,
+ config::OptLevel::Default => return config::OptLevel::Default,
+ config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
+ // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
+ // are present).
+ config::OptLevel::Size => config::OptLevel::Default,
+ config::OptLevel::SizeMin => config::OptLevel::Default,
+ };
+
+ let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
+ for id in &*defids {
+ let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
+ match optimize {
+ attr::OptimizeAttr::None => continue,
+ attr::OptimizeAttr::Size => continue,
+ attr::OptimizeAttr::Speed => {
+ return for_speed;
+ }
+ }
+ }
+ tcx.sess.opts.optimize
+ };
+}
+
+fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
+ if !tcx.dep_graph.is_fully_enabled() {
+ return CguReuse::No;
+ }
+
+ let work_product_id = &cgu.work_product_id();
+ if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
+ // We don't have anything cached for this CGU. This can happen
+ // if the CGU did not exist in the previous session.
+ return CguReuse::No;
+ }
+
+ // Try to mark the CGU as green. If it we can do so, it means that nothing
+ // affecting the LLVM module has changed and we can re-use a cached version.
+ // If we compile with any kind of LTO, this means we can re-use the bitcode
+ // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
+ // know that later). If we are not doing LTO, there is only one optimized
+ // version of each module, so we re-use that.
+ let dep_node = cgu.codegen_dep_node(tcx);
+ assert!(
+ !tcx.dep_graph.dep_node_exists(&dep_node),
+ "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
+ cgu.name()
+ );
+
+ if tcx.try_mark_green(&dep_node) {
+ // We can re-use either the pre- or the post-thinlto state. If no LTO is
+ // being performed then we can use post-LTO artifacts, otherwise we must
+ // reuse pre-LTO artifacts
+ match compute_per_cgu_lto_type(
+ &tcx.sess.lto(),
+ &tcx.sess.opts,
+ &tcx.sess.crate_types(),
+ ModuleKind::Regular,
+ ) {
+ ComputedLtoType::No => CguReuse::PostLto,
+ _ => CguReuse::PreLto,
+ }
+ } else {
+ CguReuse::No
+ }
+}