summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_ssa/src/mir/operand.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_ssa/src/mir/operand.rs')
-rw-r--r--compiler/rustc_codegen_ssa/src/mir/operand.rs461
1 files changed, 461 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_ssa/src/mir/operand.rs b/compiler/rustc_codegen_ssa/src/mir/operand.rs
new file mode 100644
index 000000000..c612634fc
--- /dev/null
+++ b/compiler/rustc_codegen_ssa/src/mir/operand.rs
@@ -0,0 +1,461 @@
+use super::place::PlaceRef;
+use super::{FunctionCx, LocalRef};
+
+use crate::base;
+use crate::glue;
+use crate::traits::*;
+use crate::MemFlags;
+
+use rustc_middle::mir;
+use rustc_middle::mir::interpret::{ConstValue, Pointer, Scalar};
+use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
+use rustc_middle::ty::Ty;
+use rustc_target::abi::{Abi, Align, Size};
+
+use std::fmt;
+
+/// The representation of a Rust value. The enum variant is in fact
+/// uniquely determined by the value's type, but is kept as a
+/// safety check.
+#[derive(Copy, Clone, Debug)]
+pub enum OperandValue<V> {
+ /// A reference to the actual operand. The data is guaranteed
+ /// to be valid for the operand's lifetime.
+ /// The second value, if any, is the extra data (vtable or length)
+ /// which indicates that it refers to an unsized rvalue.
+ Ref(V, Option<V>, Align),
+ /// A single LLVM value.
+ Immediate(V),
+ /// A pair of immediate LLVM values. Used by fat pointers too.
+ Pair(V, V),
+}
+
+/// An `OperandRef` is an "SSA" reference to a Rust value, along with
+/// its type.
+///
+/// NOTE: unless you know a value's type exactly, you should not
+/// generate LLVM opcodes acting on it and instead act via methods,
+/// to avoid nasty edge cases. In particular, using `Builder::store`
+/// directly is sure to cause problems -- use `OperandRef::store`
+/// instead.
+#[derive(Copy, Clone)]
+pub struct OperandRef<'tcx, V> {
+ // The value.
+ pub val: OperandValue<V>,
+
+ // The layout of value, based on its Rust type.
+ pub layout: TyAndLayout<'tcx>,
+}
+
+impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
+ }
+}
+
+impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
+ pub fn new_zst<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ bx: &mut Bx,
+ layout: TyAndLayout<'tcx>,
+ ) -> OperandRef<'tcx, V> {
+ assert!(layout.is_zst());
+ OperandRef {
+ val: OperandValue::Immediate(bx.const_undef(bx.immediate_backend_type(layout))),
+ layout,
+ }
+ }
+
+ pub fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ bx: &mut Bx,
+ val: ConstValue<'tcx>,
+ ty: Ty<'tcx>,
+ ) -> Self {
+ let layout = bx.layout_of(ty);
+
+ if layout.is_zst() {
+ return OperandRef::new_zst(bx, layout);
+ }
+
+ let val = match val {
+ ConstValue::Scalar(x) => {
+ let Abi::Scalar(scalar) = layout.abi else {
+ bug!("from_const: invalid ByVal layout: {:#?}", layout);
+ };
+ let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
+ OperandValue::Immediate(llval)
+ }
+ ConstValue::ZeroSized => {
+ let llval = bx.zst_to_backend(bx.immediate_backend_type(layout));
+ OperandValue::Immediate(llval)
+ }
+ ConstValue::Slice { data, start, end } => {
+ let Abi::ScalarPair(a_scalar, _) = layout.abi else {
+ bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
+ };
+ let a = Scalar::from_pointer(
+ Pointer::new(bx.tcx().create_memory_alloc(data), Size::from_bytes(start)),
+ &bx.tcx(),
+ );
+ let a_llval = bx.scalar_to_backend(
+ a,
+ a_scalar,
+ bx.scalar_pair_element_backend_type(layout, 0, true),
+ );
+ let b_llval = bx.const_usize((end - start) as u64);
+ OperandValue::Pair(a_llval, b_llval)
+ }
+ ConstValue::ByRef { alloc, offset } => {
+ return bx.load_operand(bx.from_const_alloc(layout, alloc, offset));
+ }
+ };
+
+ OperandRef { val, layout }
+ }
+
+ /// Asserts that this operand refers to a scalar and returns
+ /// a reference to its value.
+ pub fn immediate(self) -> V {
+ match self.val {
+ OperandValue::Immediate(s) => s,
+ _ => bug!("not immediate: {:?}", self),
+ }
+ }
+
+ pub fn deref<Cx: LayoutTypeMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
+ if self.layout.ty.is_box() {
+ bug!("dereferencing {:?} in codegen", self.layout.ty);
+ }
+
+ let projected_ty = self
+ .layout
+ .ty
+ .builtin_deref(true)
+ .unwrap_or_else(|| bug!("deref of non-pointer {:?}", self))
+ .ty;
+
+ let (llptr, llextra) = match self.val {
+ OperandValue::Immediate(llptr) => (llptr, None),
+ OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
+ OperandValue::Ref(..) => bug!("Deref of by-Ref operand {:?}", self),
+ };
+ let layout = cx.layout_of(projected_ty);
+ PlaceRef { llval: llptr, llextra, layout, align: layout.align.abi }
+ }
+
+ /// If this operand is a `Pair`, we return an aggregate with the two values.
+ /// For other cases, see `immediate`.
+ pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ ) -> V {
+ if let OperandValue::Pair(a, b) = self.val {
+ let llty = bx.cx().backend_type(self.layout);
+ debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
+ // Reconstruct the immediate aggregate.
+ let mut llpair = bx.cx().const_undef(llty);
+ let imm_a = bx.from_immediate(a);
+ let imm_b = bx.from_immediate(b);
+ llpair = bx.insert_value(llpair, imm_a, 0);
+ llpair = bx.insert_value(llpair, imm_b, 1);
+ llpair
+ } else {
+ self.immediate()
+ }
+ }
+
+ /// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
+ pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ bx: &mut Bx,
+ llval: V,
+ layout: TyAndLayout<'tcx>,
+ ) -> Self {
+ let val = if let Abi::ScalarPair(a, b) = layout.abi {
+ debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
+
+ // Deconstruct the immediate aggregate.
+ let a_llval = bx.extract_value(llval, 0);
+ let a_llval = bx.to_immediate_scalar(a_llval, a);
+ let b_llval = bx.extract_value(llval, 1);
+ let b_llval = bx.to_immediate_scalar(b_llval, b);
+ OperandValue::Pair(a_llval, b_llval)
+ } else {
+ OperandValue::Immediate(llval)
+ };
+ OperandRef { val, layout }
+ }
+
+ pub fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ &self,
+ bx: &mut Bx,
+ i: usize,
+ ) -> Self {
+ let field = self.layout.field(bx.cx(), i);
+ let offset = self.layout.fields.offset(i);
+
+ let mut val = match (self.val, self.layout.abi) {
+ // If the field is ZST, it has no data.
+ _ if field.is_zst() => {
+ return OperandRef::new_zst(bx, field);
+ }
+
+ // Newtype of a scalar, scalar pair or vector.
+ (OperandValue::Immediate(_) | OperandValue::Pair(..), _)
+ if field.size == self.layout.size =>
+ {
+ assert_eq!(offset.bytes(), 0);
+ self.val
+ }
+
+ // Extract a scalar component from a pair.
+ (OperandValue::Pair(a_llval, b_llval), Abi::ScalarPair(a, b)) => {
+ if offset.bytes() == 0 {
+ assert_eq!(field.size, a.size(bx.cx()));
+ OperandValue::Immediate(a_llval)
+ } else {
+ assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
+ assert_eq!(field.size, b.size(bx.cx()));
+ OperandValue::Immediate(b_llval)
+ }
+ }
+
+ // `#[repr(simd)]` types are also immediate.
+ (OperandValue::Immediate(llval), Abi::Vector { .. }) => {
+ OperandValue::Immediate(bx.extract_element(llval, bx.cx().const_usize(i as u64)))
+ }
+
+ _ => bug!("OperandRef::extract_field({:?}): not applicable", self),
+ };
+
+ match (&mut val, field.abi) {
+ (OperandValue::Immediate(llval), _) => {
+ // Bools in union fields needs to be truncated.
+ *llval = bx.to_immediate(*llval, field);
+ // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
+ *llval = bx.bitcast(*llval, bx.cx().immediate_backend_type(field));
+ }
+ (OperandValue::Pair(a, b), Abi::ScalarPair(a_abi, b_abi)) => {
+ // Bools in union fields needs to be truncated.
+ *a = bx.to_immediate_scalar(*a, a_abi);
+ *b = bx.to_immediate_scalar(*b, b_abi);
+ // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
+ *a = bx.bitcast(*a, bx.cx().scalar_pair_element_backend_type(field, 0, true));
+ *b = bx.bitcast(*b, bx.cx().scalar_pair_element_backend_type(field, 1, true));
+ }
+ (OperandValue::Pair(..), _) => bug!(),
+ (OperandValue::Ref(..), _) => bug!(),
+ }
+
+ OperandRef { val, layout: field }
+ }
+}
+
+impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
+ pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ dest: PlaceRef<'tcx, V>,
+ ) {
+ self.store_with_flags(bx, dest, MemFlags::empty());
+ }
+
+ pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ dest: PlaceRef<'tcx, V>,
+ ) {
+ self.store_with_flags(bx, dest, MemFlags::VOLATILE);
+ }
+
+ pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ dest: PlaceRef<'tcx, V>,
+ ) {
+ self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
+ }
+
+ pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ dest: PlaceRef<'tcx, V>,
+ ) {
+ self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
+ }
+
+ fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ dest: PlaceRef<'tcx, V>,
+ flags: MemFlags,
+ ) {
+ debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
+ // Avoid generating stores of zero-sized values, because the only way to have a zero-sized
+ // value is through `undef`, and store itself is useless.
+ if dest.layout.is_zst() {
+ return;
+ }
+ match self {
+ OperandValue::Ref(r, None, source_align) => {
+ if flags.contains(MemFlags::NONTEMPORAL) {
+ // HACK(nox): This is inefficient but there is no nontemporal memcpy.
+ let ty = bx.backend_type(dest.layout);
+ let ptr = bx.pointercast(r, bx.type_ptr_to(ty));
+ let val = bx.load(ty, ptr, source_align);
+ bx.store_with_flags(val, dest.llval, dest.align, flags);
+ return;
+ }
+ base::memcpy_ty(bx, dest.llval, dest.align, r, source_align, dest.layout, flags)
+ }
+ OperandValue::Ref(_, Some(_), _) => {
+ bug!("cannot directly store unsized values");
+ }
+ OperandValue::Immediate(s) => {
+ let val = bx.from_immediate(s);
+ bx.store_with_flags(val, dest.llval, dest.align, flags);
+ }
+ OperandValue::Pair(a, b) => {
+ let Abi::ScalarPair(a_scalar, b_scalar) = dest.layout.abi else {
+ bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
+ };
+ let ty = bx.backend_type(dest.layout);
+ let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
+
+ let llptr = bx.struct_gep(ty, dest.llval, 0);
+ let val = bx.from_immediate(a);
+ let align = dest.align;
+ bx.store_with_flags(val, llptr, align, flags);
+
+ let llptr = bx.struct_gep(ty, dest.llval, 1);
+ let val = bx.from_immediate(b);
+ let align = dest.align.restrict_for_offset(b_offset);
+ bx.store_with_flags(val, llptr, align, flags);
+ }
+ }
+ }
+
+ pub fn store_unsized<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ indirect_dest: PlaceRef<'tcx, V>,
+ ) {
+ debug!("OperandRef::store_unsized: operand={:?}, indirect_dest={:?}", self, indirect_dest);
+ let flags = MemFlags::empty();
+
+ // `indirect_dest` must have `*mut T` type. We extract `T` out of it.
+ let unsized_ty = indirect_dest
+ .layout
+ .ty
+ .builtin_deref(true)
+ .unwrap_or_else(|| bug!("indirect_dest has non-pointer type: {:?}", indirect_dest))
+ .ty;
+
+ let OperandValue::Ref(llptr, Some(llextra), _) = self else {
+ bug!("store_unsized called with a sized value")
+ };
+
+ // FIXME: choose an appropriate alignment, or use dynamic align somehow
+ let max_align = Align::from_bits(128).unwrap();
+ let min_align = Align::from_bits(8).unwrap();
+
+ // Allocate an appropriate region on the stack, and copy the value into it
+ let (llsize, _) = glue::size_and_align_of_dst(bx, unsized_ty, Some(llextra));
+ let lldst = bx.array_alloca(bx.cx().type_i8(), llsize, max_align);
+ bx.memcpy(lldst, max_align, llptr, min_align, llsize, flags);
+
+ // Store the allocated region and the extra to the indirect place.
+ let indirect_operand = OperandValue::Pair(lldst, llextra);
+ indirect_operand.store(bx, indirect_dest);
+ }
+}
+
+impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
+ fn maybe_codegen_consume_direct(
+ &mut self,
+ bx: &mut Bx,
+ place_ref: mir::PlaceRef<'tcx>,
+ ) -> Option<OperandRef<'tcx, Bx::Value>> {
+ debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
+
+ match self.locals[place_ref.local] {
+ LocalRef::Operand(Some(mut o)) => {
+ // Moves out of scalar and scalar pair fields are trivial.
+ for elem in place_ref.projection.iter() {
+ match elem {
+ mir::ProjectionElem::Field(ref f, _) => {
+ o = o.extract_field(bx, f.index());
+ }
+ mir::ProjectionElem::Index(_)
+ | mir::ProjectionElem::ConstantIndex { .. } => {
+ // ZSTs don't require any actual memory access.
+ // FIXME(eddyb) deduplicate this with the identical
+ // checks in `codegen_consume` and `extract_field`.
+ let elem = o.layout.field(bx.cx(), 0);
+ if elem.is_zst() {
+ o = OperandRef::new_zst(bx, elem);
+ } else {
+ return None;
+ }
+ }
+ _ => return None,
+ }
+ }
+
+ Some(o)
+ }
+ LocalRef::Operand(None) => {
+ bug!("use of {:?} before def", place_ref);
+ }
+ LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
+ // watch out for locals that do not have an
+ // alloca; they are handled somewhat differently
+ None
+ }
+ }
+ }
+
+ pub fn codegen_consume(
+ &mut self,
+ bx: &mut Bx,
+ place_ref: mir::PlaceRef<'tcx>,
+ ) -> OperandRef<'tcx, Bx::Value> {
+ debug!("codegen_consume(place_ref={:?})", place_ref);
+
+ let ty = self.monomorphized_place_ty(place_ref);
+ let layout = bx.cx().layout_of(ty);
+
+ // ZSTs don't require any actual memory access.
+ if layout.is_zst() {
+ return OperandRef::new_zst(bx, layout);
+ }
+
+ if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
+ return o;
+ }
+
+ // for most places, to consume them we just load them
+ // out from their home
+ let place = self.codegen_place(bx, place_ref);
+ bx.load_operand(place)
+ }
+
+ pub fn codegen_operand(
+ &mut self,
+ bx: &mut Bx,
+ operand: &mir::Operand<'tcx>,
+ ) -> OperandRef<'tcx, Bx::Value> {
+ debug!("codegen_operand(operand={:?})", operand);
+
+ match *operand {
+ mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
+ self.codegen_consume(bx, place.as_ref())
+ }
+
+ mir::Operand::Constant(ref constant) => {
+ // This cannot fail because we checked all required_consts in advance.
+ self.eval_mir_constant_to_operand(bx, constant).unwrap_or_else(|_err| {
+ span_bug!(constant.span, "erroneous constant not captured by required_consts")
+ })
+ }
+ }
+ }
+}