summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_ssa/src/mir/place.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_ssa/src/mir/place.rs')
-rw-r--r--compiler/rustc_codegen_ssa/src/mir/place.rs549
1 files changed, 549 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_ssa/src/mir/place.rs b/compiler/rustc_codegen_ssa/src/mir/place.rs
new file mode 100644
index 000000000..268c4d765
--- /dev/null
+++ b/compiler/rustc_codegen_ssa/src/mir/place.rs
@@ -0,0 +1,549 @@
+use super::operand::OperandValue;
+use super::{FunctionCx, LocalRef};
+
+use crate::common::IntPredicate;
+use crate::glue;
+use crate::traits::*;
+use crate::MemFlags;
+
+use rustc_middle::mir;
+use rustc_middle::mir::tcx::PlaceTy;
+use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
+use rustc_middle::ty::{self, Ty};
+use rustc_target::abi::{Abi, Align, FieldsShape, Int, TagEncoding};
+use rustc_target::abi::{VariantIdx, Variants};
+
+#[derive(Copy, Clone, Debug)]
+pub struct PlaceRef<'tcx, V> {
+ /// A pointer to the contents of the place.
+ pub llval: V,
+
+ /// This place's extra data if it is unsized, or `None` if null.
+ pub llextra: Option<V>,
+
+ /// The monomorphized type of this place, including variant information.
+ pub layout: TyAndLayout<'tcx>,
+
+ /// The alignment we know for this place.
+ pub align: Align,
+}
+
+impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
+ pub fn new_sized(llval: V, layout: TyAndLayout<'tcx>) -> PlaceRef<'tcx, V> {
+ assert!(!layout.is_unsized());
+ PlaceRef { llval, llextra: None, layout, align: layout.align.abi }
+ }
+
+ pub fn new_sized_aligned(
+ llval: V,
+ layout: TyAndLayout<'tcx>,
+ align: Align,
+ ) -> PlaceRef<'tcx, V> {
+ assert!(!layout.is_unsized());
+ PlaceRef { llval, llextra: None, layout, align }
+ }
+
+ // FIXME(eddyb) pass something else for the name so no work is done
+ // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
+ pub fn alloca<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ bx: &mut Bx,
+ layout: TyAndLayout<'tcx>,
+ ) -> Self {
+ assert!(!layout.is_unsized(), "tried to statically allocate unsized place");
+ let tmp = bx.alloca(bx.cx().backend_type(layout), layout.align.abi);
+ Self::new_sized(tmp, layout)
+ }
+
+ /// Returns a place for an indirect reference to an unsized place.
+ // FIXME(eddyb) pass something else for the name so no work is done
+ // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
+ pub fn alloca_unsized_indirect<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ bx: &mut Bx,
+ layout: TyAndLayout<'tcx>,
+ ) -> Self {
+ assert!(layout.is_unsized(), "tried to allocate indirect place for sized values");
+ let ptr_ty = bx.cx().tcx().mk_mut_ptr(layout.ty);
+ let ptr_layout = bx.cx().layout_of(ptr_ty);
+ Self::alloca(bx, ptr_layout)
+ }
+
+ pub fn len<Cx: ConstMethods<'tcx, Value = V>>(&self, cx: &Cx) -> V {
+ if let FieldsShape::Array { count, .. } = self.layout.fields {
+ if self.layout.is_unsized() {
+ assert_eq!(count, 0);
+ self.llextra.unwrap()
+ } else {
+ cx.const_usize(count)
+ }
+ } else {
+ bug!("unexpected layout `{:#?}` in PlaceRef::len", self.layout)
+ }
+ }
+}
+
+impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
+ /// Access a field, at a point when the value's case is known.
+ pub fn project_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ ix: usize,
+ ) -> Self {
+ let field = self.layout.field(bx.cx(), ix);
+ let offset = self.layout.fields.offset(ix);
+ let effective_field_align = self.align.restrict_for_offset(offset);
+
+ let mut simple = || {
+ let llval = match self.layout.abi {
+ _ if offset.bytes() == 0 => {
+ // Unions and newtypes only use an offset of 0.
+ // Also handles the first field of Scalar, ScalarPair, and Vector layouts.
+ self.llval
+ }
+ Abi::ScalarPair(a, b)
+ if offset == a.size(bx.cx()).align_to(b.align(bx.cx()).abi) =>
+ {
+ // Offset matches second field.
+ let ty = bx.backend_type(self.layout);
+ bx.struct_gep(ty, self.llval, 1)
+ }
+ Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. } if field.is_zst() => {
+ // ZST fields are not included in Scalar, ScalarPair, and Vector layouts, so manually offset the pointer.
+ let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
+ bx.gep(bx.cx().type_i8(), byte_ptr, &[bx.const_usize(offset.bytes())])
+ }
+ Abi::Scalar(_) | Abi::ScalarPair(..) => {
+ // All fields of Scalar and ScalarPair layouts must have been handled by this point.
+ // Vector layouts have additional fields for each element of the vector, so don't panic in that case.
+ bug!(
+ "offset of non-ZST field `{:?}` does not match layout `{:#?}`",
+ field,
+ self.layout
+ );
+ }
+ _ => {
+ let ty = bx.backend_type(self.layout);
+ bx.struct_gep(ty, self.llval, bx.cx().backend_field_index(self.layout, ix))
+ }
+ };
+ PlaceRef {
+ // HACK(eddyb): have to bitcast pointers until LLVM removes pointee types.
+ llval: bx.pointercast(llval, bx.cx().type_ptr_to(bx.cx().backend_type(field))),
+ llextra: if bx.cx().type_has_metadata(field.ty) { self.llextra } else { None },
+ layout: field,
+ align: effective_field_align,
+ }
+ };
+
+ // Simple cases, which don't need DST adjustment:
+ // * no metadata available - just log the case
+ // * known alignment - sized types, `[T]`, `str` or a foreign type
+ // * packed struct - there is no alignment padding
+ match field.ty.kind() {
+ _ if self.llextra.is_none() => {
+ debug!(
+ "unsized field `{}`, of `{:?}` has no metadata for adjustment",
+ ix, self.llval
+ );
+ return simple();
+ }
+ _ if !field.is_unsized() => return simple(),
+ ty::Slice(..) | ty::Str | ty::Foreign(..) => return simple(),
+ ty::Adt(def, _) => {
+ if def.repr().packed() {
+ // FIXME(eddyb) generalize the adjustment when we
+ // start supporting packing to larger alignments.
+ assert_eq!(self.layout.align.abi.bytes(), 1);
+ return simple();
+ }
+ }
+ _ => {}
+ }
+
+ // We need to get the pointer manually now.
+ // We do this by casting to a `*i8`, then offsetting it by the appropriate amount.
+ // We do this instead of, say, simply adjusting the pointer from the result of a GEP
+ // because the field may have an arbitrary alignment in the LLVM representation
+ // anyway.
+ //
+ // To demonstrate:
+ //
+ // struct Foo<T: ?Sized> {
+ // x: u16,
+ // y: T
+ // }
+ //
+ // The type `Foo<Foo<Trait>>` is represented in LLVM as `{ u16, { u16, u8 }}`, meaning that
+ // the `y` field has 16-bit alignment.
+
+ let meta = self.llextra;
+
+ let unaligned_offset = bx.cx().const_usize(offset.bytes());
+
+ // Get the alignment of the field
+ let (_, unsized_align) = glue::size_and_align_of_dst(bx, field.ty, meta);
+
+ // Bump the unaligned offset up to the appropriate alignment
+ let offset = round_up_const_value_to_alignment(bx, unaligned_offset, unsized_align);
+
+ debug!("struct_field_ptr: DST field offset: {:?}", offset);
+
+ // Cast and adjust pointer.
+ let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
+ let byte_ptr = bx.gep(bx.cx().type_i8(), byte_ptr, &[offset]);
+
+ // Finally, cast back to the type expected.
+ let ll_fty = bx.cx().backend_type(field);
+ debug!("struct_field_ptr: Field type is {:?}", ll_fty);
+
+ PlaceRef {
+ llval: bx.pointercast(byte_ptr, bx.cx().type_ptr_to(ll_fty)),
+ llextra: self.llextra,
+ layout: field,
+ align: effective_field_align,
+ }
+ }
+
+ /// Obtain the actual discriminant of a value.
+ #[instrument(level = "trace", skip(bx))]
+ pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ self,
+ bx: &mut Bx,
+ cast_to: Ty<'tcx>,
+ ) -> V {
+ let cast_to = bx.cx().immediate_backend_type(bx.cx().layout_of(cast_to));
+ if self.layout.abi.is_uninhabited() {
+ return bx.cx().const_undef(cast_to);
+ }
+ let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
+ Variants::Single { index } => {
+ let discr_val = self
+ .layout
+ .ty
+ .discriminant_for_variant(bx.cx().tcx(), index)
+ .map_or(index.as_u32() as u128, |discr| discr.val);
+ return bx.cx().const_uint_big(cast_to, discr_val);
+ }
+ Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
+ (tag, tag_encoding, tag_field)
+ }
+ };
+
+ // Read the tag/niche-encoded discriminant from memory.
+ let tag = self.project_field(bx, tag_field);
+ let tag = bx.load_operand(tag);
+
+ // Decode the discriminant (specifically if it's niche-encoded).
+ match *tag_encoding {
+ TagEncoding::Direct => {
+ let signed = match tag_scalar.primitive() {
+ // We use `i1` for bytes that are always `0` or `1`,
+ // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
+ // let LLVM interpret the `i1` as signed, because
+ // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
+ Int(_, signed) => !tag_scalar.is_bool() && signed,
+ _ => false,
+ };
+ bx.intcast(tag.immediate(), cast_to, signed)
+ }
+ TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start } => {
+ // Rebase from niche values to discriminants, and check
+ // whether the result is in range for the niche variants.
+ let niche_llty = bx.cx().immediate_backend_type(tag.layout);
+ let tag = tag.immediate();
+
+ // We first compute the "relative discriminant" (wrt `niche_variants`),
+ // that is, if `n = niche_variants.end() - niche_variants.start()`,
+ // we remap `niche_start..=niche_start + n` (which may wrap around)
+ // to (non-wrap-around) `0..=n`, to be able to check whether the
+ // discriminant corresponds to a niche variant with one comparison.
+ // We also can't go directly to the (variant index) discriminant
+ // and check that it is in the range `niche_variants`, because
+ // that might not fit in the same type, on top of needing an extra
+ // comparison (see also the comment on `let niche_discr`).
+ let relative_discr = if niche_start == 0 {
+ // Avoid subtracting `0`, which wouldn't work for pointers.
+ // FIXME(eddyb) check the actual primitive type here.
+ tag
+ } else {
+ bx.sub(tag, bx.cx().const_uint_big(niche_llty, niche_start))
+ };
+ let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
+ let is_niche = if relative_max == 0 {
+ // Avoid calling `const_uint`, which wouldn't work for pointers.
+ // Also use canonical == 0 instead of non-canonical u<= 0.
+ // FIXME(eddyb) check the actual primitive type here.
+ bx.icmp(IntPredicate::IntEQ, relative_discr, bx.cx().const_null(niche_llty))
+ } else {
+ let relative_max = bx.cx().const_uint(niche_llty, relative_max as u64);
+ bx.icmp(IntPredicate::IntULE, relative_discr, relative_max)
+ };
+
+ // NOTE(eddyb) this addition needs to be performed on the final
+ // type, in case the niche itself can't represent all variant
+ // indices (e.g. `u8` niche with more than `256` variants,
+ // but enough uninhabited variants so that the remaining variants
+ // fit in the niche).
+ // In other words, `niche_variants.end - niche_variants.start`
+ // is representable in the niche, but `niche_variants.end`
+ // might not be, in extreme cases.
+ let niche_discr = {
+ let relative_discr = if relative_max == 0 {
+ // HACK(eddyb) since we have only one niche, we know which
+ // one it is, and we can avoid having a dynamic value here.
+ bx.cx().const_uint(cast_to, 0)
+ } else {
+ bx.intcast(relative_discr, cast_to, false)
+ };
+ bx.add(
+ relative_discr,
+ bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64),
+ )
+ };
+
+ bx.select(
+ is_niche,
+ niche_discr,
+ bx.cx().const_uint(cast_to, dataful_variant.as_u32() as u64),
+ )
+ }
+ }
+ }
+
+ /// Sets the discriminant for a new value of the given case of the given
+ /// representation.
+ pub fn codegen_set_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ &self,
+ bx: &mut Bx,
+ variant_index: VariantIdx,
+ ) {
+ if self.layout.for_variant(bx.cx(), variant_index).abi.is_uninhabited() {
+ // We play it safe by using a well-defined `abort`, but we could go for immediate UB
+ // if that turns out to be helpful.
+ bx.abort();
+ return;
+ }
+ match self.layout.variants {
+ Variants::Single { index } => {
+ assert_eq!(index, variant_index);
+ }
+ Variants::Multiple { tag_encoding: TagEncoding::Direct, tag_field, .. } => {
+ let ptr = self.project_field(bx, tag_field);
+ let to =
+ self.layout.ty.discriminant_for_variant(bx.tcx(), variant_index).unwrap().val;
+ bx.store(
+ bx.cx().const_uint_big(bx.cx().backend_type(ptr.layout), to),
+ ptr.llval,
+ ptr.align,
+ );
+ }
+ Variants::Multiple {
+ tag_encoding:
+ TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
+ tag_field,
+ ..
+ } => {
+ if variant_index != dataful_variant {
+ if bx.cx().sess().target.arch == "arm"
+ || bx.cx().sess().target.arch == "aarch64"
+ {
+ // FIXME(#34427): as workaround for LLVM bug on ARM,
+ // use memset of 0 before assigning niche value.
+ let fill_byte = bx.cx().const_u8(0);
+ let size = bx.cx().const_usize(self.layout.size.bytes());
+ bx.memset(self.llval, fill_byte, size, self.align, MemFlags::empty());
+ }
+
+ let niche = self.project_field(bx, tag_field);
+ let niche_llty = bx.cx().immediate_backend_type(niche.layout);
+ let niche_value = variant_index.as_u32() - niche_variants.start().as_u32();
+ let niche_value = (niche_value as u128).wrapping_add(niche_start);
+ // FIXME(eddyb): check the actual primitive type here.
+ let niche_llval = if niche_value == 0 {
+ // HACK(eddyb): using `c_null` as it works on all types.
+ bx.cx().const_null(niche_llty)
+ } else {
+ bx.cx().const_uint_big(niche_llty, niche_value)
+ };
+ OperandValue::Immediate(niche_llval).store(bx, niche);
+ }
+ }
+ }
+ }
+
+ pub fn project_index<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ &self,
+ bx: &mut Bx,
+ llindex: V,
+ ) -> Self {
+ // Statically compute the offset if we can, otherwise just use the element size,
+ // as this will yield the lowest alignment.
+ let layout = self.layout.field(bx, 0);
+ let offset = if let Some(llindex) = bx.const_to_opt_uint(llindex) {
+ layout.size.checked_mul(llindex, bx).unwrap_or(layout.size)
+ } else {
+ layout.size
+ };
+
+ PlaceRef {
+ llval: bx.inbounds_gep(
+ bx.cx().backend_type(self.layout),
+ self.llval,
+ &[bx.cx().const_usize(0), llindex],
+ ),
+ llextra: None,
+ layout,
+ align: self.align.restrict_for_offset(offset),
+ }
+ }
+
+ pub fn project_downcast<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+ &self,
+ bx: &mut Bx,
+ variant_index: VariantIdx,
+ ) -> Self {
+ let mut downcast = *self;
+ downcast.layout = self.layout.for_variant(bx.cx(), variant_index);
+
+ // Cast to the appropriate variant struct type.
+ let variant_ty = bx.cx().backend_type(downcast.layout);
+ downcast.llval = bx.pointercast(downcast.llval, bx.cx().type_ptr_to(variant_ty));
+
+ downcast
+ }
+
+ pub fn storage_live<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
+ bx.lifetime_start(self.llval, self.layout.size);
+ }
+
+ pub fn storage_dead<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
+ bx.lifetime_end(self.llval, self.layout.size);
+ }
+}
+
+impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
+ #[instrument(level = "trace", skip(self, bx))]
+ pub fn codegen_place(
+ &mut self,
+ bx: &mut Bx,
+ place_ref: mir::PlaceRef<'tcx>,
+ ) -> PlaceRef<'tcx, Bx::Value> {
+ let cx = self.cx;
+ let tcx = self.cx.tcx();
+
+ let mut base = 0;
+ let mut cg_base = match self.locals[place_ref.local] {
+ LocalRef::Place(place) => place,
+ LocalRef::UnsizedPlace(place) => bx.load_operand(place).deref(cx),
+ LocalRef::Operand(..) => {
+ if place_ref.has_deref() {
+ base = 1;
+ let cg_base = self.codegen_consume(
+ bx,
+ mir::PlaceRef { projection: &place_ref.projection[..0], ..place_ref },
+ );
+ cg_base.deref(bx.cx())
+ } else {
+ bug!("using operand local {:?} as place", place_ref);
+ }
+ }
+ };
+ for elem in place_ref.projection[base..].iter() {
+ cg_base = match *elem {
+ mir::ProjectionElem::Deref => bx.load_operand(cg_base).deref(bx.cx()),
+ mir::ProjectionElem::Field(ref field, _) => {
+ cg_base.project_field(bx, field.index())
+ }
+ mir::ProjectionElem::Index(index) => {
+ let index = &mir::Operand::Copy(mir::Place::from(index));
+ let index = self.codegen_operand(bx, index);
+ let llindex = index.immediate();
+ cg_base.project_index(bx, llindex)
+ }
+ mir::ProjectionElem::ConstantIndex { offset, from_end: false, min_length: _ } => {
+ let lloffset = bx.cx().const_usize(offset as u64);
+ cg_base.project_index(bx, lloffset)
+ }
+ mir::ProjectionElem::ConstantIndex { offset, from_end: true, min_length: _ } => {
+ let lloffset = bx.cx().const_usize(offset as u64);
+ let lllen = cg_base.len(bx.cx());
+ let llindex = bx.sub(lllen, lloffset);
+ cg_base.project_index(bx, llindex)
+ }
+ mir::ProjectionElem::Subslice { from, to, from_end } => {
+ let mut subslice = cg_base.project_index(bx, bx.cx().const_usize(from as u64));
+ let projected_ty =
+ PlaceTy::from_ty(cg_base.layout.ty).projection_ty(tcx, *elem).ty;
+ subslice.layout = bx.cx().layout_of(self.monomorphize(projected_ty));
+
+ if subslice.layout.is_unsized() {
+ assert!(from_end, "slice subslices should be `from_end`");
+ subslice.llextra = Some(bx.sub(
+ cg_base.llextra.unwrap(),
+ bx.cx().const_usize((from as u64) + (to as u64)),
+ ));
+ }
+
+ // Cast the place pointer type to the new
+ // array or slice type (`*[%_; new_len]`).
+ subslice.llval = bx.pointercast(
+ subslice.llval,
+ bx.cx().type_ptr_to(bx.cx().backend_type(subslice.layout)),
+ );
+
+ subslice
+ }
+ mir::ProjectionElem::Downcast(_, v) => cg_base.project_downcast(bx, v),
+ };
+ }
+ debug!("codegen_place(place={:?}) => {:?}", place_ref, cg_base);
+ cg_base
+ }
+
+ pub fn monomorphized_place_ty(&self, place_ref: mir::PlaceRef<'tcx>) -> Ty<'tcx> {
+ let tcx = self.cx.tcx();
+ let place_ty = place_ref.ty(self.mir, tcx);
+ self.monomorphize(place_ty.ty)
+ }
+}
+
+fn round_up_const_value_to_alignment<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
+ bx: &mut Bx,
+ value: Bx::Value,
+ align: Bx::Value,
+) -> Bx::Value {
+ // In pseudo code:
+ //
+ // if value & (align - 1) == 0 {
+ // value
+ // } else {
+ // (value & !(align - 1)) + align
+ // }
+ //
+ // Usually this is written without branches as
+ //
+ // (value + align - 1) & !(align - 1)
+ //
+ // But this formula cannot take advantage of constant `value`. E.g. if `value` is known
+ // at compile time to be `1`, this expression should be optimized to `align`. However,
+ // optimization only holds if `align` is a power of two. Since the optimizer doesn't know
+ // that `align` is a power of two, it cannot perform this optimization.
+ //
+ // Instead we use
+ //
+ // value + (-value & (align - 1))
+ //
+ // Since `align` is used only once, the expression can be optimized. For `value = 0`
+ // its optimized to `0` even in debug mode.
+ //
+ // NB: The previous version of this code used
+ //
+ // (value + align - 1) & -align
+ //
+ // Even though `-align == !(align - 1)`, LLVM failed to optimize this even for
+ // `value = 0`. Bug report: https://bugs.llvm.org/show_bug.cgi?id=48559
+ let one = bx.const_usize(1);
+ let align_minus_1 = bx.sub(align, one);
+ let neg_value = bx.neg(value);
+ let offset = bx.and(neg_value, align_minus_1);
+ bx.add(value, offset)
+}