summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/eval_context.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/interpret/eval_context.rs')
-rw-r--r--compiler/rustc_const_eval/src/interpret/eval_context.rs1019
1 files changed, 1019 insertions, 0 deletions
diff --git a/compiler/rustc_const_eval/src/interpret/eval_context.rs b/compiler/rustc_const_eval/src/interpret/eval_context.rs
new file mode 100644
index 000000000..150d6589b
--- /dev/null
+++ b/compiler/rustc_const_eval/src/interpret/eval_context.rs
@@ -0,0 +1,1019 @@
+use std::cell::Cell;
+use std::fmt;
+use std::mem;
+
+use rustc_hir::{self as hir, def_id::DefId, definitions::DefPathData};
+use rustc_index::vec::IndexVec;
+use rustc_middle::mir;
+use rustc_middle::mir::interpret::{InterpError, InvalidProgramInfo};
+use rustc_middle::ty::layout::{
+ self, FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOf, LayoutOfHelpers,
+ TyAndLayout,
+};
+use rustc_middle::ty::{
+ self, query::TyCtxtAt, subst::SubstsRef, ParamEnv, Ty, TyCtxt, TypeFoldable,
+};
+use rustc_mir_dataflow::storage::always_storage_live_locals;
+use rustc_session::Limit;
+use rustc_span::{Pos, Span};
+use rustc_target::abi::{call::FnAbi, Align, HasDataLayout, Size, TargetDataLayout};
+
+use super::{
+ AllocId, GlobalId, Immediate, InterpErrorInfo, InterpResult, MPlaceTy, Machine, MemPlace,
+ MemPlaceMeta, Memory, MemoryKind, Operand, Place, PlaceTy, PointerArithmetic, Provenance,
+ Scalar, ScalarMaybeUninit, StackPopJump,
+};
+use crate::transform::validate::equal_up_to_regions;
+
+pub struct InterpCx<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
+ /// Stores the `Machine` instance.
+ ///
+ /// Note: the stack is provided by the machine.
+ pub machine: M,
+
+ /// The results of the type checker, from rustc.
+ /// The span in this is the "root" of the evaluation, i.e., the const
+ /// we are evaluating (if this is CTFE).
+ pub tcx: TyCtxtAt<'tcx>,
+
+ /// Bounds in scope for polymorphic evaluations.
+ pub(crate) param_env: ty::ParamEnv<'tcx>,
+
+ /// The virtual memory system.
+ pub memory: Memory<'mir, 'tcx, M>,
+
+ /// The recursion limit (cached from `tcx.recursion_limit(())`)
+ pub recursion_limit: Limit,
+}
+
+// The Phantomdata exists to prevent this type from being `Send`. If it were sent across a thread
+// boundary and dropped in the other thread, it would exit the span in the other thread.
+struct SpanGuard(tracing::Span, std::marker::PhantomData<*const u8>);
+
+impl SpanGuard {
+ /// By default a `SpanGuard` does nothing.
+ fn new() -> Self {
+ Self(tracing::Span::none(), std::marker::PhantomData)
+ }
+
+ /// If a span is entered, we exit the previous span (if any, normally none) and enter the
+ /// new span. This is mainly so we don't have to use `Option` for the `tracing_span` field of
+ /// `Frame` by creating a dummy span to being with and then entering it once the frame has
+ /// been pushed.
+ fn enter(&mut self, span: tracing::Span) {
+ // This executes the destructor on the previous instance of `SpanGuard`, ensuring that
+ // we never enter or exit more spans than vice versa. Unless you `mem::leak`, then we
+ // can't protect the tracing stack, but that'll just lead to weird logging, no actual
+ // problems.
+ *self = Self(span, std::marker::PhantomData);
+ self.0.with_subscriber(|(id, dispatch)| {
+ dispatch.enter(id);
+ });
+ }
+}
+
+impl Drop for SpanGuard {
+ fn drop(&mut self) {
+ self.0.with_subscriber(|(id, dispatch)| {
+ dispatch.exit(id);
+ });
+ }
+}
+
+/// A stack frame.
+pub struct Frame<'mir, 'tcx, Prov: Provenance = AllocId, Extra = ()> {
+ ////////////////////////////////////////////////////////////////////////////////
+ // Function and callsite information
+ ////////////////////////////////////////////////////////////////////////////////
+ /// The MIR for the function called on this frame.
+ pub body: &'mir mir::Body<'tcx>,
+
+ /// The def_id and substs of the current function.
+ pub instance: ty::Instance<'tcx>,
+
+ /// Extra data for the machine.
+ pub extra: Extra,
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // Return place and locals
+ ////////////////////////////////////////////////////////////////////////////////
+ /// Work to perform when returning from this function.
+ pub return_to_block: StackPopCleanup,
+
+ /// The location where the result of the current stack frame should be written to,
+ /// and its layout in the caller.
+ pub return_place: PlaceTy<'tcx, Prov>,
+
+ /// The list of locals for this stack frame, stored in order as
+ /// `[return_ptr, arguments..., variables..., temporaries...]`.
+ /// The locals are stored as `Option<Value>`s.
+ /// `None` represents a local that is currently dead, while a live local
+ /// can either directly contain `Scalar` or refer to some part of an `Allocation`.
+ ///
+ /// Do *not* access this directly; always go through the machine hook!
+ pub locals: IndexVec<mir::Local, LocalState<'tcx, Prov>>,
+
+ /// The span of the `tracing` crate is stored here.
+ /// When the guard is dropped, the span is exited. This gives us
+ /// a full stack trace on all tracing statements.
+ tracing_span: SpanGuard,
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // Current position within the function
+ ////////////////////////////////////////////////////////////////////////////////
+ /// If this is `Err`, we are not currently executing any particular statement in
+ /// this frame (can happen e.g. during frame initialization, and during unwinding on
+ /// frames without cleanup code).
+ /// We basically abuse `Result` as `Either`.
+ ///
+ /// Needs to be public because ConstProp does unspeakable things to it.
+ pub loc: Result<mir::Location, Span>,
+}
+
+/// What we store about a frame in an interpreter backtrace.
+#[derive(Debug)]
+pub struct FrameInfo<'tcx> {
+ pub instance: ty::Instance<'tcx>,
+ pub span: Span,
+ pub lint_root: Option<hir::HirId>,
+}
+
+/// Unwind information.
+#[derive(Clone, Copy, Eq, PartialEq, Debug)]
+pub enum StackPopUnwind {
+ /// The cleanup block.
+ Cleanup(mir::BasicBlock),
+ /// No cleanup needs to be done.
+ Skip,
+ /// Unwinding is not allowed (UB).
+ NotAllowed,
+}
+
+#[derive(Clone, Copy, Eq, PartialEq, Debug)] // Miri debug-prints these
+pub enum StackPopCleanup {
+ /// Jump to the next block in the caller, or cause UB if None (that's a function
+ /// that may never return). Also store layout of return place so
+ /// we can validate it at that layout.
+ /// `ret` stores the block we jump to on a normal return, while `unwind`
+ /// stores the block used for cleanup during unwinding.
+ Goto { ret: Option<mir::BasicBlock>, unwind: StackPopUnwind },
+ /// The root frame of the stack: nowhere else to jump to.
+ /// `cleanup` says whether locals are deallocated. Static computation
+ /// wants them leaked to intern what they need (and just throw away
+ /// the entire `ecx` when it is done).
+ Root { cleanup: bool },
+}
+
+/// State of a local variable including a memoized layout
+#[derive(Clone, Debug)]
+pub struct LocalState<'tcx, Prov: Provenance = AllocId> {
+ pub value: LocalValue<Prov>,
+ /// Don't modify if `Some`, this is only used to prevent computing the layout twice
+ pub layout: Cell<Option<TyAndLayout<'tcx>>>,
+}
+
+/// Current value of a local variable
+#[derive(Copy, Clone, Debug)] // Miri debug-prints these
+pub enum LocalValue<Prov: Provenance = AllocId> {
+ /// This local is not currently alive, and cannot be used at all.
+ Dead,
+ /// A normal, live local.
+ /// Mostly for convenience, we re-use the `Operand` type here.
+ /// This is an optimization over just always having a pointer here;
+ /// we can thus avoid doing an allocation when the local just stores
+ /// immediate values *and* never has its address taken.
+ Live(Operand<Prov>),
+}
+
+impl<'tcx, Prov: Provenance + 'static> LocalState<'tcx, Prov> {
+ /// Read the local's value or error if the local is not yet live or not live anymore.
+ ///
+ /// Note: This may only be invoked from the `Machine::access_local` hook and not from
+ /// anywhere else. You may be invalidating machine invariants if you do!
+ #[inline]
+ pub fn access(&self) -> InterpResult<'tcx, &Operand<Prov>> {
+ match &self.value {
+ LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
+ LocalValue::Live(val) => Ok(val),
+ }
+ }
+
+ /// Overwrite the local. If the local can be overwritten in place, return a reference
+ /// to do so; otherwise return the `MemPlace` to consult instead.
+ ///
+ /// Note: This may only be invoked from the `Machine::access_local_mut` hook and not from
+ /// anywhere else. You may be invalidating machine invariants if you do!
+ #[inline]
+ pub fn access_mut(&mut self) -> InterpResult<'tcx, &mut Operand<Prov>> {
+ match &mut self.value {
+ LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
+ LocalValue::Live(val) => Ok(val),
+ }
+ }
+}
+
+impl<'mir, 'tcx, Prov: Provenance> Frame<'mir, 'tcx, Prov> {
+ pub fn with_extra<Extra>(self, extra: Extra) -> Frame<'mir, 'tcx, Prov, Extra> {
+ Frame {
+ body: self.body,
+ instance: self.instance,
+ return_to_block: self.return_to_block,
+ return_place: self.return_place,
+ locals: self.locals,
+ loc: self.loc,
+ extra,
+ tracing_span: self.tracing_span,
+ }
+ }
+}
+
+impl<'mir, 'tcx, Prov: Provenance, Extra> Frame<'mir, 'tcx, Prov, Extra> {
+ /// Get the current location within the Frame.
+ ///
+ /// If this is `Err`, we are not currently executing any particular statement in
+ /// this frame (can happen e.g. during frame initialization, and during unwinding on
+ /// frames without cleanup code).
+ /// We basically abuse `Result` as `Either`.
+ ///
+ /// Used by priroda.
+ pub fn current_loc(&self) -> Result<mir::Location, Span> {
+ self.loc
+ }
+
+ /// Return the `SourceInfo` of the current instruction.
+ pub fn current_source_info(&self) -> Option<&mir::SourceInfo> {
+ self.loc.ok().map(|loc| self.body.source_info(loc))
+ }
+
+ pub fn current_span(&self) -> Span {
+ match self.loc {
+ Ok(loc) => self.body.source_info(loc).span,
+ Err(span) => span,
+ }
+ }
+}
+
+impl<'tcx> fmt::Display for FrameInfo<'tcx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ ty::tls::with(|tcx| {
+ if tcx.def_key(self.instance.def_id()).disambiguated_data.data
+ == DefPathData::ClosureExpr
+ {
+ write!(f, "inside closure")?;
+ } else {
+ write!(f, "inside `{}`", self.instance)?;
+ }
+ if !self.span.is_dummy() {
+ let sm = tcx.sess.source_map();
+ let lo = sm.lookup_char_pos(self.span.lo());
+ write!(
+ f,
+ " at {}:{}:{}",
+ sm.filename_for_diagnostics(&lo.file.name),
+ lo.line,
+ lo.col.to_usize() + 1
+ )?;
+ }
+ Ok(())
+ })
+ }
+}
+
+impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for InterpCx<'mir, 'tcx, M> {
+ #[inline]
+ fn data_layout(&self) -> &TargetDataLayout {
+ &self.tcx.data_layout
+ }
+}
+
+impl<'mir, 'tcx, M> layout::HasTyCtxt<'tcx> for InterpCx<'mir, 'tcx, M>
+where
+ M: Machine<'mir, 'tcx>,
+{
+ #[inline]
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ *self.tcx
+ }
+}
+
+impl<'mir, 'tcx, M> layout::HasParamEnv<'tcx> for InterpCx<'mir, 'tcx, M>
+where
+ M: Machine<'mir, 'tcx>,
+{
+ fn param_env(&self) -> ty::ParamEnv<'tcx> {
+ self.param_env
+ }
+}
+
+impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'mir, 'tcx, M> {
+ type LayoutOfResult = InterpResult<'tcx, TyAndLayout<'tcx>>;
+
+ #[inline]
+ fn layout_tcx_at_span(&self) -> Span {
+ // Using the cheap root span for performance.
+ self.tcx.span
+ }
+
+ #[inline]
+ fn handle_layout_err(
+ &self,
+ err: LayoutError<'tcx>,
+ _: Span,
+ _: Ty<'tcx>,
+ ) -> InterpErrorInfo<'tcx> {
+ err_inval!(Layout(err)).into()
+ }
+}
+
+impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> FnAbiOfHelpers<'tcx> for InterpCx<'mir, 'tcx, M> {
+ type FnAbiOfResult = InterpResult<'tcx, &'tcx FnAbi<'tcx, Ty<'tcx>>>;
+
+ fn handle_fn_abi_err(
+ &self,
+ err: FnAbiError<'tcx>,
+ _span: Span,
+ _fn_abi_request: FnAbiRequest<'tcx>,
+ ) -> InterpErrorInfo<'tcx> {
+ match err {
+ FnAbiError::Layout(err) => err_inval!(Layout(err)).into(),
+ FnAbiError::AdjustForForeignAbi(err) => {
+ err_inval!(FnAbiAdjustForForeignAbi(err)).into()
+ }
+ }
+ }
+}
+
+/// Test if it is valid for a MIR assignment to assign `src`-typed place to `dest`-typed value.
+/// This test should be symmetric, as it is primarily about layout compatibility.
+pub(super) fn mir_assign_valid_types<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ParamEnv<'tcx>,
+ src: TyAndLayout<'tcx>,
+ dest: TyAndLayout<'tcx>,
+) -> bool {
+ // Type-changing assignments can happen when subtyping is used. While
+ // all normal lifetimes are erased, higher-ranked types with their
+ // late-bound lifetimes are still around and can lead to type
+ // differences. So we compare ignoring lifetimes.
+ if equal_up_to_regions(tcx, param_env, src.ty, dest.ty) {
+ // Make sure the layout is equal, too -- just to be safe. Miri really
+ // needs layout equality. For performance reason we skip this check when
+ // the types are equal. Equal types *can* have different layouts when
+ // enum downcast is involved (as enum variants carry the type of the
+ // enum), but those should never occur in assignments.
+ if cfg!(debug_assertions) || src.ty != dest.ty {
+ assert_eq!(src.layout, dest.layout);
+ }
+ true
+ } else {
+ false
+ }
+}
+
+/// Use the already known layout if given (but sanity check in debug mode),
+/// or compute the layout.
+#[cfg_attr(not(debug_assertions), inline(always))]
+pub(super) fn from_known_layout<'tcx>(
+ tcx: TyCtxtAt<'tcx>,
+ param_env: ParamEnv<'tcx>,
+ known_layout: Option<TyAndLayout<'tcx>>,
+ compute: impl FnOnce() -> InterpResult<'tcx, TyAndLayout<'tcx>>,
+) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
+ match known_layout {
+ None => compute(),
+ Some(known_layout) => {
+ if cfg!(debug_assertions) {
+ let check_layout = compute()?;
+ if !mir_assign_valid_types(tcx.tcx, param_env, check_layout, known_layout) {
+ span_bug!(
+ tcx.span,
+ "expected type differs from actual type.\nexpected: {:?}\nactual: {:?}",
+ known_layout.ty,
+ check_layout.ty,
+ );
+ }
+ }
+ Ok(known_layout)
+ }
+ }
+}
+
+impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
+ pub fn new(
+ tcx: TyCtxt<'tcx>,
+ root_span: Span,
+ param_env: ty::ParamEnv<'tcx>,
+ machine: M,
+ ) -> Self {
+ InterpCx {
+ machine,
+ tcx: tcx.at(root_span),
+ param_env,
+ memory: Memory::new(),
+ recursion_limit: tcx.recursion_limit(),
+ }
+ }
+
+ #[inline(always)]
+ pub fn cur_span(&self) -> Span {
+ // This deliberately does *not* honor `requires_caller_location` since it is used for much
+ // more than just panics.
+ self.stack().last().map_or(self.tcx.span, |f| f.current_span())
+ }
+
+ #[inline(always)]
+ pub(crate) fn stack(&self) -> &[Frame<'mir, 'tcx, M::Provenance, M::FrameExtra>] {
+ M::stack(self)
+ }
+
+ #[inline(always)]
+ pub(crate) fn stack_mut(
+ &mut self,
+ ) -> &mut Vec<Frame<'mir, 'tcx, M::Provenance, M::FrameExtra>> {
+ M::stack_mut(self)
+ }
+
+ #[inline(always)]
+ pub fn frame_idx(&self) -> usize {
+ let stack = self.stack();
+ assert!(!stack.is_empty());
+ stack.len() - 1
+ }
+
+ #[inline(always)]
+ pub fn frame(&self) -> &Frame<'mir, 'tcx, M::Provenance, M::FrameExtra> {
+ self.stack().last().expect("no call frames exist")
+ }
+
+ #[inline(always)]
+ pub fn frame_mut(&mut self) -> &mut Frame<'mir, 'tcx, M::Provenance, M::FrameExtra> {
+ self.stack_mut().last_mut().expect("no call frames exist")
+ }
+
+ #[inline(always)]
+ pub(super) fn body(&self) -> &'mir mir::Body<'tcx> {
+ self.frame().body
+ }
+
+ #[inline(always)]
+ pub fn sign_extend(&self, value: u128, ty: TyAndLayout<'_>) -> u128 {
+ assert!(ty.abi.is_signed());
+ ty.size.sign_extend(value)
+ }
+
+ #[inline(always)]
+ pub fn truncate(&self, value: u128, ty: TyAndLayout<'_>) -> u128 {
+ ty.size.truncate(value)
+ }
+
+ #[inline]
+ pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
+ ty.is_freeze(self.tcx, self.param_env)
+ }
+
+ pub fn load_mir(
+ &self,
+ instance: ty::InstanceDef<'tcx>,
+ promoted: Option<mir::Promoted>,
+ ) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
+ let def = instance.with_opt_param();
+ trace!("load mir(instance={:?}, promoted={:?})", instance, promoted);
+ let body = if let Some(promoted) = promoted {
+ &self.tcx.promoted_mir_opt_const_arg(def)[promoted]
+ } else {
+ M::load_mir(self, instance)?
+ };
+ // do not continue if typeck errors occurred (can only occur in local crate)
+ if let Some(err) = body.tainted_by_errors {
+ throw_inval!(AlreadyReported(err));
+ }
+ Ok(body)
+ }
+
+ /// Call this on things you got out of the MIR (so it is as generic as the current
+ /// stack frame), to bring it into the proper environment for this interpreter.
+ pub(super) fn subst_from_current_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
+ &self,
+ value: T,
+ ) -> Result<T, InterpError<'tcx>> {
+ self.subst_from_frame_and_normalize_erasing_regions(self.frame(), value)
+ }
+
+ /// Call this on things you got out of the MIR (so it is as generic as the provided
+ /// stack frame), to bring it into the proper environment for this interpreter.
+ pub(super) fn subst_from_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
+ &self,
+ frame: &Frame<'mir, 'tcx, M::Provenance, M::FrameExtra>,
+ value: T,
+ ) -> Result<T, InterpError<'tcx>> {
+ frame
+ .instance
+ .try_subst_mir_and_normalize_erasing_regions(*self.tcx, self.param_env, value)
+ .map_err(|e| {
+ self.tcx.sess.delay_span_bug(
+ self.cur_span(),
+ format!("failed to normalize {}", e.get_type_for_failure()).as_str(),
+ );
+
+ InterpError::InvalidProgram(InvalidProgramInfo::TooGeneric)
+ })
+ }
+
+ /// The `substs` are assumed to already be in our interpreter "universe" (param_env).
+ pub(super) fn resolve(
+ &self,
+ def: ty::WithOptConstParam<DefId>,
+ substs: SubstsRef<'tcx>,
+ ) -> InterpResult<'tcx, ty::Instance<'tcx>> {
+ trace!("resolve: {:?}, {:#?}", def, substs);
+ trace!("param_env: {:#?}", self.param_env);
+ trace!("substs: {:#?}", substs);
+ match ty::Instance::resolve_opt_const_arg(*self.tcx, self.param_env, def, substs) {
+ Ok(Some(instance)) => Ok(instance),
+ Ok(None) => throw_inval!(TooGeneric),
+
+ // FIXME(eddyb) this could be a bit more specific than `AlreadyReported`.
+ Err(error_reported) => throw_inval!(AlreadyReported(error_reported)),
+ }
+ }
+
+ #[inline(always)]
+ pub fn layout_of_local(
+ &self,
+ frame: &Frame<'mir, 'tcx, M::Provenance, M::FrameExtra>,
+ local: mir::Local,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
+ // `const_prop` runs into this with an invalid (empty) frame, so we
+ // have to support that case (mostly by skipping all caching).
+ match frame.locals.get(local).and_then(|state| state.layout.get()) {
+ None => {
+ let layout = from_known_layout(self.tcx, self.param_env, layout, || {
+ let local_ty = frame.body.local_decls[local].ty;
+ let local_ty =
+ self.subst_from_frame_and_normalize_erasing_regions(frame, local_ty)?;
+ self.layout_of(local_ty)
+ })?;
+ if let Some(state) = frame.locals.get(local) {
+ // Layouts of locals are requested a lot, so we cache them.
+ state.layout.set(Some(layout));
+ }
+ Ok(layout)
+ }
+ Some(layout) => Ok(layout),
+ }
+ }
+
+ /// Returns the actual dynamic size and alignment of the place at the given type.
+ /// Only the "meta" (metadata) part of the place matters.
+ /// This can fail to provide an answer for extern types.
+ pub(super) fn size_and_align_of(
+ &self,
+ metadata: &MemPlaceMeta<M::Provenance>,
+ layout: &TyAndLayout<'tcx>,
+ ) -> InterpResult<'tcx, Option<(Size, Align)>> {
+ if !layout.is_unsized() {
+ return Ok(Some((layout.size, layout.align.abi)));
+ }
+ match layout.ty.kind() {
+ ty::Adt(..) | ty::Tuple(..) => {
+ // First get the size of all statically known fields.
+ // Don't use type_of::sizing_type_of because that expects t to be sized,
+ // and it also rounds up to alignment, which we want to avoid,
+ // as the unsized field's alignment could be smaller.
+ assert!(!layout.ty.is_simd());
+ assert!(layout.fields.count() > 0);
+ trace!("DST layout: {:?}", layout);
+
+ let sized_size = layout.fields.offset(layout.fields.count() - 1);
+ let sized_align = layout.align.abi;
+ trace!(
+ "DST {} statically sized prefix size: {:?} align: {:?}",
+ layout.ty,
+ sized_size,
+ sized_align
+ );
+
+ // Recurse to get the size of the dynamically sized field (must be
+ // the last field). Can't have foreign types here, how would we
+ // adjust alignment and size for them?
+ let field = layout.field(self, layout.fields.count() - 1);
+ let Some((unsized_size, unsized_align)) = self.size_and_align_of(metadata, &field)? else {
+ // A field with an extern type. We don't know the actual dynamic size
+ // or the alignment.
+ return Ok(None);
+ };
+
+ // FIXME (#26403, #27023): We should be adding padding
+ // to `sized_size` (to accommodate the `unsized_align`
+ // required of the unsized field that follows) before
+ // summing it with `sized_size`. (Note that since #26403
+ // is unfixed, we do not yet add the necessary padding
+ // here. But this is where the add would go.)
+
+ // Return the sum of sizes and max of aligns.
+ let size = sized_size + unsized_size; // `Size` addition
+
+ // Choose max of two known alignments (combined value must
+ // be aligned according to more restrictive of the two).
+ let align = sized_align.max(unsized_align);
+
+ // Issue #27023: must add any necessary padding to `size`
+ // (to make it a multiple of `align`) before returning it.
+ let size = size.align_to(align);
+
+ // Check if this brought us over the size limit.
+ if size > self.max_size_of_val() {
+ throw_ub!(InvalidMeta("total size is bigger than largest supported object"));
+ }
+ Ok(Some((size, align)))
+ }
+ ty::Dynamic(..) => {
+ let vtable = metadata.unwrap_meta().to_pointer(self)?;
+ // Read size and align from vtable (already checks size).
+ Ok(Some(self.get_vtable_size_and_align(vtable)?))
+ }
+
+ ty::Slice(_) | ty::Str => {
+ let len = metadata.unwrap_meta().to_machine_usize(self)?;
+ let elem = layout.field(self, 0);
+
+ // Make sure the slice is not too big.
+ let size = elem.size.bytes().saturating_mul(len); // we rely on `max_size_of_val` being smaller than `u64::MAX`.
+ let size = Size::from_bytes(size);
+ if size > self.max_size_of_val() {
+ throw_ub!(InvalidMeta("slice is bigger than largest supported object"));
+ }
+ Ok(Some((size, elem.align.abi)))
+ }
+
+ ty::Foreign(_) => Ok(None),
+
+ _ => span_bug!(self.cur_span(), "size_and_align_of::<{:?}> not supported", layout.ty),
+ }
+ }
+ #[inline]
+ pub fn size_and_align_of_mplace(
+ &self,
+ mplace: &MPlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, Option<(Size, Align)>> {
+ self.size_and_align_of(&mplace.meta, &mplace.layout)
+ }
+
+ #[instrument(skip(self, body, return_place, return_to_block), level = "debug")]
+ pub fn push_stack_frame(
+ &mut self,
+ instance: ty::Instance<'tcx>,
+ body: &'mir mir::Body<'tcx>,
+ return_place: &PlaceTy<'tcx, M::Provenance>,
+ return_to_block: StackPopCleanup,
+ ) -> InterpResult<'tcx> {
+ trace!("body: {:#?}", body);
+ // first push a stack frame so we have access to the local substs
+ let pre_frame = Frame {
+ body,
+ loc: Err(body.span), // Span used for errors caused during preamble.
+ return_to_block,
+ return_place: return_place.clone(),
+ // empty local array, we fill it in below, after we are inside the stack frame and
+ // all methods actually know about the frame
+ locals: IndexVec::new(),
+ instance,
+ tracing_span: SpanGuard::new(),
+ extra: (),
+ };
+ let frame = M::init_frame_extra(self, pre_frame)?;
+ self.stack_mut().push(frame);
+
+ // Make sure all the constants required by this frame evaluate successfully (post-monomorphization check).
+ for const_ in &body.required_consts {
+ let span = const_.span;
+ let const_ =
+ self.subst_from_current_frame_and_normalize_erasing_regions(const_.literal)?;
+ self.mir_const_to_op(&const_, None).map_err(|err| {
+ // If there was an error, set the span of the current frame to this constant.
+ // Avoiding doing this when evaluation succeeds.
+ self.frame_mut().loc = Err(span);
+ err
+ })?;
+ }
+
+ // Most locals are initially dead.
+ let dummy = LocalState { value: LocalValue::Dead, layout: Cell::new(None) };
+ let mut locals = IndexVec::from_elem(dummy, &body.local_decls);
+
+ // Now mark those locals as live that have no `Storage*` annotations.
+ let always_live = always_storage_live_locals(self.body());
+ for local in locals.indices() {
+ if always_live.contains(local) {
+ locals[local].value = LocalValue::Live(Operand::Immediate(Immediate::Uninit));
+ }
+ }
+ // done
+ self.frame_mut().locals = locals;
+ M::after_stack_push(self)?;
+ self.frame_mut().loc = Ok(mir::Location::START);
+
+ let span = info_span!("frame", "{}", instance);
+ self.frame_mut().tracing_span.enter(span);
+
+ Ok(())
+ }
+
+ /// Jump to the given block.
+ #[inline]
+ pub fn go_to_block(&mut self, target: mir::BasicBlock) {
+ self.frame_mut().loc = Ok(mir::Location { block: target, statement_index: 0 });
+ }
+
+ /// *Return* to the given `target` basic block.
+ /// Do *not* use for unwinding! Use `unwind_to_block` instead.
+ ///
+ /// If `target` is `None`, that indicates the function cannot return, so we raise UB.
+ pub fn return_to_block(&mut self, target: Option<mir::BasicBlock>) -> InterpResult<'tcx> {
+ if let Some(target) = target {
+ self.go_to_block(target);
+ Ok(())
+ } else {
+ throw_ub!(Unreachable)
+ }
+ }
+
+ /// *Unwind* to the given `target` basic block.
+ /// Do *not* use for returning! Use `return_to_block` instead.
+ ///
+ /// If `target` is `StackPopUnwind::Skip`, that indicates the function does not need cleanup
+ /// during unwinding, and we will just keep propagating that upwards.
+ ///
+ /// If `target` is `StackPopUnwind::NotAllowed`, that indicates the function does not allow
+ /// unwinding, and doing so is UB.
+ pub fn unwind_to_block(&mut self, target: StackPopUnwind) -> InterpResult<'tcx> {
+ self.frame_mut().loc = match target {
+ StackPopUnwind::Cleanup(block) => Ok(mir::Location { block, statement_index: 0 }),
+ StackPopUnwind::Skip => Err(self.frame_mut().body.span),
+ StackPopUnwind::NotAllowed => {
+ throw_ub_format!("unwinding past a stack frame that does not allow unwinding")
+ }
+ };
+ Ok(())
+ }
+
+ /// Pops the current frame from the stack, deallocating the
+ /// memory for allocated locals.
+ ///
+ /// If `unwinding` is `false`, then we are performing a normal return
+ /// from a function. In this case, we jump back into the frame of the caller,
+ /// and continue execution as normal.
+ ///
+ /// If `unwinding` is `true`, then we are in the middle of a panic,
+ /// and need to unwind this frame. In this case, we jump to the
+ /// `cleanup` block for the function, which is responsible for running
+ /// `Drop` impls for any locals that have been initialized at this point.
+ /// The cleanup block ends with a special `Resume` terminator, which will
+ /// cause us to continue unwinding.
+ #[instrument(skip(self), level = "debug")]
+ pub(super) fn pop_stack_frame(&mut self, unwinding: bool) -> InterpResult<'tcx> {
+ info!(
+ "popping stack frame ({})",
+ if unwinding { "during unwinding" } else { "returning from function" }
+ );
+
+ // Check `unwinding`.
+ assert_eq!(
+ unwinding,
+ match self.frame().loc {
+ Ok(loc) => self.body().basic_blocks()[loc.block].is_cleanup,
+ Err(_) => true,
+ }
+ );
+ if unwinding && self.frame_idx() == 0 {
+ throw_ub_format!("unwinding past the topmost frame of the stack");
+ }
+
+ // Copy return value. Must of course happen *before* we deallocate the locals.
+ let copy_ret_result = if !unwinding {
+ let op = self
+ .local_to_op(self.frame(), mir::RETURN_PLACE, None)
+ .expect("return place should always be live");
+ let dest = self.frame().return_place.clone();
+ let err = self.copy_op(&op, &dest, /*allow_transmute*/ true);
+ trace!("return value: {:?}", self.dump_place(*dest));
+ // We delay actually short-circuiting on this error until *after* the stack frame is
+ // popped, since we want this error to be attributed to the caller, whose type defines
+ // this transmute.
+ err
+ } else {
+ Ok(())
+ };
+
+ // Cleanup: deallocate locals.
+ // Usually we want to clean up (deallocate locals), but in a few rare cases we don't.
+ // We do this while the frame is still on the stack, so errors point to the callee.
+ let return_to_block = self.frame().return_to_block;
+ let cleanup = match return_to_block {
+ StackPopCleanup::Goto { .. } => true,
+ StackPopCleanup::Root { cleanup, .. } => cleanup,
+ };
+ if cleanup {
+ // We need to take the locals out, since we need to mutate while iterating.
+ let locals = mem::take(&mut self.frame_mut().locals);
+ for local in &locals {
+ self.deallocate_local(local.value)?;
+ }
+ }
+
+ // All right, now it is time to actually pop the frame.
+ // Note that its locals are gone already, but that's fine.
+ let frame =
+ self.stack_mut().pop().expect("tried to pop a stack frame, but there were none");
+ // Report error from return value copy, if any.
+ copy_ret_result?;
+
+ // If we are not doing cleanup, also skip everything else.
+ if !cleanup {
+ assert!(self.stack().is_empty(), "only the topmost frame should ever be leaked");
+ assert!(!unwinding, "tried to skip cleanup during unwinding");
+ // Skip machine hook.
+ return Ok(());
+ }
+ if M::after_stack_pop(self, frame, unwinding)? == StackPopJump::NoJump {
+ // The hook already did everything.
+ return Ok(());
+ }
+
+ // Normal return, figure out where to jump.
+ if unwinding {
+ // Follow the unwind edge.
+ let unwind = match return_to_block {
+ StackPopCleanup::Goto { unwind, .. } => unwind,
+ StackPopCleanup::Root { .. } => {
+ panic!("encountered StackPopCleanup::Root when unwinding!")
+ }
+ };
+ self.unwind_to_block(unwind)
+ } else {
+ // Follow the normal return edge.
+ match return_to_block {
+ StackPopCleanup::Goto { ret, .. } => self.return_to_block(ret),
+ StackPopCleanup::Root { .. } => {
+ assert!(
+ self.stack().is_empty(),
+ "only the topmost frame can have StackPopCleanup::Root"
+ );
+ Ok(())
+ }
+ }
+ }
+ }
+
+ /// Mark a storage as live, killing the previous content.
+ pub fn storage_live(&mut self, local: mir::Local) -> InterpResult<'tcx> {
+ assert!(local != mir::RETURN_PLACE, "Cannot make return place live");
+ trace!("{:?} is now live", local);
+
+ let local_val = LocalValue::Live(Operand::Immediate(Immediate::Uninit));
+ // StorageLive expects the local to be dead, and marks it live.
+ let old = mem::replace(&mut self.frame_mut().locals[local].value, local_val);
+ if !matches!(old, LocalValue::Dead) {
+ throw_ub_format!("StorageLive on a local that was already live");
+ }
+ Ok(())
+ }
+
+ pub fn storage_dead(&mut self, local: mir::Local) -> InterpResult<'tcx> {
+ assert!(local != mir::RETURN_PLACE, "Cannot make return place dead");
+ trace!("{:?} is now dead", local);
+
+ // It is entirely okay for this local to be already dead (at least that's how we currently generate MIR)
+ let old = mem::replace(&mut self.frame_mut().locals[local].value, LocalValue::Dead);
+ self.deallocate_local(old)?;
+ Ok(())
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn deallocate_local(&mut self, local: LocalValue<M::Provenance>) -> InterpResult<'tcx> {
+ if let LocalValue::Live(Operand::Indirect(MemPlace { ptr, .. })) = local {
+ // All locals have a backing allocation, even if the allocation is empty
+ // due to the local having ZST type. Hence we can `unwrap`.
+ trace!(
+ "deallocating local {:?}: {:?}",
+ local,
+ // Locals always have a `alloc_id` (they are never the result of a int2ptr).
+ self.dump_alloc(ptr.provenance.unwrap().get_alloc_id().unwrap())
+ );
+ self.deallocate_ptr(ptr, None, MemoryKind::Stack)?;
+ };
+ Ok(())
+ }
+
+ pub fn eval_to_allocation(
+ &self,
+ gid: GlobalId<'tcx>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ // For statics we pick `ParamEnv::reveal_all`, because statics don't have generics
+ // and thus don't care about the parameter environment. While we could just use
+ // `self.param_env`, that would mean we invoke the query to evaluate the static
+ // with different parameter environments, thus causing the static to be evaluated
+ // multiple times.
+ let param_env = if self.tcx.is_static(gid.instance.def_id()) {
+ ty::ParamEnv::reveal_all()
+ } else {
+ self.param_env
+ };
+ let param_env = param_env.with_const();
+ // Use a precise span for better cycle errors.
+ let val = self.tcx.at(self.cur_span()).eval_to_allocation_raw(param_env.and(gid))?;
+ self.raw_const_to_mplace(val)
+ }
+
+ #[must_use]
+ pub fn dump_place(&self, place: Place<M::Provenance>) -> PlacePrinter<'_, 'mir, 'tcx, M> {
+ PlacePrinter { ecx: self, place }
+ }
+
+ #[must_use]
+ pub fn generate_stacktrace(&self) -> Vec<FrameInfo<'tcx>> {
+ let mut frames = Vec::new();
+ // This deliberately does *not* honor `requires_caller_location` since it is used for much
+ // more than just panics.
+ for frame in self.stack().iter().rev() {
+ let lint_root = frame.current_source_info().and_then(|source_info| {
+ match &frame.body.source_scopes[source_info.scope].local_data {
+ mir::ClearCrossCrate::Set(data) => Some(data.lint_root),
+ mir::ClearCrossCrate::Clear => None,
+ }
+ });
+ let span = frame.current_span();
+
+ frames.push(FrameInfo { span, instance: frame.instance, lint_root });
+ }
+ trace!("generate stacktrace: {:#?}", frames);
+ frames
+ }
+}
+
+#[doc(hidden)]
+/// Helper struct for the `dump_place` function.
+pub struct PlacePrinter<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> {
+ ecx: &'a InterpCx<'mir, 'tcx, M>,
+ place: Place<M::Provenance>,
+}
+
+impl<'a, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> std::fmt::Debug
+ for PlacePrinter<'a, 'mir, 'tcx, M>
+{
+ fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ match self.place {
+ Place::Local { frame, local } => {
+ let mut allocs = Vec::new();
+ write!(fmt, "{:?}", local)?;
+ if frame != self.ecx.frame_idx() {
+ write!(fmt, " ({} frames up)", self.ecx.frame_idx() - frame)?;
+ }
+ write!(fmt, ":")?;
+
+ match self.ecx.stack()[frame].locals[local].value {
+ LocalValue::Dead => write!(fmt, " is dead")?,
+ LocalValue::Live(Operand::Immediate(Immediate::Uninit)) => {
+ write!(fmt, " is uninitialized")?
+ }
+ LocalValue::Live(Operand::Indirect(mplace)) => {
+ write!(
+ fmt,
+ " by {} ref {:?}:",
+ match mplace.meta {
+ MemPlaceMeta::Meta(meta) => format!(" meta({:?})", meta),
+ MemPlaceMeta::None => String::new(),
+ },
+ mplace.ptr,
+ )?;
+ allocs.extend(mplace.ptr.provenance.map(Provenance::get_alloc_id));
+ }
+ LocalValue::Live(Operand::Immediate(Immediate::Scalar(val))) => {
+ write!(fmt, " {:?}", val)?;
+ if let ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _size)) = val {
+ allocs.push(ptr.provenance.get_alloc_id());
+ }
+ }
+ LocalValue::Live(Operand::Immediate(Immediate::ScalarPair(val1, val2))) => {
+ write!(fmt, " ({:?}, {:?})", val1, val2)?;
+ if let ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _size)) = val1 {
+ allocs.push(ptr.provenance.get_alloc_id());
+ }
+ if let ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _size)) = val2 {
+ allocs.push(ptr.provenance.get_alloc_id());
+ }
+ }
+ }
+
+ write!(fmt, ": {:?}", self.ecx.dump_allocs(allocs.into_iter().flatten().collect()))
+ }
+ Place::Ptr(mplace) => match mplace.ptr.provenance.and_then(Provenance::get_alloc_id) {
+ Some(alloc_id) => {
+ write!(fmt, "by ref {:?}: {:?}", mplace.ptr, self.ecx.dump_alloc(alloc_id))
+ }
+ ptr => write!(fmt, " integral by ref: {:?}", ptr),
+ },
+ }
+ }
+}