summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/intrinsics.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/interpret/intrinsics.rs')
-rw-r--r--compiler/rustc_const_eval/src/interpret/intrinsics.rs696
1 files changed, 696 insertions, 0 deletions
diff --git a/compiler/rustc_const_eval/src/interpret/intrinsics.rs b/compiler/rustc_const_eval/src/interpret/intrinsics.rs
new file mode 100644
index 000000000..08209eb79
--- /dev/null
+++ b/compiler/rustc_const_eval/src/interpret/intrinsics.rs
@@ -0,0 +1,696 @@
+//! Intrinsics and other functions that the miri engine executes without
+//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
+//! and miri.
+
+use std::convert::TryFrom;
+
+use rustc_hir::def_id::DefId;
+use rustc_middle::mir::{
+ self,
+ interpret::{ConstValue, GlobalId, InterpResult, PointerArithmetic, Scalar},
+ BinOp,
+};
+use rustc_middle::ty;
+use rustc_middle::ty::layout::LayoutOf as _;
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::{Ty, TyCtxt};
+use rustc_span::symbol::{sym, Symbol};
+use rustc_target::abi::{Abi, Align, Primitive, Size};
+
+use super::{
+ util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, Machine, OpTy, PlaceTy,
+ Pointer,
+};
+
+mod caller_location;
+mod type_name;
+
+fn numeric_intrinsic<Prov>(name: Symbol, bits: u128, kind: Primitive) -> Scalar<Prov> {
+ let size = match kind {
+ Primitive::Int(integer, _) => integer.size(),
+ _ => bug!("invalid `{}` argument: {:?}", name, bits),
+ };
+ let extra = 128 - u128::from(size.bits());
+ let bits_out = match name {
+ sym::ctpop => u128::from(bits.count_ones()),
+ sym::ctlz => u128::from(bits.leading_zeros()) - extra,
+ sym::cttz => u128::from((bits << extra).trailing_zeros()) - extra,
+ sym::bswap => (bits << extra).swap_bytes(),
+ sym::bitreverse => (bits << extra).reverse_bits(),
+ _ => bug!("not a numeric intrinsic: {}", name),
+ };
+ Scalar::from_uint(bits_out, size)
+}
+
+/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
+/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
+pub(crate) fn eval_nullary_intrinsic<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ def_id: DefId,
+ substs: SubstsRef<'tcx>,
+) -> InterpResult<'tcx, ConstValue<'tcx>> {
+ let tp_ty = substs.type_at(0);
+ let name = tcx.item_name(def_id);
+ Ok(match name {
+ sym::type_name => {
+ ensure_monomorphic_enough(tcx, tp_ty)?;
+ let alloc = type_name::alloc_type_name(tcx, tp_ty);
+ ConstValue::Slice { data: alloc, start: 0, end: alloc.inner().len() }
+ }
+ sym::needs_drop => {
+ ensure_monomorphic_enough(tcx, tp_ty)?;
+ ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env))
+ }
+ sym::pref_align_of => {
+ // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
+ let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
+ ConstValue::from_machine_usize(layout.align.pref.bytes(), &tcx)
+ }
+ sym::type_id => {
+ ensure_monomorphic_enough(tcx, tp_ty)?;
+ ConstValue::from_u64(tcx.type_id_hash(tp_ty))
+ }
+ sym::variant_count => match tp_ty.kind() {
+ // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
+ ty::Adt(ref adt, _) => {
+ ConstValue::from_machine_usize(adt.variants().len() as u64, &tcx)
+ }
+ ty::Projection(_)
+ | ty::Opaque(_, _)
+ | ty::Param(_)
+ | ty::Bound(_, _)
+ | ty::Placeholder(_)
+ | ty::Infer(_) => throw_inval!(TooGeneric),
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Foreign(_)
+ | ty::Str
+ | ty::Array(_, _)
+ | ty::Slice(_)
+ | ty::RawPtr(_)
+ | ty::Ref(_, _, _)
+ | ty::FnDef(_, _)
+ | ty::FnPtr(_)
+ | ty::Dynamic(_, _)
+ | ty::Closure(_, _)
+ | ty::Generator(_, _, _)
+ | ty::GeneratorWitness(_)
+ | ty::Never
+ | ty::Tuple(_)
+ | ty::Error(_) => ConstValue::from_machine_usize(0u64, &tcx),
+ },
+ other => bug!("`{}` is not a zero arg intrinsic", other),
+ })
+}
+
+impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
+ /// Returns `true` if emulation happened.
+ /// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own
+ /// intrinsic handling.
+ pub fn emulate_intrinsic(
+ &mut self,
+ instance: ty::Instance<'tcx>,
+ args: &[OpTy<'tcx, M::Provenance>],
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ret: Option<mir::BasicBlock>,
+ ) -> InterpResult<'tcx, bool> {
+ let substs = instance.substs;
+ let intrinsic_name = self.tcx.item_name(instance.def_id());
+
+ // First handle intrinsics without return place.
+ let ret = match ret {
+ None => match intrinsic_name {
+ sym::transmute => throw_ub_format!("transmuting to uninhabited type"),
+ sym::abort => M::abort(self, "the program aborted execution".to_owned())?,
+ // Unsupported diverging intrinsic.
+ _ => return Ok(false),
+ },
+ Some(p) => p,
+ };
+
+ match intrinsic_name {
+ sym::caller_location => {
+ let span = self.find_closest_untracked_caller_location();
+ let location = self.alloc_caller_location_for_span(span);
+ self.write_immediate(location.to_ref(self), dest)?;
+ }
+
+ sym::min_align_of_val | sym::size_of_val => {
+ // Avoid `deref_operand` -- this is not a deref, the ptr does not have to be
+ // dereferenceable!
+ let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?;
+ let (size, align) = self
+ .size_and_align_of_mplace(&place)?
+ .ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
+
+ let result = match intrinsic_name {
+ sym::min_align_of_val => align.bytes(),
+ sym::size_of_val => size.bytes(),
+ _ => bug!(),
+ };
+
+ self.write_scalar(Scalar::from_machine_usize(result, self), dest)?;
+ }
+
+ sym::pref_align_of
+ | sym::needs_drop
+ | sym::type_id
+ | sym::type_name
+ | sym::variant_count => {
+ let gid = GlobalId { instance, promoted: None };
+ let ty = match intrinsic_name {
+ sym::pref_align_of | sym::variant_count => self.tcx.types.usize,
+ sym::needs_drop => self.tcx.types.bool,
+ sym::type_id => self.tcx.types.u64,
+ sym::type_name => self.tcx.mk_static_str(),
+ _ => bug!(),
+ };
+ let val =
+ self.tcx.const_eval_global_id(self.param_env, gid, Some(self.tcx.span))?;
+ let val = self.const_val_to_op(val, ty, Some(dest.layout))?;
+ self.copy_op(&val, dest, /*allow_transmute*/ false)?;
+ }
+
+ sym::ctpop
+ | sym::cttz
+ | sym::cttz_nonzero
+ | sym::ctlz
+ | sym::ctlz_nonzero
+ | sym::bswap
+ | sym::bitreverse => {
+ let ty = substs.type_at(0);
+ let layout_of = self.layout_of(ty)?;
+ let val = self.read_scalar(&args[0])?.check_init()?;
+ let bits = val.to_bits(layout_of.size)?;
+ let kind = match layout_of.abi {
+ Abi::Scalar(scalar) => scalar.primitive(),
+ _ => span_bug!(
+ self.cur_span(),
+ "{} called on invalid type {:?}",
+ intrinsic_name,
+ ty
+ ),
+ };
+ let (nonzero, intrinsic_name) = match intrinsic_name {
+ sym::cttz_nonzero => (true, sym::cttz),
+ sym::ctlz_nonzero => (true, sym::ctlz),
+ other => (false, other),
+ };
+ if nonzero && bits == 0 {
+ throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name);
+ }
+ let out_val = numeric_intrinsic(intrinsic_name, bits, kind);
+ self.write_scalar(out_val, dest)?;
+ }
+ sym::add_with_overflow | sym::sub_with_overflow | sym::mul_with_overflow => {
+ let lhs = self.read_immediate(&args[0])?;
+ let rhs = self.read_immediate(&args[1])?;
+ let bin_op = match intrinsic_name {
+ sym::add_with_overflow => BinOp::Add,
+ sym::sub_with_overflow => BinOp::Sub,
+ sym::mul_with_overflow => BinOp::Mul,
+ _ => bug!(),
+ };
+ self.binop_with_overflow(
+ bin_op, /*force_overflow_checks*/ true, &lhs, &rhs, dest,
+ )?;
+ }
+ sym::saturating_add | sym::saturating_sub => {
+ let l = self.read_immediate(&args[0])?;
+ let r = self.read_immediate(&args[1])?;
+ let val = self.saturating_arith(
+ if intrinsic_name == sym::saturating_add { BinOp::Add } else { BinOp::Sub },
+ &l,
+ &r,
+ )?;
+ self.write_scalar(val, dest)?;
+ }
+ sym::discriminant_value => {
+ let place = self.deref_operand(&args[0])?;
+ let discr_val = self.read_discriminant(&place.into())?.0;
+ self.write_scalar(discr_val, dest)?;
+ }
+ sym::unchecked_shl
+ | sym::unchecked_shr
+ | sym::unchecked_add
+ | sym::unchecked_sub
+ | sym::unchecked_mul
+ | sym::unchecked_div
+ | sym::unchecked_rem => {
+ let l = self.read_immediate(&args[0])?;
+ let r = self.read_immediate(&args[1])?;
+ let bin_op = match intrinsic_name {
+ sym::unchecked_shl => BinOp::Shl,
+ sym::unchecked_shr => BinOp::Shr,
+ sym::unchecked_add => BinOp::Add,
+ sym::unchecked_sub => BinOp::Sub,
+ sym::unchecked_mul => BinOp::Mul,
+ sym::unchecked_div => BinOp::Div,
+ sym::unchecked_rem => BinOp::Rem,
+ _ => bug!(),
+ };
+ let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, &l, &r)?;
+ if overflowed {
+ let layout = self.layout_of(substs.type_at(0))?;
+ let r_val = r.to_scalar()?.to_bits(layout.size)?;
+ if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name {
+ throw_ub_format!("overflowing shift by {} in `{}`", r_val, intrinsic_name);
+ } else {
+ throw_ub_format!("overflow executing `{}`", intrinsic_name);
+ }
+ }
+ self.write_scalar(val, dest)?;
+ }
+ sym::rotate_left | sym::rotate_right => {
+ // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
+ // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
+ let layout = self.layout_of(substs.type_at(0))?;
+ let val = self.read_scalar(&args[0])?.check_init()?;
+ let val_bits = val.to_bits(layout.size)?;
+ let raw_shift = self.read_scalar(&args[1])?.check_init()?;
+ let raw_shift_bits = raw_shift.to_bits(layout.size)?;
+ let width_bits = u128::from(layout.size.bits());
+ let shift_bits = raw_shift_bits % width_bits;
+ let inv_shift_bits = (width_bits - shift_bits) % width_bits;
+ let result_bits = if intrinsic_name == sym::rotate_left {
+ (val_bits << shift_bits) | (val_bits >> inv_shift_bits)
+ } else {
+ (val_bits >> shift_bits) | (val_bits << inv_shift_bits)
+ };
+ let truncated_bits = self.truncate(result_bits, layout);
+ let result = Scalar::from_uint(truncated_bits, layout.size);
+ self.write_scalar(result, dest)?;
+ }
+ sym::copy => {
+ self.copy_intrinsic(&args[0], &args[1], &args[2], /*nonoverlapping*/ false)?;
+ }
+ sym::write_bytes => {
+ self.write_bytes_intrinsic(&args[0], &args[1], &args[2])?;
+ }
+ sym::offset => {
+ let ptr = self.read_pointer(&args[0])?;
+ let offset_count = self.read_scalar(&args[1])?.to_machine_isize(self)?;
+ let pointee_ty = substs.type_at(0);
+
+ let offset_ptr = self.ptr_offset_inbounds(ptr, pointee_ty, offset_count)?;
+ self.write_pointer(offset_ptr, dest)?;
+ }
+ sym::arith_offset => {
+ let ptr = self.read_pointer(&args[0])?;
+ let offset_count = self.read_scalar(&args[1])?.to_machine_isize(self)?;
+ let pointee_ty = substs.type_at(0);
+
+ let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
+ let offset_bytes = offset_count.wrapping_mul(pointee_size);
+ let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self);
+ self.write_pointer(offset_ptr, dest)?;
+ }
+ sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
+ let a = self.read_pointer(&args[0])?;
+ let b = self.read_pointer(&args[1])?;
+
+ let usize_layout = self.layout_of(self.tcx.types.usize)?;
+ let isize_layout = self.layout_of(self.tcx.types.isize)?;
+
+ // Get offsets for both that are at least relative to the same base.
+ let (a_offset, b_offset) =
+ match (self.ptr_try_get_alloc_id(a), self.ptr_try_get_alloc_id(b)) {
+ (Err(a), Err(b)) => {
+ // Neither poiner points to an allocation.
+ // If these are inequal or null, this *will* fail the deref check below.
+ (a, b)
+ }
+ (Err(_), _) | (_, Err(_)) => {
+ // We managed to find a valid allocation for one pointer, but not the other.
+ // That means they are definitely not pointing to the same allocation.
+ throw_ub_format!(
+ "`{}` called on pointers into different allocations",
+ intrinsic_name
+ );
+ }
+ (Ok((a_alloc_id, a_offset, _)), Ok((b_alloc_id, b_offset, _))) => {
+ // Found allocation for both. They must be into the same allocation.
+ if a_alloc_id != b_alloc_id {
+ throw_ub_format!(
+ "`{}` called on pointers into different allocations",
+ intrinsic_name
+ );
+ }
+ // Use these offsets for distance calculation.
+ (a_offset.bytes(), b_offset.bytes())
+ }
+ };
+
+ // Compute distance.
+ let dist = {
+ // Addresses are unsigned, so this is a `usize` computation. We have to do the
+ // overflow check separately anyway.
+ let (val, overflowed, _ty) = {
+ let a_offset = ImmTy::from_uint(a_offset, usize_layout);
+ let b_offset = ImmTy::from_uint(b_offset, usize_layout);
+ self.overflowing_binary_op(BinOp::Sub, &a_offset, &b_offset)?
+ };
+ if overflowed {
+ // a < b
+ if intrinsic_name == sym::ptr_offset_from_unsigned {
+ throw_ub_format!(
+ "`{}` called when first pointer has smaller offset than second: {} < {}",
+ intrinsic_name,
+ a_offset,
+ b_offset,
+ );
+ }
+ // The signed form of the intrinsic allows this. If we interpret the
+ // difference as isize, we'll get the proper signed difference. If that
+ // seems *positive*, they were more than isize::MAX apart.
+ let dist = val.to_machine_isize(self)?;
+ if dist >= 0 {
+ throw_ub_format!(
+ "`{}` called when first pointer is too far before second",
+ intrinsic_name
+ );
+ }
+ dist
+ } else {
+ // b >= a
+ let dist = val.to_machine_isize(self)?;
+ // If converting to isize produced a *negative* result, we had an overflow
+ // because they were more than isize::MAX apart.
+ if dist < 0 {
+ throw_ub_format!(
+ "`{}` called when first pointer is too far ahead of second",
+ intrinsic_name
+ );
+ }
+ dist
+ }
+ };
+
+ // Check that the range between them is dereferenceable ("in-bounds or one past the
+ // end of the same allocation"). This is like the check in ptr_offset_inbounds.
+ let min_ptr = if dist >= 0 { b } else { a };
+ self.check_ptr_access_align(
+ min_ptr,
+ Size::from_bytes(dist.unsigned_abs()),
+ Align::ONE,
+ CheckInAllocMsg::OffsetFromTest,
+ )?;
+
+ // Perform division by size to compute return value.
+ let ret_layout = if intrinsic_name == sym::ptr_offset_from_unsigned {
+ assert!(0 <= dist && dist <= self.machine_isize_max());
+ usize_layout
+ } else {
+ assert!(self.machine_isize_min() <= dist && dist <= self.machine_isize_max());
+ isize_layout
+ };
+ let pointee_layout = self.layout_of(substs.type_at(0))?;
+ // If ret_layout is unsigned, we checked that so is the distance, so we are good.
+ let val = ImmTy::from_int(dist, ret_layout);
+ let size = ImmTy::from_int(pointee_layout.size.bytes(), ret_layout);
+ self.exact_div(&val, &size, dest)?;
+ }
+
+ sym::transmute => {
+ self.copy_op(&args[0], dest, /*allow_transmute*/ true)?;
+ }
+ sym::assert_inhabited | sym::assert_zero_valid | sym::assert_uninit_valid => {
+ let ty = instance.substs.type_at(0);
+ let layout = self.layout_of(ty)?;
+
+ // For *all* intrinsics we first check `is_uninhabited` to give a more specific
+ // error message.
+ if layout.abi.is_uninhabited() {
+ // The run-time intrinsic panics just to get a good backtrace; here we abort
+ // since there is no problem showing a backtrace even for aborts.
+ M::abort(
+ self,
+ format!(
+ "aborted execution: attempted to instantiate uninhabited type `{}`",
+ ty
+ ),
+ )?;
+ }
+
+ if intrinsic_name == sym::assert_zero_valid {
+ let should_panic = !self.tcx.permits_zero_init(layout);
+
+ if should_panic {
+ M::abort(
+ self,
+ format!(
+ "aborted execution: attempted to zero-initialize type `{}`, which is invalid",
+ ty
+ ),
+ )?;
+ }
+ }
+
+ if intrinsic_name == sym::assert_uninit_valid {
+ let should_panic = !self.tcx.permits_uninit_init(layout);
+
+ if should_panic {
+ M::abort(
+ self,
+ format!(
+ "aborted execution: attempted to leave type `{}` uninitialized, which is invalid",
+ ty
+ ),
+ )?;
+ }
+ }
+ }
+ sym::simd_insert => {
+ let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
+ let elem = &args[2];
+ let (input, input_len) = self.operand_to_simd(&args[0])?;
+ let (dest, dest_len) = self.place_to_simd(dest)?;
+ assert_eq!(input_len, dest_len, "Return vector length must match input length");
+ assert!(
+ index < dest_len,
+ "Index `{}` must be in bounds of vector with length {}`",
+ index,
+ dest_len
+ );
+
+ for i in 0..dest_len {
+ let place = self.mplace_index(&dest, i)?;
+ let value = if i == index {
+ elem.clone()
+ } else {
+ self.mplace_index(&input, i)?.into()
+ };
+ self.copy_op(&value, &place.into(), /*allow_transmute*/ false)?;
+ }
+ }
+ sym::simd_extract => {
+ let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
+ let (input, input_len) = self.operand_to_simd(&args[0])?;
+ assert!(
+ index < input_len,
+ "index `{}` must be in bounds of vector with length `{}`",
+ index,
+ input_len
+ );
+ self.copy_op(
+ &self.mplace_index(&input, index)?.into(),
+ dest,
+ /*allow_transmute*/ false,
+ )?;
+ }
+ sym::likely | sym::unlikely | sym::black_box => {
+ // These just return their argument
+ self.copy_op(&args[0], dest, /*allow_transmute*/ false)?;
+ }
+ sym::assume => {
+ let cond = self.read_scalar(&args[0])?.check_init()?.to_bool()?;
+ if !cond {
+ throw_ub_format!("`assume` intrinsic called with `false`");
+ }
+ }
+ sym::raw_eq => {
+ let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
+ self.write_scalar(result, dest)?;
+ }
+
+ sym::vtable_size => {
+ let ptr = self.read_pointer(&args[0])?;
+ let (size, _align) = self.get_vtable_size_and_align(ptr)?;
+ self.write_scalar(Scalar::from_machine_usize(size.bytes(), self), dest)?;
+ }
+ sym::vtable_align => {
+ let ptr = self.read_pointer(&args[0])?;
+ let (_size, align) = self.get_vtable_size_and_align(ptr)?;
+ self.write_scalar(Scalar::from_machine_usize(align.bytes(), self), dest)?;
+ }
+
+ _ => return Ok(false),
+ }
+
+ trace!("{:?}", self.dump_place(**dest));
+ self.go_to_block(ret);
+ Ok(true)
+ }
+
+ pub fn exact_div(
+ &mut self,
+ a: &ImmTy<'tcx, M::Provenance>,
+ b: &ImmTy<'tcx, M::Provenance>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ // Performs an exact division, resulting in undefined behavior where
+ // `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
+ // First, check x % y != 0 (or if that computation overflows).
+ let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, &a, &b)?;
+ assert!(!overflow); // All overflow is UB, so this should never return on overflow.
+ if res.assert_bits(a.layout.size) != 0 {
+ throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b)
+ }
+ // `Rem` says this is all right, so we can let `Div` do its job.
+ self.binop_ignore_overflow(BinOp::Div, &a, &b, dest)
+ }
+
+ pub fn saturating_arith(
+ &self,
+ mir_op: BinOp,
+ l: &ImmTy<'tcx, M::Provenance>,
+ r: &ImmTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, Scalar<M::Provenance>> {
+ assert!(matches!(mir_op, BinOp::Add | BinOp::Sub));
+ let (val, overflowed, _ty) = self.overflowing_binary_op(mir_op, l, r)?;
+ Ok(if overflowed {
+ let size = l.layout.size;
+ let num_bits = size.bits();
+ if l.layout.abi.is_signed() {
+ // For signed ints the saturated value depends on the sign of the first
+ // term since the sign of the second term can be inferred from this and
+ // the fact that the operation has overflowed (if either is 0 no
+ // overflow can occur)
+ let first_term: u128 = l.to_scalar()?.to_bits(l.layout.size)?;
+ let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
+ if first_term_positive {
+ // Negative overflow not possible since the positive first term
+ // can only increase an (in range) negative term for addition
+ // or corresponding negated positive term for subtraction
+ Scalar::from_int(size.signed_int_max(), size)
+ } else {
+ // Positive overflow not possible for similar reason
+ // max negative
+ Scalar::from_int(size.signed_int_min(), size)
+ }
+ } else {
+ // unsigned
+ if matches!(mir_op, BinOp::Add) {
+ // max unsigned
+ Scalar::from_uint(size.unsigned_int_max(), size)
+ } else {
+ // underflow to 0
+ Scalar::from_uint(0u128, size)
+ }
+ }
+ } else {
+ val
+ })
+ }
+
+ /// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its
+ /// allocation. For integer pointers, we consider each of them their own tiny allocation of size
+ /// 0, so offset-by-0 (and only 0) is okay -- except that null cannot be offset by _any_ value.
+ pub fn ptr_offset_inbounds(
+ &self,
+ ptr: Pointer<Option<M::Provenance>>,
+ pointee_ty: Ty<'tcx>,
+ offset_count: i64,
+ ) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
+ // We cannot overflow i64 as a type's size must be <= isize::MAX.
+ let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
+ // The computed offset, in bytes, must not overflow an isize.
+ // `checked_mul` enforces a too small bound, but no actual allocation can be big enough for
+ // the difference to be noticeable.
+ let offset_bytes =
+ offset_count.checked_mul(pointee_size).ok_or(err_ub!(PointerArithOverflow))?;
+ // The offset being in bounds cannot rely on "wrapping around" the address space.
+ // So, first rule out overflows in the pointer arithmetic.
+ let offset_ptr = ptr.signed_offset(offset_bytes, self)?;
+ // ptr and offset_ptr must be in bounds of the same allocated object. This means all of the
+ // memory between these pointers must be accessible. Note that we do not require the
+ // pointers to be properly aligned (unlike a read/write operation).
+ let min_ptr = if offset_bytes >= 0 { ptr } else { offset_ptr };
+ // This call handles checking for integer/null pointers.
+ self.check_ptr_access_align(
+ min_ptr,
+ Size::from_bytes(offset_bytes.unsigned_abs()),
+ Align::ONE,
+ CheckInAllocMsg::PointerArithmeticTest,
+ )?;
+ Ok(offset_ptr)
+ }
+
+ /// Copy `count*size_of::<T>()` many bytes from `*src` to `*dst`.
+ pub(crate) fn copy_intrinsic(
+ &mut self,
+ src: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ nonoverlapping: bool,
+ ) -> InterpResult<'tcx> {
+ let count = self.read_scalar(&count)?.to_machine_usize(self)?;
+ let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap().ty)?;
+ let (size, align) = (layout.size, layout.align.abi);
+ // `checked_mul` enforces a too small bound (the correct one would probably be machine_isize_max),
+ // but no actual allocation can be big enough for the difference to be noticeable.
+ let size = size.checked_mul(count, self).ok_or_else(|| {
+ err_ub_format!(
+ "overflow computing total size of `{}`",
+ if nonoverlapping { "copy_nonoverlapping" } else { "copy" }
+ )
+ })?;
+
+ let src = self.read_pointer(&src)?;
+ let dst = self.read_pointer(&dst)?;
+
+ self.mem_copy(src, align, dst, align, size, nonoverlapping)
+ }
+
+ pub(crate) fn write_bytes_intrinsic(
+ &mut self,
+ dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ byte: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ ) -> InterpResult<'tcx> {
+ let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap().ty)?;
+
+ let dst = self.read_pointer(&dst)?;
+ let byte = self.read_scalar(&byte)?.to_u8()?;
+ let count = self.read_scalar(&count)?.to_machine_usize(self)?;
+
+ // `checked_mul` enforces a too small bound (the correct one would probably be machine_isize_max),
+ // but no actual allocation can be big enough for the difference to be noticeable.
+ let len = layout
+ .size
+ .checked_mul(count, self)
+ .ok_or_else(|| err_ub_format!("overflow computing total size of `write_bytes`"))?;
+
+ let bytes = std::iter::repeat(byte).take(len.bytes_usize());
+ self.write_bytes_ptr(dst, bytes)
+ }
+
+ pub(crate) fn raw_eq_intrinsic(
+ &mut self,
+ lhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ rhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
+ ) -> InterpResult<'tcx, Scalar<M::Provenance>> {
+ let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap().ty)?;
+ assert!(!layout.is_unsized());
+
+ let lhs = self.read_pointer(lhs)?;
+ let rhs = self.read_pointer(rhs)?;
+ let lhs_bytes = self.read_bytes_ptr(lhs, layout.size)?;
+ let rhs_bytes = self.read_bytes_ptr(rhs, layout.size)?;
+ Ok(Scalar::from_bool(lhs_bytes == rhs_bytes))
+ }
+}