summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/operand.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/interpret/operand.rs')
-rw-r--r--compiler/rustc_const_eval/src/interpret/operand.rs234
1 files changed, 107 insertions, 127 deletions
diff --git a/compiler/rustc_const_eval/src/interpret/operand.rs b/compiler/rustc_const_eval/src/interpret/operand.rs
index 94ba62c16..0e3959b61 100644
--- a/compiler/rustc_const_eval/src/interpret/operand.rs
+++ b/compiler/rustc_const_eval/src/interpret/operand.rs
@@ -1,11 +1,9 @@
//! Functions concerning immediate values and operands, and reading from operands.
//! All high-level functions to read from memory work on operands as sources.
-use std::fmt::Write;
-
use rustc_hir::def::Namespace;
use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
-use rustc_middle::ty::print::{FmtPrinter, PrettyPrinter, Printer};
+use rustc_middle::ty::print::{FmtPrinter, PrettyPrinter};
use rustc_middle::ty::{ConstInt, DelaySpanBugEmitted, Ty};
use rustc_middle::{mir, ty};
use rustc_target::abi::{self, Abi, Align, HasDataLayout, Size, TagEncoding};
@@ -14,7 +12,7 @@ use rustc_target::abi::{VariantIdx, Variants};
use super::{
alloc_range, from_known_layout, mir_assign_valid_types, AllocId, ConstValue, Frame, GlobalId,
InterpCx, InterpResult, MPlaceTy, Machine, MemPlace, MemPlaceMeta, Place, PlaceTy, Pointer,
- Provenance, Scalar, ScalarMaybeUninit,
+ Provenance, Scalar,
};
/// An `Immediate` represents a single immediate self-contained Rust value.
@@ -27,23 +25,14 @@ use super::{
#[derive(Copy, Clone, Debug)]
pub enum Immediate<Prov: Provenance = AllocId> {
/// A single scalar value (must have *initialized* `Scalar` ABI).
- /// FIXME: we also currently often use this for ZST.
- /// `ScalarMaybeUninit` should reject ZST, and we should use `Uninit` for them instead.
- Scalar(ScalarMaybeUninit<Prov>),
+ Scalar(Scalar<Prov>),
/// A pair of two scalar value (must have `ScalarPair` ABI where both fields are
/// `Scalar::Initialized`).
- ScalarPair(ScalarMaybeUninit<Prov>, ScalarMaybeUninit<Prov>),
+ ScalarPair(Scalar<Prov>, Scalar<Prov>),
/// A value of fully uninitialized memory. Can have and size and layout.
Uninit,
}
-impl<Prov: Provenance> From<ScalarMaybeUninit<Prov>> for Immediate<Prov> {
- #[inline(always)]
- fn from(val: ScalarMaybeUninit<Prov>) -> Self {
- Immediate::Scalar(val)
- }
-}
-
impl<Prov: Provenance> From<Scalar<Prov>> for Immediate<Prov> {
#[inline(always)]
fn from(val: Scalar<Prov>) -> Self {
@@ -51,13 +40,13 @@ impl<Prov: Provenance> From<Scalar<Prov>> for Immediate<Prov> {
}
}
-impl<'tcx, Prov: Provenance> Immediate<Prov> {
+impl<Prov: Provenance> Immediate<Prov> {
pub fn from_pointer(p: Pointer<Prov>, cx: &impl HasDataLayout) -> Self {
- Immediate::Scalar(ScalarMaybeUninit::from_pointer(p, cx))
+ Immediate::Scalar(Scalar::from_pointer(p, cx))
}
pub fn from_maybe_pointer(p: Pointer<Option<Prov>>, cx: &impl HasDataLayout) -> Self {
- Immediate::Scalar(ScalarMaybeUninit::from_maybe_pointer(p, cx))
+ Immediate::Scalar(Scalar::from_maybe_pointer(p, cx))
}
pub fn new_slice(val: Scalar<Prov>, len: u64, cx: &impl HasDataLayout) -> Self {
@@ -69,41 +58,28 @@ impl<'tcx, Prov: Provenance> Immediate<Prov> {
vtable: Pointer<Option<Prov>>,
cx: &impl HasDataLayout,
) -> Self {
- Immediate::ScalarPair(val.into(), ScalarMaybeUninit::from_maybe_pointer(vtable, cx))
+ Immediate::ScalarPair(val.into(), Scalar::from_maybe_pointer(vtable, cx))
}
#[inline]
#[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
- pub fn to_scalar_or_uninit(self) -> ScalarMaybeUninit<Prov> {
+ pub fn to_scalar(self) -> Scalar<Prov> {
match self {
Immediate::Scalar(val) => val,
Immediate::ScalarPair(..) => bug!("Got a scalar pair where a scalar was expected"),
- Immediate::Uninit => ScalarMaybeUninit::Uninit,
+ Immediate::Uninit => bug!("Got uninit where a scalar was expected"),
}
}
#[inline]
#[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
- pub fn to_scalar(self) -> InterpResult<'tcx, Scalar<Prov>> {
- self.to_scalar_or_uninit().check_init()
- }
-
- #[inline]
- #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
- pub fn to_scalar_or_uninit_pair(self) -> (ScalarMaybeUninit<Prov>, ScalarMaybeUninit<Prov>) {
+ pub fn to_scalar_pair(self) -> (Scalar<Prov>, Scalar<Prov>) {
match self {
Immediate::ScalarPair(val1, val2) => (val1, val2),
Immediate::Scalar(..) => bug!("Got a scalar where a scalar pair was expected"),
- Immediate::Uninit => (ScalarMaybeUninit::Uninit, ScalarMaybeUninit::Uninit),
+ Immediate::Uninit => bug!("Got uninit where a scalar pair was expected"),
}
}
-
- #[inline]
- #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
- pub fn to_scalar_pair(self) -> InterpResult<'tcx, (Scalar<Prov>, Scalar<Prov>)> {
- let (val1, val2) = self.to_scalar_or_uninit_pair();
- Ok((val1.check_init()?, val2.check_init()?))
- }
}
// ScalarPair needs a type to interpret, so we often have an immediate and a type together
@@ -119,27 +95,17 @@ impl<Prov: Provenance> std::fmt::Display for ImmTy<'_, Prov> {
/// Helper function for printing a scalar to a FmtPrinter
fn p<'a, 'tcx, Prov: Provenance>(
cx: FmtPrinter<'a, 'tcx>,
- s: ScalarMaybeUninit<Prov>,
+ s: Scalar<Prov>,
ty: Ty<'tcx>,
) -> Result<FmtPrinter<'a, 'tcx>, std::fmt::Error> {
match s {
- ScalarMaybeUninit::Scalar(Scalar::Int(int)) => {
- cx.pretty_print_const_scalar_int(int, ty, true)
- }
- ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _sz)) => {
+ Scalar::Int(int) => cx.pretty_print_const_scalar_int(int, ty, true),
+ Scalar::Ptr(ptr, _sz) => {
// Just print the ptr value. `pretty_print_const_scalar_ptr` would also try to
// print what is points to, which would fail since it has no access to the local
// memory.
cx.pretty_print_const_pointer(ptr, ty, true)
}
- ScalarMaybeUninit::Uninit => cx.typed_value(
- |mut this| {
- this.write_str("uninit ")?;
- Ok(this)
- },
- |this| this.print_type(ty),
- " ",
- ),
}
}
ty::tls::with(|tcx| {
@@ -269,7 +235,7 @@ impl<'tcx, Prov: Provenance> ImmTy<'tcx, Prov> {
#[inline]
pub fn to_const_int(self) -> ConstInt {
assert!(self.layout.ty.is_integral());
- let int = self.to_scalar().expect("to_const_int doesn't work on scalar pairs").assert_int();
+ let int = self.to_scalar().assert_int();
ConstInt::new(int, self.layout.ty.is_signed(), self.layout.ty.is_ptr_sized_integral())
}
}
@@ -327,7 +293,6 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
fn read_immediate_from_mplace_raw(
&self,
mplace: &MPlaceTy<'tcx, M::Provenance>,
- force: bool,
) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::Provenance>>> {
if mplace.layout.is_unsized() {
// Don't touch unsized
@@ -345,47 +310,44 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// case where some of the bytes are initialized and others are not. So, we need an extra
// check that walks over the type of `mplace` to make sure it is truly correct to treat this
// like a `Scalar` (or `ScalarPair`).
- let scalar_layout = match mplace.layout.abi {
- // `if` does not work nested inside patterns, making this a bit awkward to express.
- Abi::Scalar(abi::Scalar::Initialized { value: s, .. }) => Some(s),
- Abi::Scalar(s) if force => Some(s.primitive()),
- _ => None,
- };
- if let Some(s) = scalar_layout {
- let size = s.size(self);
- assert_eq!(size, mplace.layout.size, "abi::Scalar size does not match layout size");
- let scalar = alloc
- .read_scalar(alloc_range(Size::ZERO, size), /*read_provenance*/ s.is_ptr())?;
- return Ok(Some(ImmTy { imm: scalar.into(), layout: mplace.layout }));
- }
- let scalar_pair_layout = match mplace.layout.abi {
+ Ok(match mplace.layout.abi {
+ Abi::Scalar(abi::Scalar::Initialized { value: s, .. }) => {
+ let size = s.size(self);
+ assert_eq!(size, mplace.layout.size, "abi::Scalar size does not match layout size");
+ let scalar = alloc.read_scalar(
+ alloc_range(Size::ZERO, size),
+ /*read_provenance*/ s.is_ptr(),
+ )?;
+ Some(ImmTy { imm: scalar.into(), layout: mplace.layout })
+ }
Abi::ScalarPair(
abi::Scalar::Initialized { value: a, .. },
abi::Scalar::Initialized { value: b, .. },
- ) => Some((a, b)),
- Abi::ScalarPair(a, b) if force => Some((a.primitive(), b.primitive())),
- _ => None,
- };
- if let Some((a, b)) = scalar_pair_layout {
- // We checked `ptr_align` above, so all fields will have the alignment they need.
- // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
- // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
- let (a_size, b_size) = (a.size(self), b.size(self));
- let b_offset = a_size.align_to(b.align(self).abi);
- assert!(b_offset.bytes() > 0); // in `operand_field` we use the offset to tell apart the fields
- let a_val = alloc.read_scalar(
- alloc_range(Size::ZERO, a_size),
- /*read_provenance*/ a.is_ptr(),
- )?;
- let b_val = alloc
- .read_scalar(alloc_range(b_offset, b_size), /*read_provenance*/ b.is_ptr())?;
- return Ok(Some(ImmTy {
- imm: Immediate::ScalarPair(a_val, b_val),
- layout: mplace.layout,
- }));
- }
- // Neither a scalar nor scalar pair.
- return Ok(None);
+ ) => {
+ // We checked `ptr_align` above, so all fields will have the alignment they need.
+ // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
+ // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
+ let (a_size, b_size) = (a.size(self), b.size(self));
+ let b_offset = a_size.align_to(b.align(self).abi);
+ assert!(b_offset.bytes() > 0); // in `operand_field` we use the offset to tell apart the fields
+ let a_val = alloc.read_scalar(
+ alloc_range(Size::ZERO, a_size),
+ /*read_provenance*/ a.is_ptr(),
+ )?;
+ let b_val = alloc.read_scalar(
+ alloc_range(b_offset, b_size),
+ /*read_provenance*/ b.is_ptr(),
+ )?;
+ Some(ImmTy {
+ imm: Immediate::ScalarPair(a_val.into(), b_val.into()),
+ layout: mplace.layout,
+ })
+ }
+ _ => {
+ // Neither a scalar nor scalar pair.
+ None
+ }
+ })
}
/// Try returning an immediate for the operand. If the layout does not permit loading this as an
@@ -394,20 +356,15 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// succeed! Whether it succeeds depends on whether the layout can be represented
/// in an `Immediate`, not on which data is stored there currently.
///
- /// If `force` is `true`, then even scalars with fields that can be ununit will be
- /// read. This means the load is lossy and should not be written back!
- /// This flag exists only for validity checking.
- ///
/// This is an internal function that should not usually be used; call `read_immediate` instead.
/// ConstProp needs it, though.
pub fn read_immediate_raw(
&self,
src: &OpTy<'tcx, M::Provenance>,
- force: bool,
) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::Provenance>, MPlaceTy<'tcx, M::Provenance>>> {
Ok(match src.try_as_mplace() {
Ok(ref mplace) => {
- if let Some(val) = self.read_immediate_from_mplace_raw(mplace, force)? {
+ if let Some(val) = self.read_immediate_from_mplace_raw(mplace)? {
Ok(val)
} else {
Err(*mplace)
@@ -418,24 +375,33 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
}
/// Read an immediate from a place, asserting that that is possible with the given layout.
+ ///
+ /// If this suceeds, the `ImmTy` is never `Uninit`.
#[inline(always)]
pub fn read_immediate(
&self,
op: &OpTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
- if let Ok(imm) = self.read_immediate_raw(op, /*force*/ false)? {
- Ok(imm)
- } else {
- span_bug!(self.cur_span(), "primitive read failed for type: {:?}", op.layout.ty);
+ if !matches!(
+ op.layout.abi,
+ Abi::Scalar(abi::Scalar::Initialized { .. })
+ | Abi::ScalarPair(abi::Scalar::Initialized { .. }, abi::Scalar::Initialized { .. })
+ ) {
+ span_bug!(self.cur_span(), "primitive read not possible for type: {:?}", op.layout.ty);
}
+ let imm = self.read_immediate_raw(op)?.unwrap();
+ if matches!(*imm, Immediate::Uninit) {
+ throw_ub!(InvalidUninitBytes(None));
+ }
+ Ok(imm)
}
/// Read a scalar from a place
pub fn read_scalar(
&self,
op: &OpTy<'tcx, M::Provenance>,
- ) -> InterpResult<'tcx, ScalarMaybeUninit<M::Provenance>> {
- Ok(self.read_immediate(op)?.to_scalar_or_uninit())
+ ) -> InterpResult<'tcx, Scalar<M::Provenance>> {
+ Ok(self.read_immediate(op)?.to_scalar())
}
/// Read a pointer from a place.
@@ -449,7 +415,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Turn the wide MPlace into a string (must already be dereferenced!)
pub fn read_str(&self, mplace: &MPlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx, &str> {
let len = mplace.len(self)?;
- let bytes = self.read_bytes_ptr(mplace.ptr, Size::from_bytes(len))?;
+ let bytes = self.read_bytes_ptr_strip_provenance(mplace.ptr, Size::from_bytes(len))?;
let str = std::str::from_utf8(bytes).map_err(|err| err_ub!(InvalidStr(err)))?;
Ok(str)
}
@@ -478,7 +444,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
}
}
- /// Read from a local. Will not actually access the local if reading from a ZST.
+ /// Read from a local.
/// Will not access memory, instead an indirect `Operand` is returned.
///
/// This is public because it is used by [priroda](https://github.com/oli-obk/priroda) to get an
@@ -490,12 +456,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
layout: Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
let layout = self.layout_of_local(frame, local, layout)?;
- let op = if layout.is_zst() {
- // Bypass `access_local` (helps in ConstProp)
- Operand::Immediate(Immediate::Uninit)
- } else {
- *M::access_local(frame, local)?
- };
+ let op = *frame.locals[local].access()?;
Ok(OpTy { op, layout, align: Some(layout.align.abi) })
}
@@ -598,15 +559,23 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
layout: Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
match c.kind() {
- ty::ConstKind::Param(_) | ty::ConstKind::Bound(..) => throw_inval!(TooGeneric),
+ ty::ConstKind::Param(_) | ty::ConstKind::Placeholder(..) => throw_inval!(TooGeneric),
ty::ConstKind::Error(DelaySpanBugEmitted { reported, .. }) => {
throw_inval!(AlreadyReported(reported))
}
ty::ConstKind::Unevaluated(uv) => {
+ // NOTE: We evaluate to a `ValTree` here as a check to ensure
+ // we're working with valid constants, even though we never need it.
let instance = self.resolve(uv.def, uv.substs)?;
- Ok(self.eval_to_allocation(GlobalId { instance, promoted: uv.promoted })?.into())
+ let cid = GlobalId { instance, promoted: None };
+ let _valtree = self
+ .tcx
+ .eval_to_valtree(self.param_env.and(cid))?
+ .unwrap_or_else(|| bug!("unable to create ValTree for {:?}", uv));
+
+ Ok(self.eval_to_allocation(cid)?.into())
}
- ty::ConstKind::Infer(..) | ty::ConstKind::Placeholder(..) => {
+ ty::ConstKind::Bound(..) | ty::ConstKind::Infer(..) => {
span_bug!(self.cur_span(), "const_to_op: Unexpected ConstKind {:?}", c)
}
ty::ConstKind::Value(valtree) => {
@@ -622,9 +591,20 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
val: &mir::ConstantKind<'tcx>,
layout: Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ // FIXME(const_prop): normalization needed b/c const prop lint in
+ // `mir_drops_elaborated_and_const_checked`, which happens before
+ // optimized MIR. Only after optimizing the MIR can we guarantee
+ // that the `RevealAll` pass has happened and that the body's consts
+ // are normalized, so any call to resolve before that needs to be
+ // manually normalized.
+ let val = self.tcx.normalize_erasing_regions(self.param_env, *val);
match val {
- mir::ConstantKind::Ty(ct) => self.const_to_op(*ct, layout),
- mir::ConstantKind::Val(val, ty) => self.const_val_to_op(*val, *ty, layout),
+ mir::ConstantKind::Ty(ct) => self.const_to_op(ct, layout),
+ mir::ConstantKind::Val(val, ty) => self.const_val_to_op(val, ty, layout),
+ mir::ConstantKind::Unevaluated(uv, _) => {
+ let instance = self.resolve(uv.def, uv.substs)?;
+ Ok(self.eval_to_allocation(GlobalId { instance, promoted: uv.promoted })?.into())
+ }
}
}
@@ -727,7 +707,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// Figure out which discriminant and variant this corresponds to.
Ok(match *tag_encoding {
TagEncoding::Direct => {
- let scalar = tag_val.to_scalar()?;
+ let scalar = tag_val.to_scalar();
// Generate a specific error if `tag_val` is not an integer.
// (`tag_bits` itself is only used for error messages below.)
let tag_bits = scalar
@@ -757,8 +737,8 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// Return the cast value, and the index.
(discr_val, index.0)
}
- TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start } => {
- let tag_val = tag_val.to_scalar()?;
+ TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
+ let tag_val = tag_val.to_scalar();
// Compute the variant this niche value/"tag" corresponds to. With niche layout,
// discriminant (encoded in niche/tag) and variant index are the same.
let variants_start = niche_variants.start().as_u32();
@@ -775,7 +755,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
if !ptr_valid {
throw_ub!(InvalidTag(dbg_val))
}
- dataful_variant
+ untagged_variant
}
Ok(tag_bits) => {
let tag_bits = tag_bits.assert_bits(tag_layout.size);
@@ -785,9 +765,8 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
let variant_index_relative_val =
self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?;
- let variant_index_relative = variant_index_relative_val
- .to_scalar()?
- .assert_bits(tag_val.layout.size);
+ let variant_index_relative =
+ variant_index_relative_val.to_scalar().assert_bits(tag_val.layout.size);
// Check if this is in the range that indicates an actual discriminant.
if variant_index_relative <= u128::from(variants_end - variants_start) {
let variant_index_relative = u32::try_from(variant_index_relative)
@@ -806,7 +785,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
assert!(usize::try_from(variant_index).unwrap() < variants_len);
VariantIdx::from_u32(variant_index)
} else {
- dataful_variant
+ untagged_variant
}
}
};
@@ -820,12 +799,13 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
}
// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
-#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64", not(bootstrap)))]
mod size_asserts {
use super::*;
+ use rustc_data_structures::static_assert_size;
// These are in alphabetical order, which is easy to maintain.
- rustc_data_structures::static_assert_size!(Immediate, 56);
- rustc_data_structures::static_assert_size!(ImmTy<'_>, 72);
- rustc_data_structures::static_assert_size!(Operand, 64);
- rustc_data_structures::static_assert_size!(OpTy<'_>, 88);
+ static_assert_size!(Immediate, 48);
+ static_assert_size!(ImmTy<'_>, 64);
+ static_assert_size!(Operand, 56);
+ static_assert_size!(OpTy<'_>, 80);
}