summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/operand.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/interpret/operand.rs')
-rw-r--r--compiler/rustc_const_eval/src/interpret/operand.rs831
1 files changed, 831 insertions, 0 deletions
diff --git a/compiler/rustc_const_eval/src/interpret/operand.rs b/compiler/rustc_const_eval/src/interpret/operand.rs
new file mode 100644
index 000000000..94ba62c16
--- /dev/null
+++ b/compiler/rustc_const_eval/src/interpret/operand.rs
@@ -0,0 +1,831 @@
+//! Functions concerning immediate values and operands, and reading from operands.
+//! All high-level functions to read from memory work on operands as sources.
+
+use std::fmt::Write;
+
+use rustc_hir::def::Namespace;
+use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
+use rustc_middle::ty::print::{FmtPrinter, PrettyPrinter, Printer};
+use rustc_middle::ty::{ConstInt, DelaySpanBugEmitted, Ty};
+use rustc_middle::{mir, ty};
+use rustc_target::abi::{self, Abi, Align, HasDataLayout, Size, TagEncoding};
+use rustc_target::abi::{VariantIdx, Variants};
+
+use super::{
+ alloc_range, from_known_layout, mir_assign_valid_types, AllocId, ConstValue, Frame, GlobalId,
+ InterpCx, InterpResult, MPlaceTy, Machine, MemPlace, MemPlaceMeta, Place, PlaceTy, Pointer,
+ Provenance, Scalar, ScalarMaybeUninit,
+};
+
+/// An `Immediate` represents a single immediate self-contained Rust value.
+///
+/// For optimization of a few very common cases, there is also a representation for a pair of
+/// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
+/// operations and wide pointers. This idea was taken from rustc's codegen.
+/// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
+/// defined on `Immediate`, and do not have to work with a `Place`.
+#[derive(Copy, Clone, Debug)]
+pub enum Immediate<Prov: Provenance = AllocId> {
+ /// A single scalar value (must have *initialized* `Scalar` ABI).
+ /// FIXME: we also currently often use this for ZST.
+ /// `ScalarMaybeUninit` should reject ZST, and we should use `Uninit` for them instead.
+ Scalar(ScalarMaybeUninit<Prov>),
+ /// A pair of two scalar value (must have `ScalarPair` ABI where both fields are
+ /// `Scalar::Initialized`).
+ ScalarPair(ScalarMaybeUninit<Prov>, ScalarMaybeUninit<Prov>),
+ /// A value of fully uninitialized memory. Can have and size and layout.
+ Uninit,
+}
+
+impl<Prov: Provenance> From<ScalarMaybeUninit<Prov>> for Immediate<Prov> {
+ #[inline(always)]
+ fn from(val: ScalarMaybeUninit<Prov>) -> Self {
+ Immediate::Scalar(val)
+ }
+}
+
+impl<Prov: Provenance> From<Scalar<Prov>> for Immediate<Prov> {
+ #[inline(always)]
+ fn from(val: Scalar<Prov>) -> Self {
+ Immediate::Scalar(val.into())
+ }
+}
+
+impl<'tcx, Prov: Provenance> Immediate<Prov> {
+ pub fn from_pointer(p: Pointer<Prov>, cx: &impl HasDataLayout) -> Self {
+ Immediate::Scalar(ScalarMaybeUninit::from_pointer(p, cx))
+ }
+
+ pub fn from_maybe_pointer(p: Pointer<Option<Prov>>, cx: &impl HasDataLayout) -> Self {
+ Immediate::Scalar(ScalarMaybeUninit::from_maybe_pointer(p, cx))
+ }
+
+ pub fn new_slice(val: Scalar<Prov>, len: u64, cx: &impl HasDataLayout) -> Self {
+ Immediate::ScalarPair(val.into(), Scalar::from_machine_usize(len, cx).into())
+ }
+
+ pub fn new_dyn_trait(
+ val: Scalar<Prov>,
+ vtable: Pointer<Option<Prov>>,
+ cx: &impl HasDataLayout,
+ ) -> Self {
+ Immediate::ScalarPair(val.into(), ScalarMaybeUninit::from_maybe_pointer(vtable, cx))
+ }
+
+ #[inline]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ pub fn to_scalar_or_uninit(self) -> ScalarMaybeUninit<Prov> {
+ match self {
+ Immediate::Scalar(val) => val,
+ Immediate::ScalarPair(..) => bug!("Got a scalar pair where a scalar was expected"),
+ Immediate::Uninit => ScalarMaybeUninit::Uninit,
+ }
+ }
+
+ #[inline]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ pub fn to_scalar(self) -> InterpResult<'tcx, Scalar<Prov>> {
+ self.to_scalar_or_uninit().check_init()
+ }
+
+ #[inline]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ pub fn to_scalar_or_uninit_pair(self) -> (ScalarMaybeUninit<Prov>, ScalarMaybeUninit<Prov>) {
+ match self {
+ Immediate::ScalarPair(val1, val2) => (val1, val2),
+ Immediate::Scalar(..) => bug!("Got a scalar where a scalar pair was expected"),
+ Immediate::Uninit => (ScalarMaybeUninit::Uninit, ScalarMaybeUninit::Uninit),
+ }
+ }
+
+ #[inline]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ pub fn to_scalar_pair(self) -> InterpResult<'tcx, (Scalar<Prov>, Scalar<Prov>)> {
+ let (val1, val2) = self.to_scalar_or_uninit_pair();
+ Ok((val1.check_init()?, val2.check_init()?))
+ }
+}
+
+// ScalarPair needs a type to interpret, so we often have an immediate and a type together
+// as input for binary and cast operations.
+#[derive(Clone, Debug)]
+pub struct ImmTy<'tcx, Prov: Provenance = AllocId> {
+ imm: Immediate<Prov>,
+ pub layout: TyAndLayout<'tcx>,
+}
+
+impl<Prov: Provenance> std::fmt::Display for ImmTy<'_, Prov> {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ /// Helper function for printing a scalar to a FmtPrinter
+ fn p<'a, 'tcx, Prov: Provenance>(
+ cx: FmtPrinter<'a, 'tcx>,
+ s: ScalarMaybeUninit<Prov>,
+ ty: Ty<'tcx>,
+ ) -> Result<FmtPrinter<'a, 'tcx>, std::fmt::Error> {
+ match s {
+ ScalarMaybeUninit::Scalar(Scalar::Int(int)) => {
+ cx.pretty_print_const_scalar_int(int, ty, true)
+ }
+ ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _sz)) => {
+ // Just print the ptr value. `pretty_print_const_scalar_ptr` would also try to
+ // print what is points to, which would fail since it has no access to the local
+ // memory.
+ cx.pretty_print_const_pointer(ptr, ty, true)
+ }
+ ScalarMaybeUninit::Uninit => cx.typed_value(
+ |mut this| {
+ this.write_str("uninit ")?;
+ Ok(this)
+ },
+ |this| this.print_type(ty),
+ " ",
+ ),
+ }
+ }
+ ty::tls::with(|tcx| {
+ match self.imm {
+ Immediate::Scalar(s) => {
+ if let Some(ty) = tcx.lift(self.layout.ty) {
+ let cx = FmtPrinter::new(tcx, Namespace::ValueNS);
+ f.write_str(&p(cx, s, ty)?.into_buffer())?;
+ return Ok(());
+ }
+ write!(f, "{:x}: {}", s, self.layout.ty)
+ }
+ Immediate::ScalarPair(a, b) => {
+ // FIXME(oli-obk): at least print tuples and slices nicely
+ write!(f, "({:x}, {:x}): {}", a, b, self.layout.ty)
+ }
+ Immediate::Uninit => {
+ write!(f, "uninit: {}", self.layout.ty)
+ }
+ }
+ })
+ }
+}
+
+impl<'tcx, Prov: Provenance> std::ops::Deref for ImmTy<'tcx, Prov> {
+ type Target = Immediate<Prov>;
+ #[inline(always)]
+ fn deref(&self) -> &Immediate<Prov> {
+ &self.imm
+ }
+}
+
+/// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
+/// or still in memory. The latter is an optimization, to delay reading that chunk of
+/// memory and to avoid having to store arbitrary-sized data here.
+#[derive(Copy, Clone, Debug)]
+pub enum Operand<Prov: Provenance = AllocId> {
+ Immediate(Immediate<Prov>),
+ Indirect(MemPlace<Prov>),
+}
+
+#[derive(Clone, Debug)]
+pub struct OpTy<'tcx, Prov: Provenance = AllocId> {
+ op: Operand<Prov>, // Keep this private; it helps enforce invariants.
+ pub layout: TyAndLayout<'tcx>,
+ /// rustc does not have a proper way to represent the type of a field of a `repr(packed)` struct:
+ /// it needs to have a different alignment than the field type would usually have.
+ /// So we represent this here with a separate field that "overwrites" `layout.align`.
+ /// This means `layout.align` should never be used for an `OpTy`!
+ /// `None` means "alignment does not matter since this is a by-value operand"
+ /// (`Operand::Immediate`); this field is only relevant for `Operand::Indirect`.
+ /// Also CTFE ignores alignment anyway, so this is for Miri only.
+ pub align: Option<Align>,
+}
+
+impl<'tcx, Prov: Provenance> std::ops::Deref for OpTy<'tcx, Prov> {
+ type Target = Operand<Prov>;
+ #[inline(always)]
+ fn deref(&self) -> &Operand<Prov> {
+ &self.op
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<MPlaceTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(mplace: MPlaceTy<'tcx, Prov>) -> Self {
+ OpTy { op: Operand::Indirect(*mplace), layout: mplace.layout, align: Some(mplace.align) }
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<&'_ MPlaceTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(mplace: &MPlaceTy<'tcx, Prov>) -> Self {
+ OpTy { op: Operand::Indirect(**mplace), layout: mplace.layout, align: Some(mplace.align) }
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<&'_ mut MPlaceTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(mplace: &mut MPlaceTy<'tcx, Prov>) -> Self {
+ OpTy { op: Operand::Indirect(**mplace), layout: mplace.layout, align: Some(mplace.align) }
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<ImmTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(val: ImmTy<'tcx, Prov>) -> Self {
+ OpTy { op: Operand::Immediate(val.imm), layout: val.layout, align: None }
+ }
+}
+
+impl<'tcx, Prov: Provenance> ImmTy<'tcx, Prov> {
+ #[inline]
+ pub fn from_scalar(val: Scalar<Prov>, layout: TyAndLayout<'tcx>) -> Self {
+ ImmTy { imm: val.into(), layout }
+ }
+
+ #[inline]
+ pub fn from_immediate(imm: Immediate<Prov>, layout: TyAndLayout<'tcx>) -> Self {
+ ImmTy { imm, layout }
+ }
+
+ #[inline]
+ pub fn uninit(layout: TyAndLayout<'tcx>) -> Self {
+ ImmTy { imm: Immediate::Uninit, layout }
+ }
+
+ #[inline]
+ pub fn try_from_uint(i: impl Into<u128>, layout: TyAndLayout<'tcx>) -> Option<Self> {
+ Some(Self::from_scalar(Scalar::try_from_uint(i, layout.size)?, layout))
+ }
+ #[inline]
+ pub fn from_uint(i: impl Into<u128>, layout: TyAndLayout<'tcx>) -> Self {
+ Self::from_scalar(Scalar::from_uint(i, layout.size), layout)
+ }
+
+ #[inline]
+ pub fn try_from_int(i: impl Into<i128>, layout: TyAndLayout<'tcx>) -> Option<Self> {
+ Some(Self::from_scalar(Scalar::try_from_int(i, layout.size)?, layout))
+ }
+
+ #[inline]
+ pub fn from_int(i: impl Into<i128>, layout: TyAndLayout<'tcx>) -> Self {
+ Self::from_scalar(Scalar::from_int(i, layout.size), layout)
+ }
+
+ #[inline]
+ pub fn to_const_int(self) -> ConstInt {
+ assert!(self.layout.ty.is_integral());
+ let int = self.to_scalar().expect("to_const_int doesn't work on scalar pairs").assert_int();
+ ConstInt::new(int, self.layout.ty.is_signed(), self.layout.ty.is_ptr_sized_integral())
+ }
+}
+
+impl<'tcx, Prov: Provenance> OpTy<'tcx, Prov> {
+ pub fn len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
+ if self.layout.is_unsized() {
+ // There are no unsized immediates.
+ self.assert_mem_place().len(cx)
+ } else {
+ match self.layout.fields {
+ abi::FieldsShape::Array { count, .. } => Ok(count),
+ _ => bug!("len not supported on sized type {:?}", self.layout.ty),
+ }
+ }
+ }
+
+ pub fn offset_with_meta(
+ &self,
+ offset: Size,
+ meta: MemPlaceMeta<Prov>,
+ layout: TyAndLayout<'tcx>,
+ cx: &impl HasDataLayout,
+ ) -> InterpResult<'tcx, Self> {
+ match self.try_as_mplace() {
+ Ok(mplace) => Ok(mplace.offset_with_meta(offset, meta, layout, cx)?.into()),
+ Err(imm) => {
+ assert!(
+ matches!(*imm, Immediate::Uninit),
+ "Scalar/ScalarPair cannot be offset into"
+ );
+ assert!(!meta.has_meta()); // no place to store metadata here
+ // Every part of an uninit is uninit.
+ Ok(ImmTy::uninit(layout).into())
+ }
+ }
+ }
+
+ pub fn offset(
+ &self,
+ offset: Size,
+ layout: TyAndLayout<'tcx>,
+ cx: &impl HasDataLayout,
+ ) -> InterpResult<'tcx, Self> {
+ assert!(!layout.is_unsized());
+ self.offset_with_meta(offset, MemPlaceMeta::None, layout, cx)
+ }
+}
+
+impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
+ /// Try reading an immediate in memory; this is interesting particularly for `ScalarPair`.
+ /// Returns `None` if the layout does not permit loading this as a value.
+ ///
+ /// This is an internal function; call `read_immediate` instead.
+ fn read_immediate_from_mplace_raw(
+ &self,
+ mplace: &MPlaceTy<'tcx, M::Provenance>,
+ force: bool,
+ ) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::Provenance>>> {
+ if mplace.layout.is_unsized() {
+ // Don't touch unsized
+ return Ok(None);
+ }
+
+ let Some(alloc) = self.get_place_alloc(mplace)? else {
+ // zero-sized type can be left uninit
+ return Ok(Some(ImmTy::uninit(mplace.layout)));
+ };
+
+ // It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
+ // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
+ // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
+ // case where some of the bytes are initialized and others are not. So, we need an extra
+ // check that walks over the type of `mplace` to make sure it is truly correct to treat this
+ // like a `Scalar` (or `ScalarPair`).
+ let scalar_layout = match mplace.layout.abi {
+ // `if` does not work nested inside patterns, making this a bit awkward to express.
+ Abi::Scalar(abi::Scalar::Initialized { value: s, .. }) => Some(s),
+ Abi::Scalar(s) if force => Some(s.primitive()),
+ _ => None,
+ };
+ if let Some(s) = scalar_layout {
+ let size = s.size(self);
+ assert_eq!(size, mplace.layout.size, "abi::Scalar size does not match layout size");
+ let scalar = alloc
+ .read_scalar(alloc_range(Size::ZERO, size), /*read_provenance*/ s.is_ptr())?;
+ return Ok(Some(ImmTy { imm: scalar.into(), layout: mplace.layout }));
+ }
+ let scalar_pair_layout = match mplace.layout.abi {
+ Abi::ScalarPair(
+ abi::Scalar::Initialized { value: a, .. },
+ abi::Scalar::Initialized { value: b, .. },
+ ) => Some((a, b)),
+ Abi::ScalarPair(a, b) if force => Some((a.primitive(), b.primitive())),
+ _ => None,
+ };
+ if let Some((a, b)) = scalar_pair_layout {
+ // We checked `ptr_align` above, so all fields will have the alignment they need.
+ // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
+ // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
+ let (a_size, b_size) = (a.size(self), b.size(self));
+ let b_offset = a_size.align_to(b.align(self).abi);
+ assert!(b_offset.bytes() > 0); // in `operand_field` we use the offset to tell apart the fields
+ let a_val = alloc.read_scalar(
+ alloc_range(Size::ZERO, a_size),
+ /*read_provenance*/ a.is_ptr(),
+ )?;
+ let b_val = alloc
+ .read_scalar(alloc_range(b_offset, b_size), /*read_provenance*/ b.is_ptr())?;
+ return Ok(Some(ImmTy {
+ imm: Immediate::ScalarPair(a_val, b_val),
+ layout: mplace.layout,
+ }));
+ }
+ // Neither a scalar nor scalar pair.
+ return Ok(None);
+ }
+
+ /// Try returning an immediate for the operand. If the layout does not permit loading this as an
+ /// immediate, return where in memory we can find the data.
+ /// Note that for a given layout, this operation will either always fail or always
+ /// succeed! Whether it succeeds depends on whether the layout can be represented
+ /// in an `Immediate`, not on which data is stored there currently.
+ ///
+ /// If `force` is `true`, then even scalars with fields that can be ununit will be
+ /// read. This means the load is lossy and should not be written back!
+ /// This flag exists only for validity checking.
+ ///
+ /// This is an internal function that should not usually be used; call `read_immediate` instead.
+ /// ConstProp needs it, though.
+ pub fn read_immediate_raw(
+ &self,
+ src: &OpTy<'tcx, M::Provenance>,
+ force: bool,
+ ) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::Provenance>, MPlaceTy<'tcx, M::Provenance>>> {
+ Ok(match src.try_as_mplace() {
+ Ok(ref mplace) => {
+ if let Some(val) = self.read_immediate_from_mplace_raw(mplace, force)? {
+ Ok(val)
+ } else {
+ Err(*mplace)
+ }
+ }
+ Err(val) => Ok(val),
+ })
+ }
+
+ /// Read an immediate from a place, asserting that that is possible with the given layout.
+ #[inline(always)]
+ pub fn read_immediate(
+ &self,
+ op: &OpTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
+ if let Ok(imm) = self.read_immediate_raw(op, /*force*/ false)? {
+ Ok(imm)
+ } else {
+ span_bug!(self.cur_span(), "primitive read failed for type: {:?}", op.layout.ty);
+ }
+ }
+
+ /// Read a scalar from a place
+ pub fn read_scalar(
+ &self,
+ op: &OpTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, ScalarMaybeUninit<M::Provenance>> {
+ Ok(self.read_immediate(op)?.to_scalar_or_uninit())
+ }
+
+ /// Read a pointer from a place.
+ pub fn read_pointer(
+ &self,
+ op: &OpTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
+ self.read_scalar(op)?.to_pointer(self)
+ }
+
+ /// Turn the wide MPlace into a string (must already be dereferenced!)
+ pub fn read_str(&self, mplace: &MPlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx, &str> {
+ let len = mplace.len(self)?;
+ let bytes = self.read_bytes_ptr(mplace.ptr, Size::from_bytes(len))?;
+ let str = std::str::from_utf8(bytes).map_err(|err| err_ub!(InvalidStr(err)))?;
+ Ok(str)
+ }
+
+ /// Converts a repr(simd) operand into an operand where `place_index` accesses the SIMD elements.
+ /// Also returns the number of elements.
+ ///
+ /// Can (but does not always) trigger UB if `op` is uninitialized.
+ pub fn operand_to_simd(
+ &self,
+ op: &OpTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::Provenance>, u64)> {
+ // Basically we just transmute this place into an array following simd_size_and_type.
+ // This only works in memory, but repr(simd) types should never be immediates anyway.
+ assert!(op.layout.ty.is_simd());
+ match op.try_as_mplace() {
+ Ok(mplace) => self.mplace_to_simd(&mplace),
+ Err(imm) => match *imm {
+ Immediate::Uninit => {
+ throw_ub!(InvalidUninitBytes(None))
+ }
+ Immediate::Scalar(..) | Immediate::ScalarPair(..) => {
+ bug!("arrays/slices can never have Scalar/ScalarPair layout")
+ }
+ },
+ }
+ }
+
+ /// Read from a local. Will not actually access the local if reading from a ZST.
+ /// Will not access memory, instead an indirect `Operand` is returned.
+ ///
+ /// This is public because it is used by [priroda](https://github.com/oli-obk/priroda) to get an
+ /// OpTy from a local.
+ pub fn local_to_op(
+ &self,
+ frame: &Frame<'mir, 'tcx, M::Provenance, M::FrameExtra>,
+ local: mir::Local,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ let layout = self.layout_of_local(frame, local, layout)?;
+ let op = if layout.is_zst() {
+ // Bypass `access_local` (helps in ConstProp)
+ Operand::Immediate(Immediate::Uninit)
+ } else {
+ *M::access_local(frame, local)?
+ };
+ Ok(OpTy { op, layout, align: Some(layout.align.abi) })
+ }
+
+ /// Every place can be read from, so we can turn them into an operand.
+ /// This will definitely return `Indirect` if the place is a `Ptr`, i.e., this
+ /// will never actually read from memory.
+ #[inline(always)]
+ pub fn place_to_op(
+ &self,
+ place: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ let op = match **place {
+ Place::Ptr(mplace) => Operand::Indirect(mplace),
+ Place::Local { frame, local } => {
+ *self.local_to_op(&self.stack()[frame], local, None)?
+ }
+ };
+ Ok(OpTy { op, layout: place.layout, align: Some(place.align) })
+ }
+
+ /// Evaluate a place with the goal of reading from it. This lets us sometimes
+ /// avoid allocations.
+ pub fn eval_place_to_op(
+ &self,
+ mir_place: mir::Place<'tcx>,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ // Do not use the layout passed in as argument if the base we are looking at
+ // here is not the entire place.
+ let layout = if mir_place.projection.is_empty() { layout } else { None };
+
+ let mut op = self.local_to_op(self.frame(), mir_place.local, layout)?;
+ // Using `try_fold` turned out to be bad for performance, hence the loop.
+ for elem in mir_place.projection.iter() {
+ op = self.operand_projection(&op, elem)?
+ }
+
+ trace!("eval_place_to_op: got {:?}", *op);
+ // Sanity-check the type we ended up with.
+ debug_assert!(
+ mir_assign_valid_types(
+ *self.tcx,
+ self.param_env,
+ self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
+ mir_place.ty(&self.frame().body.local_decls, *self.tcx).ty
+ )?)?,
+ op.layout,
+ ),
+ "eval_place of a MIR place with type {:?} produced an interpreter operand with type {:?}",
+ mir_place.ty(&self.frame().body.local_decls, *self.tcx).ty,
+ op.layout.ty,
+ );
+ Ok(op)
+ }
+
+ /// Evaluate the operand, returning a place where you can then find the data.
+ /// If you already know the layout, you can save two table lookups
+ /// by passing it in here.
+ #[inline]
+ pub fn eval_operand(
+ &self,
+ mir_op: &mir::Operand<'tcx>,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ use rustc_middle::mir::Operand::*;
+ let op = match *mir_op {
+ // FIXME: do some more logic on `move` to invalidate the old location
+ Copy(place) | Move(place) => self.eval_place_to_op(place, layout)?,
+
+ Constant(ref constant) => {
+ let val =
+ self.subst_from_current_frame_and_normalize_erasing_regions(constant.literal)?;
+
+ // This can still fail:
+ // * During ConstProp, with `TooGeneric` or since the `required_consts` were not all
+ // checked yet.
+ // * During CTFE, since promoteds in `const`/`static` initializer bodies can fail.
+ self.mir_const_to_op(&val, layout)?
+ }
+ };
+ trace!("{:?}: {:?}", mir_op, *op);
+ Ok(op)
+ }
+
+ /// Evaluate a bunch of operands at once
+ pub(super) fn eval_operands(
+ &self,
+ ops: &[mir::Operand<'tcx>],
+ ) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::Provenance>>> {
+ ops.iter().map(|op| self.eval_operand(op, None)).collect()
+ }
+
+ // Used when the miri-engine runs into a constant and for extracting information from constants
+ // in patterns via the `const_eval` module
+ /// The `val` and `layout` are assumed to already be in our interpreter
+ /// "universe" (param_env).
+ pub fn const_to_op(
+ &self,
+ c: ty::Const<'tcx>,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ match c.kind() {
+ ty::ConstKind::Param(_) | ty::ConstKind::Bound(..) => throw_inval!(TooGeneric),
+ ty::ConstKind::Error(DelaySpanBugEmitted { reported, .. }) => {
+ throw_inval!(AlreadyReported(reported))
+ }
+ ty::ConstKind::Unevaluated(uv) => {
+ let instance = self.resolve(uv.def, uv.substs)?;
+ Ok(self.eval_to_allocation(GlobalId { instance, promoted: uv.promoted })?.into())
+ }
+ ty::ConstKind::Infer(..) | ty::ConstKind::Placeholder(..) => {
+ span_bug!(self.cur_span(), "const_to_op: Unexpected ConstKind {:?}", c)
+ }
+ ty::ConstKind::Value(valtree) => {
+ let ty = c.ty();
+ let const_val = self.tcx.valtree_to_const_val((ty, valtree));
+ self.const_val_to_op(const_val, ty, layout)
+ }
+ }
+ }
+
+ pub fn mir_const_to_op(
+ &self,
+ val: &mir::ConstantKind<'tcx>,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ match val {
+ mir::ConstantKind::Ty(ct) => self.const_to_op(*ct, layout),
+ mir::ConstantKind::Val(val, ty) => self.const_val_to_op(*val, *ty, layout),
+ }
+ }
+
+ pub(crate) fn const_val_to_op(
+ &self,
+ val_val: ConstValue<'tcx>,
+ ty: Ty<'tcx>,
+ layout: Option<TyAndLayout<'tcx>>,
+ ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
+ // Other cases need layout.
+ let adjust_scalar = |scalar| -> InterpResult<'tcx, _> {
+ Ok(match scalar {
+ Scalar::Ptr(ptr, size) => Scalar::Ptr(self.global_base_pointer(ptr)?, size),
+ Scalar::Int(int) => Scalar::Int(int),
+ })
+ };
+ let layout = from_known_layout(self.tcx, self.param_env, layout, || self.layout_of(ty))?;
+ let op = match val_val {
+ ConstValue::ByRef { alloc, offset } => {
+ let id = self.tcx.create_memory_alloc(alloc);
+ // We rely on mutability being set correctly in that allocation to prevent writes
+ // where none should happen.
+ let ptr = self.global_base_pointer(Pointer::new(id, offset))?;
+ Operand::Indirect(MemPlace::from_ptr(ptr.into()))
+ }
+ ConstValue::Scalar(x) => Operand::Immediate(adjust_scalar(x)?.into()),
+ ConstValue::ZeroSized => Operand::Immediate(Immediate::Uninit),
+ ConstValue::Slice { data, start, end } => {
+ // We rely on mutability being set correctly in `data` to prevent writes
+ // where none should happen.
+ let ptr = Pointer::new(
+ self.tcx.create_memory_alloc(data),
+ Size::from_bytes(start), // offset: `start`
+ );
+ Operand::Immediate(Immediate::new_slice(
+ Scalar::from_pointer(self.global_base_pointer(ptr)?, &*self.tcx),
+ u64::try_from(end.checked_sub(start).unwrap()).unwrap(), // len: `end - start`
+ self,
+ ))
+ }
+ };
+ Ok(OpTy { op, layout, align: Some(layout.align.abi) })
+ }
+
+ /// Read discriminant, return the runtime value as well as the variant index.
+ /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
+ pub fn read_discriminant(
+ &self,
+ op: &OpTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, (Scalar<M::Provenance>, VariantIdx)> {
+ trace!("read_discriminant_value {:#?}", op.layout);
+ // Get type and layout of the discriminant.
+ let discr_layout = self.layout_of(op.layout.ty.discriminant_ty(*self.tcx))?;
+ trace!("discriminant type: {:?}", discr_layout.ty);
+
+ // We use "discriminant" to refer to the value associated with a particular enum variant.
+ // This is not to be confused with its "variant index", which is just determining its position in the
+ // declared list of variants -- they can differ with explicitly assigned discriminants.
+ // We use "tag" to refer to how the discriminant is encoded in memory, which can be either
+ // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`).
+ let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout.variants {
+ Variants::Single { index } => {
+ let discr = match op.layout.ty.discriminant_for_variant(*self.tcx, index) {
+ Some(discr) => {
+ // This type actually has discriminants.
+ assert_eq!(discr.ty, discr_layout.ty);
+ Scalar::from_uint(discr.val, discr_layout.size)
+ }
+ None => {
+ // On a type without actual discriminants, variant is 0.
+ assert_eq!(index.as_u32(), 0);
+ Scalar::from_uint(index.as_u32(), discr_layout.size)
+ }
+ };
+ return Ok((discr, index));
+ }
+ Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
+ (tag, tag_encoding, tag_field)
+ }
+ };
+
+ // There are *three* layouts that come into play here:
+ // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for
+ // the `Scalar` we return.
+ // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type,
+ // and used to interpret the value we read from the tag field.
+ // For the return value, a cast to `discr_layout` is performed.
+ // - The field storing the tag has a layout, which is very similar to `tag_layout` but
+ // may be a pointer. This is `tag_val.layout`; we just use it for sanity checks.
+
+ // Get layout for tag.
+ let tag_layout = self.layout_of(tag_scalar_layout.primitive().to_int_ty(*self.tcx))?;
+
+ // Read tag and sanity-check `tag_layout`.
+ let tag_val = self.read_immediate(&self.operand_field(op, tag_field)?)?;
+ assert_eq!(tag_layout.size, tag_val.layout.size);
+ assert_eq!(tag_layout.abi.is_signed(), tag_val.layout.abi.is_signed());
+ trace!("tag value: {}", tag_val);
+
+ // Figure out which discriminant and variant this corresponds to.
+ Ok(match *tag_encoding {
+ TagEncoding::Direct => {
+ let scalar = tag_val.to_scalar()?;
+ // Generate a specific error if `tag_val` is not an integer.
+ // (`tag_bits` itself is only used for error messages below.)
+ let tag_bits = scalar
+ .try_to_int()
+ .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))?
+ .assert_bits(tag_layout.size);
+ // Cast bits from tag layout to discriminant layout.
+ // After the checks we did above, this cannot fail, as
+ // discriminants are int-like.
+ let discr_val =
+ self.cast_from_int_like(scalar, tag_val.layout, discr_layout.ty).unwrap();
+ let discr_bits = discr_val.assert_bits(discr_layout.size);
+ // Convert discriminant to variant index, and catch invalid discriminants.
+ let index = match *op.layout.ty.kind() {
+ ty::Adt(adt, _) => {
+ adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits)
+ }
+ ty::Generator(def_id, substs, _) => {
+ let substs = substs.as_generator();
+ substs
+ .discriminants(def_id, *self.tcx)
+ .find(|(_, var)| var.val == discr_bits)
+ }
+ _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-generator"),
+ }
+ .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?;
+ // Return the cast value, and the index.
+ (discr_val, index.0)
+ }
+ TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start } => {
+ let tag_val = tag_val.to_scalar()?;
+ // Compute the variant this niche value/"tag" corresponds to. With niche layout,
+ // discriminant (encoded in niche/tag) and variant index are the same.
+ let variants_start = niche_variants.start().as_u32();
+ let variants_end = niche_variants.end().as_u32();
+ let variant = match tag_val.try_to_int() {
+ Err(dbg_val) => {
+ // So this is a pointer then, and casting to an int failed.
+ // Can only happen during CTFE.
+ // The niche must be just 0, and the ptr not null, then we know this is
+ // okay. Everything else, we conservatively reject.
+ let ptr_valid = niche_start == 0
+ && variants_start == variants_end
+ && !self.scalar_may_be_null(tag_val)?;
+ if !ptr_valid {
+ throw_ub!(InvalidTag(dbg_val))
+ }
+ dataful_variant
+ }
+ Ok(tag_bits) => {
+ let tag_bits = tag_bits.assert_bits(tag_layout.size);
+ // We need to use machine arithmetic to get the relative variant idx:
+ // variant_index_relative = tag_val - niche_start_val
+ let tag_val = ImmTy::from_uint(tag_bits, tag_layout);
+ let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
+ let variant_index_relative_val =
+ self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?;
+ let variant_index_relative = variant_index_relative_val
+ .to_scalar()?
+ .assert_bits(tag_val.layout.size);
+ // Check if this is in the range that indicates an actual discriminant.
+ if variant_index_relative <= u128::from(variants_end - variants_start) {
+ let variant_index_relative = u32::try_from(variant_index_relative)
+ .expect("we checked that this fits into a u32");
+ // Then computing the absolute variant idx should not overflow any more.
+ let variant_index = variants_start
+ .checked_add(variant_index_relative)
+ .expect("overflow computing absolute variant idx");
+ let variants_len = op
+ .layout
+ .ty
+ .ty_adt_def()
+ .expect("tagged layout for non adt")
+ .variants()
+ .len();
+ assert!(usize::try_from(variant_index).unwrap() < variants_len);
+ VariantIdx::from_u32(variant_index)
+ } else {
+ dataful_variant
+ }
+ }
+ };
+ // Compute the size of the scalar we need to return.
+ // No need to cast, because the variant index directly serves as discriminant and is
+ // encoded in the tag.
+ (Scalar::from_uint(variant.as_u32(), discr_layout.size), variant)
+ }
+ })
+ }
+}
+
+// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+mod size_asserts {
+ use super::*;
+ // These are in alphabetical order, which is easy to maintain.
+ rustc_data_structures::static_assert_size!(Immediate, 56);
+ rustc_data_structures::static_assert_size!(ImmTy<'_>, 72);
+ rustc_data_structures::static_assert_size!(Operand, 64);
+ rustc_data_structures::static_assert_size!(OpTy<'_>, 88);
+}