summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/interpret/place.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/interpret/place.rs')
-rw-r--r--compiler/rustc_const_eval/src/interpret/place.rs900
1 files changed, 900 insertions, 0 deletions
diff --git a/compiler/rustc_const_eval/src/interpret/place.rs b/compiler/rustc_const_eval/src/interpret/place.rs
new file mode 100644
index 000000000..f4571a1ca
--- /dev/null
+++ b/compiler/rustc_const_eval/src/interpret/place.rs
@@ -0,0 +1,900 @@
+//! Computations on places -- field projections, going from mir::Place, and writing
+//! into a place.
+//! All high-level functions to write to memory work on places as destinations.
+
+use std::hash::Hash;
+
+use rustc_ast::Mutability;
+use rustc_middle::mir;
+use rustc_middle::ty;
+use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
+use rustc_target::abi::{self, Abi, Align, HasDataLayout, Size, TagEncoding, VariantIdx};
+
+use super::{
+ alloc_range, mir_assign_valid_types, AllocId, AllocRef, AllocRefMut, CheckInAllocMsg,
+ ConstAlloc, ImmTy, Immediate, InterpCx, InterpResult, Machine, MemoryKind, OpTy, Operand,
+ Pointer, Provenance, Scalar, ScalarMaybeUninit,
+};
+
+#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
+/// Information required for the sound usage of a `MemPlace`.
+pub enum MemPlaceMeta<Prov: Provenance = AllocId> {
+ /// The unsized payload (e.g. length for slices or vtable pointer for trait objects).
+ Meta(Scalar<Prov>),
+ /// `Sized` types or unsized `extern type`
+ None,
+}
+
+impl<Prov: Provenance> MemPlaceMeta<Prov> {
+ pub fn unwrap_meta(self) -> Scalar<Prov> {
+ match self {
+ Self::Meta(s) => s,
+ Self::None => {
+ bug!("expected wide pointer extra data (e.g. slice length or trait object vtable)")
+ }
+ }
+ }
+
+ pub fn has_meta(self) -> bool {
+ match self {
+ Self::Meta(_) => true,
+ Self::None => false,
+ }
+ }
+}
+
+#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
+pub struct MemPlace<Prov: Provenance = AllocId> {
+ /// The pointer can be a pure integer, with the `None` provenance.
+ pub ptr: Pointer<Option<Prov>>,
+ /// Metadata for unsized places. Interpretation is up to the type.
+ /// Must not be present for sized types, but can be missing for unsized types
+ /// (e.g., `extern type`).
+ pub meta: MemPlaceMeta<Prov>,
+}
+
+/// A MemPlace with its layout. Constructing it is only possible in this module.
+#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
+pub struct MPlaceTy<'tcx, Prov: Provenance = AllocId> {
+ mplace: MemPlace<Prov>,
+ pub layout: TyAndLayout<'tcx>,
+ /// rustc does not have a proper way to represent the type of a field of a `repr(packed)` struct:
+ /// it needs to have a different alignment than the field type would usually have.
+ /// So we represent this here with a separate field that "overwrites" `layout.align`.
+ /// This means `layout.align` should never be used for a `MPlaceTy`!
+ pub align: Align,
+}
+
+#[derive(Copy, Clone, Debug)]
+pub enum Place<Prov: Provenance = AllocId> {
+ /// A place referring to a value allocated in the `Memory` system.
+ Ptr(MemPlace<Prov>),
+
+ /// To support alloc-free locals, we are able to write directly to a local.
+ /// (Without that optimization, we'd just always be a `MemPlace`.)
+ Local { frame: usize, local: mir::Local },
+}
+
+#[derive(Clone, Debug)]
+pub struct PlaceTy<'tcx, Prov: Provenance = AllocId> {
+ place: Place<Prov>, // Keep this private; it helps enforce invariants.
+ pub layout: TyAndLayout<'tcx>,
+ /// rustc does not have a proper way to represent the type of a field of a `repr(packed)` struct:
+ /// it needs to have a different alignment than the field type would usually have.
+ /// So we represent this here with a separate field that "overwrites" `layout.align`.
+ /// This means `layout.align` should never be used for a `PlaceTy`!
+ pub align: Align,
+}
+
+impl<'tcx, Prov: Provenance> std::ops::Deref for PlaceTy<'tcx, Prov> {
+ type Target = Place<Prov>;
+ #[inline(always)]
+ fn deref(&self) -> &Place<Prov> {
+ &self.place
+ }
+}
+
+impl<'tcx, Prov: Provenance> std::ops::Deref for MPlaceTy<'tcx, Prov> {
+ type Target = MemPlace<Prov>;
+ #[inline(always)]
+ fn deref(&self) -> &MemPlace<Prov> {
+ &self.mplace
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<MPlaceTy<'tcx, Prov>> for PlaceTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(mplace: MPlaceTy<'tcx, Prov>) -> Self {
+ PlaceTy { place: Place::Ptr(*mplace), layout: mplace.layout, align: mplace.align }
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<&'_ MPlaceTy<'tcx, Prov>> for PlaceTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(mplace: &MPlaceTy<'tcx, Prov>) -> Self {
+ PlaceTy { place: Place::Ptr(**mplace), layout: mplace.layout, align: mplace.align }
+ }
+}
+
+impl<'tcx, Prov: Provenance> From<&'_ mut MPlaceTy<'tcx, Prov>> for PlaceTy<'tcx, Prov> {
+ #[inline(always)]
+ fn from(mplace: &mut MPlaceTy<'tcx, Prov>) -> Self {
+ PlaceTy { place: Place::Ptr(**mplace), layout: mplace.layout, align: mplace.align }
+ }
+}
+
+impl<Prov: Provenance> MemPlace<Prov> {
+ #[inline(always)]
+ pub fn from_ptr(ptr: Pointer<Option<Prov>>) -> Self {
+ MemPlace { ptr, meta: MemPlaceMeta::None }
+ }
+
+ /// Adjust the provenance of the main pointer (metadata is unaffected).
+ pub fn map_provenance(self, f: impl FnOnce(Option<Prov>) -> Option<Prov>) -> Self {
+ MemPlace { ptr: self.ptr.map_provenance(f), ..self }
+ }
+
+ /// Turn a mplace into a (thin or wide) pointer, as a reference, pointing to the same space.
+ /// This is the inverse of `ref_to_mplace`.
+ #[inline(always)]
+ pub fn to_ref(self, cx: &impl HasDataLayout) -> Immediate<Prov> {
+ match self.meta {
+ MemPlaceMeta::None => Immediate::from(Scalar::from_maybe_pointer(self.ptr, cx)),
+ MemPlaceMeta::Meta(meta) => {
+ Immediate::ScalarPair(Scalar::from_maybe_pointer(self.ptr, cx).into(), meta.into())
+ }
+ }
+ }
+
+ #[inline]
+ pub fn offset_with_meta<'tcx>(
+ self,
+ offset: Size,
+ meta: MemPlaceMeta<Prov>,
+ cx: &impl HasDataLayout,
+ ) -> InterpResult<'tcx, Self> {
+ Ok(MemPlace { ptr: self.ptr.offset(offset, cx)?, meta })
+ }
+}
+
+impl<Prov: Provenance> Place<Prov> {
+ /// Asserts that this points to some local variable.
+ /// Returns the frame idx and the variable idx.
+ #[inline]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ pub fn assert_local(&self) -> (usize, mir::Local) {
+ match self {
+ Place::Local { frame, local } => (*frame, *local),
+ _ => bug!("assert_local: expected Place::Local, got {:?}", self),
+ }
+ }
+}
+
+impl<'tcx, Prov: Provenance> MPlaceTy<'tcx, Prov> {
+ /// Produces a MemPlace that works for ZST but nothing else.
+ /// Conceptually this is a new allocation, but it doesn't actually create an allocation so you
+ /// don't need to worry about memory leaks.
+ #[inline]
+ pub fn fake_alloc_zst(layout: TyAndLayout<'tcx>) -> Self {
+ assert!(layout.is_zst());
+ let align = layout.align.abi;
+ let ptr = Pointer::from_addr(align.bytes()); // no provenance, absolute address
+ MPlaceTy { mplace: MemPlace { ptr, meta: MemPlaceMeta::None }, layout, align }
+ }
+
+ #[inline]
+ pub fn offset_with_meta(
+ &self,
+ offset: Size,
+ meta: MemPlaceMeta<Prov>,
+ layout: TyAndLayout<'tcx>,
+ cx: &impl HasDataLayout,
+ ) -> InterpResult<'tcx, Self> {
+ Ok(MPlaceTy {
+ mplace: self.mplace.offset_with_meta(offset, meta, cx)?,
+ align: self.align.restrict_for_offset(offset),
+ layout,
+ })
+ }
+
+ pub fn offset(
+ &self,
+ offset: Size,
+ layout: TyAndLayout<'tcx>,
+ cx: &impl HasDataLayout,
+ ) -> InterpResult<'tcx, Self> {
+ assert!(!layout.is_unsized());
+ self.offset_with_meta(offset, MemPlaceMeta::None, layout, cx)
+ }
+
+ #[inline]
+ pub fn from_aligned_ptr(ptr: Pointer<Option<Prov>>, layout: TyAndLayout<'tcx>) -> Self {
+ MPlaceTy { mplace: MemPlace::from_ptr(ptr), layout, align: layout.align.abi }
+ }
+
+ #[inline]
+ pub fn from_aligned_ptr_with_meta(
+ ptr: Pointer<Option<Prov>>,
+ layout: TyAndLayout<'tcx>,
+ meta: MemPlaceMeta<Prov>,
+ ) -> Self {
+ let mut mplace = MemPlace::from_ptr(ptr);
+ mplace.meta = meta;
+
+ MPlaceTy { mplace, layout, align: layout.align.abi }
+ }
+
+ #[inline]
+ pub(crate) fn len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
+ if self.layout.is_unsized() {
+ // We need to consult `meta` metadata
+ match self.layout.ty.kind() {
+ ty::Slice(..) | ty::Str => self.mplace.meta.unwrap_meta().to_machine_usize(cx),
+ _ => bug!("len not supported on unsized type {:?}", self.layout.ty),
+ }
+ } else {
+ // Go through the layout. There are lots of types that support a length,
+ // e.g., SIMD types. (But not all repr(simd) types even have FieldsShape::Array!)
+ match self.layout.fields {
+ abi::FieldsShape::Array { count, .. } => Ok(count),
+ _ => bug!("len not supported on sized type {:?}", self.layout.ty),
+ }
+ }
+ }
+
+ #[inline]
+ pub(super) fn vtable(&self) -> Scalar<Prov> {
+ match self.layout.ty.kind() {
+ ty::Dynamic(..) => self.mplace.meta.unwrap_meta(),
+ _ => bug!("vtable not supported on type {:?}", self.layout.ty),
+ }
+ }
+}
+
+// These are defined here because they produce a place.
+impl<'tcx, Prov: Provenance> OpTy<'tcx, Prov> {
+ #[inline(always)]
+ /// Note: do not call `as_ref` on the resulting place. This function should only be used to
+ /// read from the resulting mplace, not to get its address back.
+ pub fn try_as_mplace(&self) -> Result<MPlaceTy<'tcx, Prov>, ImmTy<'tcx, Prov>> {
+ match **self {
+ Operand::Indirect(mplace) => {
+ Ok(MPlaceTy { mplace, layout: self.layout, align: self.align.unwrap() })
+ }
+ Operand::Immediate(imm) => Err(ImmTy::from_immediate(imm, self.layout)),
+ }
+ }
+
+ #[inline(always)]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ /// Note: do not call `as_ref` on the resulting place. This function should only be used to
+ /// read from the resulting mplace, not to get its address back.
+ pub fn assert_mem_place(&self) -> MPlaceTy<'tcx, Prov> {
+ self.try_as_mplace().unwrap()
+ }
+}
+
+impl<'tcx, Prov: Provenance> PlaceTy<'tcx, Prov> {
+ /// A place is either an mplace or some local.
+ #[inline]
+ pub fn try_as_mplace(&self) -> Result<MPlaceTy<'tcx, Prov>, (usize, mir::Local)> {
+ match **self {
+ Place::Ptr(mplace) => Ok(MPlaceTy { mplace, layout: self.layout, align: self.align }),
+ Place::Local { frame, local } => Err((frame, local)),
+ }
+ }
+
+ #[inline(always)]
+ #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
+ pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Prov> {
+ self.try_as_mplace().unwrap()
+ }
+}
+
+// FIXME: Working around https://github.com/rust-lang/rust/issues/54385
+impl<'mir, 'tcx: 'mir, Prov, M> InterpCx<'mir, 'tcx, M>
+where
+ Prov: Provenance + Eq + Hash + 'static,
+ M: Machine<'mir, 'tcx, Provenance = Prov>,
+{
+ /// Take a value, which represents a (thin or wide) reference, and make it a place.
+ /// Alignment is just based on the type. This is the inverse of `MemPlace::to_ref()`.
+ ///
+ /// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not
+ /// want to ever use the place for memory access!
+ /// Generally prefer `deref_operand`.
+ pub fn ref_to_mplace(
+ &self,
+ val: &ImmTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ let pointee_type =
+ val.layout.ty.builtin_deref(true).expect("`ref_to_mplace` called on non-ptr type").ty;
+ let layout = self.layout_of(pointee_type)?;
+ let (ptr, meta) = match **val {
+ Immediate::Scalar(ptr) => (ptr, MemPlaceMeta::None),
+ Immediate::ScalarPair(ptr, meta) => (ptr, MemPlaceMeta::Meta(meta.check_init()?)),
+ Immediate::Uninit => throw_ub!(InvalidUninitBytes(None)),
+ };
+
+ let mplace = MemPlace { ptr: ptr.to_pointer(self)?, meta };
+ // When deref'ing a pointer, the *static* alignment given by the type is what matters.
+ let align = layout.align.abi;
+ Ok(MPlaceTy { mplace, layout, align })
+ }
+
+ /// Take an operand, representing a pointer, and dereference it to a place -- that
+ /// will always be a MemPlace. Lives in `place.rs` because it creates a place.
+ #[instrument(skip(self), level = "debug")]
+ pub fn deref_operand(
+ &self,
+ src: &OpTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ let val = self.read_immediate(src)?;
+ trace!("deref to {} on {:?}", val.layout.ty, *val);
+
+ if val.layout.ty.is_box() {
+ bug!("dereferencing {:?}", val.layout.ty);
+ }
+
+ let mplace = self.ref_to_mplace(&val)?;
+ self.check_mplace_access(mplace, CheckInAllocMsg::DerefTest)?;
+ Ok(mplace)
+ }
+
+ #[inline]
+ pub(super) fn get_place_alloc(
+ &self,
+ place: &MPlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, Option<AllocRef<'_, 'tcx, M::Provenance, M::AllocExtra>>> {
+ assert!(!place.layout.is_unsized());
+ assert!(!place.meta.has_meta());
+ let size = place.layout.size;
+ self.get_ptr_alloc(place.ptr, size, place.align)
+ }
+
+ #[inline]
+ pub(super) fn get_place_alloc_mut(
+ &mut self,
+ place: &MPlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, Option<AllocRefMut<'_, 'tcx, M::Provenance, M::AllocExtra>>> {
+ assert!(!place.layout.is_unsized());
+ assert!(!place.meta.has_meta());
+ let size = place.layout.size;
+ self.get_ptr_alloc_mut(place.ptr, size, place.align)
+ }
+
+ /// Check if this mplace is dereferenceable and sufficiently aligned.
+ fn check_mplace_access(
+ &self,
+ mplace: MPlaceTy<'tcx, M::Provenance>,
+ msg: CheckInAllocMsg,
+ ) -> InterpResult<'tcx> {
+ let (size, align) = self
+ .size_and_align_of_mplace(&mplace)?
+ .unwrap_or((mplace.layout.size, mplace.layout.align.abi));
+ assert!(mplace.align <= align, "dynamic alignment less strict than static one?");
+ let align = M::enforce_alignment(self).then_some(align);
+ self.check_ptr_access_align(mplace.ptr, size, align.unwrap_or(Align::ONE), msg)?;
+ Ok(())
+ }
+
+ /// Converts a repr(simd) place into a place where `place_index` accesses the SIMD elements.
+ /// Also returns the number of elements.
+ pub fn mplace_to_simd(
+ &self,
+ mplace: &MPlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::Provenance>, u64)> {
+ // Basically we just transmute this place into an array following simd_size_and_type.
+ // (Transmuting is okay since this is an in-memory place. We also double-check the size
+ // stays the same.)
+ let (len, e_ty) = mplace.layout.ty.simd_size_and_type(*self.tcx);
+ let array = self.tcx.mk_array(e_ty, len);
+ let layout = self.layout_of(array)?;
+ assert_eq!(layout.size, mplace.layout.size);
+ Ok((MPlaceTy { layout, ..*mplace }, len))
+ }
+
+ /// Converts a repr(simd) place into a place where `place_index` accesses the SIMD elements.
+ /// Also returns the number of elements.
+ pub fn place_to_simd(
+ &mut self,
+ place: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::Provenance>, u64)> {
+ let mplace = self.force_allocation(place)?;
+ self.mplace_to_simd(&mplace)
+ }
+
+ pub fn local_to_place(
+ &self,
+ frame: usize,
+ local: mir::Local,
+ ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
+ let layout = self.layout_of_local(&self.stack()[frame], local, None)?;
+ let place = Place::Local { frame, local };
+ Ok(PlaceTy { place, layout, align: layout.align.abi })
+ }
+
+ /// Computes a place. You should only use this if you intend to write into this
+ /// place; for reading, a more efficient alternative is `eval_place_to_op`.
+ #[instrument(skip(self), level = "debug")]
+ pub fn eval_place(
+ &mut self,
+ mir_place: mir::Place<'tcx>,
+ ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
+ let mut place = self.local_to_place(self.frame_idx(), mir_place.local)?;
+ // Using `try_fold` turned out to be bad for performance, hence the loop.
+ for elem in mir_place.projection.iter() {
+ place = self.place_projection(&place, elem)?
+ }
+
+ trace!("{:?}", self.dump_place(place.place));
+ // Sanity-check the type we ended up with.
+ debug_assert!(
+ mir_assign_valid_types(
+ *self.tcx,
+ self.param_env,
+ self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
+ mir_place.ty(&self.frame().body.local_decls, *self.tcx).ty
+ )?)?,
+ place.layout,
+ ),
+ "eval_place of a MIR place with type {:?} produced an interpreter place with type {:?}",
+ mir_place.ty(&self.frame().body.local_decls, *self.tcx).ty,
+ place.layout.ty,
+ );
+ Ok(place)
+ }
+
+ /// Write an immediate to a place
+ #[inline(always)]
+ #[instrument(skip(self), level = "debug")]
+ pub fn write_immediate(
+ &mut self,
+ src: Immediate<M::Provenance>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ self.write_immediate_no_validate(src, dest)?;
+
+ if M::enforce_validity(self) {
+ // Data got changed, better make sure it matches the type!
+ self.validate_operand(&self.place_to_op(dest)?)?;
+ }
+
+ Ok(())
+ }
+
+ /// Write a scalar to a place
+ #[inline(always)]
+ pub fn write_scalar(
+ &mut self,
+ val: impl Into<ScalarMaybeUninit<M::Provenance>>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ self.write_immediate(Immediate::Scalar(val.into()), dest)
+ }
+
+ /// Write a pointer to a place
+ #[inline(always)]
+ pub fn write_pointer(
+ &mut self,
+ ptr: impl Into<Pointer<Option<M::Provenance>>>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ self.write_scalar(Scalar::from_maybe_pointer(ptr.into(), self), dest)
+ }
+
+ /// Write an immediate to a place.
+ /// If you use this you are responsible for validating that things got copied at the
+ /// right type.
+ fn write_immediate_no_validate(
+ &mut self,
+ src: Immediate<M::Provenance>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ assert!(!dest.layout.is_unsized(), "Cannot write unsized data");
+ trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
+
+ // See if we can avoid an allocation. This is the counterpart to `read_immediate_raw`,
+ // but not factored as a separate function.
+ let mplace = match dest.place {
+ Place::Local { frame, local } => {
+ match M::access_local_mut(self, frame, local)? {
+ Operand::Immediate(local) => {
+ // Local can be updated in-place.
+ *local = src;
+ return Ok(());
+ }
+ Operand::Indirect(mplace) => {
+ // The local is in memory, go on below.
+ *mplace
+ }
+ }
+ }
+ Place::Ptr(mplace) => mplace, // already referring to memory
+ };
+
+ // This is already in memory, write there.
+ self.write_immediate_to_mplace_no_validate(src, dest.layout, dest.align, mplace)
+ }
+
+ /// Write an immediate to memory.
+ /// If you use this you are responsible for validating that things got copied at the
+ /// right layout.
+ fn write_immediate_to_mplace_no_validate(
+ &mut self,
+ value: Immediate<M::Provenance>,
+ layout: TyAndLayout<'tcx>,
+ align: Align,
+ dest: MemPlace<M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ // Note that it is really important that the type here is the right one, and matches the
+ // type things are read at. In case `value` is a `ScalarPair`, we don't do any magic here
+ // to handle padding properly, which is only correct if we never look at this data with the
+ // wrong type.
+
+ let tcx = *self.tcx;
+ let Some(mut alloc) = self.get_place_alloc_mut(&MPlaceTy { mplace: dest, layout, align })? else {
+ // zero-sized access
+ return Ok(());
+ };
+
+ match value {
+ Immediate::Scalar(scalar) => {
+ let Abi::Scalar(s) = layout.abi else { span_bug!(
+ self.cur_span(),
+ "write_immediate_to_mplace: invalid Scalar layout: {layout:#?}",
+ )
+ };
+ let size = s.size(&tcx);
+ assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
+ alloc.write_scalar(alloc_range(Size::ZERO, size), scalar)
+ }
+ Immediate::ScalarPair(a_val, b_val) => {
+ // We checked `ptr_align` above, so all fields will have the alignment they need.
+ // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
+ // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
+ let Abi::ScalarPair(a, b) = layout.abi else { span_bug!(
+ self.cur_span(),
+ "write_immediate_to_mplace: invalid ScalarPair layout: {:#?}",
+ layout
+ )
+ };
+ let (a_size, b_size) = (a.size(&tcx), b.size(&tcx));
+ let b_offset = a_size.align_to(b.align(&tcx).abi);
+ assert!(b_offset.bytes() > 0); // in `operand_field` we use the offset to tell apart the fields
+
+ // It is tempting to verify `b_offset` against `layout.fields.offset(1)`,
+ // but that does not work: We could be a newtype around a pair, then the
+ // fields do not match the `ScalarPair` components.
+
+ alloc.write_scalar(alloc_range(Size::ZERO, a_size), a_val)?;
+ alloc.write_scalar(alloc_range(b_offset, b_size), b_val)
+ }
+ Immediate::Uninit => alloc.write_uninit(),
+ }
+ }
+
+ pub fn write_uninit(&mut self, dest: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
+ let mplace = match dest.try_as_mplace() {
+ Ok(mplace) => mplace,
+ Err((frame, local)) => {
+ match M::access_local_mut(self, frame, local)? {
+ Operand::Immediate(local) => {
+ *local = Immediate::Uninit;
+ return Ok(());
+ }
+ Operand::Indirect(mplace) => {
+ // The local is in memory, go on below.
+ MPlaceTy { mplace: *mplace, layout: dest.layout, align: dest.align }
+ }
+ }
+ }
+ };
+ let Some(mut alloc) = self.get_place_alloc_mut(&mplace)? else {
+ // Zero-sized access
+ return Ok(());
+ };
+ alloc.write_uninit()?;
+ Ok(())
+ }
+
+ /// Copies the data from an operand to a place.
+ /// `allow_transmute` indicates whether the layouts may disagree.
+ #[inline(always)]
+ #[instrument(skip(self), level = "debug")]
+ pub fn copy_op(
+ &mut self,
+ src: &OpTy<'tcx, M::Provenance>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ allow_transmute: bool,
+ ) -> InterpResult<'tcx> {
+ self.copy_op_no_validate(src, dest, allow_transmute)?;
+
+ if M::enforce_validity(self) {
+ // Data got changed, better make sure it matches the type!
+ self.validate_operand(&self.place_to_op(dest)?)?;
+ }
+
+ Ok(())
+ }
+
+ /// Copies the data from an operand to a place.
+ /// `allow_transmute` indicates whether the layouts may disagree.
+ /// Also, if you use this you are responsible for validating that things get copied at the
+ /// right type.
+ #[instrument(skip(self), level = "debug")]
+ fn copy_op_no_validate(
+ &mut self,
+ src: &OpTy<'tcx, M::Provenance>,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ allow_transmute: bool,
+ ) -> InterpResult<'tcx> {
+ // We do NOT compare the types for equality, because well-typed code can
+ // actually "transmute" `&mut T` to `&T` in an assignment without a cast.
+ let layout_compat =
+ mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout);
+ if !allow_transmute && !layout_compat {
+ span_bug!(
+ self.cur_span(),
+ "type mismatch when copying!\nsrc: {:?},\ndest: {:?}",
+ src.layout.ty,
+ dest.layout.ty,
+ );
+ }
+
+ // Let us see if the layout is simple so we take a shortcut,
+ // avoid force_allocation.
+ let src = match self.read_immediate_raw(src, /*force*/ false)? {
+ Ok(src_val) => {
+ assert!(!src.layout.is_unsized(), "cannot have unsized immediates");
+ assert!(
+ !dest.layout.is_unsized(),
+ "the src is sized, so the dest must also be sized"
+ );
+ assert_eq!(src.layout.size, dest.layout.size);
+ // Yay, we got a value that we can write directly.
+ return if layout_compat {
+ self.write_immediate_no_validate(*src_val, dest)
+ } else {
+ // This is tricky. The problematic case is `ScalarPair`: the `src_val` was
+ // loaded using the offsets defined by `src.layout`. When we put this back into
+ // the destination, we have to use the same offsets! So (a) we make sure we
+ // write back to memory, and (b) we use `dest` *with the source layout*.
+ let dest_mem = self.force_allocation(dest)?;
+ self.write_immediate_to_mplace_no_validate(
+ *src_val,
+ src.layout,
+ dest_mem.align,
+ *dest_mem,
+ )
+ };
+ }
+ Err(mplace) => mplace,
+ };
+ // Slow path, this does not fit into an immediate. Just memcpy.
+ trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
+
+ let dest = self.force_allocation(&dest)?;
+ let Some((dest_size, _)) = self.size_and_align_of_mplace(&dest)? else {
+ span_bug!(self.cur_span(), "copy_op needs (dynamically) sized values")
+ };
+ if cfg!(debug_assertions) {
+ let src_size = self.size_and_align_of_mplace(&src)?.unwrap().0;
+ assert_eq!(src_size, dest_size, "Cannot copy differently-sized data");
+ } else {
+ // As a cheap approximation, we compare the fixed parts of the size.
+ assert_eq!(src.layout.size, dest.layout.size);
+ }
+
+ self.mem_copy(
+ src.ptr, src.align, dest.ptr, dest.align, dest_size, /*nonoverlapping*/ false,
+ )
+ }
+
+ /// Ensures that a place is in memory, and returns where it is.
+ /// If the place currently refers to a local that doesn't yet have a matching allocation,
+ /// create such an allocation.
+ /// This is essentially `force_to_memplace`.
+ #[instrument(skip(self), level = "debug")]
+ pub fn force_allocation(
+ &mut self,
+ place: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ let mplace = match place.place {
+ Place::Local { frame, local } => {
+ match M::access_local_mut(self, frame, local)? {
+ &mut Operand::Immediate(local_val) => {
+ // We need to make an allocation.
+
+ // We need the layout of the local. We can NOT use the layout we got,
+ // that might e.g., be an inner field of a struct with `Scalar` layout,
+ // that has different alignment than the outer field.
+ let local_layout =
+ self.layout_of_local(&self.stack()[frame], local, None)?;
+ if local_layout.is_unsized() {
+ throw_unsup_format!("unsized locals are not supported");
+ }
+ let mplace = *self.allocate(local_layout, MemoryKind::Stack)?;
+ if !matches!(local_val, Immediate::Uninit) {
+ // Preserve old value. (As an optimization, we can skip this if it was uninit.)
+ // We don't have to validate as we can assume the local
+ // was already valid for its type.
+ self.write_immediate_to_mplace_no_validate(
+ local_val,
+ local_layout,
+ local_layout.align.abi,
+ mplace,
+ )?;
+ }
+ // Now we can call `access_mut` again, asserting it goes well,
+ // and actually overwrite things.
+ *M::access_local_mut(self, frame, local).unwrap() =
+ Operand::Indirect(mplace);
+ mplace
+ }
+ &mut Operand::Indirect(mplace) => mplace, // this already was an indirect local
+ }
+ }
+ Place::Ptr(mplace) => mplace,
+ };
+ // Return with the original layout, so that the caller can go on
+ Ok(MPlaceTy { mplace, layout: place.layout, align: place.align })
+ }
+
+ pub fn allocate(
+ &mut self,
+ layout: TyAndLayout<'tcx>,
+ kind: MemoryKind<M::MemoryKind>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ assert!(!layout.is_unsized());
+ let ptr = self.allocate_ptr(layout.size, layout.align.abi, kind)?;
+ Ok(MPlaceTy::from_aligned_ptr(ptr.into(), layout))
+ }
+
+ /// Returns a wide MPlace of type `&'static [mut] str` to a new 1-aligned allocation.
+ pub fn allocate_str(
+ &mut self,
+ str: &str,
+ kind: MemoryKind<M::MemoryKind>,
+ mutbl: Mutability,
+ ) -> MPlaceTy<'tcx, M::Provenance> {
+ let ptr = self.allocate_bytes_ptr(str.as_bytes(), Align::ONE, kind, mutbl);
+ let meta = Scalar::from_machine_usize(u64::try_from(str.len()).unwrap(), self);
+ let mplace = MemPlace { ptr: ptr.into(), meta: MemPlaceMeta::Meta(meta) };
+
+ let ty = self.tcx.mk_ref(
+ self.tcx.lifetimes.re_static,
+ ty::TypeAndMut { ty: self.tcx.types.str_, mutbl },
+ );
+ let layout = self.layout_of(ty).unwrap();
+ MPlaceTy { mplace, layout, align: layout.align.abi }
+ }
+
+ /// Writes the discriminant of the given variant.
+ #[instrument(skip(self), level = "debug")]
+ pub fn write_discriminant(
+ &mut self,
+ variant_index: VariantIdx,
+ dest: &PlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx> {
+ // This must be an enum or generator.
+ match dest.layout.ty.kind() {
+ ty::Adt(adt, _) => assert!(adt.is_enum()),
+ ty::Generator(..) => {}
+ _ => span_bug!(
+ self.cur_span(),
+ "write_discriminant called on non-variant-type (neither enum nor generator)"
+ ),
+ }
+ // Layout computation excludes uninhabited variants from consideration
+ // therefore there's no way to represent those variants in the given layout.
+ // Essentially, uninhabited variants do not have a tag that corresponds to their
+ // discriminant, so we cannot do anything here.
+ // When evaluating we will always error before even getting here, but ConstProp 'executes'
+ // dead code, so we cannot ICE here.
+ if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() {
+ throw_ub!(UninhabitedEnumVariantWritten)
+ }
+
+ match dest.layout.variants {
+ abi::Variants::Single { index } => {
+ assert_eq!(index, variant_index);
+ }
+ abi::Variants::Multiple {
+ tag_encoding: TagEncoding::Direct,
+ tag: tag_layout,
+ tag_field,
+ ..
+ } => {
+ // No need to validate that the discriminant here because the
+ // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
+
+ let discr_val =
+ dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val;
+
+ // raw discriminants for enums are isize or bigger during
+ // their computation, but the in-memory tag is the smallest possible
+ // representation
+ let size = tag_layout.size(self);
+ let tag_val = size.truncate(discr_val);
+
+ let tag_dest = self.place_field(dest, tag_field)?;
+ self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?;
+ }
+ abi::Variants::Multiple {
+ tag_encoding:
+ TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
+ tag: tag_layout,
+ tag_field,
+ ..
+ } => {
+ // No need to validate that the discriminant here because the
+ // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
+
+ if variant_index != dataful_variant {
+ let variants_start = niche_variants.start().as_u32();
+ let variant_index_relative = variant_index
+ .as_u32()
+ .checked_sub(variants_start)
+ .expect("overflow computing relative variant idx");
+ // We need to use machine arithmetic when taking into account `niche_start`:
+ // tag_val = variant_index_relative + niche_start_val
+ let tag_layout = self.layout_of(tag_layout.primitive().to_int_ty(*self.tcx))?;
+ let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
+ let variant_index_relative_val =
+ ImmTy::from_uint(variant_index_relative, tag_layout);
+ let tag_val = self.binary_op(
+ mir::BinOp::Add,
+ &variant_index_relative_val,
+ &niche_start_val,
+ )?;
+ // Write result.
+ let niche_dest = self.place_field(dest, tag_field)?;
+ self.write_immediate(*tag_val, &niche_dest)?;
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ pub fn raw_const_to_mplace(
+ &self,
+ raw: ConstAlloc<'tcx>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ // This must be an allocation in `tcx`
+ let _ = self.tcx.global_alloc(raw.alloc_id);
+ let ptr = self.global_base_pointer(Pointer::from(raw.alloc_id))?;
+ let layout = self.layout_of(raw.ty)?;
+ Ok(MPlaceTy::from_aligned_ptr(ptr.into(), layout))
+ }
+
+ /// Turn a place with a `dyn Trait` type into a place with the actual dynamic type.
+ pub(super) fn unpack_dyn_trait(
+ &self,
+ mplace: &MPlaceTy<'tcx, M::Provenance>,
+ ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
+ let vtable = mplace.vtable().to_pointer(self)?; // also sanity checks the type
+ let (ty, _) = self.get_ptr_vtable(vtable)?;
+ let layout = self.layout_of(ty)?;
+
+ let mplace = MPlaceTy {
+ mplace: MemPlace { meta: MemPlaceMeta::None, ..**mplace },
+ layout,
+ align: layout.align.abi,
+ };
+ Ok(mplace)
+ }
+}
+
+// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+mod size_asserts {
+ use super::*;
+ // These are in alphabetical order, which is easy to maintain.
+ rustc_data_structures::static_assert_size!(MemPlaceMeta, 24);
+ rustc_data_structures::static_assert_size!(MemPlace, 40);
+ rustc_data_structures::static_assert_size!(MPlaceTy<'_>, 64);
+ rustc_data_structures::static_assert_size!(Place, 48);
+ rustc_data_structures::static_assert_size!(PlaceTy<'_>, 72);
+}