summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/transform/check_consts/qualifs.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/transform/check_consts/qualifs.rs')
-rw-r--r--compiler/rustc_const_eval/src/transform/check_consts/qualifs.rs384
1 files changed, 384 insertions, 0 deletions
diff --git a/compiler/rustc_const_eval/src/transform/check_consts/qualifs.rs b/compiler/rustc_const_eval/src/transform/check_consts/qualifs.rs
new file mode 100644
index 000000000..c8a63c9c3
--- /dev/null
+++ b/compiler/rustc_const_eval/src/transform/check_consts/qualifs.rs
@@ -0,0 +1,384 @@
+//! Structural const qualification.
+//!
+//! See the `Qualif` trait for more info.
+
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir::LangItem;
+use rustc_infer::infer::TyCtxtInferExt;
+use rustc_infer::traits::TraitEngine;
+use rustc_middle::mir::*;
+use rustc_middle::ty::{self, subst::SubstsRef, AdtDef, Ty};
+use rustc_span::DUMMY_SP;
+use rustc_trait_selection::traits::{
+ self, ImplSource, Obligation, ObligationCause, SelectionContext, TraitEngineExt,
+};
+
+use super::ConstCx;
+
+pub fn in_any_value_of_ty<'tcx>(
+ cx: &ConstCx<'_, 'tcx>,
+ ty: Ty<'tcx>,
+ tainted_by_errors: Option<ErrorGuaranteed>,
+) -> ConstQualifs {
+ ConstQualifs {
+ has_mut_interior: HasMutInterior::in_any_value_of_ty(cx, ty),
+ needs_drop: NeedsDrop::in_any_value_of_ty(cx, ty),
+ needs_non_const_drop: NeedsNonConstDrop::in_any_value_of_ty(cx, ty),
+ custom_eq: CustomEq::in_any_value_of_ty(cx, ty),
+ tainted_by_errors,
+ }
+}
+
+/// A "qualif"(-ication) is a way to look for something "bad" in the MIR that would disqualify some
+/// code for promotion or prevent it from evaluating at compile time.
+///
+/// Normally, we would determine what qualifications apply to each type and error when an illegal
+/// operation is performed on such a type. However, this was found to be too imprecise, especially
+/// in the presence of `enum`s. If only a single variant of an enum has a certain qualification, we
+/// needn't reject code unless it actually constructs and operates on the qualified variant.
+///
+/// To accomplish this, const-checking and promotion use a value-based analysis (as opposed to a
+/// type-based one). Qualifications propagate structurally across variables: If a local (or a
+/// projection of a local) is assigned a qualified value, that local itself becomes qualified.
+pub trait Qualif {
+ /// The name of the file used to debug the dataflow analysis that computes this qualif.
+ const ANALYSIS_NAME: &'static str;
+
+ /// Whether this `Qualif` is cleared when a local is moved from.
+ const IS_CLEARED_ON_MOVE: bool = false;
+
+ /// Whether this `Qualif` might be evaluated after the promotion and can encounter a promoted.
+ const ALLOW_PROMOTED: bool = false;
+
+ /// Extracts the field of `ConstQualifs` that corresponds to this `Qualif`.
+ fn in_qualifs(qualifs: &ConstQualifs) -> bool;
+
+ /// Returns `true` if *any* value of the given type could possibly have this `Qualif`.
+ ///
+ /// This function determines `Qualif`s when we cannot do a value-based analysis. Since qualif
+ /// propagation is context-insensitive, this includes function arguments and values returned
+ /// from a call to another function.
+ ///
+ /// It also determines the `Qualif`s for primitive types.
+ fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool;
+
+ /// Returns `true` if this `Qualif` is inherent to the given struct or enum.
+ ///
+ /// By default, `Qualif`s propagate into ADTs in a structural way: An ADT only becomes
+ /// qualified if part of it is assigned a value with that `Qualif`. However, some ADTs *always*
+ /// have a certain `Qualif`, regardless of whether their fields have it. For example, a type
+ /// with a custom `Drop` impl is inherently `NeedsDrop`.
+ ///
+ /// Returning `true` for `in_adt_inherently` but `false` for `in_any_value_of_ty` is unsound.
+ fn in_adt_inherently<'tcx>(
+ cx: &ConstCx<'_, 'tcx>,
+ adt: AdtDef<'tcx>,
+ substs: SubstsRef<'tcx>,
+ ) -> bool;
+}
+
+/// Constant containing interior mutability (`UnsafeCell<T>`).
+/// This must be ruled out to make sure that evaluating the constant at compile-time
+/// and at *any point* during the run-time would produce the same result. In particular,
+/// promotion of temporaries must not change program behavior; if the promoted could be
+/// written to, that would be a problem.
+pub struct HasMutInterior;
+
+impl Qualif for HasMutInterior {
+ const ANALYSIS_NAME: &'static str = "flow_has_mut_interior";
+
+ fn in_qualifs(qualifs: &ConstQualifs) -> bool {
+ qualifs.has_mut_interior
+ }
+
+ fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
+ !ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env)
+ }
+
+ fn in_adt_inherently<'tcx>(
+ _cx: &ConstCx<'_, 'tcx>,
+ adt: AdtDef<'tcx>,
+ _: SubstsRef<'tcx>,
+ ) -> bool {
+ // Exactly one type, `UnsafeCell`, has the `HasMutInterior` qualif inherently.
+ // It arises structurally for all other types.
+ adt.is_unsafe_cell()
+ }
+}
+
+/// Constant containing an ADT that implements `Drop`.
+/// This must be ruled out because implicit promotion would remove side-effects
+/// that occur as part of dropping that value. N.B., the implicit promotion has
+/// to reject const Drop implementations because even if side-effects are ruled
+/// out through other means, the execution of the drop could diverge.
+pub struct NeedsDrop;
+
+impl Qualif for NeedsDrop {
+ const ANALYSIS_NAME: &'static str = "flow_needs_drop";
+ const IS_CLEARED_ON_MOVE: bool = true;
+
+ fn in_qualifs(qualifs: &ConstQualifs) -> bool {
+ qualifs.needs_drop
+ }
+
+ fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
+ ty.needs_drop(cx.tcx, cx.param_env)
+ }
+
+ fn in_adt_inherently<'tcx>(
+ cx: &ConstCx<'_, 'tcx>,
+ adt: AdtDef<'tcx>,
+ _: SubstsRef<'tcx>,
+ ) -> bool {
+ adt.has_dtor(cx.tcx)
+ }
+}
+
+/// Constant containing an ADT that implements non-const `Drop`.
+/// This must be ruled out because we cannot run `Drop` during compile-time.
+pub struct NeedsNonConstDrop;
+
+impl Qualif for NeedsNonConstDrop {
+ const ANALYSIS_NAME: &'static str = "flow_needs_nonconst_drop";
+ const IS_CLEARED_ON_MOVE: bool = true;
+ const ALLOW_PROMOTED: bool = true;
+
+ fn in_qualifs(qualifs: &ConstQualifs) -> bool {
+ qualifs.needs_non_const_drop
+ }
+
+ fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
+ // Avoid selecting for simple cases, such as builtin types.
+ if ty::util::is_trivially_const_drop(ty) {
+ return false;
+ }
+
+ let destruct = cx.tcx.require_lang_item(LangItem::Destruct, None);
+
+ let obligation = Obligation::new(
+ ObligationCause::dummy(),
+ cx.param_env,
+ ty::Binder::dummy(ty::TraitPredicate {
+ trait_ref: ty::TraitRef {
+ def_id: destruct,
+ substs: cx.tcx.mk_substs_trait(ty, &[]),
+ },
+ constness: ty::BoundConstness::ConstIfConst,
+ polarity: ty::ImplPolarity::Positive,
+ }),
+ );
+
+ cx.tcx.infer_ctxt().enter(|infcx| {
+ let mut selcx = SelectionContext::new(&infcx);
+ let Some(impl_src) = selcx.select(&obligation).ok().flatten() else {
+ // If we couldn't select a const destruct candidate, then it's bad
+ return true;
+ };
+
+ if !matches!(
+ impl_src,
+ ImplSource::ConstDestruct(_)
+ | ImplSource::Param(_, ty::BoundConstness::ConstIfConst)
+ ) {
+ // If our const destruct candidate is not ConstDestruct or implied by the param env,
+ // then it's bad
+ return true;
+ }
+
+ if impl_src.borrow_nested_obligations().is_empty() {
+ return false;
+ }
+
+ // If we successfully found one, then select all of the predicates
+ // implied by our const drop impl.
+ let mut fcx = <dyn TraitEngine<'tcx>>::new(cx.tcx);
+ for nested in impl_src.nested_obligations() {
+ fcx.register_predicate_obligation(&infcx, nested);
+ }
+
+ // If we had any errors, then it's bad
+ !fcx.select_all_or_error(&infcx).is_empty()
+ })
+ }
+
+ fn in_adt_inherently<'tcx>(
+ cx: &ConstCx<'_, 'tcx>,
+ adt: AdtDef<'tcx>,
+ _: SubstsRef<'tcx>,
+ ) -> bool {
+ adt.has_non_const_dtor(cx.tcx)
+ }
+}
+
+/// A constant that cannot be used as part of a pattern in a `match` expression.
+pub struct CustomEq;
+
+impl Qualif for CustomEq {
+ const ANALYSIS_NAME: &'static str = "flow_custom_eq";
+
+ fn in_qualifs(qualifs: &ConstQualifs) -> bool {
+ qualifs.custom_eq
+ }
+
+ fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
+ // If *any* component of a composite data type does not implement `Structural{Partial,}Eq`,
+ // we know that at least some values of that type are not structural-match. I say "some"
+ // because that component may be part of an enum variant (e.g.,
+ // `Option::<NonStructuralMatchTy>::Some`), in which case some values of this type may be
+ // structural-match (`Option::None`).
+ traits::search_for_structural_match_violation(cx.body.span, cx.tcx, ty).is_some()
+ }
+
+ fn in_adt_inherently<'tcx>(
+ cx: &ConstCx<'_, 'tcx>,
+ adt: AdtDef<'tcx>,
+ substs: SubstsRef<'tcx>,
+ ) -> bool {
+ let ty = cx.tcx.mk_ty(ty::Adt(adt, substs));
+ !ty.is_structural_eq_shallow(cx.tcx)
+ }
+}
+
+// FIXME: Use `mir::visit::Visitor` for the `in_*` functions if/when it supports early return.
+
+/// Returns `true` if this `Rvalue` contains qualif `Q`.
+pub fn in_rvalue<'tcx, Q, F>(
+ cx: &ConstCx<'_, 'tcx>,
+ in_local: &mut F,
+ rvalue: &Rvalue<'tcx>,
+) -> bool
+where
+ Q: Qualif,
+ F: FnMut(Local) -> bool,
+{
+ match rvalue {
+ Rvalue::ThreadLocalRef(_) | Rvalue::NullaryOp(..) => {
+ Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx))
+ }
+
+ Rvalue::Discriminant(place) | Rvalue::Len(place) => {
+ in_place::<Q, _>(cx, in_local, place.as_ref())
+ }
+
+ Rvalue::CopyForDeref(place) => in_place::<Q, _>(cx, in_local, place.as_ref()),
+
+ Rvalue::Use(operand)
+ | Rvalue::Repeat(operand, _)
+ | Rvalue::UnaryOp(_, operand)
+ | Rvalue::Cast(_, operand, _)
+ | Rvalue::ShallowInitBox(operand, _) => in_operand::<Q, _>(cx, in_local, operand),
+
+ Rvalue::BinaryOp(_, box (lhs, rhs)) | Rvalue::CheckedBinaryOp(_, box (lhs, rhs)) => {
+ in_operand::<Q, _>(cx, in_local, lhs) || in_operand::<Q, _>(cx, in_local, rhs)
+ }
+
+ Rvalue::Ref(_, _, place) | Rvalue::AddressOf(_, place) => {
+ // Special-case reborrows to be more like a copy of the reference.
+ if let Some((place_base, ProjectionElem::Deref)) = place.as_ref().last_projection() {
+ let base_ty = place_base.ty(cx.body, cx.tcx).ty;
+ if let ty::Ref(..) = base_ty.kind() {
+ return in_place::<Q, _>(cx, in_local, place_base);
+ }
+ }
+
+ in_place::<Q, _>(cx, in_local, place.as_ref())
+ }
+
+ Rvalue::Aggregate(kind, operands) => {
+ // Return early if we know that the struct or enum being constructed is always
+ // qualified.
+ if let AggregateKind::Adt(adt_did, _, substs, ..) = **kind {
+ let def = cx.tcx.adt_def(adt_did);
+ if Q::in_adt_inherently(cx, def, substs) {
+ return true;
+ }
+ if def.is_union() && Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx)) {
+ return true;
+ }
+ }
+
+ // Otherwise, proceed structurally...
+ operands.iter().any(|o| in_operand::<Q, _>(cx, in_local, o))
+ }
+ }
+}
+
+/// Returns `true` if this `Place` contains qualif `Q`.
+pub fn in_place<'tcx, Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, place: PlaceRef<'tcx>) -> bool
+where
+ Q: Qualif,
+ F: FnMut(Local) -> bool,
+{
+ let mut place = place;
+ while let Some((place_base, elem)) = place.last_projection() {
+ match elem {
+ ProjectionElem::Index(index) if in_local(index) => return true,
+
+ ProjectionElem::Deref
+ | ProjectionElem::Field(_, _)
+ | ProjectionElem::ConstantIndex { .. }
+ | ProjectionElem::Subslice { .. }
+ | ProjectionElem::Downcast(_, _)
+ | ProjectionElem::Index(_) => {}
+ }
+
+ let base_ty = place_base.ty(cx.body, cx.tcx);
+ let proj_ty = base_ty.projection_ty(cx.tcx, elem).ty;
+ if !Q::in_any_value_of_ty(cx, proj_ty) {
+ return false;
+ }
+
+ place = place_base;
+ }
+
+ assert!(place.projection.is_empty());
+ in_local(place.local)
+}
+
+/// Returns `true` if this `Operand` contains qualif `Q`.
+pub fn in_operand<'tcx, Q, F>(
+ cx: &ConstCx<'_, 'tcx>,
+ in_local: &mut F,
+ operand: &Operand<'tcx>,
+) -> bool
+where
+ Q: Qualif,
+ F: FnMut(Local) -> bool,
+{
+ let constant = match operand {
+ Operand::Copy(place) | Operand::Move(place) => {
+ return in_place::<Q, _>(cx, in_local, place.as_ref());
+ }
+
+ Operand::Constant(c) => c,
+ };
+
+ // Check the qualifs of the value of `const` items.
+ if let Some(ct) = constant.literal.const_for_ty() {
+ if let ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs: _, promoted }) = ct.kind()
+ {
+ // Use qualifs of the type for the promoted. Promoteds in MIR body should be possible
+ // only for `NeedsNonConstDrop` with precise drop checking. This is the only const
+ // check performed after the promotion. Verify that with an assertion.
+ assert!(promoted.is_none() || Q::ALLOW_PROMOTED);
+ // Don't peek inside trait associated constants.
+ if promoted.is_none() && cx.tcx.trait_of_item(def.did).is_none() {
+ let qualifs = if let Some((did, param_did)) = def.as_const_arg() {
+ cx.tcx.at(constant.span).mir_const_qualif_const_arg((did, param_did))
+ } else {
+ cx.tcx.at(constant.span).mir_const_qualif(def.did)
+ };
+
+ if !Q::in_qualifs(&qualifs) {
+ return false;
+ }
+
+ // Just in case the type is more specific than
+ // the definition, e.g., impl associated const
+ // with type parameters, take it into account.
+ }
+ }
+ }
+ // Otherwise use the qualifs of the type.
+ Q::in_any_value_of_ty(cx, constant.literal.ty())
+}