summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_data_structures/src/obligation_forest/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_data_structures/src/obligation_forest/mod.rs')
-rw-r--r--compiler/rustc_data_structures/src/obligation_forest/mod.rs698
1 files changed, 698 insertions, 0 deletions
diff --git a/compiler/rustc_data_structures/src/obligation_forest/mod.rs b/compiler/rustc_data_structures/src/obligation_forest/mod.rs
new file mode 100644
index 000000000..07a96dd7d
--- /dev/null
+++ b/compiler/rustc_data_structures/src/obligation_forest/mod.rs
@@ -0,0 +1,698 @@
+//! The `ObligationForest` is a utility data structure used in trait
+//! matching to track the set of outstanding obligations (those not yet
+//! resolved to success or error). It also tracks the "backtrace" of each
+//! pending obligation (why we are trying to figure this out in the first
+//! place).
+//!
+//! ### External view
+//!
+//! `ObligationForest` supports two main public operations (there are a
+//! few others not discussed here):
+//!
+//! 1. Add a new root obligations (`register_obligation`).
+//! 2. Process the pending obligations (`process_obligations`).
+//!
+//! When a new obligation `N` is added, it becomes the root of an
+//! obligation tree. This tree can also carry some per-tree state `T`,
+//! which is given at the same time. This tree is a singleton to start, so
+//! `N` is both the root and the only leaf. Each time the
+//! `process_obligations` method is called, it will invoke its callback
+//! with every pending obligation (so that will include `N`, the first
+//! time). The callback also receives a (mutable) reference to the
+//! per-tree state `T`. The callback should process the obligation `O`
+//! that it is given and return a `ProcessResult`:
+//!
+//! - `Unchanged` -> ambiguous result. Obligation was neither a success
+//! nor a failure. It is assumed that further attempts to process the
+//! obligation will yield the same result unless something in the
+//! surrounding environment changes.
+//! - `Changed(C)` - the obligation was *shallowly successful*. The
+//! vector `C` is a list of subobligations. The meaning of this is that
+//! `O` was successful on the assumption that all the obligations in `C`
+//! are also successful. Therefore, `O` is only considered a "true"
+//! success if `C` is empty. Otherwise, `O` is put into a suspended
+//! state and the obligations in `C` become the new pending
+//! obligations. They will be processed the next time you call
+//! `process_obligations`.
+//! - `Error(E)` -> obligation failed with error `E`. We will collect this
+//! error and return it from `process_obligations`, along with the
+//! "backtrace" of obligations (that is, the list of obligations up to
+//! and including the root of the failed obligation). No further
+//! obligations from that same tree will be processed, since the tree is
+//! now considered to be in error.
+//!
+//! When the call to `process_obligations` completes, you get back an `Outcome`,
+//! which includes two bits of information:
+//!
+//! - `completed`: a list of obligations where processing was fully
+//! completed without error (meaning that all transitive subobligations
+//! have also been completed). So, for example, if the callback from
+//! `process_obligations` returns `Changed(C)` for some obligation `O`,
+//! then `O` will be considered completed right away if `C` is the
+//! empty vector. Otherwise it will only be considered completed once
+//! all the obligations in `C` have been found completed.
+//! - `errors`: a list of errors that occurred and associated backtraces
+//! at the time of error, which can be used to give context to the user.
+//!
+//! Upon completion, none of the existing obligations were *shallowly
+//! successful* (that is, no callback returned `Changed(_)`). This implies that
+//! all obligations were either errors or returned an ambiguous result.
+//!
+//! ### Implementation details
+//!
+//! For the most part, comments specific to the implementation are in the
+//! code. This file only contains a very high-level overview. Basically,
+//! the forest is stored in a vector. Each element of the vector is a node
+//! in some tree. Each node in the vector has the index of its dependents,
+//! including the first dependent which is known as the parent. It also
+//! has a current state, described by `NodeState`. After each processing
+//! step, we compress the vector to remove completed and error nodes, which
+//! aren't needed anymore.
+
+use crate::fx::{FxHashMap, FxHashSet};
+
+use std::cell::Cell;
+use std::collections::hash_map::Entry;
+use std::fmt::Debug;
+use std::hash;
+use std::marker::PhantomData;
+
+mod graphviz;
+
+#[cfg(test)]
+mod tests;
+
+pub trait ForestObligation: Clone + Debug {
+ type CacheKey: Clone + hash::Hash + Eq + Debug;
+
+ /// Converts this `ForestObligation` suitable for use as a cache key.
+ /// If two distinct `ForestObligations`s return the same cache key,
+ /// then it must be sound to use the result of processing one obligation
+ /// (e.g. success for error) for the other obligation
+ fn as_cache_key(&self) -> Self::CacheKey;
+}
+
+pub trait ObligationProcessor {
+ type Obligation: ForestObligation;
+ type Error: Debug;
+
+ fn needs_process_obligation(&self, obligation: &Self::Obligation) -> bool;
+
+ fn process_obligation(
+ &mut self,
+ obligation: &mut Self::Obligation,
+ ) -> ProcessResult<Self::Obligation, Self::Error>;
+
+ /// As we do the cycle check, we invoke this callback when we
+ /// encounter an actual cycle. `cycle` is an iterator that starts
+ /// at the start of the cycle in the stack and walks **toward the
+ /// top**.
+ ///
+ /// In other words, if we had O1 which required O2 which required
+ /// O3 which required O1, we would give an iterator yielding O1,
+ /// O2, O3 (O1 is not yielded twice).
+ fn process_backedge<'c, I>(&mut self, cycle: I, _marker: PhantomData<&'c Self::Obligation>)
+ where
+ I: Clone + Iterator<Item = &'c Self::Obligation>;
+}
+
+/// The result type used by `process_obligation`.
+#[derive(Debug)]
+pub enum ProcessResult<O, E> {
+ Unchanged,
+ Changed(Vec<O>),
+ Error(E),
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
+struct ObligationTreeId(usize);
+
+type ObligationTreeIdGenerator =
+ std::iter::Map<std::ops::RangeFrom<usize>, fn(usize) -> ObligationTreeId>;
+
+pub struct ObligationForest<O: ForestObligation> {
+ /// The list of obligations. In between calls to [Self::process_obligations],
+ /// this list only contains nodes in the `Pending` or `Waiting` state.
+ ///
+ /// `usize` indices are used here and throughout this module, rather than
+ /// [`rustc_index::newtype_index!`] indices, because this code is hot enough
+ /// that the `u32`-to-`usize` conversions that would be required are
+ /// significant, and space considerations are not important.
+ nodes: Vec<Node<O>>,
+
+ /// A cache of predicates that have been successfully completed.
+ done_cache: FxHashSet<O::CacheKey>,
+
+ /// A cache of the nodes in `nodes`, indexed by predicate. Unfortunately,
+ /// its contents are not guaranteed to match those of `nodes`. See the
+ /// comments in `Self::process_obligation` for details.
+ active_cache: FxHashMap<O::CacheKey, usize>,
+
+ /// A vector reused in [Self::compress()] and [Self::find_cycles_from_node()],
+ /// to avoid allocating new vectors.
+ reused_node_vec: Vec<usize>,
+
+ obligation_tree_id_generator: ObligationTreeIdGenerator,
+
+ /// Per tree error cache. This is used to deduplicate errors,
+ /// which is necessary to avoid trait resolution overflow in
+ /// some cases.
+ ///
+ /// See [this][details] for details.
+ ///
+ /// [details]: https://github.com/rust-lang/rust/pull/53255#issuecomment-421184780
+ error_cache: FxHashMap<ObligationTreeId, FxHashSet<O::CacheKey>>,
+}
+
+#[derive(Debug)]
+struct Node<O> {
+ obligation: O,
+ state: Cell<NodeState>,
+
+ /// Obligations that depend on this obligation for their completion. They
+ /// must all be in a non-pending state.
+ dependents: Vec<usize>,
+
+ /// If true, `dependents[0]` points to a "parent" node, which requires
+ /// special treatment upon error but is otherwise treated the same.
+ /// (It would be more idiomatic to store the parent node in a separate
+ /// `Option<usize>` field, but that slows down the common case of
+ /// iterating over the parent and other descendants together.)
+ has_parent: bool,
+
+ /// Identifier of the obligation tree to which this node belongs.
+ obligation_tree_id: ObligationTreeId,
+}
+
+impl<O> Node<O> {
+ fn new(parent: Option<usize>, obligation: O, obligation_tree_id: ObligationTreeId) -> Node<O> {
+ Node {
+ obligation,
+ state: Cell::new(NodeState::Pending),
+ dependents: if let Some(parent_index) = parent { vec![parent_index] } else { vec![] },
+ has_parent: parent.is_some(),
+ obligation_tree_id,
+ }
+ }
+}
+
+/// The state of one node in some tree within the forest. This represents the
+/// current state of processing for the obligation (of type `O`) associated
+/// with this node.
+///
+/// The non-`Error` state transitions are as follows.
+/// ```text
+/// (Pre-creation)
+/// |
+/// | register_obligation_at() (called by process_obligations() and
+/// v from outside the crate)
+/// Pending
+/// |
+/// | process_obligations()
+/// v
+/// Success
+/// | ^
+/// | | mark_successes()
+/// | v
+/// | Waiting
+/// |
+/// | process_cycles()
+/// v
+/// Done
+/// |
+/// | compress()
+/// v
+/// (Removed)
+/// ```
+/// The `Error` state can be introduced in several places, via `error_at()`.
+///
+/// Outside of `ObligationForest` methods, nodes should be either `Pending` or
+/// `Waiting`.
+#[derive(Debug, Copy, Clone, PartialEq, Eq)]
+enum NodeState {
+ /// This obligation has not yet been selected successfully. Cannot have
+ /// subobligations.
+ Pending,
+
+ /// This obligation was selected successfully, but may or may not have
+ /// subobligations.
+ Success,
+
+ /// This obligation was selected successfully, but it has a pending
+ /// subobligation.
+ Waiting,
+
+ /// This obligation, along with its subobligations, are complete, and will
+ /// be removed in the next collection.
+ Done,
+
+ /// This obligation was resolved to an error. It will be removed by the
+ /// next compression step.
+ Error,
+}
+
+/// This trait allows us to have two different Outcome types:
+/// - the normal one that does as little as possible
+/// - one for tests that does some additional work and checking
+pub trait OutcomeTrait {
+ type Error;
+ type Obligation;
+
+ fn new() -> Self;
+ fn record_completed(&mut self, outcome: &Self::Obligation);
+ fn record_error(&mut self, error: Self::Error);
+}
+
+#[derive(Debug)]
+pub struct Outcome<O, E> {
+ /// Backtrace of obligations that were found to be in error.
+ pub errors: Vec<Error<O, E>>,
+}
+
+impl<O, E> OutcomeTrait for Outcome<O, E> {
+ type Error = Error<O, E>;
+ type Obligation = O;
+
+ fn new() -> Self {
+ Self { errors: vec![] }
+ }
+
+ fn record_completed(&mut self, _outcome: &Self::Obligation) {
+ // do nothing
+ }
+
+ fn record_error(&mut self, error: Self::Error) {
+ self.errors.push(error)
+ }
+}
+
+#[derive(Debug, PartialEq, Eq)]
+pub struct Error<O, E> {
+ pub error: E,
+ pub backtrace: Vec<O>,
+}
+
+impl<O: ForestObligation> ObligationForest<O> {
+ pub fn new() -> ObligationForest<O> {
+ ObligationForest {
+ nodes: vec![],
+ done_cache: Default::default(),
+ active_cache: Default::default(),
+ reused_node_vec: vec![],
+ obligation_tree_id_generator: (0..).map(ObligationTreeId),
+ error_cache: Default::default(),
+ }
+ }
+
+ /// Returns the total number of nodes in the forest that have not
+ /// yet been fully resolved.
+ pub fn len(&self) -> usize {
+ self.nodes.len()
+ }
+
+ /// Registers an obligation.
+ pub fn register_obligation(&mut self, obligation: O) {
+ // Ignore errors here - there is no guarantee of success.
+ let _ = self.register_obligation_at(obligation, None);
+ }
+
+ // Returns Err(()) if we already know this obligation failed.
+ fn register_obligation_at(&mut self, obligation: O, parent: Option<usize>) -> Result<(), ()> {
+ let cache_key = obligation.as_cache_key();
+ if self.done_cache.contains(&cache_key) {
+ debug!("register_obligation_at: ignoring already done obligation: {:?}", obligation);
+ return Ok(());
+ }
+
+ match self.active_cache.entry(cache_key) {
+ Entry::Occupied(o) => {
+ let node = &mut self.nodes[*o.get()];
+ if let Some(parent_index) = parent {
+ // If the node is already in `active_cache`, it has already
+ // had its chance to be marked with a parent. So if it's
+ // not already present, just dump `parent` into the
+ // dependents as a non-parent.
+ if !node.dependents.contains(&parent_index) {
+ node.dependents.push(parent_index);
+ }
+ }
+ if let NodeState::Error = node.state.get() { Err(()) } else { Ok(()) }
+ }
+ Entry::Vacant(v) => {
+ let obligation_tree_id = match parent {
+ Some(parent_index) => self.nodes[parent_index].obligation_tree_id,
+ None => self.obligation_tree_id_generator.next().unwrap(),
+ };
+
+ let already_failed = parent.is_some()
+ && self
+ .error_cache
+ .get(&obligation_tree_id)
+ .map_or(false, |errors| errors.contains(v.key()));
+
+ if already_failed {
+ Err(())
+ } else {
+ let new_index = self.nodes.len();
+ v.insert(new_index);
+ self.nodes.push(Node::new(parent, obligation, obligation_tree_id));
+ Ok(())
+ }
+ }
+ }
+ }
+
+ /// Converts all remaining obligations to the given error.
+ pub fn to_errors<E: Clone>(&mut self, error: E) -> Vec<Error<O, E>> {
+ let errors = self
+ .nodes
+ .iter()
+ .enumerate()
+ .filter(|(_index, node)| node.state.get() == NodeState::Pending)
+ .map(|(index, _node)| Error { error: error.clone(), backtrace: self.error_at(index) })
+ .collect();
+
+ self.compress(|_| assert!(false));
+ errors
+ }
+
+ /// Returns the set of obligations that are in a pending state.
+ pub fn map_pending_obligations<P, F>(&self, f: F) -> Vec<P>
+ where
+ F: Fn(&O) -> P,
+ {
+ self.nodes
+ .iter()
+ .filter(|node| node.state.get() == NodeState::Pending)
+ .map(|node| f(&node.obligation))
+ .collect()
+ }
+
+ fn insert_into_error_cache(&mut self, index: usize) {
+ let node = &self.nodes[index];
+ self.error_cache
+ .entry(node.obligation_tree_id)
+ .or_default()
+ .insert(node.obligation.as_cache_key());
+ }
+
+ /// Performs a fixpoint computation over the obligation list.
+ #[inline(never)]
+ pub fn process_obligations<P, OUT>(&mut self, processor: &mut P) -> OUT
+ where
+ P: ObligationProcessor<Obligation = O>,
+ OUT: OutcomeTrait<Obligation = O, Error = Error<O, P::Error>>,
+ {
+ let mut outcome = OUT::new();
+
+ // Fixpoint computation: we repeat until the inner loop stalls.
+ loop {
+ let mut has_changed = false;
+
+ // Note that the loop body can append new nodes, and those new nodes
+ // will then be processed by subsequent iterations of the loop.
+ //
+ // We can't use an iterator for the loop because `self.nodes` is
+ // appended to and the borrow checker would complain. We also can't use
+ // `for index in 0..self.nodes.len() { ... }` because the range would
+ // be computed with the initial length, and we would miss the appended
+ // nodes. Therefore we use a `while` loop.
+ let mut index = 0;
+ while let Some(node) = self.nodes.get_mut(index) {
+ if node.state.get() != NodeState::Pending
+ || !processor.needs_process_obligation(&node.obligation)
+ {
+ index += 1;
+ continue;
+ }
+
+ // `processor.process_obligation` can modify the predicate within
+ // `node.obligation`, and that predicate is the key used for
+ // `self.active_cache`. This means that `self.active_cache` can get
+ // out of sync with `nodes`. It's not very common, but it does
+ // happen, and code in `compress` has to allow for it.
+
+ match processor.process_obligation(&mut node.obligation) {
+ ProcessResult::Unchanged => {
+ // No change in state.
+ }
+ ProcessResult::Changed(children) => {
+ // We are not (yet) stalled.
+ has_changed = true;
+ node.state.set(NodeState::Success);
+
+ for child in children {
+ let st = self.register_obligation_at(child, Some(index));
+ if let Err(()) = st {
+ // Error already reported - propagate it
+ // to our node.
+ self.error_at(index);
+ }
+ }
+ }
+ ProcessResult::Error(err) => {
+ has_changed = true;
+ outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
+ }
+ }
+ index += 1;
+ }
+
+ // If unchanged, then we saw no successful obligations, which means
+ // there is no point in further iteration. This is based on the
+ // assumption that when trait matching returns `Error` or
+ // `Unchanged`, those results do not affect environmental inference
+ // state. (Note that this will occur if we invoke
+ // `process_obligations` with no pending obligations.)
+ if !has_changed {
+ break;
+ }
+
+ self.mark_successes();
+ self.process_cycles(processor);
+ self.compress(|obl| outcome.record_completed(obl));
+ }
+
+ outcome
+ }
+
+ /// Returns a vector of obligations for `p` and all of its
+ /// ancestors, putting them into the error state in the process.
+ fn error_at(&self, mut index: usize) -> Vec<O> {
+ let mut error_stack: Vec<usize> = vec![];
+ let mut trace = vec![];
+
+ loop {
+ let node = &self.nodes[index];
+ node.state.set(NodeState::Error);
+ trace.push(node.obligation.clone());
+ if node.has_parent {
+ // The first dependent is the parent, which is treated
+ // specially.
+ error_stack.extend(node.dependents.iter().skip(1));
+ index = node.dependents[0];
+ } else {
+ // No parent; treat all dependents non-specially.
+ error_stack.extend(node.dependents.iter());
+ break;
+ }
+ }
+
+ while let Some(index) = error_stack.pop() {
+ let node = &self.nodes[index];
+ if node.state.get() != NodeState::Error {
+ node.state.set(NodeState::Error);
+ error_stack.extend(node.dependents.iter());
+ }
+ }
+
+ trace
+ }
+
+ /// Mark all `Waiting` nodes as `Success`, except those that depend on a
+ /// pending node.
+ fn mark_successes(&self) {
+ // Convert all `Waiting` nodes to `Success`.
+ for node in &self.nodes {
+ if node.state.get() == NodeState::Waiting {
+ node.state.set(NodeState::Success);
+ }
+ }
+
+ // Convert `Success` nodes that depend on a pending node back to
+ // `Waiting`.
+ for node in &self.nodes {
+ if node.state.get() == NodeState::Pending {
+ // This call site is hot.
+ self.inlined_mark_dependents_as_waiting(node);
+ }
+ }
+ }
+
+ // This always-inlined function is for the hot call site.
+ #[inline(always)]
+ fn inlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
+ for &index in node.dependents.iter() {
+ let node = &self.nodes[index];
+ let state = node.state.get();
+ if state == NodeState::Success {
+ // This call site is cold.
+ self.uninlined_mark_dependents_as_waiting(node);
+ } else {
+ debug_assert!(state == NodeState::Waiting || state == NodeState::Error)
+ }
+ }
+ }
+
+ // This never-inlined function is for the cold call site.
+ #[inline(never)]
+ fn uninlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
+ // Mark node Waiting in the cold uninlined code instead of the hot inlined
+ node.state.set(NodeState::Waiting);
+ self.inlined_mark_dependents_as_waiting(node)
+ }
+
+ /// Report cycles between all `Success` nodes, and convert all `Success`
+ /// nodes to `Done`. This must be called after `mark_successes`.
+ fn process_cycles<P>(&mut self, processor: &mut P)
+ where
+ P: ObligationProcessor<Obligation = O>,
+ {
+ let mut stack = std::mem::take(&mut self.reused_node_vec);
+ for (index, node) in self.nodes.iter().enumerate() {
+ // For some benchmarks this state test is extremely hot. It's a win
+ // to handle the no-op cases immediately to avoid the cost of the
+ // function call.
+ if node.state.get() == NodeState::Success {
+ self.find_cycles_from_node(&mut stack, processor, index);
+ }
+ }
+
+ debug_assert!(stack.is_empty());
+ self.reused_node_vec = stack;
+ }
+
+ fn find_cycles_from_node<P>(&self, stack: &mut Vec<usize>, processor: &mut P, index: usize)
+ where
+ P: ObligationProcessor<Obligation = O>,
+ {
+ let node = &self.nodes[index];
+ if node.state.get() == NodeState::Success {
+ match stack.iter().rposition(|&n| n == index) {
+ None => {
+ stack.push(index);
+ for &dep_index in node.dependents.iter() {
+ self.find_cycles_from_node(stack, processor, dep_index);
+ }
+ stack.pop();
+ node.state.set(NodeState::Done);
+ }
+ Some(rpos) => {
+ // Cycle detected.
+ processor.process_backedge(
+ stack[rpos..].iter().map(|&i| &self.nodes[i].obligation),
+ PhantomData,
+ );
+ }
+ }
+ }
+ }
+
+ /// Compresses the vector, removing all popped nodes. This adjusts the
+ /// indices and hence invalidates any outstanding indices. `process_cycles`
+ /// must be run beforehand to remove any cycles on `Success` nodes.
+ #[inline(never)]
+ fn compress(&mut self, mut outcome_cb: impl FnMut(&O)) {
+ let orig_nodes_len = self.nodes.len();
+ let mut node_rewrites: Vec<_> = std::mem::take(&mut self.reused_node_vec);
+ debug_assert!(node_rewrites.is_empty());
+ node_rewrites.extend(0..orig_nodes_len);
+ let mut dead_nodes = 0;
+
+ // Move removable nodes to the end, preserving the order of the
+ // remaining nodes.
+ //
+ // LOOP INVARIANT:
+ // self.nodes[0..index - dead_nodes] are the first remaining nodes
+ // self.nodes[index - dead_nodes..index] are all dead
+ // self.nodes[index..] are unchanged
+ for index in 0..orig_nodes_len {
+ let node = &self.nodes[index];
+ match node.state.get() {
+ NodeState::Pending | NodeState::Waiting => {
+ if dead_nodes > 0 {
+ self.nodes.swap(index, index - dead_nodes);
+ node_rewrites[index] -= dead_nodes;
+ }
+ }
+ NodeState::Done => {
+ // The removal lookup might fail because the contents of
+ // `self.active_cache` are not guaranteed to match those of
+ // `self.nodes`. See the comment in `process_obligation`
+ // for more details.
+ let cache_key = node.obligation.as_cache_key();
+ self.active_cache.remove(&cache_key);
+ self.done_cache.insert(cache_key);
+
+ // Extract the success stories.
+ outcome_cb(&node.obligation);
+ node_rewrites[index] = orig_nodes_len;
+ dead_nodes += 1;
+ }
+ NodeState::Error => {
+ // We *intentionally* remove the node from the cache at this point. Otherwise
+ // tests must come up with a different type on every type error they
+ // check against.
+ self.active_cache.remove(&node.obligation.as_cache_key());
+ self.insert_into_error_cache(index);
+ node_rewrites[index] = orig_nodes_len;
+ dead_nodes += 1;
+ }
+ NodeState::Success => unreachable!(),
+ }
+ }
+
+ if dead_nodes > 0 {
+ // Remove the dead nodes and rewrite indices.
+ self.nodes.truncate(orig_nodes_len - dead_nodes);
+ self.apply_rewrites(&node_rewrites);
+ }
+
+ node_rewrites.truncate(0);
+ self.reused_node_vec = node_rewrites;
+ }
+
+ #[inline(never)]
+ fn apply_rewrites(&mut self, node_rewrites: &[usize]) {
+ let orig_nodes_len = node_rewrites.len();
+
+ for node in &mut self.nodes {
+ let mut i = 0;
+ while let Some(dependent) = node.dependents.get_mut(i) {
+ let new_index = node_rewrites[*dependent];
+ if new_index >= orig_nodes_len {
+ node.dependents.swap_remove(i);
+ if i == 0 && node.has_parent {
+ // We just removed the parent.
+ node.has_parent = false;
+ }
+ } else {
+ *dependent = new_index;
+ i += 1;
+ }
+ }
+ }
+
+ // This updating of `self.active_cache` is necessary because the
+ // removal of nodes within `compress` can fail. See above.
+ self.active_cache.retain(|_predicate, index| {
+ let new_index = node_rewrites[*index];
+ if new_index >= orig_nodes_len {
+ false
+ } else {
+ *index = new_index;
+ true
+ }
+ });
+ }
+}