summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_data_structures/src/sharded.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_data_structures/src/sharded.rs')
-rw-r--r--compiler/rustc_data_structures/src/sharded.rs150
1 files changed, 150 insertions, 0 deletions
diff --git a/compiler/rustc_data_structures/src/sharded.rs b/compiler/rustc_data_structures/src/sharded.rs
new file mode 100644
index 000000000..01d292dde
--- /dev/null
+++ b/compiler/rustc_data_structures/src/sharded.rs
@@ -0,0 +1,150 @@
+use crate::fx::{FxHashMap, FxHasher};
+use crate::sync::{Lock, LockGuard};
+use std::borrow::Borrow;
+use std::collections::hash_map::RawEntryMut;
+use std::hash::{Hash, Hasher};
+use std::mem;
+
+#[derive(Clone, Default)]
+#[cfg_attr(parallel_compiler, repr(align(64)))]
+struct CacheAligned<T>(T);
+
+#[cfg(parallel_compiler)]
+// 32 shards is sufficient to reduce contention on an 8-core Ryzen 7 1700,
+// but this should be tested on higher core count CPUs. How the `Sharded` type gets used
+// may also affect the ideal number of shards.
+const SHARD_BITS: usize = 5;
+
+#[cfg(not(parallel_compiler))]
+const SHARD_BITS: usize = 0;
+
+pub const SHARDS: usize = 1 << SHARD_BITS;
+
+/// An array of cache-line aligned inner locked structures with convenience methods.
+#[derive(Clone)]
+pub struct Sharded<T> {
+ shards: [CacheAligned<Lock<T>>; SHARDS],
+}
+
+impl<T: Default> Default for Sharded<T> {
+ #[inline]
+ fn default() -> Self {
+ Self::new(T::default)
+ }
+}
+
+impl<T> Sharded<T> {
+ #[inline]
+ pub fn new(mut value: impl FnMut() -> T) -> Self {
+ Sharded { shards: [(); SHARDS].map(|()| CacheAligned(Lock::new(value()))) }
+ }
+
+ /// The shard is selected by hashing `val` with `FxHasher`.
+ #[inline]
+ pub fn get_shard_by_value<K: Hash + ?Sized>(&self, val: &K) -> &Lock<T> {
+ if SHARDS == 1 { &self.shards[0].0 } else { self.get_shard_by_hash(make_hash(val)) }
+ }
+
+ #[inline]
+ pub fn get_shard_by_hash(&self, hash: u64) -> &Lock<T> {
+ &self.shards[get_shard_index_by_hash(hash)].0
+ }
+
+ #[inline]
+ pub fn get_shard_by_index(&self, i: usize) -> &Lock<T> {
+ &self.shards[i].0
+ }
+
+ pub fn lock_shards(&self) -> Vec<LockGuard<'_, T>> {
+ (0..SHARDS).map(|i| self.shards[i].0.lock()).collect()
+ }
+
+ pub fn try_lock_shards(&self) -> Option<Vec<LockGuard<'_, T>>> {
+ (0..SHARDS).map(|i| self.shards[i].0.try_lock()).collect()
+ }
+}
+
+pub type ShardedHashMap<K, V> = Sharded<FxHashMap<K, V>>;
+
+impl<K: Eq, V> ShardedHashMap<K, V> {
+ pub fn len(&self) -> usize {
+ self.lock_shards().iter().map(|shard| shard.len()).sum()
+ }
+}
+
+impl<K: Eq + Hash + Copy> ShardedHashMap<K, ()> {
+ #[inline]
+ pub fn intern_ref<Q: ?Sized>(&self, value: &Q, make: impl FnOnce() -> K) -> K
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ let hash = make_hash(value);
+ let mut shard = self.get_shard_by_hash(hash).lock();
+ let entry = shard.raw_entry_mut().from_key_hashed_nocheck(hash, value);
+
+ match entry {
+ RawEntryMut::Occupied(e) => *e.key(),
+ RawEntryMut::Vacant(e) => {
+ let v = make();
+ e.insert_hashed_nocheck(hash, v, ());
+ v
+ }
+ }
+ }
+
+ #[inline]
+ pub fn intern<Q>(&self, value: Q, make: impl FnOnce(Q) -> K) -> K
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ let hash = make_hash(&value);
+ let mut shard = self.get_shard_by_hash(hash).lock();
+ let entry = shard.raw_entry_mut().from_key_hashed_nocheck(hash, &value);
+
+ match entry {
+ RawEntryMut::Occupied(e) => *e.key(),
+ RawEntryMut::Vacant(e) => {
+ let v = make(value);
+ e.insert_hashed_nocheck(hash, v, ());
+ v
+ }
+ }
+ }
+}
+
+pub trait IntoPointer {
+ /// Returns a pointer which outlives `self`.
+ fn into_pointer(&self) -> *const ();
+}
+
+impl<K: Eq + Hash + Copy + IntoPointer> ShardedHashMap<K, ()> {
+ pub fn contains_pointer_to<T: Hash + IntoPointer>(&self, value: &T) -> bool {
+ let hash = make_hash(&value);
+ let shard = self.get_shard_by_hash(hash).lock();
+ let value = value.into_pointer();
+ shard.raw_entry().from_hash(hash, |entry| entry.into_pointer() == value).is_some()
+ }
+}
+
+#[inline]
+pub fn make_hash<K: Hash + ?Sized>(val: &K) -> u64 {
+ let mut state = FxHasher::default();
+ val.hash(&mut state);
+ state.finish()
+}
+
+/// Get a shard with a pre-computed hash value. If `get_shard_by_value` is
+/// ever used in combination with `get_shard_by_hash` on a single `Sharded`
+/// instance, then `hash` must be computed with `FxHasher`. Otherwise,
+/// `hash` can be computed with any hasher, so long as that hasher is used
+/// consistently for each `Sharded` instance.
+#[inline]
+pub fn get_shard_index_by_hash(hash: u64) -> usize {
+ let hash_len = mem::size_of::<usize>();
+ // Ignore the top 7 bits as hashbrown uses these and get the next SHARD_BITS highest bits.
+ // hashbrown also uses the lowest bits, so we can't use those
+ let bits = (hash >> (hash_len * 8 - 7 - SHARD_BITS)) as usize;
+ bits % SHARDS
+}