summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_expand/src/mbe/transcribe.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_expand/src/mbe/transcribe.rs')
-rw-r--r--compiler/rustc_expand/src/mbe/transcribe.rs580
1 files changed, 580 insertions, 0 deletions
diff --git a/compiler/rustc_expand/src/mbe/transcribe.rs b/compiler/rustc_expand/src/mbe/transcribe.rs
new file mode 100644
index 000000000..e47ea83ac
--- /dev/null
+++ b/compiler/rustc_expand/src/mbe/transcribe.rs
@@ -0,0 +1,580 @@
+use crate::base::ExtCtxt;
+use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq, MatchedTokenTree, NamedMatch};
+use crate::mbe::{self, MetaVarExpr};
+use rustc_ast::mut_visit::{self, MutVisitor};
+use rustc_ast::token::{self, Delimiter, Token, TokenKind};
+use rustc_ast::tokenstream::{DelimSpan, Spacing, TokenStream, TokenTree};
+use rustc_data_structures::fx::FxHashMap;
+use rustc_errors::{pluralize, PResult};
+use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
+use rustc_span::hygiene::{LocalExpnId, Transparency};
+use rustc_span::symbol::{sym, Ident, MacroRulesNormalizedIdent};
+use rustc_span::Span;
+
+use smallvec::{smallvec, SmallVec};
+use std::mem;
+
+// A Marker adds the given mark to the syntax context.
+struct Marker(LocalExpnId, Transparency);
+
+impl MutVisitor for Marker {
+ const VISIT_TOKENS: bool = true;
+
+ fn visit_span(&mut self, span: &mut Span) {
+ *span = span.apply_mark(self.0.to_expn_id(), self.1)
+ }
+}
+
+/// An iterator over the token trees in a delimited token tree (`{ ... }`) or a sequence (`$(...)`).
+enum Frame<'a> {
+ Delimited { tts: &'a [mbe::TokenTree], idx: usize, delim: Delimiter, span: DelimSpan },
+ Sequence { tts: &'a [mbe::TokenTree], idx: usize, sep: Option<Token> },
+}
+
+impl<'a> Frame<'a> {
+ /// Construct a new frame around the delimited set of tokens.
+ fn new(src: &'a mbe::Delimited, span: DelimSpan) -> Frame<'a> {
+ Frame::Delimited { tts: &src.tts, idx: 0, delim: src.delim, span }
+ }
+}
+
+impl<'a> Iterator for Frame<'a> {
+ type Item = &'a mbe::TokenTree;
+
+ fn next(&mut self) -> Option<&'a mbe::TokenTree> {
+ match self {
+ Frame::Delimited { tts, ref mut idx, .. }
+ | Frame::Sequence { tts, ref mut idx, .. } => {
+ let res = tts.get(*idx);
+ *idx += 1;
+ res
+ }
+ }
+ }
+}
+
+/// This can do Macro-By-Example transcription.
+/// - `interp` is a map of meta-variables to the tokens (non-terminals) they matched in the
+/// invocation. We are assuming we already know there is a match.
+/// - `src` is the RHS of the MBE, that is, the "example" we are filling in.
+///
+/// For example,
+///
+/// ```rust
+/// macro_rules! foo {
+/// ($id:ident) => { println!("{}", stringify!($id)); }
+/// }
+///
+/// foo!(bar);
+/// ```
+///
+/// `interp` would contain `$id => bar` and `src` would contain `println!("{}", stringify!($id));`.
+///
+/// `transcribe` would return a `TokenStream` containing `println!("{}", stringify!(bar));`.
+///
+/// Along the way, we do some additional error checking.
+pub(super) fn transcribe<'a>(
+ cx: &ExtCtxt<'a>,
+ interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
+ src: &mbe::Delimited,
+ src_span: DelimSpan,
+ transparency: Transparency,
+) -> PResult<'a, TokenStream> {
+ // Nothing for us to transcribe...
+ if src.tts.is_empty() {
+ return Ok(TokenStream::default());
+ }
+
+ // We descend into the RHS (`src`), expanding things as we go. This stack contains the things
+ // we have yet to expand/are still expanding. We start the stack off with the whole RHS.
+ let mut stack: SmallVec<[Frame<'_>; 1]> = smallvec![Frame::new(&src, src_span)];
+
+ // As we descend in the RHS, we will need to be able to match nested sequences of matchers.
+ // `repeats` keeps track of where we are in matching at each level, with the last element being
+ // the most deeply nested sequence. This is used as a stack.
+ let mut repeats = Vec::new();
+
+ // `result` contains resulting token stream from the TokenTree we just finished processing. At
+ // the end, this will contain the full result of transcription, but at arbitrary points during
+ // `transcribe`, `result` will contain subsets of the final result.
+ //
+ // Specifically, as we descend into each TokenTree, we will push the existing results onto the
+ // `result_stack` and clear `results`. We will then produce the results of transcribing the
+ // TokenTree into `results`. Then, as we unwind back out of the `TokenTree`, we will pop the
+ // `result_stack` and append `results` too it to produce the new `results` up to that point.
+ //
+ // Thus, if we try to pop the `result_stack` and it is empty, we have reached the top-level
+ // again, and we are done transcribing.
+ let mut result: Vec<TokenTree> = Vec::new();
+ let mut result_stack = Vec::new();
+ let mut marker = Marker(cx.current_expansion.id, transparency);
+
+ loop {
+ // Look at the last frame on the stack.
+ // If it still has a TokenTree we have not looked at yet, use that tree.
+ let Some(tree) = stack.last_mut().unwrap().next() else {
+ // This else-case never produces a value for `tree` (it `continue`s or `return`s).
+
+ // Otherwise, if we have just reached the end of a sequence and we can keep repeating,
+ // go back to the beginning of the sequence.
+ if let Frame::Sequence { idx, sep, .. } = stack.last_mut().unwrap() {
+ let (repeat_idx, repeat_len) = repeats.last_mut().unwrap();
+ *repeat_idx += 1;
+ if repeat_idx < repeat_len {
+ *idx = 0;
+ if let Some(sep) = sep {
+ result.push(TokenTree::Token(sep.clone(), Spacing::Alone));
+ }
+ continue;
+ }
+ }
+
+ // We are done with the top of the stack. Pop it. Depending on what it was, we do
+ // different things. Note that the outermost item must be the delimited, wrapped RHS
+ // that was passed in originally to `transcribe`.
+ match stack.pop().unwrap() {
+ // Done with a sequence. Pop from repeats.
+ Frame::Sequence { .. } => {
+ repeats.pop();
+ }
+
+ // We are done processing a Delimited. If this is the top-level delimited, we are
+ // done. Otherwise, we unwind the result_stack to append what we have produced to
+ // any previous results.
+ Frame::Delimited { delim, span, .. } => {
+ if result_stack.is_empty() {
+ // No results left to compute! We are back at the top-level.
+ return Ok(TokenStream::new(result));
+ }
+
+ // Step back into the parent Delimited.
+ let tree = TokenTree::Delimited(span, delim, TokenStream::new(result));
+ result = result_stack.pop().unwrap();
+ result.push(tree);
+ }
+ }
+ continue;
+ };
+
+ // At this point, we know we are in the middle of a TokenTree (the last one on `stack`).
+ // `tree` contains the next `TokenTree` to be processed.
+ match tree {
+ // We are descending into a sequence. We first make sure that the matchers in the RHS
+ // and the matches in `interp` have the same shape. Otherwise, either the caller or the
+ // macro writer has made a mistake.
+ seq @ mbe::TokenTree::Sequence(_, delimited) => {
+ match lockstep_iter_size(&seq, interp, &repeats) {
+ LockstepIterSize::Unconstrained => {
+ return Err(cx.struct_span_err(
+ seq.span(), /* blame macro writer */
+ "attempted to repeat an expression containing no syntax variables \
+ matched as repeating at this depth",
+ ));
+ }
+
+ LockstepIterSize::Contradiction(msg) => {
+ // FIXME: this really ought to be caught at macro definition time... It
+ // happens when two meta-variables are used in the same repetition in a
+ // sequence, but they come from different sequence matchers and repeat
+ // different amounts.
+ return Err(cx.struct_span_err(seq.span(), &msg));
+ }
+
+ LockstepIterSize::Constraint(len, _) => {
+ // We do this to avoid an extra clone above. We know that this is a
+ // sequence already.
+ let mbe::TokenTree::Sequence(sp, seq) = seq else {
+ unreachable!()
+ };
+
+ // Is the repetition empty?
+ if len == 0 {
+ if seq.kleene.op == mbe::KleeneOp::OneOrMore {
+ // FIXME: this really ought to be caught at macro definition
+ // time... It happens when the Kleene operator in the matcher and
+ // the body for the same meta-variable do not match.
+ return Err(cx.struct_span_err(
+ sp.entire(),
+ "this must repeat at least once",
+ ));
+ }
+ } else {
+ // 0 is the initial counter (we have done 0 repetitions so far). `len`
+ // is the total number of repetitions we should generate.
+ repeats.push((0, len));
+
+ // The first time we encounter the sequence we push it to the stack. It
+ // then gets reused (see the beginning of the loop) until we are done
+ // repeating.
+ stack.push(Frame::Sequence {
+ idx: 0,
+ sep: seq.separator.clone(),
+ tts: &delimited.tts,
+ });
+ }
+ }
+ }
+ }
+
+ // Replace the meta-var with the matched token tree from the invocation.
+ mbe::TokenTree::MetaVar(mut sp, mut original_ident) => {
+ // Find the matched nonterminal from the macro invocation, and use it to replace
+ // the meta-var.
+ let ident = MacroRulesNormalizedIdent::new(original_ident);
+ if let Some(cur_matched) = lookup_cur_matched(ident, interp, &repeats) {
+ match cur_matched {
+ MatchedTokenTree(ref tt) => {
+ // `tt`s are emitted into the output stream directly as "raw tokens",
+ // without wrapping them into groups.
+ let token = tt.clone();
+ result.push(token);
+ }
+ MatchedNonterminal(ref nt) => {
+ // Other variables are emitted into the output stream as groups with
+ // `Delimiter::Invisible` to maintain parsing priorities.
+ // `Interpolated` is currently used for such groups in rustc parser.
+ marker.visit_span(&mut sp);
+ let token = TokenTree::token_alone(token::Interpolated(nt.clone()), sp);
+ result.push(token);
+ }
+ MatchedSeq(..) => {
+ // We were unable to descend far enough. This is an error.
+ return Err(cx.struct_span_err(
+ sp, /* blame the macro writer */
+ &format!("variable '{}' is still repeating at this depth", ident),
+ ));
+ }
+ }
+ } else {
+ // If we aren't able to match the meta-var, we push it back into the result but
+ // with modified syntax context. (I believe this supports nested macros).
+ marker.visit_span(&mut sp);
+ marker.visit_ident(&mut original_ident);
+ result.push(TokenTree::token_alone(token::Dollar, sp));
+ result.push(TokenTree::Token(
+ Token::from_ast_ident(original_ident),
+ Spacing::Alone,
+ ));
+ }
+ }
+
+ // Replace meta-variable expressions with the result of their expansion.
+ mbe::TokenTree::MetaVarExpr(sp, expr) => {
+ transcribe_metavar_expr(cx, expr, interp, &mut marker, &repeats, &mut result, &sp)?;
+ }
+
+ // If we are entering a new delimiter, we push its contents to the `stack` to be
+ // processed, and we push all of the currently produced results to the `result_stack`.
+ // We will produce all of the results of the inside of the `Delimited` and then we will
+ // jump back out of the Delimited, pop the result_stack and add the new results back to
+ // the previous results (from outside the Delimited).
+ mbe::TokenTree::Delimited(mut span, delimited) => {
+ mut_visit::visit_delim_span(&mut span, &mut marker);
+ stack.push(Frame::Delimited {
+ tts: &delimited.tts,
+ delim: delimited.delim,
+ idx: 0,
+ span,
+ });
+ result_stack.push(mem::take(&mut result));
+ }
+
+ // Nothing much to do here. Just push the token to the result, being careful to
+ // preserve syntax context.
+ mbe::TokenTree::Token(token) => {
+ let mut token = token.clone();
+ mut_visit::visit_token(&mut token, &mut marker);
+ let tt = TokenTree::Token(token, Spacing::Alone);
+ result.push(tt);
+ }
+
+ // There should be no meta-var declarations in the invocation of a macro.
+ mbe::TokenTree::MetaVarDecl(..) => panic!("unexpected `TokenTree::MetaVarDecl"),
+ }
+ }
+}
+
+/// Lookup the meta-var named `ident` and return the matched token tree from the invocation using
+/// the set of matches `interpolations`.
+///
+/// See the definition of `repeats` in the `transcribe` function. `repeats` is used to descend
+/// into the right place in nested matchers. If we attempt to descend too far, the macro writer has
+/// made a mistake, and we return `None`.
+fn lookup_cur_matched<'a>(
+ ident: MacroRulesNormalizedIdent,
+ interpolations: &'a FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
+ repeats: &[(usize, usize)],
+) -> Option<&'a NamedMatch> {
+ interpolations.get(&ident).map(|matched| {
+ let mut matched = matched;
+ for &(idx, _) in repeats {
+ match matched {
+ MatchedTokenTree(_) | MatchedNonterminal(_) => break,
+ MatchedSeq(ref ads) => matched = ads.get(idx).unwrap(),
+ }
+ }
+
+ matched
+ })
+}
+
+/// An accumulator over a TokenTree to be used with `fold`. During transcription, we need to make
+/// sure that the size of each sequence and all of its nested sequences are the same as the sizes
+/// of all the matched (nested) sequences in the macro invocation. If they don't match, somebody
+/// has made a mistake (either the macro writer or caller).
+#[derive(Clone)]
+enum LockstepIterSize {
+ /// No constraints on length of matcher. This is true for any TokenTree variants except a
+ /// `MetaVar` with an actual `MatchedSeq` (as opposed to a `MatchedNonterminal`).
+ Unconstrained,
+
+ /// A `MetaVar` with an actual `MatchedSeq`. The length of the match and the name of the
+ /// meta-var are returned.
+ Constraint(usize, MacroRulesNormalizedIdent),
+
+ /// Two `Constraint`s on the same sequence had different lengths. This is an error.
+ Contradiction(String),
+}
+
+impl LockstepIterSize {
+ /// Find incompatibilities in matcher/invocation sizes.
+ /// - `Unconstrained` is compatible with everything.
+ /// - `Contradiction` is incompatible with everything.
+ /// - `Constraint(len)` is only compatible with other constraints of the same length.
+ fn with(self, other: LockstepIterSize) -> LockstepIterSize {
+ match self {
+ LockstepIterSize::Unconstrained => other,
+ LockstepIterSize::Contradiction(_) => self,
+ LockstepIterSize::Constraint(l_len, ref l_id) => match other {
+ LockstepIterSize::Unconstrained => self,
+ LockstepIterSize::Contradiction(_) => other,
+ LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self,
+ LockstepIterSize::Constraint(r_len, r_id) => {
+ let msg = format!(
+ "meta-variable `{}` repeats {} time{}, but `{}` repeats {} time{}",
+ l_id,
+ l_len,
+ pluralize!(l_len),
+ r_id,
+ r_len,
+ pluralize!(r_len),
+ );
+ LockstepIterSize::Contradiction(msg)
+ }
+ },
+ }
+ }
+}
+
+/// Given a `tree`, make sure that all sequences have the same length as the matches for the
+/// appropriate meta-vars in `interpolations`.
+///
+/// Note that if `repeats` does not match the exact correct depth of a meta-var,
+/// `lookup_cur_matched` will return `None`, which is why this still works even in the presence of
+/// multiple nested matcher sequences.
+///
+/// Example: `$($($x $y)+*);+` -- we need to make sure that `x` and `y` repeat the same amount as
+/// each other at the given depth when the macro was invoked. If they don't it might mean they were
+/// declared at unequal depths or there was a compile bug. For example, if we have 3 repetitions of
+/// the outer sequence and 4 repetitions of the inner sequence for `x`, we should have the same for
+/// `y`; otherwise, we can't transcribe them both at the given depth.
+fn lockstep_iter_size(
+ tree: &mbe::TokenTree,
+ interpolations: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
+ repeats: &[(usize, usize)],
+) -> LockstepIterSize {
+ use mbe::TokenTree;
+ match *tree {
+ TokenTree::Delimited(_, ref delimited) => {
+ delimited.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
+ size.with(lockstep_iter_size(tt, interpolations, repeats))
+ })
+ }
+ TokenTree::Sequence(_, ref seq) => {
+ seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
+ size.with(lockstep_iter_size(tt, interpolations, repeats))
+ })
+ }
+ TokenTree::MetaVar(_, name) | TokenTree::MetaVarDecl(_, name, _) => {
+ let name = MacroRulesNormalizedIdent::new(name);
+ match lookup_cur_matched(name, interpolations, repeats) {
+ Some(matched) => match matched {
+ MatchedTokenTree(_) | MatchedNonterminal(_) => LockstepIterSize::Unconstrained,
+ MatchedSeq(ref ads) => LockstepIterSize::Constraint(ads.len(), name),
+ },
+ _ => LockstepIterSize::Unconstrained,
+ }
+ }
+ TokenTree::MetaVarExpr(_, ref expr) => {
+ let default_rslt = LockstepIterSize::Unconstrained;
+ let Some(ident) = expr.ident() else { return default_rslt; };
+ let name = MacroRulesNormalizedIdent::new(ident);
+ match lookup_cur_matched(name, interpolations, repeats) {
+ Some(MatchedSeq(ref ads)) => {
+ default_rslt.with(LockstepIterSize::Constraint(ads.len(), name))
+ }
+ _ => default_rslt,
+ }
+ }
+ TokenTree::Token(..) => LockstepIterSize::Unconstrained,
+ }
+}
+
+/// Used solely by the `count` meta-variable expression, counts the outer-most repetitions at a
+/// given optional nested depth.
+///
+/// For example, a macro parameter of `$( { $( $foo:ident ),* } )*` called with `{ a, b } { c }`:
+///
+/// * `[ $( ${count(foo)} ),* ]` will return [2, 1] with a, b = 2 and c = 1
+/// * `[ $( ${count(foo, 0)} ),* ]` will be the same as `[ $( ${count(foo)} ),* ]`
+/// * `[ $( ${count(foo, 1)} ),* ]` will return an error because `${count(foo, 1)}` is
+/// declared inside a single repetition and the index `1` implies two nested repetitions.
+fn count_repetitions<'a>(
+ cx: &ExtCtxt<'a>,
+ depth_opt: Option<usize>,
+ mut matched: &NamedMatch,
+ repeats: &[(usize, usize)],
+ sp: &DelimSpan,
+) -> PResult<'a, usize> {
+ // Recursively count the number of matches in `matched` at given depth
+ // (or at the top-level of `matched` if no depth is given).
+ fn count<'a>(
+ cx: &ExtCtxt<'a>,
+ declared_lhs_depth: usize,
+ depth_opt: Option<usize>,
+ matched: &NamedMatch,
+ sp: &DelimSpan,
+ ) -> PResult<'a, usize> {
+ match matched {
+ MatchedTokenTree(_) | MatchedNonterminal(_) => {
+ if declared_lhs_depth == 0 {
+ return Err(cx.struct_span_err(
+ sp.entire(),
+ "`count` can not be placed inside the inner-most repetition",
+ ));
+ }
+ match depth_opt {
+ None => Ok(1),
+ Some(_) => Err(out_of_bounds_err(cx, declared_lhs_depth, sp.entire(), "count")),
+ }
+ }
+ MatchedSeq(ref named_matches) => {
+ let new_declared_lhs_depth = declared_lhs_depth + 1;
+ match depth_opt {
+ None => named_matches
+ .iter()
+ .map(|elem| count(cx, new_declared_lhs_depth, None, elem, sp))
+ .sum(),
+ Some(0) => Ok(named_matches.len()),
+ Some(depth) => named_matches
+ .iter()
+ .map(|elem| count(cx, new_declared_lhs_depth, Some(depth - 1), elem, sp))
+ .sum(),
+ }
+ }
+ }
+ }
+ // `repeats` records all of the nested levels at which we are currently
+ // matching meta-variables. The meta-var-expr `count($x)` only counts
+ // matches that occur in this "subtree" of the `NamedMatch` where we
+ // are currently transcribing, so we need to descend to that subtree
+ // before we start counting. `matched` contains the various levels of the
+ // tree as we descend, and its final value is the subtree we are currently at.
+ for &(idx, _) in repeats {
+ if let MatchedSeq(ref ads) = matched {
+ matched = &ads[idx];
+ }
+ }
+ count(cx, 0, depth_opt, matched, sp)
+}
+
+/// Returns a `NamedMatch` item declared on the LHS given an arbitrary [Ident]
+fn matched_from_ident<'ctx, 'interp, 'rslt>(
+ cx: &ExtCtxt<'ctx>,
+ ident: Ident,
+ interp: &'interp FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
+) -> PResult<'ctx, &'rslt NamedMatch>
+where
+ 'interp: 'rslt,
+{
+ let span = ident.span;
+ let key = MacroRulesNormalizedIdent::new(ident);
+ interp.get(&key).ok_or_else(|| {
+ cx.struct_span_err(
+ span,
+ &format!("variable `{}` is not recognized in meta-variable expression", key),
+ )
+ })
+}
+
+/// Used by meta-variable expressions when an user input is out of the actual declared bounds. For
+/// example, index(999999) in an repetition of only three elements.
+fn out_of_bounds_err<'a>(
+ cx: &ExtCtxt<'a>,
+ max: usize,
+ span: Span,
+ ty: &str,
+) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
+ let msg = if max == 0 {
+ format!(
+ "meta-variable expression `{ty}` with depth parameter \
+ must be called inside of a macro repetition"
+ )
+ } else {
+ format!(
+ "depth parameter on meta-variable expression `{ty}` \
+ must be less than {max}"
+ )
+ };
+ cx.struct_span_err(span, &msg)
+}
+
+fn transcribe_metavar_expr<'a>(
+ cx: &ExtCtxt<'a>,
+ expr: &MetaVarExpr,
+ interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
+ marker: &mut Marker,
+ repeats: &[(usize, usize)],
+ result: &mut Vec<TokenTree>,
+ sp: &DelimSpan,
+) -> PResult<'a, ()> {
+ let mut visited_span = || {
+ let mut span = sp.entire();
+ marker.visit_span(&mut span);
+ span
+ };
+ match *expr {
+ MetaVarExpr::Count(original_ident, depth_opt) => {
+ let matched = matched_from_ident(cx, original_ident, interp)?;
+ let count = count_repetitions(cx, depth_opt, matched, &repeats, sp)?;
+ let tt = TokenTree::token_alone(
+ TokenKind::lit(token::Integer, sym::integer(count), None),
+ visited_span(),
+ );
+ result.push(tt);
+ }
+ MetaVarExpr::Ignore(original_ident) => {
+ // Used to ensure that `original_ident` is present in the LHS
+ let _ = matched_from_ident(cx, original_ident, interp)?;
+ }
+ MetaVarExpr::Index(depth) => match repeats.iter().nth_back(depth) {
+ Some((index, _)) => {
+ result.push(TokenTree::token_alone(
+ TokenKind::lit(token::Integer, sym::integer(*index), None),
+ visited_span(),
+ ));
+ }
+ None => return Err(out_of_bounds_err(cx, repeats.len(), sp.entire(), "index")),
+ },
+ MetaVarExpr::Length(depth) => match repeats.iter().nth_back(depth) {
+ Some((_, length)) => {
+ result.push(TokenTree::token_alone(
+ TokenKind::lit(token::Integer, sym::integer(*length), None),
+ visited_span(),
+ ));
+ }
+ None => return Err(out_of_bounds_err(cx, repeats.len(), sp.entire(), "length")),
+ },
+ }
+ Ok(())
+}