summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_hir_analysis/src/check/compare_impl_item.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/check/compare_impl_item.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/check/compare_impl_item.rs2084
1 files changed, 2084 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/check/compare_impl_item.rs b/compiler/rustc_hir_analysis/src/check/compare_impl_item.rs
new file mode 100644
index 000000000..cfebcceef
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/compare_impl_item.rs
@@ -0,0 +1,2084 @@
+use super::potentially_plural_count;
+use crate::errors::LifetimesOrBoundsMismatchOnTrait;
+use hir::def_id::{DefId, LocalDefId};
+use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
+use rustc_errors::{
+ pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed, MultiSpan,
+};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::intravisit;
+use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
+use rustc_infer::infer::outlives::env::OutlivesEnvironment;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
+use rustc_infer::traits::util;
+use rustc_middle::ty::error::{ExpectedFound, TypeError};
+use rustc_middle::ty::util::ExplicitSelf;
+use rustc_middle::ty::{
+ self, DefIdTree, InternalSubsts, Ty, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitable,
+};
+use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
+use rustc_span::Span;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
+use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
+use rustc_trait_selection::traits::{
+ self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
+};
+use std::iter;
+
+/// Checks that a method from an impl conforms to the signature of
+/// the same method as declared in the trait.
+///
+/// # Parameters
+///
+/// - `impl_m`: type of the method we are checking
+/// - `impl_m_span`: span to use for reporting errors
+/// - `trait_m`: the method in the trait
+/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
+pub(super) fn compare_impl_method<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ trait_item_span: Option<Span>,
+) {
+ debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
+
+ let impl_m_span = tcx.def_span(impl_m.def_id);
+
+ let _: Result<_, ErrorGuaranteed> = try {
+ compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)?;
+ compare_number_of_generics(tcx, impl_m, trait_m, trait_item_span, false)?;
+ compare_generic_param_kinds(tcx, impl_m, trait_m, false)?;
+ compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)?;
+ compare_synthetic_generics(tcx, impl_m, trait_m)?;
+ compare_asyncness(tcx, impl_m, impl_m_span, trait_m, trait_item_span)?;
+ compare_method_predicate_entailment(
+ tcx,
+ impl_m,
+ impl_m_span,
+ trait_m,
+ impl_trait_ref,
+ CheckImpliedWfMode::Check,
+ )?;
+ };
+}
+
+/// This function is best explained by example. Consider a trait:
+///
+/// trait Trait<'t, T> {
+/// // `trait_m`
+/// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
+/// }
+///
+/// And an impl:
+///
+/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
+/// // `impl_m`
+/// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
+/// }
+///
+/// We wish to decide if those two method types are compatible.
+/// For this we have to show that, assuming the bounds of the impl hold, the
+/// bounds of `trait_m` imply the bounds of `impl_m`.
+///
+/// We start out with `trait_to_impl_substs`, that maps the trait
+/// type parameters to impl type parameters. This is taken from the
+/// impl trait reference:
+///
+/// trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
+///
+/// We create a mapping `dummy_substs` that maps from the impl type
+/// parameters to fresh types and regions. For type parameters,
+/// this is the identity transform, but we could as well use any
+/// placeholder types. For regions, we convert from bound to free
+/// regions (Note: but only early-bound regions, i.e., those
+/// declared on the impl or used in type parameter bounds).
+///
+/// impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
+///
+/// Now we can apply `placeholder_substs` to the type of the impl method
+/// to yield a new function type in terms of our fresh, placeholder
+/// types:
+///
+/// <'b> fn(t: &'i0 U0, m: &'b) -> Foo
+///
+/// We now want to extract and substitute the type of the *trait*
+/// method and compare it. To do so, we must create a compound
+/// substitution by combining `trait_to_impl_substs` and
+/// `impl_to_placeholder_substs`, and also adding a mapping for the method
+/// type parameters. We extend the mapping to also include
+/// the method parameters.
+///
+/// trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
+///
+/// Applying this to the trait method type yields:
+///
+/// <'a> fn(t: &'i0 U0, m: &'a) -> Foo
+///
+/// This type is also the same but the name of the bound region (`'a`
+/// vs `'b`). However, the normal subtyping rules on fn types handle
+/// this kind of equivalency just fine.
+///
+/// We now use these substitutions to ensure that all declared bounds are
+/// satisfied by the implementation's method.
+///
+/// We do this by creating a parameter environment which contains a
+/// substitution corresponding to `impl_to_placeholder_substs`. We then build
+/// `trait_to_placeholder_substs` and use it to convert the predicates contained
+/// in the `trait_m` generics to the placeholder form.
+///
+/// Finally we register each of these predicates as an obligation and check that
+/// they hold.
+#[instrument(level = "debug", skip(tcx, impl_m_span, impl_trait_ref))]
+fn compare_method_predicate_entailment<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ check_implied_wf: CheckImpliedWfMode,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ // This node-id should be used for the `body_id` field on each
+ // `ObligationCause` (and the `FnCtxt`).
+ //
+ // FIXME(@lcnr): remove that after removing `cause.body_id` from
+ // obligations.
+ let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
+ let cause = ObligationCause::new(
+ impl_m_span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+
+ // Create mapping from impl to placeholder.
+ let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
+
+ // Create mapping from trait to placeholder.
+ let trait_to_placeholder_substs =
+ impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
+ debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
+
+ let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
+ let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
+
+ // Check region bounds.
+ check_region_bounds_on_impl_item(tcx, impl_m, trait_m, false)?;
+
+ // Create obligations for each predicate declared by the impl
+ // definition in the context of the trait's parameter
+ // environment. We can't just use `impl_env.caller_bounds`,
+ // however, because we want to replace all late-bound regions with
+ // region variables.
+ let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
+ let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
+
+ debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
+
+ // This is the only tricky bit of the new way we check implementation methods
+ // We need to build a set of predicates where only the method-level bounds
+ // are from the trait and we assume all other bounds from the implementation
+ // to be previously satisfied.
+ //
+ // We then register the obligations from the impl_m and check to see
+ // if all constraints hold.
+ hybrid_preds.predicates.extend(
+ trait_m_predicates
+ .instantiate_own(tcx, trait_to_placeholder_substs)
+ .map(|(predicate, _)| predicate),
+ );
+
+ // Construct trait parameter environment and then shift it into the placeholder viewpoint.
+ // The key step here is to update the caller_bounds's predicates to be
+ // the new hybrid bounds we computed.
+ let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
+ let param_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&hybrid_preds.predicates),
+ Reveal::UserFacing,
+ hir::Constness::NotConst,
+ );
+ let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
+
+ let infcx = &tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(infcx);
+
+ debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
+
+ let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
+ for (predicate, span) in impl_m_own_bounds {
+ let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
+ let predicate = ocx.normalize(&normalize_cause, param_env, predicate);
+
+ let cause = ObligationCause::new(
+ span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+ ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
+ }
+
+ // We now need to check that the signature of the impl method is
+ // compatible with that of the trait method. We do this by
+ // checking that `impl_fty <: trait_fty`.
+ //
+ // FIXME. Unfortunately, this doesn't quite work right now because
+ // associated type normalization is not integrated into subtype
+ // checks. For the comparison to be valid, we need to
+ // normalize the associated types in the impl/trait methods
+ // first. However, because function types bind regions, just
+ // calling `normalize_associated_types_in` would have no effect on
+ // any associated types appearing in the fn arguments or return
+ // type.
+
+ // Compute placeholder form of impl and trait method tys.
+ let tcx = infcx.tcx;
+
+ let mut wf_tys = FxIndexSet::default();
+
+ let unnormalized_impl_sig = infcx.replace_bound_vars_with_fresh_vars(
+ impl_m_span,
+ infer::HigherRankedType,
+ tcx.fn_sig(impl_m.def_id),
+ );
+ let unnormalized_impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(unnormalized_impl_sig));
+
+ let norm_cause = ObligationCause::misc(impl_m_span, impl_m_hir_id);
+ let impl_sig = ocx.normalize(&norm_cause, param_env, unnormalized_impl_sig);
+ debug!("compare_impl_method: impl_fty={:?}", impl_sig);
+
+ let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
+ let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
+
+ // Next, add all inputs and output as well-formed tys. Importantly,
+ // we have to do this before normalization, since the normalized ty may
+ // not contain the input parameters. See issue #87748.
+ wf_tys.extend(trait_sig.inputs_and_output.iter());
+ let trait_sig = ocx.normalize(&norm_cause, param_env, trait_sig);
+ // We also have to add the normalized trait signature
+ // as we don't normalize during implied bounds computation.
+ wf_tys.extend(trait_sig.inputs_and_output.iter());
+ let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
+
+ debug!("compare_impl_method: trait_fty={:?}", trait_fty);
+
+ // FIXME: We'd want to keep more accurate spans than "the method signature" when
+ // processing the comparison between the trait and impl fn, but we sadly lose them
+ // and point at the whole signature when a trait bound or specific input or output
+ // type would be more appropriate. In other places we have a `Vec<Span>`
+ // corresponding to their `Vec<Predicate>`, but we don't have that here.
+ // Fixing this would improve the output of test `issue-83765.rs`.
+ let result = ocx.sup(&cause, param_env, trait_sig, impl_sig);
+
+ if let Err(terr) = result {
+ debug!(?impl_sig, ?trait_sig, ?terr, "sub_types failed");
+
+ let emitted = report_trait_method_mismatch(
+ &infcx,
+ cause,
+ terr,
+ (trait_m, trait_sig),
+ (impl_m, impl_sig),
+ impl_trait_ref,
+ );
+ return Err(emitted);
+ }
+
+ if check_implied_wf == CheckImpliedWfMode::Check {
+ // We need to check that the impl's args are well-formed given
+ // the hybrid param-env (impl + trait method where-clauses).
+ ocx.register_obligation(traits::Obligation::new(
+ infcx.tcx,
+ ObligationCause::dummy(),
+ param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(unnormalized_impl_fty.into())),
+ ));
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ match check_implied_wf {
+ CheckImpliedWfMode::Check => {
+ return compare_method_predicate_entailment(
+ tcx,
+ impl_m,
+ impl_m_span,
+ trait_m,
+ impl_trait_ref,
+ CheckImpliedWfMode::Skip,
+ )
+ .map(|()| {
+ // If the skip-mode was successful, emit a lint.
+ emit_implied_wf_lint(infcx.tcx, impl_m, impl_m_hir_id, vec![]);
+ });
+ }
+ CheckImpliedWfMode::Skip => {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
+ return Err(reported);
+ }
+ }
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_env = OutlivesEnvironment::with_bounds(
+ param_env,
+ Some(infcx),
+ infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys.clone()),
+ );
+ infcx.process_registered_region_obligations(
+ outlives_env.region_bound_pairs(),
+ outlives_env.param_env,
+ );
+ let errors = infcx.resolve_regions(&outlives_env);
+ if !errors.is_empty() {
+ // FIXME(compiler-errors): This can be simplified when IMPLIED_BOUNDS_ENTAILMENT
+ // becomes a hard error (i.e. ideally we'd just call `resolve_regions_and_report_errors`
+ match check_implied_wf {
+ CheckImpliedWfMode::Check => {
+ return compare_method_predicate_entailment(
+ tcx,
+ impl_m,
+ impl_m_span,
+ trait_m,
+ impl_trait_ref,
+ CheckImpliedWfMode::Skip,
+ )
+ .map(|()| {
+ let bad_args = extract_bad_args_for_implies_lint(
+ tcx,
+ &errors,
+ (trait_m, trait_sig),
+ // Unnormalized impl sig corresponds to the HIR types written
+ (impl_m, unnormalized_impl_sig),
+ impl_m_hir_id,
+ );
+ // If the skip-mode was successful, emit a lint.
+ emit_implied_wf_lint(tcx, impl_m, impl_m_hir_id, bad_args);
+ });
+ }
+ CheckImpliedWfMode::Skip => {
+ if infcx.tainted_by_errors().is_none() {
+ infcx.err_ctxt().report_region_errors(impl_m.def_id.expect_local(), &errors);
+ }
+ return Err(tcx
+ .sess
+ .delay_span_bug(rustc_span::DUMMY_SP, "error should have been emitted"));
+ }
+ }
+ }
+
+ Ok(())
+}
+
+fn extract_bad_args_for_implies_lint<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ errors: &[infer::RegionResolutionError<'tcx>],
+ (trait_m, trait_sig): (&ty::AssocItem, ty::FnSig<'tcx>),
+ (impl_m, impl_sig): (&ty::AssocItem, ty::FnSig<'tcx>),
+ hir_id: hir::HirId,
+) -> Vec<(Span, Option<String>)> {
+ let mut blame_generics = vec![];
+ for error in errors {
+ // Look for the subregion origin that contains an input/output type
+ let origin = match error {
+ infer::RegionResolutionError::ConcreteFailure(o, ..) => o,
+ infer::RegionResolutionError::GenericBoundFailure(o, ..) => o,
+ infer::RegionResolutionError::SubSupConflict(_, _, o, ..) => o,
+ infer::RegionResolutionError::UpperBoundUniverseConflict(.., o, _) => o,
+ };
+ // Extract (possible) input/output types from origin
+ match origin {
+ infer::SubregionOrigin::Subtype(trace) => {
+ if let Some((a, b)) = trace.values.ty() {
+ blame_generics.extend([a, b]);
+ }
+ }
+ infer::SubregionOrigin::RelateParamBound(_, ty, _) => blame_generics.push(*ty),
+ infer::SubregionOrigin::ReferenceOutlivesReferent(ty, _) => blame_generics.push(*ty),
+ _ => {}
+ }
+ }
+
+ let fn_decl = tcx.hir().fn_decl_by_hir_id(hir_id).unwrap();
+ let opt_ret_ty = match fn_decl.output {
+ hir::FnRetTy::DefaultReturn(_) => None,
+ hir::FnRetTy::Return(ty) => Some(ty),
+ };
+
+ // Map late-bound regions from trait to impl, so the names are right.
+ let mapping = std::iter::zip(
+ tcx.fn_sig(trait_m.def_id).bound_vars(),
+ tcx.fn_sig(impl_m.def_id).bound_vars(),
+ )
+ .filter_map(|(impl_bv, trait_bv)| {
+ if let ty::BoundVariableKind::Region(impl_bv) = impl_bv
+ && let ty::BoundVariableKind::Region(trait_bv) = trait_bv
+ {
+ Some((impl_bv, trait_bv))
+ } else {
+ None
+ }
+ })
+ .collect();
+
+ // For each arg, see if it was in the "blame" of any of the region errors.
+ // If so, then try to produce a suggestion to replace the argument type with
+ // one from the trait.
+ let mut bad_args = vec![];
+ for (idx, (ty, hir_ty)) in
+ std::iter::zip(impl_sig.inputs_and_output, fn_decl.inputs.iter().chain(opt_ret_ty))
+ .enumerate()
+ {
+ let expected_ty = trait_sig.inputs_and_output[idx]
+ .fold_with(&mut RemapLateBound { tcx, mapping: &mapping });
+ if blame_generics.iter().any(|blame| ty.contains(*blame)) {
+ let expected_ty_sugg = expected_ty.to_string();
+ bad_args.push((
+ hir_ty.span,
+ // Only suggest something if it actually changed.
+ (expected_ty_sugg != ty.to_string()).then_some(expected_ty_sugg),
+ ));
+ }
+ }
+
+ bad_args
+}
+
+struct RemapLateBound<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ mapping: &'a FxHashMap<ty::BoundRegionKind, ty::BoundRegionKind>,
+}
+
+impl<'tcx> TypeFolder<'tcx> for RemapLateBound<'_, 'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+ if let ty::ReFree(fr) = *r {
+ self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
+ bound_region: self
+ .mapping
+ .get(&fr.bound_region)
+ .copied()
+ .unwrap_or(fr.bound_region),
+ ..fr
+ }))
+ } else {
+ r
+ }
+ }
+}
+
+fn emit_implied_wf_lint<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ hir_id: hir::HirId,
+ bad_args: Vec<(Span, Option<String>)>,
+) {
+ let span: MultiSpan = if bad_args.is_empty() {
+ tcx.def_span(impl_m.def_id).into()
+ } else {
+ bad_args.iter().map(|(span, _)| *span).collect::<Vec<_>>().into()
+ };
+ tcx.struct_span_lint_hir(
+ rustc_session::lint::builtin::IMPLIED_BOUNDS_ENTAILMENT,
+ hir_id,
+ span,
+ "impl method assumes more implied bounds than the corresponding trait method",
+ |lint| {
+ let bad_args: Vec<_> =
+ bad_args.into_iter().filter_map(|(span, sugg)| Some((span, sugg?))).collect();
+ if !bad_args.is_empty() {
+ lint.multipart_suggestion(
+ format!(
+ "replace {} type{} to make the impl signature compatible",
+ pluralize!("this", bad_args.len()),
+ pluralize!(bad_args.len())
+ ),
+ bad_args,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ lint
+ },
+ );
+}
+
+#[derive(Debug, PartialEq, Eq)]
+enum CheckImpliedWfMode {
+ /// Checks implied well-formedness of the impl method. If it fails, we will
+ /// re-check with `Skip`, and emit a lint if it succeeds.
+ Check,
+ /// Skips checking implied well-formedness of the impl method, but will emit
+ /// a lint if the `compare_method_predicate_entailment` succeeded. This means that
+ /// the reason that we had failed earlier during `Check` was due to the impl
+ /// having stronger requirements than the trait.
+ Skip,
+}
+
+fn compare_asyncness<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ trait_item_span: Option<Span>,
+) -> Result<(), ErrorGuaranteed> {
+ if tcx.asyncness(trait_m.def_id) == hir::IsAsync::Async {
+ match tcx.fn_sig(impl_m.def_id).skip_binder().output().kind() {
+ ty::Alias(ty::Opaque, ..) => {
+ // allow both `async fn foo()` and `fn foo() -> impl Future`
+ }
+ ty::Error(_) => {
+ // We don't know if it's ok, but at least it's already an error.
+ }
+ _ => {
+ return Err(tcx.sess.emit_err(crate::errors::AsyncTraitImplShouldBeAsync {
+ span: impl_m_span,
+ method_name: trait_m.name,
+ trait_item_span,
+ }));
+ }
+ };
+ }
+
+ Ok(())
+}
+
+/// Given a method def-id in an impl, compare the method signature of the impl
+/// against the trait that it's implementing. In doing so, infer the hidden types
+/// that this method's signature provides to satisfy each return-position `impl Trait`
+/// in the trait signature.
+///
+/// The method is also responsible for making sure that the hidden types for each
+/// RPITIT actually satisfy the bounds of the `impl Trait`, i.e. that if we infer
+/// `impl Trait = Foo`, that `Foo: Trait` holds.
+///
+/// For example, given the sample code:
+///
+/// ```
+/// #![feature(return_position_impl_trait_in_trait)]
+///
+/// use std::ops::Deref;
+///
+/// trait Foo {
+/// fn bar() -> impl Deref<Target = impl Sized>;
+/// // ^- RPITIT #1 ^- RPITIT #2
+/// }
+///
+/// impl Foo for () {
+/// fn bar() -> Box<String> { Box::new(String::new()) }
+/// }
+/// ```
+///
+/// The hidden types for the RPITITs in `bar` would be inferred to:
+/// * `impl Deref` (RPITIT #1) = `Box<String>`
+/// * `impl Sized` (RPITIT #2) = `String`
+///
+/// The relationship between these two types is straightforward in this case, but
+/// may be more tenuously connected via other `impl`s and normalization rules for
+/// cases of more complicated nested RPITITs.
+#[instrument(skip(tcx), level = "debug", ret)]
+pub(super) fn collect_return_position_impl_trait_in_trait_tys<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+) -> Result<&'tcx FxHashMap<DefId, Ty<'tcx>>, ErrorGuaranteed> {
+ let impl_m = tcx.opt_associated_item(def_id).unwrap();
+ let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
+ let impl_trait_ref =
+ tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap().subst_identity();
+ let param_env = tcx.param_env(def_id);
+
+ // First, check a few of the same things as `compare_impl_method`,
+ // just so we don't ICE during substitution later.
+ compare_number_of_generics(tcx, impl_m, trait_m, tcx.hir().span_if_local(impl_m.def_id), true)?;
+ compare_generic_param_kinds(tcx, impl_m, trait_m, true)?;
+ check_region_bounds_on_impl_item(tcx, impl_m, trait_m, true)?;
+
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
+ let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
+ let cause = ObligationCause::new(
+ return_span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+
+ // Create mapping from impl to placeholder.
+ let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
+
+ // Create mapping from trait to placeholder.
+ let trait_to_placeholder_substs =
+ impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
+
+ let infcx = &tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(infcx);
+
+ // Normalize the impl signature with fresh variables for lifetime inference.
+ let norm_cause = ObligationCause::misc(return_span, impl_m_hir_id);
+ let impl_sig = ocx.normalize(
+ &norm_cause,
+ param_env,
+ infcx.replace_bound_vars_with_fresh_vars(
+ return_span,
+ infer::HigherRankedType,
+ tcx.fn_sig(impl_m.def_id),
+ ),
+ );
+ impl_sig.error_reported()?;
+ let impl_return_ty = impl_sig.output();
+
+ // Normalize the trait signature with liberated bound vars, passing it through
+ // the ImplTraitInTraitCollector, which gathers all of the RPITITs and replaces
+ // them with inference variables.
+ // We will use these inference variables to collect the hidden types of RPITITs.
+ let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_hir_id);
+ let unnormalized_trait_sig = tcx
+ .liberate_late_bound_regions(
+ impl_m.def_id,
+ tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs),
+ )
+ .fold_with(&mut collector);
+ let trait_sig = ocx.normalize(&norm_cause, param_env, unnormalized_trait_sig);
+ trait_sig.error_reported()?;
+ let trait_return_ty = trait_sig.output();
+
+ let wf_tys = FxIndexSet::from_iter(
+ unnormalized_trait_sig.inputs_and_output.iter().chain(trait_sig.inputs_and_output.iter()),
+ );
+
+ match ocx.eq(&cause, param_env, trait_return_ty, impl_return_ty) {
+ Ok(()) => {}
+ Err(terr) => {
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span(),
+ E0053,
+ "method `{}` has an incompatible return type for trait",
+ trait_m.name
+ );
+ let hir = tcx.hir();
+ infcx.err_ctxt().note_type_err(
+ &mut diag,
+ &cause,
+ hir.get_if_local(impl_m.def_id)
+ .and_then(|node| node.fn_decl())
+ .map(|decl| (decl.output.span(), "return type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_return_ty.into(),
+ found: impl_return_ty.into(),
+ })),
+ terr,
+ false,
+ false,
+ );
+ return Err(diag.emit());
+ }
+ }
+
+ debug!(?trait_sig, ?impl_sig, "equating function signatures");
+
+ // Unify the whole function signature. We need to do this to fully infer
+ // the lifetimes of the return type, but do this after unifying just the
+ // return types, since we want to avoid duplicating errors from
+ // `compare_method_predicate_entailment`.
+ match ocx.eq(&cause, param_env, trait_sig, impl_sig) {
+ Ok(()) => {}
+ Err(terr) => {
+ // This function gets called during `compare_method_predicate_entailment` when normalizing a
+ // signature that contains RPITIT. When the method signatures don't match, we have to
+ // emit an error now because `compare_method_predicate_entailment` will not report the error
+ // when normalization fails.
+ let emitted = report_trait_method_mismatch(
+ infcx,
+ cause,
+ terr,
+ (trait_m, trait_sig),
+ (impl_m, impl_sig),
+ impl_trait_ref,
+ );
+ return Err(emitted);
+ }
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // RPITs.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_environment = OutlivesEnvironment::with_bounds(
+ param_env,
+ Some(infcx),
+ infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys),
+ );
+ infcx.err_ctxt().check_region_obligations_and_report_errors(
+ impl_m.def_id.expect_local(),
+ &outlives_environment,
+ )?;
+
+ let mut collected_tys = FxHashMap::default();
+ for (def_id, (ty, substs)) in collector.types {
+ match infcx.fully_resolve(ty) {
+ Ok(ty) => {
+ // `ty` contains free regions that we created earlier while liberating the
+ // trait fn signature. However, projection normalization expects `ty` to
+ // contains `def_id`'s early-bound regions.
+ let id_substs = InternalSubsts::identity_for_item(tcx, def_id);
+ debug!(?id_substs, ?substs);
+ let map: FxHashMap<ty::GenericArg<'tcx>, ty::GenericArg<'tcx>> =
+ std::iter::zip(substs, id_substs).collect();
+ debug!(?map);
+
+ // NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
+ // region substs that are synthesized during AST lowering. These are substs
+ // that are appended to the parent substs (trait and trait method). However,
+ // we're trying to infer the unsubstituted type value of the RPITIT inside
+ // the *impl*, so we can later use the impl's method substs to normalize
+ // an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
+ //
+ // Due to the design of RPITITs, during AST lowering, we have no idea that
+ // an impl method corresponds to a trait method with RPITITs in it. Therefore,
+ // we don't have a list of early-bound region substs for the RPITIT in the impl.
+ // Since early region parameters are index-based, we can't just rebase these
+ // (trait method) early-bound region substs onto the impl, and there's no
+ // guarantee that the indices from the trait substs and impl substs line up.
+ // So to fix this, we subtract the number of trait substs and add the number of
+ // impl substs to *renumber* these early-bound regions to their corresponding
+ // indices in the impl's substitutions list.
+ //
+ // Also, we only need to account for a difference in trait and impl substs,
+ // since we previously enforce that the trait method and impl method have the
+ // same generics.
+ let num_trait_substs = trait_to_impl_substs.len();
+ let num_impl_substs = tcx.generics_of(impl_m.container_id(tcx)).params.len();
+ let ty = tcx.fold_regions(ty, |region, _| {
+ match region.kind() {
+ // Remap all free regions, which correspond to late-bound regions in the function.
+ ty::ReFree(_) => {}
+ // Remap early-bound regions as long as they don't come from the `impl` itself.
+ ty::ReEarlyBound(ebr) if tcx.parent(ebr.def_id) != impl_m.container_id(tcx) => {}
+ _ => return region,
+ }
+ let Some(ty::ReEarlyBound(e)) = map.get(&region.into()).map(|r| r.expect_region().kind())
+ else {
+ tcx
+ .sess
+ .delay_span_bug(
+ return_span,
+ "expected ReFree to map to ReEarlyBound"
+ );
+ return tcx.lifetimes.re_static;
+ };
+ tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
+ def_id: e.def_id,
+ name: e.name,
+ index: (e.index as usize - num_trait_substs + num_impl_substs) as u32,
+ }))
+ });
+ debug!(%ty);
+ collected_tys.insert(def_id, ty);
+ }
+ Err(err) => {
+ let reported = tcx.sess.delay_span_bug(
+ return_span,
+ format!("could not fully resolve: {ty} => {err:?}"),
+ );
+ collected_tys.insert(def_id, tcx.ty_error_with_guaranteed(reported));
+ }
+ }
+ }
+
+ Ok(&*tcx.arena.alloc(collected_tys))
+}
+
+struct ImplTraitInTraitCollector<'a, 'tcx> {
+ ocx: &'a ObligationCtxt<'a, 'tcx>,
+ types: FxHashMap<DefId, (Ty<'tcx>, ty::SubstsRef<'tcx>)>,
+ span: Span,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+}
+
+impl<'a, 'tcx> ImplTraitInTraitCollector<'a, 'tcx> {
+ fn new(
+ ocx: &'a ObligationCtxt<'a, 'tcx>,
+ span: Span,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ ) -> Self {
+ ImplTraitInTraitCollector { ocx, types: FxHashMap::default(), span, param_env, body_id }
+ }
+}
+
+impl<'tcx> TypeFolder<'tcx> for ImplTraitInTraitCollector<'_, 'tcx> {
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
+ self.ocx.infcx.tcx
+ }
+
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ if let ty::Alias(ty::Projection, proj) = ty.kind()
+ && self.tcx().def_kind(proj.def_id) == DefKind::ImplTraitPlaceholder
+ {
+ if let Some((ty, _)) = self.types.get(&proj.def_id) {
+ return *ty;
+ }
+ //FIXME(RPITIT): Deny nested RPITIT in substs too
+ if proj.substs.has_escaping_bound_vars() {
+ bug!("FIXME(RPITIT): error here");
+ }
+ // Replace with infer var
+ let infer_ty = self.ocx.infcx.next_ty_var(TypeVariableOrigin {
+ span: self.span,
+ kind: TypeVariableOriginKind::MiscVariable,
+ });
+ self.types.insert(proj.def_id, (infer_ty, proj.substs));
+ // Recurse into bounds
+ for (pred, pred_span) in self.tcx().bound_explicit_item_bounds(proj.def_id).subst_iter_copied(self.tcx(), proj.substs) {
+ let pred = pred.fold_with(self);
+ let pred = self.ocx.normalize(
+ &ObligationCause::misc(self.span, self.body_id),
+ self.param_env,
+ pred,
+ );
+
+ self.ocx.register_obligation(traits::Obligation::new(
+ self.tcx(),
+ ObligationCause::new(
+ self.span,
+ self.body_id,
+ ObligationCauseCode::BindingObligation(proj.def_id, pred_span),
+ ),
+ self.param_env,
+ pred,
+ ));
+ }
+ infer_ty
+ } else {
+ ty.super_fold_with(self)
+ }
+ }
+}
+
+fn report_trait_method_mismatch<'tcx>(
+ infcx: &InferCtxt<'tcx>,
+ mut cause: ObligationCause<'tcx>,
+ terr: TypeError<'tcx>,
+ (trait_m, trait_sig): (&ty::AssocItem, ty::FnSig<'tcx>),
+ (impl_m, impl_sig): (&ty::AssocItem, ty::FnSig<'tcx>),
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> ErrorGuaranteed {
+ let tcx = infcx.tcx;
+ let (impl_err_span, trait_err_span) =
+ extract_spans_for_error_reporting(&infcx, terr, &cause, impl_m, trait_m);
+
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ impl_err_span,
+ E0053,
+ "method `{}` has an incompatible type for trait",
+ trait_m.name
+ );
+ match &terr {
+ TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
+ if trait_m.fn_has_self_parameter =>
+ {
+ let ty = trait_sig.inputs()[0];
+ let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty()) {
+ ExplicitSelf::ByValue => "self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
+ _ => format!("self: {ty}"),
+ };
+
+ // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
+ // span points only at the type `Box<Self`>, but we want to cover the whole
+ // argument pattern and type.
+ let ImplItemKind::Fn(ref sig, body) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind else { bug!("{impl_m:?} is not a method") };
+ let span = tcx
+ .hir()
+ .body_param_names(body)
+ .zip(sig.decl.inputs.iter())
+ .map(|(param, ty)| param.span.to(ty.span))
+ .next()
+ .unwrap_or(impl_err_span);
+
+ diag.span_suggestion(
+ span,
+ "change the self-receiver type to match the trait",
+ sugg,
+ Applicability::MachineApplicable,
+ );
+ }
+ TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
+ if trait_sig.inputs().len() == *i {
+ // Suggestion to change output type. We do not suggest in `async` functions
+ // to avoid complex logic or incorrect output.
+ if let ImplItemKind::Fn(sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind
+ && !sig.header.asyncness.is_async()
+ {
+ let msg = "change the output type to match the trait";
+ let ap = Applicability::MachineApplicable;
+ match sig.decl.output {
+ hir::FnRetTy::DefaultReturn(sp) => {
+ let sugg = format!("-> {} ", trait_sig.output());
+ diag.span_suggestion_verbose(sp, msg, sugg, ap);
+ }
+ hir::FnRetTy::Return(hir_ty) => {
+ let sugg = trait_sig.output();
+ diag.span_suggestion(hir_ty.span, msg, sugg, ap);
+ }
+ };
+ };
+ } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
+ diag.span_suggestion(
+ impl_err_span,
+ "change the parameter type to match the trait",
+ trait_ty,
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ _ => {}
+ }
+
+ cause.span = impl_err_span;
+ infcx.err_ctxt().note_type_err(
+ &mut diag,
+ &cause,
+ trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
+ Some(infer::ValuePairs::Sigs(ExpectedFound { expected: trait_sig, found: impl_sig })),
+ terr,
+ false,
+ false,
+ );
+
+ return diag.emit();
+}
+
+fn check_region_bounds_on_impl_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+ delay: bool,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_generics = tcx.generics_of(impl_m.def_id);
+ let impl_params = impl_generics.own_counts().lifetimes;
+
+ let trait_generics = tcx.generics_of(trait_m.def_id);
+ let trait_params = trait_generics.own_counts().lifetimes;
+
+ debug!(
+ "check_region_bounds_on_impl_item: \
+ trait_generics={:?} \
+ impl_generics={:?}",
+ trait_generics, impl_generics
+ );
+
+ // Must have same number of early-bound lifetime parameters.
+ // Unfortunately, if the user screws up the bounds, then this
+ // will change classification between early and late. E.g.,
+ // if in trait we have `<'a,'b:'a>`, and in impl we just have
+ // `<'a,'b>`, then we have 2 early-bound lifetime parameters
+ // in trait but 0 in the impl. But if we report "expected 2
+ // but found 0" it's confusing, because it looks like there
+ // are zero. Since I don't quite know how to phrase things at
+ // the moment, give a kind of vague error message.
+ if trait_params != impl_params {
+ let span = tcx
+ .hir()
+ .get_generics(impl_m.def_id.expect_local())
+ .expect("expected impl item to have generics or else we can't compare them")
+ .span;
+
+ let mut generics_span = None;
+ let mut bounds_span = vec![];
+ let mut where_span = None;
+ if let Some(trait_node) = tcx.hir().get_if_local(trait_m.def_id)
+ && let Some(trait_generics) = trait_node.generics()
+ {
+ generics_span = Some(trait_generics.span);
+ // FIXME: we could potentially look at the impl's bounds to not point at bounds that
+ // *are* present in the impl.
+ for p in trait_generics.predicates {
+ if let hir::WherePredicate::BoundPredicate(pred) = p {
+ for b in pred.bounds {
+ if let hir::GenericBound::Outlives(lt) = b {
+ bounds_span.push(lt.ident.span);
+ }
+ }
+ }
+ }
+ if let Some(impl_node) = tcx.hir().get_if_local(impl_m.def_id)
+ && let Some(impl_generics) = impl_node.generics()
+ {
+ let mut impl_bounds = 0;
+ for p in impl_generics.predicates {
+ if let hir::WherePredicate::BoundPredicate(pred) = p {
+ for b in pred.bounds {
+ if let hir::GenericBound::Outlives(_) = b {
+ impl_bounds += 1;
+ }
+ }
+ }
+ }
+ if impl_bounds == bounds_span.len() {
+ bounds_span = vec![];
+ } else if impl_generics.has_where_clause_predicates {
+ where_span = Some(impl_generics.where_clause_span);
+ }
+ }
+ }
+ let reported = tcx
+ .sess
+ .create_err(LifetimesOrBoundsMismatchOnTrait {
+ span,
+ item_kind: assoc_item_kind_str(impl_m),
+ ident: impl_m.ident(tcx),
+ generics_span,
+ bounds_span,
+ where_span,
+ })
+ .emit_unless(delay);
+ return Err(reported);
+ }
+
+ Ok(())
+}
+
+#[instrument(level = "debug", skip(infcx))]
+fn extract_spans_for_error_reporting<'tcx>(
+ infcx: &infer::InferCtxt<'tcx>,
+ terr: TypeError<'_>,
+ cause: &ObligationCause<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+) -> (Span, Option<Span>) {
+ let tcx = infcx.tcx;
+ let mut impl_args = {
+ let ImplItemKind::Fn(sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind else { bug!("{:?} is not a method", impl_m) };
+ sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
+ };
+
+ let trait_args = trait_m.def_id.as_local().map(|def_id| {
+ let TraitItemKind::Fn(sig, _) = &tcx.hir().expect_trait_item(def_id).kind else { bug!("{:?} is not a TraitItemKind::Fn", trait_m) };
+ sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
+ });
+
+ match terr {
+ TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
+ (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
+ }
+ _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
+ }
+}
+
+fn compare_self_type<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ // Try to give more informative error messages about self typing
+ // mismatches. Note that any mismatch will also be detected
+ // below, where we construct a canonical function type that
+ // includes the self parameter as a normal parameter. It's just
+ // that the error messages you get out of this code are a bit more
+ // inscrutable, particularly for cases where one method has no
+ // self.
+
+ let self_string = |method: &ty::AssocItem| {
+ let untransformed_self_ty = match method.container {
+ ty::ImplContainer => impl_trait_ref.self_ty(),
+ ty::TraitContainer => tcx.types.self_param,
+ };
+ let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
+ let param_env = ty::ParamEnv::reveal_all();
+
+ let infcx = tcx.infer_ctxt().build();
+ let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
+ let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
+ match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
+ ExplicitSelf::ByValue => "self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
+ _ => format!("self: {self_arg_ty}"),
+ }
+ };
+
+ match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
+ (false, false) | (true, true) => {}
+
+ (false, true) => {
+ let self_descr = self_string(impl_m);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_m_span,
+ E0185,
+ "method `{}` has a `{}` declaration in the impl, but not in the trait",
+ trait_m.name,
+ self_descr
+ );
+ err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
+ if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
+ err.span_label(span, format!("trait method declared without `{self_descr}`"));
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ return Err(err.emit());
+ }
+
+ (true, false) => {
+ let self_descr = self_string(trait_m);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_m_span,
+ E0186,
+ "method `{}` has a `{}` declaration in the trait, but not in the impl",
+ trait_m.name,
+ self_descr
+ );
+ err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
+ if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
+ err.span_label(span, format!("`{self_descr}` used in trait"));
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+
+ return Err(err.emit());
+ }
+ }
+
+ Ok(())
+}
+
+/// Checks that the number of generics on a given assoc item in a trait impl is the same
+/// as the number of generics on the respective assoc item in the trait definition.
+///
+/// For example this code emits the errors in the following code:
+/// ```
+/// trait Trait {
+/// fn foo();
+/// type Assoc<T>;
+/// }
+///
+/// impl Trait for () {
+/// fn foo<T>() {}
+/// //~^ error
+/// type Assoc = u32;
+/// //~^ error
+/// }
+/// ```
+///
+/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
+/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
+/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
+fn compare_number_of_generics<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_: &ty::AssocItem,
+ trait_: &ty::AssocItem,
+ trait_span: Option<Span>,
+ delay: bool,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
+ let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
+
+ // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
+ // in `compare_generic_param_kinds` which will give a nicer error message than something like:
+ // "expected 1 type parameter, found 0 type parameters"
+ if (trait_own_counts.types + trait_own_counts.consts)
+ == (impl_own_counts.types + impl_own_counts.consts)
+ {
+ return Ok(());
+ }
+
+ let matchings = [
+ ("type", trait_own_counts.types, impl_own_counts.types),
+ ("const", trait_own_counts.consts, impl_own_counts.consts),
+ ];
+
+ let item_kind = assoc_item_kind_str(impl_);
+
+ let mut err_occurred = None;
+ for (kind, trait_count, impl_count) in matchings {
+ if impl_count != trait_count {
+ let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
+ let mut spans = generics
+ .params
+ .iter()
+ .filter(|p| match p.kind {
+ hir::GenericParamKind::Lifetime {
+ kind: hir::LifetimeParamKind::Elided,
+ } => {
+ // A fn can have an arbitrary number of extra elided lifetimes for the
+ // same signature.
+ !matches!(kind, ty::AssocKind::Fn)
+ }
+ _ => true,
+ })
+ .map(|p| p.span)
+ .collect::<Vec<Span>>();
+ if spans.is_empty() {
+ spans = vec![generics.span]
+ }
+ spans
+ };
+ let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
+ let trait_item = tcx.hir().expect_trait_item(def_id);
+ let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
+ let impl_trait_spans: Vec<Span> = trait_item
+ .generics
+ .params
+ .iter()
+ .filter_map(|p| match p.kind {
+ GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
+ _ => None,
+ })
+ .collect();
+ (Some(arg_spans), impl_trait_spans)
+ } else {
+ (trait_span.map(|s| vec![s]), vec![])
+ };
+
+ let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
+ let impl_item_impl_trait_spans: Vec<Span> = impl_item
+ .generics
+ .params
+ .iter()
+ .filter_map(|p| match p.kind {
+ GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
+ _ => None,
+ })
+ .collect();
+ let spans = arg_spans(impl_.kind, impl_item.generics);
+ let span = spans.first().copied();
+
+ let mut err = tcx.sess.struct_span_err_with_code(
+ spans,
+ &format!(
+ "{} `{}` has {} {kind} parameter{} but its trait \
+ declaration has {} {kind} parameter{}",
+ item_kind,
+ trait_.name,
+ impl_count,
+ pluralize!(impl_count),
+ trait_count,
+ pluralize!(trait_count),
+ kind = kind,
+ ),
+ DiagnosticId::Error("E0049".into()),
+ );
+
+ let mut suffix = None;
+
+ if let Some(spans) = trait_spans {
+ let mut spans = spans.iter();
+ if let Some(span) = spans.next() {
+ err.span_label(
+ *span,
+ format!(
+ "expected {} {} parameter{}",
+ trait_count,
+ kind,
+ pluralize!(trait_count),
+ ),
+ );
+ }
+ for span in spans {
+ err.span_label(*span, "");
+ }
+ } else {
+ suffix = Some(format!(", expected {trait_count}"));
+ }
+
+ if let Some(span) = span {
+ err.span_label(
+ span,
+ format!(
+ "found {} {} parameter{}{}",
+ impl_count,
+ kind,
+ pluralize!(impl_count),
+ suffix.unwrap_or_else(String::new),
+ ),
+ );
+ }
+
+ for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
+ err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
+ }
+
+ let reported = err.emit_unless(delay);
+ err_occurred = Some(reported);
+ }
+ }
+
+ if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
+}
+
+fn compare_number_of_method_arguments<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ trait_item_span: Option<Span>,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_m_fty = tcx.fn_sig(impl_m.def_id);
+ let trait_m_fty = tcx.fn_sig(trait_m.def_id);
+ let trait_number_args = trait_m_fty.inputs().skip_binder().len();
+ let impl_number_args = impl_m_fty.inputs().skip_binder().len();
+
+ if trait_number_args != impl_number_args {
+ let trait_span = trait_m
+ .def_id
+ .as_local()
+ .and_then(|def_id| {
+ let TraitItemKind::Fn(trait_m_sig, _) = &tcx.hir().expect_trait_item(def_id).kind else { bug!("{:?} is not a method", impl_m) };
+ let pos = trait_number_args.saturating_sub(1);
+ trait_m_sig.decl.inputs.get(pos).map(|arg| {
+ if pos == 0 {
+ arg.span
+ } else {
+ arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
+ }
+ })
+ })
+ .or(trait_item_span);
+
+ let ImplItemKind::Fn(impl_m_sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind else { bug!("{:?} is not a method", impl_m) };
+ let pos = impl_number_args.saturating_sub(1);
+ let impl_span = impl_m_sig
+ .decl
+ .inputs
+ .get(pos)
+ .map(|arg| {
+ if pos == 0 {
+ arg.span
+ } else {
+ arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
+ }
+ })
+ .unwrap_or(impl_m_span);
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0050,
+ "method `{}` has {} but the declaration in trait `{}` has {}",
+ trait_m.name,
+ potentially_plural_count(impl_number_args, "parameter"),
+ tcx.def_path_str(trait_m.def_id),
+ trait_number_args
+ );
+
+ if let Some(trait_span) = trait_span {
+ err.span_label(
+ trait_span,
+ format!(
+ "trait requires {}",
+ potentially_plural_count(trait_number_args, "parameter")
+ ),
+ );
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+
+ err.span_label(
+ impl_span,
+ format!(
+ "expected {}, found {}",
+ potentially_plural_count(trait_number_args, "parameter"),
+ impl_number_args
+ ),
+ );
+
+ return Err(err.emit());
+ }
+
+ Ok(())
+}
+
+fn compare_synthetic_generics<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+) -> Result<(), ErrorGuaranteed> {
+ // FIXME(chrisvittal) Clean up this function, list of FIXME items:
+ // 1. Better messages for the span labels
+ // 2. Explanation as to what is going on
+ // If we get here, we already have the same number of generics, so the zip will
+ // be okay.
+ let mut error_found = None;
+ let impl_m_generics = tcx.generics_of(impl_m.def_id);
+ let trait_m_generics = tcx.generics_of(trait_m.def_id);
+ let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
+ });
+ let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
+ });
+ for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
+ iter::zip(impl_m_type_params, trait_m_type_params)
+ {
+ if impl_synthetic != trait_synthetic {
+ let impl_def_id = impl_def_id.expect_local();
+ let impl_span = tcx.def_span(impl_def_id);
+ let trait_span = tcx.def_span(trait_def_id);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0643,
+ "method `{}` has incompatible signature for trait",
+ trait_m.name
+ );
+ err.span_label(trait_span, "declaration in trait here");
+ match (impl_synthetic, trait_synthetic) {
+ // The case where the impl method uses `impl Trait` but the trait method uses
+ // explicit generics
+ (true, false) => {
+ err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
+ let _: Option<_> = try {
+ // try taking the name from the trait impl
+ // FIXME: this is obviously suboptimal since the name can already be used
+ // as another generic argument
+ let new_name = tcx.opt_item_name(trait_def_id)?;
+ let trait_m = trait_m.def_id.as_local()?;
+ let trait_m = tcx.hir().expect_trait_item(trait_m);
+
+ let impl_m = impl_m.def_id.as_local()?;
+ let impl_m = tcx.hir().expect_impl_item(impl_m);
+
+ // in case there are no generics, take the spot between the function name
+ // and the opening paren of the argument list
+ let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
+ // in case there are generics, just replace them
+ let generics_span =
+ impl_m.generics.span.substitute_dummy(new_generics_span);
+ // replace with the generics from the trait
+ let new_generics =
+ tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
+
+ err.multipart_suggestion(
+ "try changing the `impl Trait` argument to a generic parameter",
+ vec![
+ // replace `impl Trait` with `T`
+ (impl_span, new_name.to_string()),
+ // replace impl method generics with trait method generics
+ // This isn't quite right, as users might have changed the names
+ // of the generics, but it works for the common case
+ (generics_span, new_generics),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ };
+ }
+ // The case where the trait method uses `impl Trait`, but the impl method uses
+ // explicit generics.
+ (false, true) => {
+ err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
+ let _: Option<_> = try {
+ let impl_m = impl_m.def_id.as_local()?;
+ let impl_m = tcx.hir().expect_impl_item(impl_m);
+ let hir::ImplItemKind::Fn(sig, _) = &impl_m.kind else { unreachable!() };
+ let input_tys = sig.decl.inputs;
+
+ struct Visitor(Option<Span>, hir::def_id::LocalDefId);
+ impl<'v> intravisit::Visitor<'v> for Visitor {
+ fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
+ intravisit::walk_ty(self, ty);
+ if let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = ty.kind
+ && let Res::Def(DefKind::TyParam, def_id) = path.res
+ && def_id == self.1.to_def_id()
+ {
+ self.0 = Some(ty.span);
+ }
+ }
+ }
+
+ let mut visitor = Visitor(None, impl_def_id);
+ for ty in input_tys {
+ intravisit::Visitor::visit_ty(&mut visitor, ty);
+ }
+ let span = visitor.0?;
+
+ let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
+ let bounds = bounds.first()?.span().to(bounds.last()?.span());
+ let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
+
+ err.multipart_suggestion(
+ "try removing the generic parameter and using `impl Trait` instead",
+ vec![
+ // delete generic parameters
+ (impl_m.generics.span, String::new()),
+ // replace param usage with `impl Trait`
+ (span, format!("impl {bounds}")),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ };
+ }
+ _ => unreachable!(),
+ }
+ error_found = Some(err.emit());
+ }
+ }
+ if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
+}
+
+/// Checks that all parameters in the generics of a given assoc item in a trait impl have
+/// the same kind as the respective generic parameter in the trait def.
+///
+/// For example all 4 errors in the following code are emitted here:
+/// ```
+/// trait Foo {
+/// fn foo<const N: u8>();
+/// type bar<const N: u8>;
+/// fn baz<const N: u32>();
+/// type blah<T>;
+/// }
+///
+/// impl Foo for () {
+/// fn foo<const N: u64>() {}
+/// //~^ error
+/// type bar<const N: u64> {}
+/// //~^ error
+/// fn baz<T>() {}
+/// //~^ error
+/// type blah<const N: i64> = u32;
+/// //~^ error
+/// }
+/// ```
+///
+/// This function does not handle lifetime parameters
+fn compare_generic_param_kinds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_item: &ty::AssocItem,
+ trait_item: &ty::AssocItem,
+ delay: bool,
+) -> Result<(), ErrorGuaranteed> {
+ assert_eq!(impl_item.kind, trait_item.kind);
+
+ let ty_const_params_of = |def_id| {
+ tcx.generics_of(def_id).params.iter().filter(|param| {
+ matches!(
+ param.kind,
+ GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
+ )
+ })
+ };
+
+ for (param_impl, param_trait) in
+ iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
+ {
+ use GenericParamDefKind::*;
+ if match (&param_impl.kind, &param_trait.kind) {
+ (Const { .. }, Const { .. })
+ if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
+ {
+ true
+ }
+ (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
+ // this is exhaustive so that anyone adding new generic param kinds knows
+ // to make sure this error is reported for them.
+ (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
+ (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
+ } {
+ let param_impl_span = tcx.def_span(param_impl.def_id);
+ let param_trait_span = tcx.def_span(param_trait.def_id);
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ param_impl_span,
+ E0053,
+ "{} `{}` has an incompatible generic parameter for trait `{}`",
+ assoc_item_kind_str(&impl_item),
+ trait_item.name,
+ &tcx.def_path_str(tcx.parent(trait_item.def_id))
+ );
+
+ let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
+ Const { .. } => {
+ format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
+ }
+ Type { .. } => format!("{} type parameter", prefix),
+ Lifetime { .. } => unreachable!(),
+ };
+
+ let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
+ err.span_label(trait_header_span, "");
+ err.span_label(param_trait_span, make_param_message("expected", param_trait));
+
+ let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
+ err.span_label(impl_header_span, "");
+ err.span_label(param_impl_span, make_param_message("found", param_impl));
+
+ let reported = err.emit_unless(delay);
+ return Err(reported);
+ }
+ }
+
+ Ok(())
+}
+
+/// Use `tcx.compare_impl_const` instead
+pub(super) fn compare_impl_const_raw(
+ tcx: TyCtxt<'_>,
+ (impl_const_item_def, trait_const_item_def): (LocalDefId, DefId),
+) -> Result<(), ErrorGuaranteed> {
+ let impl_const_item = tcx.associated_item(impl_const_item_def);
+ let trait_const_item = tcx.associated_item(trait_const_item_def);
+ let impl_trait_ref =
+ tcx.impl_trait_ref(impl_const_item.container_id(tcx)).unwrap().subst_identity();
+ debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
+
+ let impl_c_span = tcx.def_span(impl_const_item_def.to_def_id());
+
+ let infcx = tcx.infer_ctxt().build();
+ let param_env = tcx.param_env(impl_const_item_def.to_def_id());
+ let ocx = ObligationCtxt::new(&infcx);
+
+ // The below is for the most part highly similar to the procedure
+ // for methods above. It is simpler in many respects, especially
+ // because we shouldn't really have to deal with lifetimes or
+ // predicates. In fact some of this should probably be put into
+ // shared functions because of DRY violations...
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ // Create a parameter environment that represents the implementation's
+ // method.
+ let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_const_item_def);
+
+ // Compute placeholder form of impl and trait const tys.
+ let impl_ty = tcx.type_of(impl_const_item_def.to_def_id());
+ let trait_ty = tcx.bound_type_of(trait_const_item_def).subst(tcx, trait_to_impl_substs);
+ let mut cause = ObligationCause::new(
+ impl_c_span,
+ impl_c_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_const_item_def,
+ trait_item_def_id: trait_const_item_def,
+ kind: impl_const_item.kind,
+ },
+ );
+
+ // There is no "body" here, so just pass dummy id.
+ let impl_ty = ocx.normalize(&cause, param_env, impl_ty);
+
+ debug!("compare_const_impl: impl_ty={:?}", impl_ty);
+
+ let trait_ty = ocx.normalize(&cause, param_env, trait_ty);
+
+ debug!("compare_const_impl: trait_ty={:?}", trait_ty);
+
+ let err = ocx.sup(&cause, param_env, trait_ty, impl_ty);
+
+ if let Err(terr) = err {
+ debug!(
+ "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
+ impl_ty, trait_ty
+ );
+
+ // Locate the Span containing just the type of the offending impl
+ let ImplItemKind::Const(ty, _) = tcx.hir().expect_impl_item(impl_const_item_def).kind else { bug!("{impl_const_item:?} is not a impl const") };
+ cause.span = ty.span;
+
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span,
+ E0326,
+ "implemented const `{}` has an incompatible type for trait",
+ trait_const_item.name
+ );
+
+ let trait_c_span = trait_const_item_def.as_local().map(|trait_c_def_id| {
+ // Add a label to the Span containing just the type of the const
+ let TraitItemKind::Const(ty, _) = tcx.hir().expect_trait_item(trait_c_def_id).kind else { bug!("{trait_const_item:?} is not a trait const") };
+ ty.span
+ });
+
+ infcx.err_ctxt().note_type_err(
+ &mut diag,
+ &cause,
+ trait_c_span.map(|span| (span, "type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_ty.into(),
+ found: impl_ty.into(),
+ })),
+ terr,
+ false,
+ false,
+ );
+ return Err(diag.emit());
+ };
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ return Err(infcx.err_ctxt().report_fulfillment_errors(&errors, None));
+ }
+
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx
+ .err_ctxt()
+ .check_region_obligations_and_report_errors(impl_const_item_def, &outlives_environment)?;
+ Ok(())
+}
+
+pub(super) fn compare_impl_ty<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ trait_ty: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ trait_item_span: Option<Span>,
+) {
+ debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
+
+ let _: Result<(), ErrorGuaranteed> = try {
+ compare_number_of_generics(tcx, impl_ty, trait_ty, trait_item_span, false)?;
+
+ compare_generic_param_kinds(tcx, impl_ty, trait_ty, false)?;
+
+ let sp = tcx.def_span(impl_ty.def_id);
+ compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
+
+ check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)?;
+ };
+}
+
+/// The equivalent of [compare_method_predicate_entailment], but for associated types
+/// instead of associated functions.
+fn compare_type_predicate_entailment<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ trait_ty: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
+ let trait_to_impl_substs =
+ impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
+
+ let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
+ let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
+
+ check_region_bounds_on_impl_item(tcx, impl_ty, trait_ty, false)?;
+
+ let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
+ if impl_ty_own_bounds.len() == 0 {
+ // Nothing to check.
+ return Ok(());
+ }
+
+ // This `HirId` should be used for the `body_id` field on each
+ // `ObligationCause` (and the `FnCtxt`). This is what
+ // `regionck_item` expects.
+ let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
+ debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
+
+ // The predicates declared by the impl definition, the trait and the
+ // associated type in the trait are assumed.
+ let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
+ let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
+ hybrid_preds.predicates.extend(
+ trait_ty_predicates
+ .instantiate_own(tcx, trait_to_impl_substs)
+ .map(|(predicate, _)| predicate),
+ );
+
+ debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
+
+ let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
+ let param_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&hybrid_preds.predicates),
+ Reveal::UserFacing,
+ hir::Constness::NotConst,
+ );
+ let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
+ let infcx = tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(&infcx);
+
+ debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
+
+ for (predicate, span) in impl_ty_own_bounds {
+ let cause = ObligationCause::misc(span, impl_ty_hir_id);
+ let predicate = ocx.normalize(&cause, param_env, predicate);
+
+ let cause = ObligationCause::new(
+ span,
+ impl_ty_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_ty.def_id.expect_local(),
+ trait_item_def_id: trait_ty.def_id,
+ kind: impl_ty.kind,
+ },
+ );
+ ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx.err_ctxt().check_region_obligations_and_report_errors(
+ impl_ty.def_id.expect_local(),
+ &outlives_environment,
+ )?;
+
+ Ok(())
+}
+
+/// Validate that `ProjectionCandidate`s created for this associated type will
+/// be valid.
+///
+/// Usually given
+///
+/// trait X { type Y: Copy } impl X for T { type Y = S; }
+///
+/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
+/// impl is well-formed we have to prove `S: Copy`.
+///
+/// For default associated types the normalization is not possible (the value
+/// from the impl could be overridden). We also can't normalize generic
+/// associated types (yet) because they contain bound parameters.
+#[instrument(level = "debug", skip(tcx))]
+pub(super) fn check_type_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ty: &ty::AssocItem,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ // Given
+ //
+ // impl<A, B> Foo<u32> for (A, B) {
+ // type Bar<C> =...
+ // }
+ //
+ // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
+ // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
+ // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
+ // the *trait* with the generic associated type parameters (as bound vars).
+ //
+ // A note regarding the use of bound vars here:
+ // Imagine as an example
+ // ```
+ // trait Family {
+ // type Member<C: Eq>;
+ // }
+ //
+ // impl Family for VecFamily {
+ // type Member<C: Eq> = i32;
+ // }
+ // ```
+ // Here, we would generate
+ // ```notrust
+ // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
+ // ```
+ // when we really would like to generate
+ // ```notrust
+ // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
+ // ```
+ // But, this is probably fine, because although the first clause can be used with types C that
+ // do not implement Eq, for it to cause some kind of problem, there would have to be a
+ // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
+ // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
+ // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
+ // the trait (notably, that X: Eq and T: Family).
+ let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
+ let mut substs = smallvec::SmallVec::with_capacity(defs.count());
+ if let Some(def_id) = defs.parent {
+ let parent_defs = tcx.generics_of(def_id);
+ InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
+ tcx.mk_param_from_def(param)
+ });
+ }
+ let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
+ smallvec::SmallVec::with_capacity(defs.count());
+ InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
+ GenericParamDefKind::Type { .. } => {
+ let kind = ty::BoundTyKind::Param(param.name);
+ let bound_var = ty::BoundVariableKind::Ty(kind);
+ bound_vars.push(bound_var);
+ tcx.mk_ty(ty::Bound(
+ ty::INNERMOST,
+ ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
+ ))
+ .into()
+ }
+ GenericParamDefKind::Lifetime => {
+ let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
+ let bound_var = ty::BoundVariableKind::Region(kind);
+ bound_vars.push(bound_var);
+ tcx.mk_region(ty::ReLateBound(
+ ty::INNERMOST,
+ ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
+ ))
+ .into()
+ }
+ GenericParamDefKind::Const { .. } => {
+ let bound_var = ty::BoundVariableKind::Const;
+ bound_vars.push(bound_var);
+ tcx.mk_const(
+ ty::ConstKind::Bound(ty::INNERMOST, ty::BoundVar::from_usize(bound_vars.len() - 1)),
+ tcx.type_of(param.def_id),
+ )
+ .into()
+ }
+ });
+ let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
+ let impl_ty_substs = tcx.intern_substs(&substs);
+ let container_id = impl_ty.container_id(tcx);
+
+ let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
+ let impl_ty_value = tcx.type_of(impl_ty.def_id);
+
+ let param_env = tcx.param_env(impl_ty.def_id);
+
+ // When checking something like
+ //
+ // trait X { type Y: PartialEq<<Self as X>::Y> }
+ // impl X for T { default type Y = S; }
+ //
+ // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
+ // we want <T as X>::Y to normalize to S. This is valid because we are
+ // checking the default value specifically here. Add this equality to the
+ // ParamEnv for normalization specifically.
+ let normalize_param_env = {
+ let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
+ match impl_ty_value.kind() {
+ ty::Alias(ty::Projection, proj)
+ if proj.def_id == trait_ty.def_id && proj.substs == rebased_substs =>
+ {
+ // Don't include this predicate if the projected type is
+ // exactly the same as the projection. This can occur in
+ // (somewhat dubious) code like this:
+ //
+ // impl<T> X for T where T: X { type Y = <T as X>::Y; }
+ }
+ _ => predicates.push(
+ ty::Binder::bind_with_vars(
+ ty::ProjectionPredicate {
+ projection_ty: tcx.mk_alias_ty(trait_ty.def_id, rebased_substs),
+ term: impl_ty_value.into(),
+ },
+ bound_vars,
+ )
+ .to_predicate(tcx),
+ ),
+ };
+ ty::ParamEnv::new(
+ tcx.intern_predicates(&predicates),
+ Reveal::UserFacing,
+ param_env.constness(),
+ )
+ };
+ debug!(?normalize_param_env);
+
+ let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
+ let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
+ let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
+
+ let infcx = tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(&infcx);
+
+ let assumed_wf_types =
+ ocx.assumed_wf_types(param_env, impl_ty_span, impl_ty.def_id.expect_local());
+
+ let normalize_cause = ObligationCause::new(
+ impl_ty_span,
+ impl_ty_hir_id,
+ ObligationCauseCode::CheckAssociatedTypeBounds {
+ impl_item_def_id: impl_ty.def_id.expect_local(),
+ trait_item_def_id: trait_ty.def_id,
+ },
+ );
+ let mk_cause = |span: Span| {
+ let code = if span.is_dummy() {
+ traits::ItemObligation(trait_ty.def_id)
+ } else {
+ traits::BindingObligation(trait_ty.def_id, span)
+ };
+ ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
+ };
+
+ let obligations = tcx
+ .bound_explicit_item_bounds(trait_ty.def_id)
+ .subst_iter_copied(tcx, rebased_substs)
+ .map(|(concrete_ty_bound, span)| {
+ debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
+ traits::Obligation::new(tcx, mk_cause(span), param_env, concrete_ty_bound)
+ })
+ .collect();
+ debug!("check_type_bounds: item_bounds={:?}", obligations);
+
+ for mut obligation in util::elaborate_obligations(tcx, obligations) {
+ let normalized_predicate =
+ ocx.normalize(&normalize_cause, normalize_param_env, obligation.predicate);
+ debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
+ obligation.predicate = normalized_predicate;
+
+ ocx.register_obligation(obligation);
+ }
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_hir_id, assumed_wf_types);
+ let outlives_environment =
+ OutlivesEnvironment::with_bounds(param_env, Some(&infcx), implied_bounds);
+
+ infcx.err_ctxt().check_region_obligations_and_report_errors(
+ impl_ty.def_id.expect_local(),
+ &outlives_environment,
+ )?;
+
+ Ok(())
+}
+
+fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
+ match impl_item.kind {
+ ty::AssocKind::Const => "const",
+ ty::AssocKind::Fn => "method",
+ ty::AssocKind::Type => "type",
+ }
+}