summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs2042
1 files changed, 2042 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs b/compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs
new file mode 100644
index 000000000..65a9052a6
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs
@@ -0,0 +1,2042 @@
+//! Resolution of early vs late bound lifetimes.
+//!
+//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this
+//! information, typechecking needs to transform the lifetime parameters into bound lifetimes.
+//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit
+//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file
+//! is also responsible for assigning their semantics to implicit lifetimes in trait objects.
+
+use rustc_ast::walk_list;
+use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
+use rustc_errors::struct_span_err;
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::LocalDefId;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::{GenericArg, GenericParam, GenericParamKind, HirIdMap, LifetimeName, Node};
+use rustc_middle::bug;
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::resolve_bound_vars::*;
+use rustc_middle::ty::{self, DefIdTree, TyCtxt, TypeSuperVisitable, TypeVisitor};
+use rustc_session::lint;
+use rustc_span::def_id::DefId;
+use rustc_span::symbol::{sym, Ident};
+use rustc_span::Span;
+use std::fmt;
+
+use crate::errors;
+
+trait RegionExt {
+ fn early(param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg);
+
+ fn late(index: u32, param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg);
+
+ fn id(&self) -> Option<DefId>;
+
+ fn shifted(self, amount: u32) -> ResolvedArg;
+}
+
+impl RegionExt for ResolvedArg {
+ fn early(param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg) {
+ debug!("ResolvedArg::early: def_id={:?}", param.def_id);
+ (param.def_id, ResolvedArg::EarlyBound(param.def_id.to_def_id()))
+ }
+
+ fn late(idx: u32, param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg) {
+ let depth = ty::INNERMOST;
+ debug!(
+ "ResolvedArg::late: idx={:?}, param={:?} depth={:?} def_id={:?}",
+ idx, param, depth, param.def_id,
+ );
+ (param.def_id, ResolvedArg::LateBound(depth, idx, param.def_id.to_def_id()))
+ }
+
+ fn id(&self) -> Option<DefId> {
+ match *self {
+ ResolvedArg::StaticLifetime | ResolvedArg::Error(_) => None,
+
+ ResolvedArg::EarlyBound(id)
+ | ResolvedArg::LateBound(_, _, id)
+ | ResolvedArg::Free(_, id) => Some(id),
+ }
+ }
+
+ fn shifted(self, amount: u32) -> ResolvedArg {
+ match self {
+ ResolvedArg::LateBound(debruijn, idx, id) => {
+ ResolvedArg::LateBound(debruijn.shifted_in(amount), idx, id)
+ }
+ _ => self,
+ }
+ }
+}
+
+/// Maps the id of each bound variable reference to the variable decl
+/// that it corresponds to.
+///
+/// FIXME. This struct gets converted to a `ResolveBoundVars` for
+/// actual use. It has the same data, but indexed by `LocalDefId`. This
+/// is silly.
+#[derive(Debug, Default)]
+struct NamedVarMap {
+ // maps from every use of a named (not anonymous) bound var to a
+ // `ResolvedArg` describing how that variable is bound
+ defs: HirIdMap<ResolvedArg>,
+
+ // Maps relevant hir items to the bound vars on them. These include:
+ // - function defs
+ // - function pointers
+ // - closures
+ // - trait refs
+ // - bound types (like `T` in `for<'a> T<'a>: Foo`)
+ late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
+}
+
+struct BoundVarContext<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ map: &'a mut NamedVarMap,
+ scope: ScopeRef<'a>,
+}
+
+#[derive(Debug)]
+enum Scope<'a> {
+ /// Declares lifetimes, and each can be early-bound or late-bound.
+ /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
+ /// it should be shifted by the number of `Binder`s in between the
+ /// declaration `Binder` and the location it's referenced from.
+ Binder {
+ /// We use an IndexMap here because we want these lifetimes in order
+ /// for diagnostics.
+ bound_vars: FxIndexMap<LocalDefId, ResolvedArg>,
+
+ scope_type: BinderScopeType,
+
+ /// The late bound vars for a given item are stored by `HirId` to be
+ /// queried later. However, if we enter an elision scope, we have to
+ /// later append the elided bound vars to the list and need to know what
+ /// to append to.
+ hir_id: hir::HirId,
+
+ s: ScopeRef<'a>,
+
+ /// If this binder comes from a where clause, specify how it was created.
+ /// This is used to diagnose inaccessible lifetimes in APIT:
+ /// ```ignore (illustrative)
+ /// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
+ /// ```
+ where_bound_origin: Option<hir::PredicateOrigin>,
+ },
+
+ /// Lifetimes introduced by a fn are scoped to the call-site for that fn,
+ /// if this is a fn body, otherwise the original definitions are used.
+ /// Unspecified lifetimes are inferred, unless an elision scope is nested,
+ /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
+ Body {
+ id: hir::BodyId,
+ s: ScopeRef<'a>,
+ },
+
+ /// A scope which either determines unspecified lifetimes or errors
+ /// on them (e.g., due to ambiguity).
+ Elision {
+ s: ScopeRef<'a>,
+ },
+
+ /// Use a specific lifetime (if `Some`) or leave it unset (to be
+ /// inferred in a function body or potentially error outside one),
+ /// for the default choice of lifetime in a trait object type.
+ ObjectLifetimeDefault {
+ lifetime: Option<ResolvedArg>,
+ s: ScopeRef<'a>,
+ },
+
+ /// When we have nested trait refs, we concatenate late bound vars for inner
+ /// trait refs from outer ones. But we also need to include any HRTB
+ /// lifetimes encountered when identifying the trait that an associated type
+ /// is declared on.
+ Supertrait {
+ bound_vars: Vec<ty::BoundVariableKind>,
+ s: ScopeRef<'a>,
+ },
+
+ TraitRefBoundary {
+ s: ScopeRef<'a>,
+ },
+
+ /// Disallows capturing non-lifetime binders from parent scopes.
+ ///
+ /// This is necessary for something like `for<T> [(); { /* references T */ }]:`,
+ /// since we don't do something more correct like replacing any captured
+ /// late-bound vars with early-bound params in the const's own generics.
+ AnonConstBoundary {
+ s: ScopeRef<'a>,
+ },
+
+ Root {
+ opt_parent_item: Option<LocalDefId>,
+ },
+}
+
+#[derive(Copy, Clone, Debug)]
+enum BinderScopeType {
+ /// Any non-concatenating binder scopes.
+ Normal,
+ /// Within a syntactic trait ref, there may be multiple poly trait refs that
+ /// are nested (under the `associated_type_bounds` feature). The binders of
+ /// the inner poly trait refs are extended from the outer poly trait refs
+ /// and don't increase the late bound depth. If you had
+ /// `T: for<'a> Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
+ /// would be `Concatenating`. This also used in trait refs in where clauses
+ /// where we have two binders `for<> T: for<> Foo` (I've intentionally left
+ /// out any lifetimes because they aren't needed to show the two scopes).
+ /// The inner `for<>` has a scope of `Concatenating`.
+ Concatenating,
+}
+
+// A helper struct for debugging scopes without printing parent scopes
+struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
+
+impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self.0 {
+ Scope::Binder { bound_vars, scope_type, hir_id, where_bound_origin, s: _ } => f
+ .debug_struct("Binder")
+ .field("bound_vars", bound_vars)
+ .field("scope_type", scope_type)
+ .field("hir_id", hir_id)
+ .field("where_bound_origin", where_bound_origin)
+ .field("s", &"..")
+ .finish(),
+ Scope::Body { id, s: _ } => {
+ f.debug_struct("Body").field("id", id).field("s", &"..").finish()
+ }
+ Scope::Elision { s: _ } => f.debug_struct("Elision").field("s", &"..").finish(),
+ Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
+ .debug_struct("ObjectLifetimeDefault")
+ .field("lifetime", lifetime)
+ .field("s", &"..")
+ .finish(),
+ Scope::Supertrait { bound_vars, s: _ } => f
+ .debug_struct("Supertrait")
+ .field("bound_vars", bound_vars)
+ .field("s", &"..")
+ .finish(),
+ Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
+ Scope::AnonConstBoundary { s: _ } => f.debug_struct("AnonConstBoundary").finish(),
+ Scope::Root { opt_parent_item } => {
+ f.debug_struct("Root").field("opt_parent_item", &opt_parent_item).finish()
+ }
+ }
+ }
+}
+
+type ScopeRef<'a> = &'a Scope<'a>;
+
+pub(crate) fn provide(providers: &mut ty::query::Providers) {
+ *providers = ty::query::Providers {
+ resolve_bound_vars,
+
+ named_variable_map: |tcx, id| tcx.resolve_bound_vars(id).defs.get(&id),
+ is_late_bound_map,
+ object_lifetime_default,
+ late_bound_vars_map: |tcx, id| tcx.resolve_bound_vars(id).late_bound_vars.get(&id),
+
+ ..*providers
+ };
+}
+
+/// Computes the `ResolveBoundVars` map that contains data for an entire `Item`.
+/// You should not read the result of this query directly, but rather use
+/// `named_variable_map`, `is_late_bound_map`, etc.
+#[instrument(level = "debug", skip(tcx))]
+fn resolve_bound_vars(tcx: TyCtxt<'_>, local_def_id: hir::OwnerId) -> ResolveBoundVars {
+ let mut named_variable_map =
+ NamedVarMap { defs: Default::default(), late_bound_vars: Default::default() };
+ let mut visitor = BoundVarContext {
+ tcx,
+ map: &mut named_variable_map,
+ scope: &Scope::Root { opt_parent_item: None },
+ };
+ match tcx.hir().owner(local_def_id) {
+ hir::OwnerNode::Item(item) => visitor.visit_item(item),
+ hir::OwnerNode::ForeignItem(item) => visitor.visit_foreign_item(item),
+ hir::OwnerNode::TraitItem(item) => {
+ let scope =
+ Scope::Root { opt_parent_item: Some(tcx.local_parent(item.owner_id.def_id)) };
+ visitor.scope = &scope;
+ visitor.visit_trait_item(item)
+ }
+ hir::OwnerNode::ImplItem(item) => {
+ let scope =
+ Scope::Root { opt_parent_item: Some(tcx.local_parent(item.owner_id.def_id)) };
+ visitor.scope = &scope;
+ visitor.visit_impl_item(item)
+ }
+ hir::OwnerNode::Crate(_) => {}
+ }
+
+ let mut rl = ResolveBoundVars::default();
+
+ for (hir_id, v) in named_variable_map.defs {
+ let map = rl.defs.entry(hir_id.owner).or_default();
+ map.insert(hir_id.local_id, v);
+ }
+ for (hir_id, v) in named_variable_map.late_bound_vars {
+ let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
+ map.insert(hir_id.local_id, v);
+ }
+
+ debug!(?rl.defs);
+ debug!(?rl.late_bound_vars);
+ rl
+}
+
+fn late_arg_as_bound_arg<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ arg: &ResolvedArg,
+ param: &GenericParam<'tcx>,
+) -> ty::BoundVariableKind {
+ match arg {
+ ResolvedArg::LateBound(_, _, def_id) => {
+ let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
+ match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
+ }
+ GenericParamKind::Type { .. } => {
+ ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(*def_id, name))
+ }
+ GenericParamKind::Const { .. } => ty::BoundVariableKind::Const,
+ }
+ }
+ _ => bug!("{:?} is not a late argument", arg),
+ }
+}
+
+impl<'a, 'tcx> BoundVarContext<'a, 'tcx> {
+ /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
+ fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
+ let mut scope = self.scope;
+ let mut supertrait_bound_vars = vec![];
+ loop {
+ match scope {
+ Scope::Body { .. } | Scope::Root { .. } => {
+ break (vec![], BinderScopeType::Normal);
+ }
+
+ Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::AnonConstBoundary { s } => {
+ scope = s;
+ }
+
+ Scope::Supertrait { s, bound_vars } => {
+ supertrait_bound_vars = bound_vars.clone();
+ scope = s;
+ }
+
+ Scope::TraitRefBoundary { .. } => {
+ // We should only see super trait lifetimes if there is a `Binder` above
+ assert!(supertrait_bound_vars.is_empty());
+ break (vec![], BinderScopeType::Normal);
+ }
+
+ Scope::Binder { hir_id, .. } => {
+ // Nested poly trait refs have the binders concatenated
+ let mut full_binders =
+ self.map.late_bound_vars.entry(*hir_id).or_default().clone();
+ full_binders.extend(supertrait_bound_vars.into_iter());
+ break (full_binders, BinderScopeType::Concatenating);
+ }
+ }
+ }
+ }
+
+ fn visit_poly_trait_ref_inner(
+ &mut self,
+ trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
+ non_lifetime_binder_allowed: NonLifetimeBinderAllowed,
+ ) {
+ debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
+
+ let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
+
+ let initial_bound_vars = binders.len() as u32;
+ let mut bound_vars: FxIndexMap<LocalDefId, ResolvedArg> = FxIndexMap::default();
+ let binders_iter =
+ trait_ref.bound_generic_params.iter().enumerate().map(|(late_bound_idx, param)| {
+ let pair = ResolvedArg::late(initial_bound_vars + late_bound_idx as u32, param);
+ let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
+ bound_vars.insert(pair.0, pair.1);
+ r
+ });
+ binders.extend(binders_iter);
+
+ if let NonLifetimeBinderAllowed::Deny(where_) = non_lifetime_binder_allowed {
+ deny_non_region_late_bound(self.tcx, &mut bound_vars, where_);
+ }
+
+ debug!(?binders);
+ self.record_late_bound_vars(trait_ref.trait_ref.hir_ref_id, binders);
+
+ // Always introduce a scope here, even if this is in a where clause and
+ // we introduced the binders around the bounded Ty. In that case, we
+ // just reuse the concatenation functionality also present in nested trait
+ // refs.
+ let scope = Scope::Binder {
+ hir_id: trait_ref.trait_ref.hir_ref_id,
+ bound_vars,
+ s: self.scope,
+ scope_type,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
+ this.visit_trait_ref(&trait_ref.trait_ref);
+ });
+ }
+}
+
+enum NonLifetimeBinderAllowed {
+ Deny(&'static str),
+ Allow,
+}
+
+impl<'a, 'tcx> Visitor<'tcx> for BoundVarContext<'a, 'tcx> {
+ type NestedFilter = nested_filter::OnlyBodies;
+
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_nested_body(&mut self, body: hir::BodyId) {
+ let body = self.tcx.hir().body(body);
+ self.with(Scope::Body { id: body.id(), s: self.scope }, |this| {
+ this.visit_body(body);
+ });
+ }
+
+ fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
+ if let hir::ExprKind::Closure(hir::Closure {
+ binder, bound_generic_params, fn_decl, ..
+ }) = e.kind
+ {
+ if let &hir::ClosureBinder::For { span: for_sp, .. } = binder {
+ fn span_of_infer(ty: &hir::Ty<'_>) -> Option<Span> {
+ struct V(Option<Span>);
+
+ impl<'v> Visitor<'v> for V {
+ fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
+ match t.kind {
+ _ if self.0.is_some() => (),
+ hir::TyKind::Infer => {
+ self.0 = Some(t.span);
+ }
+ _ => intravisit::walk_ty(self, t),
+ }
+ }
+ }
+
+ let mut v = V(None);
+ v.visit_ty(ty);
+ v.0
+ }
+
+ let infer_in_rt_sp = match fn_decl.output {
+ hir::FnRetTy::DefaultReturn(sp) => Some(sp),
+ hir::FnRetTy::Return(ty) => span_of_infer(ty),
+ };
+
+ let infer_spans = fn_decl
+ .inputs
+ .into_iter()
+ .filter_map(span_of_infer)
+ .chain(infer_in_rt_sp)
+ .collect::<Vec<_>>();
+
+ if !infer_spans.is_empty() {
+ self.tcx.sess
+ .struct_span_err(
+ infer_spans,
+ "implicit types in closure signatures are forbidden when `for<...>` is present",
+ )
+ .span_label(for_sp, "`for<...>` is here")
+ .emit();
+ }
+ }
+
+ let (mut bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) =
+ bound_generic_params
+ .iter()
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = ResolvedArg::late(late_bound_idx as u32, param);
+ let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
+ (pair, r)
+ })
+ .unzip();
+
+ deny_non_region_late_bound(self.tcx, &mut bound_vars, "closures");
+
+ self.record_late_bound_vars(e.hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id: e.hir_id,
+ bound_vars,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+
+ self.with(scope, |this| {
+ // a closure has no bounds, so everything
+ // contained within is scoped within its binder.
+ intravisit::walk_expr(this, e)
+ });
+ } else {
+ intravisit::walk_expr(self, e)
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ match &item.kind {
+ hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
+ if let Some(of_trait) = of_trait {
+ self.record_late_bound_vars(of_trait.hir_ref_id, Vec::default());
+ }
+ }
+ _ => {}
+ }
+ match item.kind {
+ hir::ItemKind::Fn(_, generics, _) => {
+ self.visit_early_late(item.hir_id(), generics, |this| {
+ intravisit::walk_item(this, item);
+ });
+ }
+
+ hir::ItemKind::ExternCrate(_)
+ | hir::ItemKind::Use(..)
+ | hir::ItemKind::Macro(..)
+ | hir::ItemKind::Mod(..)
+ | hir::ItemKind::ForeignMod { .. }
+ | hir::ItemKind::GlobalAsm(..) => {
+ // These sorts of items have no lifetime parameters at all.
+ intravisit::walk_item(self, item);
+ }
+ hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
+ // No lifetime parameters, but implied 'static.
+ self.with(Scope::Elision { s: self.scope }, |this| {
+ intravisit::walk_item(this, item)
+ });
+ }
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::TyAlias, ..
+ }) => {
+ // Opaque types are visited when we visit the
+ // `TyKind::OpaqueDef`, so that they have the lifetimes from
+ // their parent opaque_ty in scope.
+ //
+ // The core idea here is that since OpaqueTys are generated with the impl Trait as
+ // their owner, we can keep going until we find the Item that owns that. We then
+ // conservatively add all resolved lifetimes. Otherwise we run into problems in
+ // cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
+ let parent_item = self.tcx.hir().get_parent_item(item.hir_id());
+ let resolved_lifetimes: &ResolveBoundVars =
+ self.tcx.resolve_bound_vars(parent_item);
+ // We need to add *all* deps, since opaque tys may want them from *us*
+ for (&owner, defs) in resolved_lifetimes.defs.iter() {
+ defs.iter().for_each(|(&local_id, region)| {
+ self.map.defs.insert(hir::HirId { owner, local_id }, *region);
+ });
+ }
+ for (&owner, late_bound_vars) in resolved_lifetimes.late_bound_vars.iter() {
+ late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
+ self.record_late_bound_vars(
+ hir::HirId { owner, local_id },
+ late_bound_vars.clone(),
+ );
+ });
+ }
+ }
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::FnReturn(parent) | hir::OpaqueTyOrigin::AsyncFn(parent),
+ generics,
+ ..
+ }) => {
+ // We want to start our early-bound indices at the end of the parent scope,
+ // not including any parent `impl Trait`s.
+ let mut bound_vars = FxIndexMap::default();
+ debug!(?generics.params);
+ for param in generics.params {
+ let (def_id, reg) = ResolvedArg::early(&param);
+ bound_vars.insert(def_id, reg);
+ }
+
+ let scope = Scope::Root { opt_parent_item: Some(parent) };
+ self.with(scope, |this| {
+ let scope = Scope::Binder {
+ hir_id: item.hir_id(),
+ bound_vars,
+ s: this.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ this.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| intravisit::walk_item(this, item))
+ });
+ })
+ }
+ hir::ItemKind::TyAlias(_, generics)
+ | hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::Struct(_, generics)
+ | hir::ItemKind::Union(_, generics)
+ | hir::ItemKind::Trait(_, _, generics, ..)
+ | hir::ItemKind::TraitAlias(generics, ..)
+ | hir::ItemKind::Impl(&hir::Impl { generics, .. }) => {
+ // These kinds of items have only early-bound lifetime parameters.
+ let bound_vars = generics.params.iter().map(ResolvedArg::early).collect();
+ self.record_late_bound_vars(item.hir_id(), vec![]);
+ let scope = Scope::Binder {
+ hir_id: item.hir_id(),
+ bound_vars,
+ scope_type: BinderScopeType::Normal,
+ s: self.scope,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ intravisit::walk_item(this, item);
+ });
+ });
+ }
+ }
+ }
+
+ fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
+ match item.kind {
+ hir::ForeignItemKind::Fn(_, _, generics) => {
+ self.visit_early_late(item.hir_id(), generics, |this| {
+ intravisit::walk_foreign_item(this, item);
+ })
+ }
+ hir::ForeignItemKind::Static(..) => {
+ intravisit::walk_foreign_item(self, item);
+ }
+ hir::ForeignItemKind::Type => {
+ intravisit::walk_foreign_item(self, item);
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
+ match ty.kind {
+ hir::TyKind::BareFn(c) => {
+ let (mut bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) = c
+ .generic_params
+ .iter()
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = ResolvedArg::late(late_bound_idx as u32, param);
+ let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
+ (pair, r)
+ })
+ .unzip();
+
+ deny_non_region_late_bound(self.tcx, &mut bound_vars, "function pointer types");
+
+ self.record_late_bound_vars(ty.hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id: ty.hir_id,
+ bound_vars,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ // a bare fn has no bounds, so everything
+ // contained within is scoped within its binder.
+ intravisit::walk_ty(this, ty);
+ });
+ }
+ hir::TyKind::TraitObject(bounds, lifetime, _) => {
+ debug!(?bounds, ?lifetime, "TraitObject");
+ let scope = Scope::TraitRefBoundary { s: self.scope };
+ self.with(scope, |this| {
+ for bound in bounds {
+ this.visit_poly_trait_ref_inner(
+ bound,
+ NonLifetimeBinderAllowed::Deny("trait object types"),
+ );
+ }
+ });
+ match lifetime.res {
+ LifetimeName::ImplicitObjectLifetimeDefault => {
+ // If the user does not write *anything*, we
+ // use the object lifetime defaulting
+ // rules. So e.g., `Box<dyn Debug>` becomes
+ // `Box<dyn Debug + 'static>`.
+ self.resolve_object_lifetime_default(lifetime)
+ }
+ LifetimeName::Infer => {
+ // If the user writes `'_`, we use the *ordinary* elision
+ // rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
+ // resolved the same as the `'_` in `&'_ Foo`.
+ //
+ // cc #48468
+ }
+ LifetimeName::Param(..) | LifetimeName::Static => {
+ // If the user wrote an explicit name, use that.
+ self.visit_lifetime(lifetime);
+ }
+ LifetimeName::Error => {}
+ }
+ }
+ hir::TyKind::Ref(lifetime_ref, ref mt) => {
+ self.visit_lifetime(lifetime_ref);
+ let scope = Scope::ObjectLifetimeDefault {
+ lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
+ s: self.scope,
+ };
+ self.with(scope, |this| this.visit_ty(&mt.ty));
+ }
+ hir::TyKind::OpaqueDef(item_id, lifetimes, _in_trait) => {
+ // Resolve the lifetimes in the bounds to the lifetime defs in the generics.
+ // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
+ // `type MyAnonTy<'b> = impl MyTrait<'b>;`
+ // ^ ^ this gets resolved in the scope of
+ // the opaque_ty generics
+ let opaque_ty = self.tcx.hir().item(item_id);
+ match &opaque_ty.kind {
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::TyAlias,
+ ..
+ }) => {
+ intravisit::walk_ty(self, ty);
+
+ // Elided lifetimes are not allowed in non-return
+ // position impl Trait
+ let scope = Scope::TraitRefBoundary { s: self.scope };
+ self.with(scope, |this| {
+ let scope = Scope::Elision { s: this.scope };
+ this.with(scope, |this| {
+ intravisit::walk_item(this, opaque_ty);
+ })
+ });
+
+ return;
+ }
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
+ ..
+ }) => {}
+ i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
+ };
+
+ // Resolve the lifetimes that are applied to the opaque type.
+ // These are resolved in the current scope.
+ // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
+ // `fn foo<'a>() -> MyAnonTy<'a> { ... }`
+ // ^ ^this gets resolved in the current scope
+ for lifetime in lifetimes {
+ let hir::GenericArg::Lifetime(lifetime) = lifetime else {
+ continue
+ };
+ self.visit_lifetime(lifetime);
+
+ // Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
+ // and ban them. Type variables instantiated inside binders aren't
+ // well-supported at the moment, so this doesn't work.
+ // In the future, this should be fixed and this error should be removed.
+ let def = self.map.defs.get(&lifetime.hir_id).cloned();
+ let Some(ResolvedArg::LateBound(_, _, def_id)) = def else {
+ continue
+ };
+ let Some(def_id) = def_id.as_local() else {
+ continue
+ };
+ let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
+ // Ensure that the parent of the def is an item, not HRTB
+ let parent_id = self.tcx.hir().parent_id(hir_id);
+ if !parent_id.is_owner() {
+ struct_span_err!(
+ self.tcx.sess,
+ lifetime.ident.span,
+ E0657,
+ "`impl Trait` can only capture lifetimes bound at the fn or impl level"
+ )
+ .emit();
+ self.uninsert_lifetime_on_error(lifetime, def.unwrap());
+ }
+ if let hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::OpaqueTy { .. }, ..
+ }) = self.tcx.hir().get(parent_id)
+ {
+ let mut err = self.tcx.sess.struct_span_err(
+ lifetime.ident.span,
+ "higher kinded lifetime bounds on nested opaque types are not supported yet",
+ );
+ err.span_note(self.tcx.def_span(def_id), "lifetime declared here");
+ err.emit();
+ self.uninsert_lifetime_on_error(lifetime, def.unwrap());
+ }
+ }
+ }
+ _ => intravisit::walk_ty(self, ty),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
+ use self::hir::TraitItemKind::*;
+ match trait_item.kind {
+ Fn(_, _) => {
+ self.visit_early_late(trait_item.hir_id(), &trait_item.generics, |this| {
+ intravisit::walk_trait_item(this, trait_item)
+ });
+ }
+ Type(bounds, ty) => {
+ let generics = &trait_item.generics;
+ let bound_vars = generics.params.iter().map(ResolvedArg::early).collect();
+ self.record_late_bound_vars(trait_item.hir_id(), vec![]);
+ let scope = Scope::Binder {
+ hir_id: trait_item.hir_id(),
+ bound_vars,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ this.visit_generics(generics);
+ for bound in bounds {
+ this.visit_param_bound(bound);
+ }
+ if let Some(ty) = ty {
+ this.visit_ty(ty);
+ }
+ })
+ });
+ }
+ Const(_, _) => {
+ // Only methods and types support generics.
+ assert!(trait_item.generics.params.is_empty());
+ intravisit::walk_trait_item(self, trait_item);
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
+ use self::hir::ImplItemKind::*;
+ match impl_item.kind {
+ Fn(..) => self.visit_early_late(impl_item.hir_id(), &impl_item.generics, |this| {
+ intravisit::walk_impl_item(this, impl_item)
+ }),
+ Type(ty) => {
+ let generics = &impl_item.generics;
+ let bound_vars: FxIndexMap<LocalDefId, ResolvedArg> =
+ generics.params.iter().map(ResolvedArg::early).collect();
+ self.record_late_bound_vars(impl_item.hir_id(), vec![]);
+ let scope = Scope::Binder {
+ hir_id: impl_item.hir_id(),
+ bound_vars,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ this.visit_generics(generics);
+ this.visit_ty(ty);
+ })
+ });
+ }
+ Const(_, _) => {
+ // Only methods and types support generics.
+ assert!(impl_item.generics.params.is_empty());
+ intravisit::walk_impl_item(self, impl_item);
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
+ match lifetime_ref.res {
+ hir::LifetimeName::Static => {
+ self.insert_lifetime(lifetime_ref, ResolvedArg::StaticLifetime)
+ }
+ hir::LifetimeName::Param(param_def_id) => {
+ self.resolve_lifetime_ref(param_def_id, lifetime_ref)
+ }
+ // If we've already reported an error, just ignore `lifetime_ref`.
+ hir::LifetimeName::Error => {}
+ // Those will be resolved by typechecking.
+ hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {}
+ }
+ }
+
+ fn visit_path(&mut self, path: &hir::Path<'tcx>, hir_id: hir::HirId) {
+ for (i, segment) in path.segments.iter().enumerate() {
+ let depth = path.segments.len() - i - 1;
+ if let Some(args) = segment.args {
+ self.visit_segment_args(path.res, depth, args);
+ }
+ }
+ if let Res::Def(DefKind::TyParam | DefKind::ConstParam, param_def_id) = path.res {
+ self.resolve_type_ref(param_def_id.expect_local(), hir_id);
+ }
+ }
+
+ fn visit_fn(
+ &mut self,
+ fk: intravisit::FnKind<'tcx>,
+ fd: &'tcx hir::FnDecl<'tcx>,
+ body_id: hir::BodyId,
+ _: Span,
+ _: LocalDefId,
+ ) {
+ let output = match fd.output {
+ hir::FnRetTy::DefaultReturn(_) => None,
+ hir::FnRetTy::Return(ty) => Some(ty),
+ };
+ self.visit_fn_like_elision(&fd.inputs, output, matches!(fk, intravisit::FnKind::Closure));
+ intravisit::walk_fn_kind(self, fk);
+ self.visit_nested_body(body_id)
+ }
+
+ fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
+ let scope = Scope::TraitRefBoundary { s: self.scope };
+ self.with(scope, |this| {
+ for param in generics.params {
+ match param.kind {
+ GenericParamKind::Lifetime { .. } => {}
+ GenericParamKind::Type { default, .. } => {
+ if let Some(ty) = default {
+ this.visit_ty(ty);
+ }
+ }
+ GenericParamKind::Const { ty, default } => {
+ this.visit_ty(ty);
+ if let Some(default) = default {
+ this.visit_body(this.tcx.hir().body(default.body));
+ }
+ }
+ }
+ }
+ for predicate in generics.predicates {
+ match predicate {
+ &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
+ hir_id,
+ bounded_ty,
+ bounds,
+ bound_generic_params,
+ origin,
+ ..
+ }) => {
+ let (bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) =
+ bound_generic_params
+ .iter()
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = ResolvedArg::late(late_bound_idx as u32, param);
+ let r = late_arg_as_bound_arg(this.tcx, &pair.1, param);
+ (pair, r)
+ })
+ .unzip();
+ this.record_late_bound_vars(hir_id, binders.clone());
+ // Even if there are no lifetimes defined here, we still wrap it in a binder
+ // scope. If there happens to be a nested poly trait ref (an error), that
+ // will be `Concatenating` anyways, so we don't have to worry about the depth
+ // being wrong.
+ let scope = Scope::Binder {
+ hir_id,
+ bound_vars,
+ s: this.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: Some(origin),
+ };
+ this.with(scope, |this| {
+ this.visit_ty(&bounded_ty);
+ walk_list!(this, visit_param_bound, bounds);
+ })
+ }
+ &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
+ lifetime,
+ bounds,
+ ..
+ }) => {
+ this.visit_lifetime(lifetime);
+ walk_list!(this, visit_param_bound, bounds);
+
+ if lifetime.res != hir::LifetimeName::Static {
+ for bound in bounds {
+ let hir::GenericBound::Outlives(lt) = bound else {
+ continue;
+ };
+ if lt.res != hir::LifetimeName::Static {
+ continue;
+ }
+ this.insert_lifetime(lt, ResolvedArg::StaticLifetime);
+ this.tcx.struct_span_lint_hir(
+ lint::builtin::UNUSED_LIFETIMES,
+ lifetime.hir_id,
+ lifetime.ident.span,
+ format!(
+ "unnecessary lifetime parameter `{}`",
+ lifetime.ident
+ ),
+ |lint| {
+ let help = &format!(
+ "you can use the `'static` lifetime directly, in place of `{}`",
+ lifetime.ident,
+ );
+ lint.help(help)
+ },
+ );
+ }
+ }
+ }
+ &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
+ lhs_ty,
+ rhs_ty,
+ ..
+ }) => {
+ this.visit_ty(lhs_ty);
+ this.visit_ty(rhs_ty);
+ }
+ }
+ }
+ })
+ }
+
+ fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
+ match bound {
+ hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
+ // FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
+ // through the regular poly trait ref code, so we don't get another
+ // chance to introduce a binder. For now, I'm keeping the existing logic
+ // of "if there isn't a Binder scope above us, add one", but I
+ // imagine there's a better way to go about this.
+ let (binders, scope_type) = self.poly_trait_ref_binder_info();
+
+ self.record_late_bound_vars(*hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id: *hir_id,
+ bound_vars: FxIndexMap::default(),
+ s: self.scope,
+ scope_type,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ intravisit::walk_param_bound(this, bound);
+ });
+ }
+ _ => intravisit::walk_param_bound(self, bound),
+ }
+ }
+
+ fn visit_poly_trait_ref(&mut self, trait_ref: &'tcx hir::PolyTraitRef<'tcx>) {
+ self.visit_poly_trait_ref_inner(trait_ref, NonLifetimeBinderAllowed::Allow);
+ }
+
+ fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
+ self.with(Scope::AnonConstBoundary { s: self.scope }, |this| {
+ intravisit::walk_anon_const(this, c);
+ });
+ }
+}
+
+fn object_lifetime_default(tcx: TyCtxt<'_>, param_def_id: DefId) -> ObjectLifetimeDefault {
+ debug_assert_eq!(tcx.def_kind(param_def_id), DefKind::TyParam);
+ let param_def_id = param_def_id.expect_local();
+ let hir::Node::GenericParam(param) = tcx.hir().get_by_def_id(param_def_id) else {
+ bug!("expected GenericParam for object_lifetime_default");
+ };
+ match param.source {
+ hir::GenericParamSource::Generics => {
+ let parent_def_id = tcx.local_parent(param_def_id);
+ let generics = tcx.hir().get_generics(parent_def_id).unwrap();
+ let param_hir_id = tcx.local_def_id_to_hir_id(param_def_id);
+ let param = generics.params.iter().find(|p| p.hir_id == param_hir_id).unwrap();
+
+ // Scan the bounds and where-clauses on parameters to extract bounds
+ // of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
+ // for each type parameter.
+ match param.kind {
+ GenericParamKind::Type { .. } => {
+ let mut set = Set1::Empty;
+
+ // Look for `type: ...` where clauses.
+ for bound in generics.bounds_for_param(param_def_id) {
+ // Ignore `for<'a> type: ...` as they can change what
+ // lifetimes mean (although we could "just" handle it).
+ if !bound.bound_generic_params.is_empty() {
+ continue;
+ }
+
+ for bound in bound.bounds {
+ if let hir::GenericBound::Outlives(lifetime) = bound {
+ set.insert(lifetime.res);
+ }
+ }
+ }
+
+ match set {
+ Set1::Empty => ObjectLifetimeDefault::Empty,
+ Set1::One(hir::LifetimeName::Static) => ObjectLifetimeDefault::Static,
+ Set1::One(hir::LifetimeName::Param(param_def_id)) => {
+ ObjectLifetimeDefault::Param(param_def_id.to_def_id())
+ }
+ _ => ObjectLifetimeDefault::Ambiguous,
+ }
+ }
+ _ => {
+ bug!("object_lifetime_default_raw must only be called on a type parameter")
+ }
+ }
+ }
+ hir::GenericParamSource::Binder => ObjectLifetimeDefault::Empty,
+ }
+}
+
+impl<'a, 'tcx> BoundVarContext<'a, 'tcx> {
+ fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
+ where
+ F: for<'b> FnOnce(&mut BoundVarContext<'b, 'tcx>),
+ {
+ let BoundVarContext { tcx, map, .. } = self;
+ let mut this = BoundVarContext { tcx: *tcx, map, scope: &wrap_scope };
+ let span = debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope));
+ {
+ let _enter = span.enter();
+ f(&mut this);
+ }
+ }
+
+ fn record_late_bound_vars(&mut self, hir_id: hir::HirId, binder: Vec<ty::BoundVariableKind>) {
+ if let Some(old) = self.map.late_bound_vars.insert(hir_id, binder) {
+ bug!(
+ "overwrote bound vars for {hir_id:?}:\nold={old:?}\nnew={:?}",
+ self.map.late_bound_vars[&hir_id]
+ )
+ }
+ }
+
+ /// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
+ ///
+ /// Handles visiting fns and methods. These are a bit complicated because we must distinguish
+ /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
+ /// within type bounds; those are early bound lifetimes, and the rest are late bound.
+ ///
+ /// For example:
+ ///
+ /// fn foo<'a,'b,'c,T:Trait<'b>>(...)
+ ///
+ /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
+ /// lifetimes may be interspersed together.
+ ///
+ /// If early bound lifetimes are present, we separate them into their own list (and likewise
+ /// for late bound). They will be numbered sequentially, starting from the lowest index that is
+ /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
+ /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
+ /// ordering is not important there.
+ fn visit_early_late<F>(
+ &mut self,
+ hir_id: hir::HirId,
+ generics: &'tcx hir::Generics<'tcx>,
+ walk: F,
+ ) where
+ F: for<'b, 'c> FnOnce(&'b mut BoundVarContext<'c, 'tcx>),
+ {
+ let mut named_late_bound_vars = 0;
+ let bound_vars: FxIndexMap<LocalDefId, ResolvedArg> = generics
+ .params
+ .iter()
+ .map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ if self.tcx.is_late_bound(param.hir_id) {
+ let late_bound_idx = named_late_bound_vars;
+ named_late_bound_vars += 1;
+ ResolvedArg::late(late_bound_idx, param)
+ } else {
+ ResolvedArg::early(param)
+ }
+ }
+ GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
+ ResolvedArg::early(param)
+ }
+ })
+ .collect();
+
+ let binders: Vec<_> = generics
+ .params
+ .iter()
+ .filter(|param| {
+ matches!(param.kind, GenericParamKind::Lifetime { .. })
+ && self.tcx.is_late_bound(param.hir_id)
+ })
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = ResolvedArg::late(late_bound_idx as u32, param);
+ late_arg_as_bound_arg(self.tcx, &pair.1, param)
+ })
+ .collect();
+ self.record_late_bound_vars(hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id,
+ bound_vars,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, walk);
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn resolve_lifetime_ref(
+ &mut self,
+ region_def_id: LocalDefId,
+ lifetime_ref: &'tcx hir::Lifetime,
+ ) {
+ // Walk up the scope chain, tracking the number of fn scopes
+ // that we pass through, until we find a lifetime with the
+ // given name or we run out of scopes.
+ // search.
+ let mut late_depth = 0;
+ let mut scope = self.scope;
+ let mut outermost_body = None;
+ let result = loop {
+ match *scope {
+ Scope::Body { id, s } => {
+ outermost_body = Some(id);
+ scope = s;
+ }
+
+ Scope::Root { opt_parent_item } => {
+ if let Some(parent_item) = opt_parent_item
+ && let parent_generics = self.tcx.generics_of(parent_item)
+ && parent_generics.param_def_id_to_index(self.tcx, region_def_id.to_def_id()).is_some()
+ {
+ break Some(ResolvedArg::EarlyBound(region_def_id.to_def_id()));
+ }
+ break None;
+ }
+
+ Scope::Binder { ref bound_vars, scope_type, s, where_bound_origin, .. } => {
+ if let Some(&def) = bound_vars.get(&region_def_id) {
+ break Some(def.shifted(late_depth));
+ }
+ match scope_type {
+ BinderScopeType::Normal => late_depth += 1,
+ BinderScopeType::Concatenating => {}
+ }
+ // Fresh lifetimes in APIT used to be allowed in async fns and forbidden in
+ // regular fns.
+ if let Some(hir::PredicateOrigin::ImplTrait) = where_bound_origin
+ && let hir::LifetimeName::Param(param_id) = lifetime_ref.res
+ && let Some(generics) = self.tcx.hir().get_generics(self.tcx.local_parent(param_id))
+ && let Some(param) = generics.params.iter().find(|p| p.def_id == param_id)
+ && param.is_elided_lifetime()
+ && let hir::IsAsync::NotAsync = self.tcx.asyncness(lifetime_ref.hir_id.owner.def_id)
+ && !self.tcx.features().anonymous_lifetime_in_impl_trait
+ {
+ let mut diag = rustc_session::parse::feature_err(
+ &self.tcx.sess.parse_sess,
+ sym::anonymous_lifetime_in_impl_trait,
+ lifetime_ref.ident.span,
+ "anonymous lifetimes in `impl Trait` are unstable",
+ );
+
+ if let Some(generics) =
+ self.tcx.hir().get_generics(lifetime_ref.hir_id.owner.def_id)
+ {
+ let new_param_sugg = if let Some(span) =
+ generics.span_for_lifetime_suggestion()
+ {
+ (span, "'a, ".to_owned())
+ } else {
+ (generics.span, "<'a>".to_owned())
+ };
+
+ let lifetime_sugg = match lifetime_ref.suggestion_position() {
+ (hir::LifetimeSuggestionPosition::Normal, span) => (span, "'a".to_owned()),
+ (hir::LifetimeSuggestionPosition::Ampersand, span) => (span, "'a ".to_owned()),
+ (hir::LifetimeSuggestionPosition::ElidedPath, span) => (span, "<'a>".to_owned()),
+ (hir::LifetimeSuggestionPosition::ElidedPathArgument, span) => (span, "'a, ".to_owned()),
+ (hir::LifetimeSuggestionPosition::ObjectDefault, span) => (span, "+ 'a".to_owned()),
+ };
+ let suggestions = vec![
+ lifetime_sugg,
+ new_param_sugg,
+ ];
+
+ diag.span_label(
+ lifetime_ref.ident.span,
+ "expected named lifetime parameter",
+ );
+ diag.multipart_suggestion(
+ "consider introducing a named lifetime parameter",
+ suggestions,
+ rustc_errors::Applicability::MaybeIncorrect,
+ );
+ }
+
+ diag.emit();
+ return;
+ }
+ scope = s;
+ }
+
+ Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. }
+ | Scope::AnonConstBoundary { s } => {
+ scope = s;
+ }
+ }
+ };
+
+ if let Some(mut def) = result {
+ if let ResolvedArg::EarlyBound(..) = def {
+ // Do not free early-bound regions, only late-bound ones.
+ } else if let Some(body_id) = outermost_body {
+ let fn_id = self.tcx.hir().body_owner(body_id);
+ match self.tcx.hir().get(fn_id) {
+ Node::Item(hir::Item { owner_id, kind: hir::ItemKind::Fn(..), .. })
+ | Node::TraitItem(hir::TraitItem {
+ owner_id,
+ kind: hir::TraitItemKind::Fn(..),
+ ..
+ })
+ | Node::ImplItem(hir::ImplItem {
+ owner_id,
+ kind: hir::ImplItemKind::Fn(..),
+ ..
+ }) => {
+ def = ResolvedArg::Free(owner_id.to_def_id(), def.id().unwrap());
+ }
+ Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(closure), .. }) => {
+ def = ResolvedArg::Free(closure.def_id.to_def_id(), def.id().unwrap());
+ }
+ _ => {}
+ }
+ }
+
+ self.insert_lifetime(lifetime_ref, def);
+ return;
+ }
+
+ // We may fail to resolve higher-ranked lifetimes that are mentioned by APIT.
+ // AST-based resolution does not care for impl-trait desugaring, which are the
+ // responibility of lowering. This may create a mismatch between the resolution
+ // AST found (`region_def_id`) which points to HRTB, and what HIR allows.
+ // ```
+ // fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
+ // ```
+ //
+ // In such case, walk back the binders to diagnose it properly.
+ let mut scope = self.scope;
+ loop {
+ match *scope {
+ Scope::Binder {
+ where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), ..
+ } => {
+ let mut err = self.tcx.sess.struct_span_err(
+ lifetime_ref.ident.span,
+ "`impl Trait` can only mention lifetimes bound at the fn or impl level",
+ );
+ err.span_note(self.tcx.def_span(region_def_id), "lifetime declared here");
+ err.emit();
+ return;
+ }
+ Scope::Root { .. } => break,
+ Scope::Binder { s, .. }
+ | Scope::Body { s, .. }
+ | Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. }
+ | Scope::AnonConstBoundary { s } => {
+ scope = s;
+ }
+ }
+ }
+
+ self.tcx.sess.delay_span_bug(
+ lifetime_ref.ident.span,
+ &format!("Could not resolve {:?} in scope {:#?}", lifetime_ref, self.scope,),
+ );
+ }
+
+ fn resolve_type_ref(&mut self, param_def_id: LocalDefId, hir_id: hir::HirId) {
+ // Walk up the scope chain, tracking the number of fn scopes
+ // that we pass through, until we find a lifetime with the
+ // given name or we run out of scopes.
+ // search.
+ let mut late_depth = 0;
+ let mut scope = self.scope;
+ let mut crossed_anon_const = false;
+ let result = loop {
+ match *scope {
+ Scope::Body { s, .. } => {
+ scope = s;
+ }
+
+ Scope::Root { opt_parent_item } => {
+ if let Some(parent_item) = opt_parent_item
+ && let parent_generics = self.tcx.generics_of(parent_item)
+ && parent_generics.param_def_id_to_index(self.tcx, param_def_id.to_def_id()).is_some()
+ {
+ break Some(ResolvedArg::EarlyBound(param_def_id.to_def_id()));
+ }
+ break None;
+ }
+
+ Scope::Binder { ref bound_vars, scope_type, s, .. } => {
+ if let Some(&def) = bound_vars.get(&param_def_id) {
+ break Some(def.shifted(late_depth));
+ }
+ match scope_type {
+ BinderScopeType::Normal => late_depth += 1,
+ BinderScopeType::Concatenating => {}
+ }
+ scope = s;
+ }
+
+ Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. } => {
+ scope = s;
+ }
+
+ Scope::AnonConstBoundary { s } => {
+ crossed_anon_const = true;
+ scope = s;
+ }
+ }
+ };
+
+ if let Some(def) = result {
+ if let ResolvedArg::LateBound(..) = def && crossed_anon_const {
+ let use_span = self.tcx.hir().span(hir_id);
+ let def_span = self.tcx.def_span(param_def_id);
+ match self.tcx.def_kind(param_def_id) {
+ DefKind::ConstParam => {
+ self.tcx.sess.emit_err(errors::CannotCaptureLateBoundInAnonConst::Const {
+ use_span,
+ def_span,
+ });
+ }
+ DefKind::TyParam => {
+ self.tcx.sess.emit_err(errors::CannotCaptureLateBoundInAnonConst::Type {
+ use_span,
+ def_span,
+ });
+ }
+ _ => unreachable!(),
+ }
+ return;
+ }
+
+ self.map.defs.insert(hir_id, def);
+ return;
+ }
+
+ self.tcx.sess.delay_span_bug(
+ self.tcx.hir().span(hir_id),
+ format!("could not resolve {param_def_id:?}"),
+ );
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_segment_args(
+ &mut self,
+ res: Res,
+ depth: usize,
+ generic_args: &'tcx hir::GenericArgs<'tcx>,
+ ) {
+ if generic_args.parenthesized {
+ self.visit_fn_like_elision(
+ generic_args.inputs(),
+ Some(generic_args.bindings[0].ty()),
+ false,
+ );
+ return;
+ }
+
+ for arg in generic_args.args {
+ if let hir::GenericArg::Lifetime(lt) = arg {
+ self.visit_lifetime(lt);
+ }
+ }
+
+ // Figure out if this is a type/trait segment,
+ // which requires object lifetime defaults.
+ let type_def_id = match res {
+ Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(self.tcx.parent(def_id)),
+ Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(self.tcx.parent(def_id)),
+ Res::Def(
+ DefKind::Struct
+ | DefKind::Union
+ | DefKind::Enum
+ | DefKind::TyAlias
+ | DefKind::Trait,
+ def_id,
+ ) if depth == 0 => Some(def_id),
+ _ => None,
+ };
+
+ debug!(?type_def_id);
+
+ // Compute a vector of defaults, one for each type parameter,
+ // per the rules given in RFCs 599 and 1156. Example:
+ //
+ // ```rust
+ // struct Foo<'a, T: 'a, U> { }
+ // ```
+ //
+ // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
+ // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
+ // and `dyn Baz` to `dyn Baz + 'static` (because there is no
+ // such bound).
+ //
+ // Therefore, we would compute `object_lifetime_defaults` to a
+ // vector like `['x, 'static]`. Note that the vector only
+ // includes type parameters.
+ let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
+ let in_body = {
+ let mut scope = self.scope;
+ loop {
+ match *scope {
+ Scope::Root { .. } => break false,
+
+ Scope::Body { .. } => break true,
+
+ Scope::Binder { s, .. }
+ | Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. }
+ | Scope::AnonConstBoundary { s } => {
+ scope = s;
+ }
+ }
+ }
+ };
+
+ let map = &self.map;
+ let generics = self.tcx.generics_of(def_id);
+
+ // `type_def_id` points to an item, so there is nothing to inherit generics from.
+ debug_assert_eq!(generics.parent_count, 0);
+
+ let set_to_region = |set: ObjectLifetimeDefault| match set {
+ ObjectLifetimeDefault::Empty => {
+ if in_body {
+ None
+ } else {
+ Some(ResolvedArg::StaticLifetime)
+ }
+ }
+ ObjectLifetimeDefault::Static => Some(ResolvedArg::StaticLifetime),
+ ObjectLifetimeDefault::Param(param_def_id) => {
+ // This index can be used with `generic_args` since `parent_count == 0`.
+ let index = generics.param_def_id_to_index[&param_def_id] as usize;
+ generic_args.args.get(index).and_then(|arg| match arg {
+ GenericArg::Lifetime(lt) => map.defs.get(&lt.hir_id).copied(),
+ _ => None,
+ })
+ }
+ ObjectLifetimeDefault::Ambiguous => None,
+ };
+ generics
+ .params
+ .iter()
+ .filter_map(|param| {
+ match self.tcx.def_kind(param.def_id) {
+ // Generic consts don't impose any constraints.
+ //
+ // We still store a dummy value here to allow generic parameters
+ // in an arbitrary order.
+ DefKind::ConstParam => Some(ObjectLifetimeDefault::Empty),
+ DefKind::TyParam => Some(self.tcx.object_lifetime_default(param.def_id)),
+ // We may also get a `Trait` or `TraitAlias` because of how generics `Self` parameter
+ // works. Ignore it because it can't have a meaningful lifetime default.
+ DefKind::LifetimeParam | DefKind::Trait | DefKind::TraitAlias => None,
+ dk => bug!("unexpected def_kind {:?}", dk),
+ }
+ })
+ .map(set_to_region)
+ .collect()
+ });
+
+ debug!(?object_lifetime_defaults);
+
+ let mut i = 0;
+ for arg in generic_args.args {
+ match arg {
+ GenericArg::Lifetime(_) => {}
+ GenericArg::Type(ty) => {
+ if let Some(&lt) = object_lifetime_defaults.get(i) {
+ let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
+ self.with(scope, |this| this.visit_ty(ty));
+ } else {
+ self.visit_ty(ty);
+ }
+ i += 1;
+ }
+ GenericArg::Const(ct) => {
+ self.visit_anon_const(&ct.value);
+ i += 1;
+ }
+ GenericArg::Infer(inf) => {
+ self.visit_id(inf.hir_id);
+ i += 1;
+ }
+ }
+ }
+
+ // Hack: when resolving the type `XX` in binding like `dyn
+ // Foo<'b, Item = XX>`, the current object-lifetime default
+ // would be to examine the trait `Foo` to check whether it has
+ // a lifetime bound declared on `Item`. e.g., if `Foo` is
+ // declared like so, then the default object lifetime bound in
+ // `XX` should be `'b`:
+ //
+ // ```rust
+ // trait Foo<'a> {
+ // type Item: 'a;
+ // }
+ // ```
+ //
+ // but if we just have `type Item;`, then it would be
+ // `'static`. However, we don't get all of this logic correct.
+ //
+ // Instead, we do something hacky: if there are no lifetime parameters
+ // to the trait, then we simply use a default object lifetime
+ // bound of `'static`, because there is no other possibility. On the other hand,
+ // if there ARE lifetime parameters, then we require the user to give an
+ // explicit bound for now.
+ //
+ // This is intended to leave room for us to implement the
+ // correct behavior in the future.
+ let has_lifetime_parameter =
+ generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));
+
+ // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
+ // in the trait ref `YY<...>` in `Item: YY<...>`.
+ for binding in generic_args.bindings {
+ let scope = Scope::ObjectLifetimeDefault {
+ lifetime: if has_lifetime_parameter {
+ None
+ } else {
+ Some(ResolvedArg::StaticLifetime)
+ },
+ s: self.scope,
+ };
+ if let Some(type_def_id) = type_def_id {
+ let bound_vars =
+ BoundVarContext::supertrait_hrtb_vars(self.tcx, type_def_id, binding.ident);
+ self.with(scope, |this| {
+ let scope = Scope::Supertrait {
+ bound_vars: bound_vars.unwrap_or_default(),
+ s: this.scope,
+ };
+ this.with(scope, |this| this.visit_assoc_type_binding(binding));
+ });
+ } else {
+ self.with(scope, |this| this.visit_assoc_type_binding(binding));
+ }
+ }
+ }
+
+ /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
+ /// associated type name and starting trait.
+ /// For example, imagine we have
+ /// ```ignore (illustrative)
+ /// trait Foo<'a, 'b> {
+ /// type As;
+ /// }
+ /// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
+ /// trait Bar: for<'b> Bar<'b> {}
+ /// ```
+ /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
+ /// the starting trait `Bar`, we would return `Some(['b, 'a])`.
+ fn supertrait_hrtb_vars(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ assoc_name: Ident,
+ ) -> Option<Vec<ty::BoundVariableKind>> {
+ let trait_defines_associated_type_named = |trait_def_id: DefId| {
+ tcx.associated_items(trait_def_id)
+ .find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id)
+ .is_some()
+ };
+
+ use smallvec::{smallvec, SmallVec};
+ let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
+ smallvec![(def_id, smallvec![])];
+ let mut visited: FxHashSet<DefId> = FxHashSet::default();
+ loop {
+ let Some((def_id, bound_vars)) = stack.pop() else {
+ break None;
+ };
+ // See issue #83753. If someone writes an associated type on a non-trait, just treat it as
+ // there being no supertrait HRTBs.
+ match tcx.def_kind(def_id) {
+ DefKind::Trait | DefKind::TraitAlias | DefKind::Impl { .. } => {}
+ _ => break None,
+ }
+
+ if trait_defines_associated_type_named(def_id) {
+ break Some(bound_vars.into_iter().collect());
+ }
+ let predicates =
+ tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name)));
+ let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| {
+ let bound_predicate = pred.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Clause(ty::Clause::Trait(data)) => {
+ // The order here needs to match what we would get from `subst_supertrait`
+ let pred_bound_vars = bound_predicate.bound_vars();
+ let mut all_bound_vars = bound_vars.clone();
+ all_bound_vars.extend(pred_bound_vars.iter());
+ let super_def_id = data.trait_ref.def_id;
+ Some((super_def_id, all_bound_vars))
+ }
+ _ => None,
+ }
+ });
+
+ let obligations = obligations.filter(|o| visited.insert(o.0));
+ stack.extend(obligations);
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_fn_like_elision(
+ &mut self,
+ inputs: &'tcx [hir::Ty<'tcx>],
+ output: Option<&'tcx hir::Ty<'tcx>>,
+ in_closure: bool,
+ ) {
+ self.with(Scope::Elision { s: self.scope }, |this| {
+ for input in inputs {
+ this.visit_ty(input);
+ }
+ if !in_closure && let Some(output) = output {
+ this.visit_ty(output);
+ }
+ });
+ if in_closure && let Some(output) = output {
+ self.visit_ty(output);
+ }
+ }
+
+ fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
+ debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref);
+ let mut late_depth = 0;
+ let mut scope = self.scope;
+ let lifetime = loop {
+ match *scope {
+ Scope::Binder { s, scope_type, .. } => {
+ match scope_type {
+ BinderScopeType::Normal => late_depth += 1,
+ BinderScopeType::Concatenating => {}
+ }
+ scope = s;
+ }
+
+ Scope::Root { .. } | Scope::Elision { .. } => break ResolvedArg::StaticLifetime,
+
+ Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,
+
+ Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,
+
+ Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. }
+ | Scope::AnonConstBoundary { s } => {
+ scope = s;
+ }
+ }
+ };
+ self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: ResolvedArg) {
+ debug!(span = ?lifetime_ref.ident.span);
+ self.map.defs.insert(lifetime_ref.hir_id, def);
+ }
+
+ /// Sometimes we resolve a lifetime, but later find that it is an
+ /// error (esp. around impl trait). In that case, we remove the
+ /// entry into `map.defs` so as not to confuse later code.
+ fn uninsert_lifetime_on_error(
+ &mut self,
+ lifetime_ref: &'tcx hir::Lifetime,
+ bad_def: ResolvedArg,
+ ) {
+ let old_value = self.map.defs.remove(&lifetime_ref.hir_id);
+ assert_eq!(old_value, Some(bad_def));
+ }
+}
+
+/// Detects late-bound lifetimes and inserts them into
+/// `late_bound`.
+///
+/// A region declared on a fn is **late-bound** if:
+/// - it is constrained by an argument type;
+/// - it does not appear in a where-clause.
+///
+/// "Constrained" basically means that it appears in any type but
+/// not amongst the inputs to a projection. In other words, `<&'a
+/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
+fn is_late_bound_map(
+ tcx: TyCtxt<'_>,
+ owner_id: hir::OwnerId,
+) -> Option<&FxIndexSet<hir::ItemLocalId>> {
+ let decl = tcx.hir().fn_decl_by_hir_id(owner_id.into())?;
+ let generics = tcx.hir().get_generics(owner_id.def_id)?;
+
+ let mut late_bound = FxIndexSet::default();
+
+ let mut constrained_by_input = ConstrainedCollector { regions: Default::default(), tcx };
+ for arg_ty in decl.inputs {
+ constrained_by_input.visit_ty(arg_ty);
+ }
+
+ let mut appears_in_output = AllCollector::default();
+ intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
+
+ debug!(?constrained_by_input.regions);
+
+ // Walk the lifetimes that appear in where clauses.
+ //
+ // Subtle point: because we disallow nested bindings, we can just
+ // ignore binders here and scrape up all names we see.
+ let mut appears_in_where_clause = AllCollector::default();
+ appears_in_where_clause.visit_generics(generics);
+ debug!(?appears_in_where_clause.regions);
+
+ // Late bound regions are those that:
+ // - appear in the inputs
+ // - do not appear in the where-clauses
+ // - are not implicitly captured by `impl Trait`
+ for param in generics.params {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }
+
+ // Neither types nor consts are late-bound.
+ hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
+ }
+
+ // appears in the where clauses? early-bound.
+ if appears_in_where_clause.regions.contains(&param.def_id) {
+ continue;
+ }
+
+ // does not appear in the inputs, but appears in the return type? early-bound.
+ if !constrained_by_input.regions.contains(&param.def_id)
+ && appears_in_output.regions.contains(&param.def_id)
+ {
+ continue;
+ }
+
+ debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.def_id);
+
+ let inserted = late_bound.insert(param.hir_id.local_id);
+ assert!(inserted, "visited lifetime {:?} twice", param.def_id);
+ }
+
+ debug!(?late_bound);
+ return Some(tcx.arena.alloc(late_bound));
+
+ /// Visits a `ty::Ty` collecting information about what generic parameters are constrained.
+ ///
+ /// The visitor does not operate on `hir::Ty` so that it can be called on the rhs of a `type Alias<...> = ...;`
+ /// which may live in a separate crate so there would not be any hir available. Instead we use the `type_of`
+ /// query to obtain a `ty::Ty` which will be present even in cross crate scenarios. It also naturally
+ /// handles cycle detection as we go through the query system.
+ ///
+ /// This is necessary in the first place for the following case:
+ /// ```
+ /// type Alias<'a, T> = <T as Trait<'a>>::Assoc;
+ /// fn foo<'a>(_: Alias<'a, ()>) -> Alias<'a, ()> { ... }
+ /// ```
+ ///
+ /// If we conservatively considered `'a` unconstrained then we could break users who had written code before
+ /// we started correctly handling aliases. If we considered `'a` constrained then it would become late bound
+ /// causing an error during astconv as the `'a` is not constrained by the input type `<() as Trait<'a>>::Assoc`
+ /// but appears in the output type `<() as Trait<'a>>::Assoc`.
+ ///
+ /// We must therefore "look into" the `Alias` to see whether we should consider `'a` constrained or not.
+ ///
+ /// See #100508 #85533 #47511 for additional context
+ struct ConstrainedCollectorPostAstConv {
+ arg_is_constrained: Box<[bool]>,
+ }
+
+ use std::ops::ControlFlow;
+ use ty::Ty;
+ impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ConstrainedCollectorPostAstConv {
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<!> {
+ match t.kind() {
+ ty::Param(param_ty) => {
+ self.arg_is_constrained[param_ty.index as usize] = true;
+ }
+ ty::Alias(ty::Projection, _) => return ControlFlow::Continue(()),
+ _ => (),
+ }
+ t.super_visit_with(self)
+ }
+
+ fn visit_const(&mut self, _: ty::Const<'tcx>) -> ControlFlow<!> {
+ ControlFlow::Continue(())
+ }
+
+ fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<!> {
+ debug!("r={:?}", r.kind());
+ if let ty::RegionKind::ReEarlyBound(region) = r.kind() {
+ self.arg_is_constrained[region.index as usize] = true;
+ }
+
+ ControlFlow::Continue(())
+ }
+ }
+
+ struct ConstrainedCollector<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ regions: FxHashSet<LocalDefId>,
+ }
+
+ impl<'v> Visitor<'v> for ConstrainedCollector<'_> {
+ fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
+ match ty.kind {
+ hir::TyKind::Path(
+ hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
+ ) => {
+ // ignore lifetimes appearing in associated type
+ // projections, as they are not *constrained*
+ // (defined above)
+ }
+
+ hir::TyKind::Path(hir::QPath::Resolved(
+ None,
+ hir::Path { res: Res::Def(DefKind::TyAlias, alias_def), segments, span },
+ )) => {
+ // See comments on `ConstrainedCollectorPostAstConv` for why this arm does not just consider
+ // substs to be unconstrained.
+ let generics = self.tcx.generics_of(alias_def);
+ let mut walker = ConstrainedCollectorPostAstConv {
+ arg_is_constrained: vec![false; generics.params.len()].into_boxed_slice(),
+ };
+ walker.visit_ty(self.tcx.type_of(alias_def).subst_identity());
+
+ match segments.last() {
+ Some(hir::PathSegment { args: Some(args), .. }) => {
+ let tcx = self.tcx;
+ for constrained_arg in
+ args.args.iter().enumerate().flat_map(|(n, arg)| {
+ match walker.arg_is_constrained.get(n) {
+ Some(true) => Some(arg),
+ Some(false) => None,
+ None => {
+ tcx.sess.delay_span_bug(
+ *span,
+ format!(
+ "Incorrect generic arg count for alias {:?}",
+ alias_def
+ ),
+ );
+ None
+ }
+ }
+ })
+ {
+ self.visit_generic_arg(constrained_arg);
+ }
+ }
+ Some(_) => (),
+ None => bug!("Path with no segments or self type"),
+ }
+ }
+
+ hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
+ // consider only the lifetimes on the final
+ // segment; I am not sure it's even currently
+ // valid to have them elsewhere, but even if it
+ // is, those would be potentially inputs to
+ // projections
+ if let Some(last_segment) = path.segments.last() {
+ self.visit_path_segment(last_segment);
+ }
+ }
+
+ _ => {
+ intravisit::walk_ty(self, ty);
+ }
+ }
+ }
+
+ fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
+ if let hir::LifetimeName::Param(def_id) = lifetime_ref.res {
+ self.regions.insert(def_id);
+ }
+ }
+ }
+
+ #[derive(Default)]
+ struct AllCollector {
+ regions: FxHashSet<LocalDefId>,
+ }
+
+ impl<'v> Visitor<'v> for AllCollector {
+ fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
+ if let hir::LifetimeName::Param(def_id) = lifetime_ref.res {
+ self.regions.insert(def_id);
+ }
+ }
+ }
+}
+
+pub fn deny_non_region_late_bound(
+ tcx: TyCtxt<'_>,
+ bound_vars: &mut FxIndexMap<LocalDefId, ResolvedArg>,
+ where_: &str,
+) {
+ let mut first = true;
+
+ for (var, arg) in bound_vars {
+ let Node::GenericParam(param) = tcx.hir().get_by_def_id(*var) else {
+ bug!();
+ };
+
+ let what = match param.kind {
+ hir::GenericParamKind::Type { .. } => "type",
+ hir::GenericParamKind::Const { .. } => "const",
+ hir::GenericParamKind::Lifetime { .. } => continue,
+ };
+
+ let mut diag = tcx.sess.struct_span_err(
+ param.span,
+ format!("late-bound {what} parameter not allowed on {where_}"),
+ );
+
+ let guar = if tcx.features().non_lifetime_binders && first {
+ diag.emit()
+ } else {
+ diag.delay_as_bug()
+ };
+
+ first = false;
+ *arg = ResolvedArg::Error(guar);
+ }
+}