summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/canonical/query_response.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/canonical/query_response.rs')
-rw-r--r--compiler/rustc_infer/src/infer/canonical/query_response.rs741
1 files changed, 741 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/canonical/query_response.rs b/compiler/rustc_infer/src/infer/canonical/query_response.rs
new file mode 100644
index 000000000..8dc20544f
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/canonical/query_response.rs
@@ -0,0 +1,741 @@
+//! This module contains the code to instantiate a "query result", and
+//! in particular to extract out the resulting region obligations and
+//! encode them therein.
+//!
+//! For an overview of what canonicalization is and how it fits into
+//! rustc, check out the [chapter in the rustc dev guide][c].
+//!
+//! [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html
+
+use crate::infer::canonical::substitute::{substitute_value, CanonicalExt};
+use crate::infer::canonical::{
+ Canonical, CanonicalVarValues, CanonicalizedQueryResponse, Certainty, OriginalQueryValues,
+ QueryOutlivesConstraint, QueryRegionConstraints, QueryResponse,
+};
+use crate::infer::nll_relate::{NormalizationStrategy, TypeRelating, TypeRelatingDelegate};
+use crate::infer::region_constraints::{Constraint, RegionConstraintData};
+use crate::infer::{InferCtxt, InferOk, InferResult, NllRegionVariableOrigin};
+use crate::traits::query::{Fallible, NoSolution};
+use crate::traits::TraitEngine;
+use crate::traits::{Obligation, ObligationCause, PredicateObligation};
+use rustc_data_structures::captures::Captures;
+use rustc_index::vec::Idx;
+use rustc_index::vec::IndexVec;
+use rustc_middle::arena::ArenaAllocatable;
+use rustc_middle::ty::error::TypeError;
+use rustc_middle::ty::fold::TypeFoldable;
+use rustc_middle::ty::relate::TypeRelation;
+use rustc_middle::ty::subst::{GenericArg, GenericArgKind};
+use rustc_middle::ty::{self, BoundVar, Const, ToPredicate, Ty, TyCtxt};
+use rustc_span::Span;
+use std::fmt::Debug;
+use std::iter;
+
+impl<'cx, 'tcx> InferCtxt<'cx, 'tcx> {
+ /// This method is meant to be invoked as the final step of a canonical query
+ /// implementation. It is given:
+ ///
+ /// - the instantiated variables `inference_vars` created from the query key
+ /// - the result `answer` of the query
+ /// - a fulfillment context `fulfill_cx` that may contain various obligations which
+ /// have yet to be proven.
+ ///
+ /// Given this, the function will process the obligations pending
+ /// in `fulfill_cx`:
+ ///
+ /// - If all the obligations can be proven successfully, it will
+ /// package up any resulting region obligations (extracted from
+ /// `infcx`) along with the fully resolved value `answer` into a
+ /// query result (which is then itself canonicalized).
+ /// - If some obligations can be neither proven nor disproven, then
+ /// the same thing happens, but the resulting query is marked as ambiguous.
+ /// - Finally, if any of the obligations result in a hard error,
+ /// then `Err(NoSolution)` is returned.
+ #[instrument(skip(self, inference_vars, answer, fulfill_cx), level = "trace")]
+ pub fn make_canonicalized_query_response<T>(
+ &self,
+ inference_vars: CanonicalVarValues<'tcx>,
+ answer: T,
+ fulfill_cx: &mut dyn TraitEngine<'tcx>,
+ ) -> Fallible<CanonicalizedQueryResponse<'tcx, T>>
+ where
+ T: Debug + TypeFoldable<'tcx>,
+ Canonical<'tcx, QueryResponse<'tcx, T>>: ArenaAllocatable<'tcx>,
+ {
+ let query_response = self.make_query_response(inference_vars, answer, fulfill_cx)?;
+ let canonical_result = self.canonicalize_response(query_response);
+
+ debug!("canonical_result = {:#?}", canonical_result);
+
+ Ok(self.tcx.arena.alloc(canonical_result))
+ }
+
+ /// A version of `make_canonicalized_query_response` that does
+ /// not pack in obligations, for contexts that want to drop
+ /// pending obligations instead of treating them as an ambiguity (e.g.
+ /// typeck "probing" contexts).
+ ///
+ /// If you DO want to keep track of pending obligations (which
+ /// include all region obligations, so this includes all cases
+ /// that care about regions) with this function, you have to
+ /// do it yourself, by e.g., having them be a part of the answer.
+ pub fn make_query_response_ignoring_pending_obligations<T>(
+ &self,
+ inference_vars: CanonicalVarValues<'tcx>,
+ answer: T,
+ ) -> Canonical<'tcx, QueryResponse<'tcx, T>>
+ where
+ T: Debug + TypeFoldable<'tcx>,
+ {
+ self.canonicalize_response(QueryResponse {
+ var_values: inference_vars,
+ region_constraints: QueryRegionConstraints::default(),
+ certainty: Certainty::Proven, // Ambiguities are OK!
+ opaque_types: vec![],
+ value: answer,
+ })
+ }
+
+ /// Helper for `make_canonicalized_query_response` that does
+ /// everything up until the final canonicalization.
+ #[instrument(skip(self, fulfill_cx), level = "debug")]
+ fn make_query_response<T>(
+ &self,
+ inference_vars: CanonicalVarValues<'tcx>,
+ answer: T,
+ fulfill_cx: &mut dyn TraitEngine<'tcx>,
+ ) -> Result<QueryResponse<'tcx, T>, NoSolution>
+ where
+ T: Debug + TypeFoldable<'tcx>,
+ {
+ let tcx = self.tcx;
+
+ // Select everything, returning errors.
+ let true_errors = fulfill_cx.select_where_possible(self);
+ debug!("true_errors = {:#?}", true_errors);
+
+ if !true_errors.is_empty() {
+ // FIXME -- we don't indicate *why* we failed to solve
+ debug!("make_query_response: true_errors={:#?}", true_errors);
+ return Err(NoSolution);
+ }
+
+ // Anything left unselected *now* must be an ambiguity.
+ let ambig_errors = fulfill_cx.select_all_or_error(self);
+ debug!("ambig_errors = {:#?}", ambig_errors);
+
+ let region_obligations = self.take_registered_region_obligations();
+ let region_constraints = self.with_region_constraints(|region_constraints| {
+ make_query_region_constraints(
+ tcx,
+ region_obligations.iter().map(|r_o| (r_o.sup_type, r_o.sub_region)),
+ region_constraints,
+ )
+ });
+
+ let certainty =
+ if ambig_errors.is_empty() { Certainty::Proven } else { Certainty::Ambiguous };
+
+ let opaque_types = self.take_opaque_types_for_query_response();
+
+ Ok(QueryResponse {
+ var_values: inference_vars,
+ region_constraints,
+ certainty,
+ value: answer,
+ opaque_types,
+ })
+ }
+
+ fn take_opaque_types_for_query_response(&self) -> Vec<(Ty<'tcx>, Ty<'tcx>)> {
+ self.inner
+ .borrow_mut()
+ .opaque_type_storage
+ .take_opaque_types()
+ .into_iter()
+ .map(|(k, v)| (self.tcx.mk_opaque(k.def_id.to_def_id(), k.substs), v.hidden_type.ty))
+ .collect()
+ }
+
+ /// Given the (canonicalized) result to a canonical query,
+ /// instantiates the result so it can be used, plugging in the
+ /// values from the canonical query. (Note that the result may
+ /// have been ambiguous; you should check the certainty level of
+ /// the query before applying this function.)
+ ///
+ /// To get a good understanding of what is happening here, check
+ /// out the [chapter in the rustc dev guide][c].
+ ///
+ /// [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html#processing-the-canonicalized-query-result
+ pub fn instantiate_query_response_and_region_obligations<R>(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ original_values: &OriginalQueryValues<'tcx>,
+ query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
+ ) -> InferResult<'tcx, R>
+ where
+ R: Debug + TypeFoldable<'tcx>,
+ {
+ let InferOk { value: result_subst, mut obligations } =
+ self.query_response_substitution(cause, param_env, original_values, query_response)?;
+
+ obligations.extend(self.query_outlives_constraints_into_obligations(
+ cause,
+ param_env,
+ &query_response.value.region_constraints.outlives,
+ &result_subst,
+ ));
+
+ let user_result: R =
+ query_response.substitute_projected(self.tcx, &result_subst, |q_r| q_r.value.clone());
+
+ Ok(InferOk { value: user_result, obligations })
+ }
+
+ /// An alternative to
+ /// `instantiate_query_response_and_region_obligations` that is more
+ /// efficient for NLL. NLL is a bit more advanced in the
+ /// "transition to chalk" than the rest of the compiler. During
+ /// the NLL type check, all of the "processing" of types and
+ /// things happens in queries -- the NLL checker itself is only
+ /// interested in the region obligations (`'a: 'b` or `T: 'b`)
+ /// that come out of these queries, which it wants to convert into
+ /// MIR-based constraints and solve. Therefore, it is most
+ /// convenient for the NLL Type Checker to **directly consume**
+ /// the `QueryOutlivesConstraint` values that arise from doing a
+ /// query. This is contrast to other parts of the compiler, which
+ /// would prefer for those `QueryOutlivesConstraint` to be converted
+ /// into the older infcx-style constraints (e.g., calls to
+ /// `sub_regions` or `register_region_obligation`).
+ ///
+ /// Therefore, `instantiate_nll_query_response_and_region_obligations` performs the same
+ /// basic operations as `instantiate_query_response_and_region_obligations` but
+ /// it returns its result differently:
+ ///
+ /// - It creates a substitution `S` that maps from the original
+ /// query variables to the values computed in the query
+ /// result. If any errors arise, they are propagated back as an
+ /// `Err` result.
+ /// - In the case of a successful substitution, we will append
+ /// `QueryOutlivesConstraint` values onto the
+ /// `output_query_region_constraints` vector for the solver to
+ /// use (if an error arises, some values may also be pushed, but
+ /// they should be ignored).
+ /// - It **can happen** (though it rarely does currently) that
+ /// equating types and things will give rise to subobligations
+ /// that must be processed. In this case, those subobligations
+ /// are propagated back in the return value.
+ /// - Finally, the query result (of type `R`) is propagated back,
+ /// after applying the substitution `S`.
+ pub fn instantiate_nll_query_response_and_region_obligations<R>(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ original_values: &OriginalQueryValues<'tcx>,
+ query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
+ output_query_region_constraints: &mut QueryRegionConstraints<'tcx>,
+ ) -> InferResult<'tcx, R>
+ where
+ R: Debug + TypeFoldable<'tcx>,
+ {
+ let InferOk { value: result_subst, mut obligations } = self
+ .query_response_substitution_guess(cause, param_env, original_values, query_response)?;
+
+ // Compute `QueryOutlivesConstraint` values that unify each of
+ // the original values `v_o` that was canonicalized into a
+ // variable...
+
+ for (index, original_value) in original_values.var_values.iter().enumerate() {
+ // ...with the value `v_r` of that variable from the query.
+ let result_value = query_response.substitute_projected(self.tcx, &result_subst, |v| {
+ v.var_values[BoundVar::new(index)]
+ });
+ match (original_value.unpack(), result_value.unpack()) {
+ (GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
+ if re1.is_erased() && re2.is_erased() =>
+ {
+ // No action needed.
+ }
+
+ (GenericArgKind::Lifetime(v_o), GenericArgKind::Lifetime(v_r)) => {
+ // To make `v_o = v_r`, we emit `v_o: v_r` and `v_r: v_o`.
+ if v_o != v_r {
+ output_query_region_constraints
+ .outlives
+ .push(ty::Binder::dummy(ty::OutlivesPredicate(v_o.into(), v_r)));
+ output_query_region_constraints
+ .outlives
+ .push(ty::Binder::dummy(ty::OutlivesPredicate(v_r.into(), v_o)));
+ }
+ }
+
+ (GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
+ TypeRelating::new(
+ self,
+ QueryTypeRelatingDelegate {
+ infcx: self,
+ param_env,
+ cause,
+ obligations: &mut obligations,
+ },
+ ty::Variance::Invariant,
+ )
+ .relate(v1, v2)?;
+ }
+
+ (GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
+ TypeRelating::new(
+ self,
+ QueryTypeRelatingDelegate {
+ infcx: self,
+ param_env,
+ cause,
+ obligations: &mut obligations,
+ },
+ ty::Variance::Invariant,
+ )
+ .relate(v1, v2)?;
+ }
+
+ _ => {
+ bug!("kind mismatch, cannot unify {:?} and {:?}", original_value, result_value);
+ }
+ }
+ }
+
+ // ...also include the other query region constraints from the query.
+ output_query_region_constraints.outlives.extend(
+ query_response.value.region_constraints.outlives.iter().filter_map(|&r_c| {
+ let r_c = substitute_value(self.tcx, &result_subst, r_c);
+
+ // Screen out `'a: 'a` cases -- we skip the binder here but
+ // only compare the inner values to one another, so they are still at
+ // consistent binding levels.
+ let ty::OutlivesPredicate(k1, r2) = r_c.skip_binder();
+ if k1 != r2.into() { Some(r_c) } else { None }
+ }),
+ );
+
+ // ...also include the query member constraints.
+ output_query_region_constraints.member_constraints.extend(
+ query_response
+ .value
+ .region_constraints
+ .member_constraints
+ .iter()
+ .map(|p_c| substitute_value(self.tcx, &result_subst, p_c.clone())),
+ );
+
+ let user_result: R =
+ query_response.substitute_projected(self.tcx, &result_subst, |q_r| q_r.value.clone());
+
+ Ok(InferOk { value: user_result, obligations })
+ }
+
+ /// Given the original values and the (canonicalized) result from
+ /// computing a query, returns a substitution that can be applied
+ /// to the query result to convert the result back into the
+ /// original namespace.
+ ///
+ /// The substitution also comes accompanied with subobligations
+ /// that arose from unification; these might occur if (for
+ /// example) we are doing lazy normalization and the value
+ /// assigned to a type variable is unified with an unnormalized
+ /// projection.
+ fn query_response_substitution<R>(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ original_values: &OriginalQueryValues<'tcx>,
+ query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
+ ) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
+ where
+ R: Debug + TypeFoldable<'tcx>,
+ {
+ debug!(
+ "query_response_substitution(original_values={:#?}, query_response={:#?})",
+ original_values, query_response,
+ );
+
+ let mut value = self.query_response_substitution_guess(
+ cause,
+ param_env,
+ original_values,
+ query_response,
+ )?;
+
+ value.obligations.extend(
+ self.unify_query_response_substitution_guess(
+ cause,
+ param_env,
+ original_values,
+ &value.value,
+ query_response,
+ )?
+ .into_obligations(),
+ );
+
+ Ok(value)
+ }
+
+ /// Given the original values and the (canonicalized) result from
+ /// computing a query, returns a **guess** at a substitution that
+ /// can be applied to the query result to convert the result back
+ /// into the original namespace. This is called a **guess**
+ /// because it uses a quick heuristic to find the values for each
+ /// canonical variable; if that quick heuristic fails, then we
+ /// will instantiate fresh inference variables for each canonical
+ /// variable instead. Therefore, the result of this method must be
+ /// properly unified
+ fn query_response_substitution_guess<R>(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ original_values: &OriginalQueryValues<'tcx>,
+ query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
+ ) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
+ where
+ R: Debug + TypeFoldable<'tcx>,
+ {
+ debug!(
+ "query_response_substitution_guess(original_values={:#?}, query_response={:#?})",
+ original_values, query_response,
+ );
+
+ // For each new universe created in the query result that did
+ // not appear in the original query, create a local
+ // superuniverse.
+ let mut universe_map = original_values.universe_map.clone();
+ let num_universes_in_query = original_values.universe_map.len();
+ let num_universes_in_response = query_response.max_universe.as_usize() + 1;
+ for _ in num_universes_in_query..num_universes_in_response {
+ universe_map.push(self.create_next_universe());
+ }
+ assert!(!universe_map.is_empty()); // always have the root universe
+ assert_eq!(universe_map[ty::UniverseIndex::ROOT.as_usize()], ty::UniverseIndex::ROOT);
+
+ // Every canonical query result includes values for each of
+ // the inputs to the query. Therefore, we begin by unifying
+ // these values with the original inputs that were
+ // canonicalized.
+ let result_values = &query_response.value.var_values;
+ assert_eq!(original_values.var_values.len(), result_values.len());
+
+ // Quickly try to find initial values for the canonical
+ // variables in the result in terms of the query. We do this
+ // by iterating down the values that the query gave to each of
+ // the canonical inputs. If we find that one of those values
+ // is directly equal to one of the canonical variables in the
+ // result, then we can type the corresponding value from the
+ // input. See the example above.
+ let mut opt_values: IndexVec<BoundVar, Option<GenericArg<'tcx>>> =
+ IndexVec::from_elem_n(None, query_response.variables.len());
+
+ // In terms of our example above, we are iterating over pairs like:
+ // [(?A, Vec<?0>), ('static, '?1), (?B, ?0)]
+ for (original_value, result_value) in iter::zip(&original_values.var_values, result_values)
+ {
+ match result_value.unpack() {
+ GenericArgKind::Type(result_value) => {
+ // e.g., here `result_value` might be `?0` in the example above...
+ if let ty::Bound(debruijn, b) = *result_value.kind() {
+ // ...in which case we would set `canonical_vars[0]` to `Some(?U)`.
+
+ // We only allow a `ty::INNERMOST` index in substitutions.
+ assert_eq!(debruijn, ty::INNERMOST);
+ opt_values[b.var] = Some(*original_value);
+ }
+ }
+ GenericArgKind::Lifetime(result_value) => {
+ // e.g., here `result_value` might be `'?1` in the example above...
+ if let ty::ReLateBound(debruijn, br) = *result_value {
+ // ... in which case we would set `canonical_vars[0]` to `Some('static)`.
+
+ // We only allow a `ty::INNERMOST` index in substitutions.
+ assert_eq!(debruijn, ty::INNERMOST);
+ opt_values[br.var] = Some(*original_value);
+ }
+ }
+ GenericArgKind::Const(result_value) => {
+ if let ty::ConstKind::Bound(debrujin, b) = result_value.kind() {
+ // ...in which case we would set `canonical_vars[0]` to `Some(const X)`.
+
+ // We only allow a `ty::INNERMOST` index in substitutions.
+ assert_eq!(debrujin, ty::INNERMOST);
+ opt_values[b] = Some(*original_value);
+ }
+ }
+ }
+ }
+
+ // Create a result substitution: if we found a value for a
+ // given variable in the loop above, use that. Otherwise, use
+ // a fresh inference variable.
+ let result_subst = CanonicalVarValues {
+ var_values: query_response
+ .variables
+ .iter()
+ .enumerate()
+ .map(|(index, info)| {
+ if info.is_existential() {
+ match opt_values[BoundVar::new(index)] {
+ Some(k) => k,
+ None => self.instantiate_canonical_var(cause.span, info, |u| {
+ universe_map[u.as_usize()]
+ }),
+ }
+ } else {
+ self.instantiate_canonical_var(cause.span, info, |u| {
+ universe_map[u.as_usize()]
+ })
+ }
+ })
+ .collect(),
+ };
+
+ let mut obligations = vec![];
+
+ // Carry all newly resolved opaque types to the caller's scope
+ for &(a, b) in &query_response.value.opaque_types {
+ let a = substitute_value(self.tcx, &result_subst, a);
+ let b = substitute_value(self.tcx, &result_subst, b);
+ obligations.extend(self.handle_opaque_type(a, b, true, cause, param_env)?.obligations);
+ }
+
+ Ok(InferOk { value: result_subst, obligations })
+ }
+
+ /// Given a "guess" at the values for the canonical variables in
+ /// the input, try to unify with the *actual* values found in the
+ /// query result. Often, but not always, this is a no-op, because
+ /// we already found the mapping in the "guessing" step.
+ ///
+ /// See also: `query_response_substitution_guess`
+ fn unify_query_response_substitution_guess<R>(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ original_values: &OriginalQueryValues<'tcx>,
+ result_subst: &CanonicalVarValues<'tcx>,
+ query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
+ ) -> InferResult<'tcx, ()>
+ where
+ R: Debug + TypeFoldable<'tcx>,
+ {
+ // A closure that yields the result value for the given
+ // canonical variable; this is taken from
+ // `query_response.var_values` after applying the substitution
+ // `result_subst`.
+ let substituted_query_response = |index: BoundVar| -> GenericArg<'tcx> {
+ query_response.substitute_projected(self.tcx, &result_subst, |v| v.var_values[index])
+ };
+
+ // Unify the original value for each variable with the value
+ // taken from `query_response` (after applying `result_subst`).
+ self.unify_canonical_vars(cause, param_env, original_values, substituted_query_response)
+ }
+
+ /// Converts the region constraints resulting from a query into an
+ /// iterator of obligations.
+ fn query_outlives_constraints_into_obligations<'a>(
+ &'a self,
+ cause: &'a ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ unsubstituted_region_constraints: &'a [QueryOutlivesConstraint<'tcx>],
+ result_subst: &'a CanonicalVarValues<'tcx>,
+ ) -> impl Iterator<Item = PredicateObligation<'tcx>> + 'a + Captures<'tcx> {
+ unsubstituted_region_constraints.iter().map(move |&constraint| {
+ let predicate = substitute_value(self.tcx, result_subst, constraint);
+ self.query_outlives_constraint_to_obligation(predicate, cause.clone(), param_env)
+ })
+ }
+
+ pub fn query_outlives_constraint_to_obligation(
+ &self,
+ predicate: QueryOutlivesConstraint<'tcx>,
+ cause: ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Obligation<'tcx, ty::Predicate<'tcx>> {
+ let ty::OutlivesPredicate(k1, r2) = predicate.skip_binder();
+
+ let atom = match k1.unpack() {
+ GenericArgKind::Lifetime(r1) => {
+ ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(r1, r2))
+ }
+ GenericArgKind::Type(t1) => {
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(t1, r2))
+ }
+ GenericArgKind::Const(..) => {
+ // Consts cannot outlive one another, so we don't expect to
+ // encounter this branch.
+ span_bug!(cause.span, "unexpected const outlives {:?}", predicate);
+ }
+ };
+ let predicate = predicate.rebind(atom).to_predicate(self.tcx);
+
+ Obligation::new(cause, param_env, predicate)
+ }
+
+ /// Given two sets of values for the same set of canonical variables, unify them.
+ /// The second set is produced lazily by supplying indices from the first set.
+ fn unify_canonical_vars(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ variables1: &OriginalQueryValues<'tcx>,
+ variables2: impl Fn(BoundVar) -> GenericArg<'tcx>,
+ ) -> InferResult<'tcx, ()> {
+ self.commit_if_ok(|_| {
+ let mut obligations = vec![];
+ for (index, value1) in variables1.var_values.iter().enumerate() {
+ let value2 = variables2(BoundVar::new(index));
+
+ match (value1.unpack(), value2.unpack()) {
+ (GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
+ obligations
+ .extend(self.at(cause, param_env).eq(v1, v2)?.into_obligations());
+ }
+ (GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
+ if re1.is_erased() && re2.is_erased() =>
+ {
+ // no action needed
+ }
+ (GenericArgKind::Lifetime(v1), GenericArgKind::Lifetime(v2)) => {
+ obligations
+ .extend(self.at(cause, param_env).eq(v1, v2)?.into_obligations());
+ }
+ (GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
+ let ok = self.at(cause, param_env).eq(v1, v2)?;
+ obligations.extend(ok.into_obligations());
+ }
+ _ => {
+ bug!("kind mismatch, cannot unify {:?} and {:?}", value1, value2,);
+ }
+ }
+ }
+ Ok(InferOk { value: (), obligations })
+ })
+ }
+}
+
+/// Given the region obligations and constraints scraped from the infcx,
+/// creates query region constraints.
+pub fn make_query_region_constraints<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ outlives_obligations: impl Iterator<Item = (Ty<'tcx>, ty::Region<'tcx>)>,
+ region_constraints: &RegionConstraintData<'tcx>,
+) -> QueryRegionConstraints<'tcx> {
+ let RegionConstraintData { constraints, verifys, givens, member_constraints } =
+ region_constraints;
+
+ assert!(verifys.is_empty());
+ assert!(givens.is_empty());
+
+ let outlives: Vec<_> = constraints
+ .iter()
+ .map(|(k, _)| match *k {
+ // Swap regions because we are going from sub (<=) to outlives
+ // (>=).
+ Constraint::VarSubVar(v1, v2) => ty::OutlivesPredicate(
+ tcx.mk_region(ty::ReVar(v2)).into(),
+ tcx.mk_region(ty::ReVar(v1)),
+ ),
+ Constraint::VarSubReg(v1, r2) => {
+ ty::OutlivesPredicate(r2.into(), tcx.mk_region(ty::ReVar(v1)))
+ }
+ Constraint::RegSubVar(r1, v2) => {
+ ty::OutlivesPredicate(tcx.mk_region(ty::ReVar(v2)).into(), r1)
+ }
+ Constraint::RegSubReg(r1, r2) => ty::OutlivesPredicate(r2.into(), r1),
+ })
+ .map(ty::Binder::dummy) // no bound vars in the code above
+ .chain(
+ outlives_obligations
+ .map(|(ty, r)| ty::OutlivesPredicate(ty.into(), r))
+ .map(ty::Binder::dummy), // no bound vars in the code above
+ )
+ .collect();
+
+ QueryRegionConstraints { outlives, member_constraints: member_constraints.clone() }
+}
+
+struct QueryTypeRelatingDelegate<'a, 'tcx> {
+ infcx: &'a InferCtxt<'a, 'tcx>,
+ obligations: &'a mut Vec<PredicateObligation<'tcx>>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: &'a ObligationCause<'tcx>,
+}
+
+impl<'tcx> TypeRelatingDelegate<'tcx> for QueryTypeRelatingDelegate<'_, 'tcx> {
+ fn span(&self) -> Span {
+ self.cause.span
+ }
+
+ fn param_env(&self) -> ty::ParamEnv<'tcx> {
+ self.param_env
+ }
+
+ fn create_next_universe(&mut self) -> ty::UniverseIndex {
+ self.infcx.create_next_universe()
+ }
+
+ fn next_existential_region_var(&mut self, from_forall: bool) -> ty::Region<'tcx> {
+ let origin = NllRegionVariableOrigin::Existential { from_forall };
+ self.infcx.next_nll_region_var(origin)
+ }
+
+ fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty::Region<'tcx> {
+ self.infcx.tcx.mk_region(ty::RePlaceholder(placeholder))
+ }
+
+ fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx> {
+ self.infcx.next_nll_region_var_in_universe(
+ NllRegionVariableOrigin::Existential { from_forall: false },
+ universe,
+ )
+ }
+
+ fn push_outlives(
+ &mut self,
+ sup: ty::Region<'tcx>,
+ sub: ty::Region<'tcx>,
+ _info: ty::VarianceDiagInfo<'tcx>,
+ ) {
+ self.obligations.push(Obligation {
+ cause: self.cause.clone(),
+ param_env: self.param_env,
+ predicate: ty::Binder::dummy(ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
+ sup, sub,
+ )))
+ .to_predicate(self.infcx.tcx),
+ recursion_depth: 0,
+ });
+ }
+
+ fn const_equate(&mut self, _a: Const<'tcx>, _b: Const<'tcx>) {
+ span_bug!(self.cause.span(), "generic_const_exprs: unreachable `const_equate`");
+ }
+
+ fn normalization() -> NormalizationStrategy {
+ NormalizationStrategy::Eager
+ }
+
+ fn forbid_inference_vars() -> bool {
+ true
+ }
+
+ fn register_opaque_type(
+ &mut self,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ a_is_expected: bool,
+ ) -> Result<(), TypeError<'tcx>> {
+ self.obligations.extend(
+ self.infcx
+ .handle_opaque_type(a, b, a_is_expected, &self.cause, self.param_env)?
+ .obligations,
+ );
+ Ok(())
+ }
+}